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Abstract 

Analysis of functional connectivity of simultaneously recorded multiple spike trains is 

one of the major issues in the neuroscience. The progress of the statistical methods to 

the analysis of functional connectivity of multiple spike trains is relatively slow. In this 

thesis two statistical techniques are presented to the analysis of functional cormectivity 

of multiple spike trains. The first method is known as the modified correlation grid 

(MCG). This method is based on the calculation of cross-correlation function of all 

possible pair-wise spike trains. The second technique is known as the Cox method. This 

method is based on the modulated renewal process (MRP). The original paper on the 

application of the Cox method (Borisyuk et al., 1985) to neuroscience data was used to 

analyse only pairs and triplets of spike trains. This method is further developed in this 

thesis to support simultaneously recorded of any possible set of multiple spike trains. 

A probabilistic model is developed to test the Cox method. This probabilistic model is 

based on the MRP. Due to the common probabilistic basis of the probabilistic model 

and the Cox method, the probabilistic model is a convenient technique to test the Cox 

method. A new technique based on a pair-wise analysis of Cox method known as the 

Cox metric is presented to find the groups of coupled spike trains. Another new 

technique known as motif analysis is introduced which is useful in identifying 

intercormections among the spike trains. This technique is based on the triplet-wise 

analysis of the Cox method. 

All these methods are applied to several sets of spike trains generated by the Enhanced 

Leaky and Integrate Fire (ELIF) model. The results suggest that these methods are 

successfiil for analysing functional connectivity of simultaneously recorded multiple 

spike trains. These methods are also applied to an experimental data recorded fi^om cat's 

visual cortex. The connection matrix derived from the experimental data by the Cox 

method is further applied to the graph theoretical methods. 

lU 



Contents 

Abstract iii 

Acknowledgement xxvii 

Author's declaration xxix 

1 Introduction 1 
1.1 Objective of the study 2 

1.2 Tour of the thesis 3 

2 Review of spike train analysis 7 
2.1 Introduction 7 

2.2 Spike train analysis 9 

2.2.1 Pair-wise spike train analysis 9 

2.2.2 Multiple spike train analysis 13 

2.3 Connectivity study using graph theory 18 

2.4 Importance of this research 22 

3 Statistical techniques to improve the analysis of functional 
connections based on pair-wise cross-correlation function 25 
3.1 Introduction 25 

3.2 Cross-correlation fiinction (CCF) 27 

3.3 Classification of functional connection 29 

3.4 Correlation Grid 32 

3.5 Modified Correlation Grid (MCG) 34 

3.5.1 Calculation of CCF 34 

3.5.2 Outlier detection 35 

3.5.3 Cluster analysis 37 

3.5.4 Classification of significant connections 39 

3.6 Analysis of fiinctional connectivity of fifteen spike trains 42 

3.6.1 Calculation of CCF 44 

3.6.2 Outlier detection and cluster analysis 46 

3.6.3 Classification of connection 48 



3.7 Analysis of functional connectivity of twenty spike trains 51 

3.7.1 Calculation of CCF 53 

3.7.2 Outlier detection and cluster analysis 54 

3.7.3 Classification of connection 55 

A generator of multiple spike trains based on Modulated 
Renewal Process 59 
4.1 Introduction 59 

4.2 Point process 60 

4.3 Influence function 61 

4.4 The probabilistic model 66 

4.4.1 Modulated renewal process 67 

4.4.2 Model description 68 

4.5 Goodness of fit 71 

4.5.1 Q-Q plot (Quantile-Quantile plot) 71 

4.5.2 K-S test (Kohnogorov-Smimov test) 72 

4.6 Fitting with ELIF model 72 

4.7 Generation of two spike trains by the probabilistic model 74 

4.8 Fitting probabilistic model with ELIF model for two spike trains 78 

Statistical technique for the analysis of functional 
connections of multiple spike trains 83 
5.1 Introduction 83 

5.2 The Cox method 85 

5.2.1 Derivation of the formula 87 

5.2.2 Parameters of the influence fijnction..., , 91 

5.3 Analysis of functional connectivity by the Cox method 95 

5.3.1 Analysis of two spike trains 95 

5.3.2 Analysis of three spike trains 96 

5.3.3 Analysis of the general case of/> spike trains 98 

5.4 Simultaneous analysis of/? spike trains gives better result than pairs 
and triplets 99 

5.4.1 Pair-wise analysis 101 

5.4.2 Triplet analysis 106 

5.4.2.1 Analysis of spike trains {#1, #2, #3} 106 

5.4.2.2 Analysis of spike trains {#1, #2, #4} 109 

5.4.2.3 Analysis of spike trains {#1, #3, #4} 110 

5.4.2.4 Analysis of spike trains {#2, #3, #4} 112 

vi 



5.4.3 Analysis considering all four spike trains 115 

5.5 Analysis of functional connectivity of five spike trains 119 

5.6 Analysis of fiinctional connectivity of twenty spike trains 125 

5.7 Cox method versus CCF 129 

5.7.1 Analysis of two spike trains 130 

5.7.2 Analysis of three spike trains 133 

5.7.2.1 Common source connection 134 

5.7.2.2 Indirect connection 138 

5.8 Cox metric 142 

5.8.1 Application to twenty spike trains 144 

5.9 Motif analysis using Cox method 150 

5.9.1 Application to twenty spike trains 154 

Application of the methods to the experimental data 159 
6.1 Methods for data acquisition 159 

6.1.1 Preparation 159 

6.1.2 Recording 159 

6.1.3 Visual stimulation 160 

6.2 Data description 161 

6.3 Analysis of fianctional connectivity 162 

6.4 Analysis of functional connectivity of stimulus 1 164 

6.4.1 MCG method 165 

6.4.2 Cox method 167 

6.4.3 Cox metric 169 

6.4.4 Motif analysis 172 

6.5 Summary of functional connectivity of all stimuli 173 

Methods of graph theory for analysing the connectivity 181 
7.1 Introduction 181 

7.2 Graph theory methods 183 

7.2.1 Density 183 

7.2.2 Degree 184 

7.2.3 Characteristic path length 185 

7.2.4 Efficiency 187 

7.2.5 Clustering coefficient 187 

7.2.6 Betweenness centrality 189 

7.2.7 ThePl model 189 

7.3 Analysis of connectivity of stimulus 1 194 

vii 



7.4 Summary of connectivity of all stimuli 200 

8 Contribution and conclusion 205 
8.1 Contribution 205 

8.2 Conclusion 206 

8.3 Application of the methods to the experimental data 209 

8.3.1 Analysis of functional connectivity 209 

8.3.2 Graph theoretical methods for analysing connectivity 210 

A Appendix A 213 
A.l Description of the ELIF model 213 

A.2 Dynamics of the ELIF model 214 

A.3 Parameters of the ELIF model 215 

B Appendix B 217 
B. 1 Analysis of functional connectivity of stimulus 2 217 

B.1.1 MCG method 218 

B.1.2 Cox method 219 

B.1.3 Cox metric 221 

B.1.4 Motif Analysis 224 

B.2 Analysis of functional connectivity of stimulus 3 225 

B.2.1 MCG method 226 

B.2.2 Cox method 227 

B.2.3 Cox metric 230 

B.2.4 Motif Analysis 232 

B.3 Analysisof functional connectivity of stimulus 4 234 

B.3.1 MCG method 234 

B.3.2 Cox method 236 

B.3.3 Cox metric 238 

B.3.4 Motif Analysis 241 

B .4 Analysis of functional connectivity of stimulus 5 242 

B.4.1 MCG method 243 

B.4.2 Cox method 245 

B.4.3 Cox metric 247 

B.4.4 Motif Analysis 250 

B.5 Analysis of functional connectivity of stimulus 6 251 

B.5.1 MCG method 252 

Vll l 



B.5.2 Cox method.... 

B.5.3 Cox metric 

B.5.4 Motif Analysis. 

253 

256 

258 

Appendix C 
C. 1 Analysis of connectivity of stimulus 2. 

C.2 Analysis of connectivity of stimulus 3. 

C.3 Analysis of connectivity of stimulus 4. 

C.4 Analysis of connectivity of stimulus 5. 

C. 5 Analysis of connectivity of stimulus 6. 

261 

261 

267 

273 

279 

285 

List of references 293 

Bound copy of published paper 309 

IX 



List of Figures 

3.1 Counting procedvire of the target spikes that fall within the correlation 
window for the reference spike 27 

3.2 An example of a cross-correlation ftinction with confidence interval, 
significant peak and time shift 28 

3.3 Schematic diagram of (a) Direct connection where neviron A is directly 
connected to neuron B. (b) Indirect connection where neuron A is 
connected to neuron C through neuron B. (c) Common source where 
neuron A is connected to both neuron B and C 29 

3.4 Examples of cross-correlation for the three types of connection, (a) 
Direct connection, (b) Indirect connection and (c) Common source 31 

3.5 An example of a correlation grid to find functional connectivity of 
multiple spike trains 33 

3.6 An example of a typical scatter plot of a set of significant peaks pij and 

the time shifts Ajy where the classification of direct connection, 

indirect connection and common source are indicated by circles ^° 
3.7 (a) Connection scheme of the ten spike trains, (b) An example of a 

direct functional connectivity matrix of these ten spike trains 40 
3.8 (a) Connection scheme of fifteen spike trains. There are sixteen non 

zero connections which are shown by arrows, (b) Connection strengths 
of the sixteen non zero connections in the matrix format 43 

3.9 Raster plot of fifteen spike trains generated for the connection scheme 
given in Fig. 3.8 over the duration 30,000 milliseconds 44 

3.10 (a) Significant connections obtained from pair-wise cross-correlation 
analysis. A total of 25 significant connections are obtained from the 
fifteen spike train, (b) Scatter plot of these 25 significant connections 
showing the significant peak with corresponding time shift. The error 
connections are shown in blue and green circles 46 

3.11 Dendrogram of 24 significant connections. Three clusters are indicated 
by different colours with the connection labels. Red colour indicates 
direct connection, blue colour indicates common source and green 
colour indicates indirect connection 48 

3.12 (a) Common source connections obtained from the common source 
cluster in Table 3.4. (b) Indirect connections obtained from the cluster 
of indirect connections in Table 3.4 49 

3.13 (a) Direct connection similar to the connection scheme shown in Fig. 
3.8(b). Radius of the circle shows the sfrength of connection zind is 
proportional to the sfrength of connection in Fig. 3.8(b). (b) Common 
source and indirect connections. Blue circle shows a common source 
connection and red circle shows an indirect connection. Radius of the 
circle shows the sfrength of connection and the connections are small 

XI 



relative to the direct connection 49 
3.14 (a) Connection scheme of twenty spike trains. There are twenty five 

non zero coimections which are shown by arrows, (b) Connection 
strengths of the twenty five non zero connections in the matrix 
format 52 

3.15 Raster plot of twenty spike trains generated for the connection scheme 
given in Fig. 3.14 over the duration 30,000 milliseconds 53 

3.16 (a) Significant cormections obtained from pair-wise cross-correlation 
analysis, (b) Scatter plot of these 34 significant connections showing 
the significant peak with corresponding time shift 54 

3.17 Cluster analysis of all significant peaks and time shifts, (a) Cluster of 
common source, (b) Cluster of direct connections (c) Cluster of 
indirect connections, (d) Scatter plot of the significant peaks and time 
shifts. The scatter plot shows that low significant peaks and short time 
shifts constitute the cluster of common source. High significant peaks 
and moderate time shifts constitute the cluster of direct connections 
and low significant peaks and long time shifts constitute the indirect 
connections 55 

3.18 (a) Common source connections obtained fi-om the cluster of common 
source (Fig. 3.17(a)). (b) Indirect connections obtained fi"om the cluster 
of indirect connections (Fig. 3.17(c)) 57 

3.19 (a) Direct connections which are exactly the same as at the connection 
scheme shown in Fig. 3.14(b). Radius of the circle shows the strength 
of connection estimated fi-om CCF and is proportional to the strength 
of connection in Fig. 3.14(b). (b) Common source and indirect 
connections. Blue circle shows a common source connection and green 
circle shows an indirect connection. Radius of the circle shows the 
strength of connection and the connections are small relative to the 
direct cormection 57 

4.1 Multiple specifications for point process data, (a) Point process in 
terms of event occurrence, (b) Point process in terms of interevent 
occurrence and (c) Point process in terms of counting process 61 

4.2 Influence fimction. (a) The influence function of (4.1) with rise time of 
post synaptic potential T^ = 0.1 ms for different decay times 
T5 = (5 ms, 10 ms, 15 ms, 20 ms). At rise time T^ = 0.1 ms the 
peak value of the influence function is 1 and then it decays to zero, (b) 
The influence function of (4.2) for different decay time T5 = (5 m.s, 
10 ms, 15 m.s, 20 ms). At time t = 0, the value of influence function 
is zero. The influence function has peaks at time t = TJ which is 1 and 

then decays to zero for large values of t 62 
4.3 niustration of the backward recurrence time of post-synaptic neuron B. 

The backward recurrence time is calculated using the difference 
between the spike time in neuron A and the last spike time in neuron B. 

xii 



Assuming that the spike times in neuron A are t\, cj and t j and the 
spike times in neuron B aretg, tg and t | , the backward recurrence time 
for neuron B at time t\ is the time form t\ to the time tg and is 
denoted by (/gC t^). Similarly the backward recurrence times for the 
neuron B at times t j and t j are calculated and denoted by Ugit^) and 
^B( ^DJ respectively ^^ 

4.4 Influence function accounting for the time delay A of spike 
propagation. The square indicates the value of influence function when 
a spike t^ in neuron A is shifted by the time delay A. (a) Influence 
function by formula (4.3) (b) Influence function by formula (4.4) 64 

4.5 Generalized influence function which accumulates influence from 
previous spikes of neuron B in the time interval (t — T, t) with 
propagation delay A 65 

4.6 (a) Raster plot of the target spike train A (red) and the reference spike 
train B (blue), (b) ISI histogram of the target spike train A 
superimposed with the fitted Weibull probability density (c) ISI 
histogram of the reference spike train B superimposed with the fitted 
gamma probability density 75 

4.7 (a) Q-Q plot of the ISI of target spike train A fitted with the Weibull 
probability distribution. The red line shows the 45-degree reference 
line and the blue cross represents points of the empirical and Weibull 
quantile. (b) K-S plot of the ISI of target spike train A fitted with the 
Weibull probability distribution. The red line shows the cumulative 
distribution function of the fitted Weibull distribution fianction and the 
blue line shows the empirical cumulative distribution function of the 
interspike interval 76 

4.8 (a) Q-Q plot of the ISI of reference spike train B fitted with a gamma 
probability distribution. The red line shows the 45-degree reference 
line and the blue cross represents point of the empirical and gamma 
quantile. (b) K-S plot of the ISI of reference spike train B fitted with 
the gamma probability distribution. The red line shows the cumulative 
distribution function of the fitted gamma distribution function and the 
blue line shows the empirical cumulative distribution function of the 
interspike interval 77 

4.9 (a) Raster plot of the spike train A (red) generated by ELIF model and 
the spike train Al (blue) generated by probabilistic model for the 
period of 20,000 ms. (b) ISI histogram of the spike train A generated 
by the ELIF model (c) ISI histogram of the spike train Al generated by 
probabihstic model 79 

4.10 K-S plot of the ISI of spike train Al generated by the probabilistic 
model for different strength of influence P. The red line shows the 
cumulative distribution fimction of the fitted Weibull probability 
distribution and the blue line shows the empirical cumulative 
distribution function of the interspike interval 80 

xin 



5.1 Pair-wise analysis of Cox method and the CCF for the analysis of 
influence strength from spike train B to spike train A. (a) Cox 
coefficient PBA with different time delays, (b) Cox coefficient ^BA iri 
the interval 10.95 ms to 11.03 ms with a small step of time delays, (c) 

The CCF for the analysis of influence strength from spike frain Bio A.. 93 
5.2 lUusfration for the calculation of influence function 94 
5.3 (a) Coimection scheme of the four spike train. There are three non zero 

connections which are shown by arrows, (b) Raster plot of four 
generated spike trains of the duration 20,000 ms. (c) IS I histograms of 
the generated four spike frains 99 

5.4 Cross correlation function of the four spike frains 102 
5.5 (a) Connection scheme of four spike frains in matrix format (the same 

as the scheme shown in Fig. 5.3(a) in graph format), (b) A diagram of 
functional connections of four spike frains obtained by the pair-wise 
analysis 105 

5.6 All possible groups of three spike frains for the four spike frains. 
Connection schemes obtained from Fig. 5.3(a). (a) For spike frains #1, 
#2 and #3. (b) For spike frains #1, #2 and #4. (c) For spike frains #1, #3 
and #4. (d) For spike frains #2, #3 and #4 106 

5.7 (a) Connection scheme of the spike frains #1, #2 and #3. (b) 
Confidence regions of the estimated Cox coefficients in three cases: 
influences to spike frain #1 (left), influences to spike frain #2 (middle), 
influences to spike frain #3 (right), (c) Estimated coefficients of the 
Cox method with confidence intervals. Significant cormections are 
indicated by solid arrows 108 

5.8 (a) Coimection scheme of the spike frains #1, #2 and #4. (b) 
Confidence regions of the estimated Cox coefficients in three cases: 
influences to spike frain #1 (left), influences to spike frain #2 (middle), 
influences to spike frain #4 (right), (c) Estimated coefficients of the 
Cox method with confidence intervals. Significant connections are 
indicated by solid arrows 109 

5.9 (a) Connection scheme of the spike frains #1, #3 and #4. (b) 
Confidence regions of the estimated Cox coefficients in three cases: 
influences to spike frain #1 (left), influences to spike frain #3 (middle), 
influences to spike frain #4 (right), (c) Estimated coefficients of the 
Cox method with confidence intervals. Significant connections are 
indicated by solid arrows I l l 

5.10 (a) Connection scheme of the spike frains #2, #3 and #4. (b) 
Confidence regions of the estimated Cox coefficients in three cases: 
influences to spike frain #2 (left), influences to spike frain #3 (middle), 
influences to spike frain #4 (right), (c) Estimated coefficients of the 
Cox method with confidence intervals. Significant connections are 
indicated by solid arrows 113 

5.11 (a) Connection scheme of four spike frains in matrix format (the same 
as the scheme shown in Fig. 5.3(a) in graph format), (b) A diagram of 

xiv 



functional connections of four spike trains obtained by the Cox method 
considering all spike trains at once 117 

5.12 (a) Connection scheme of the five spike train. There are five non zero 
connections which are shown by arrows, (b) Raster plot of five spike 
trains generated for the neural circuit (a) of the duration 20,000 ms. (c) 
ISl histograms of the generated five spike trains 119 

5.13 Cross correlation function of the neural circuit of five spike trains 121 
5.14 (a) Connection scheme of five spike trains in matrix format (the same 

as the scheme shown in Fig. 5.12(a) in graph format), (b) A diagram of 
functional connections of five spike trains obtained by the Cox method. 124 

5.15 (a) Connection scheme of the twenty spike trains. There are forty two 
non zero connections which are shown by arrows, (b) ISI histograms of 
the first four generated spike trains, (c) Raster plot of twenty spike 
trains generated for the neural circuit. This raster plot shows a portion 
oftime (20,000 ms) of the duration 50,000 ms 125 

5.16 (a) Connection scheme of the neural circuit of twenty spike trains in 
matrix format (the same as a scheme of connections in a graph format 
in Fig. 5.15(a)). (b) Functional connections identified by the Cox 
method, (c) Functional connections obtained by the CCF method 128 

5.17 Estimate of the Cox coefficient and CCF measure for two spike trains. 
Estimated Cox coefficients are shown by black circles and the 
confidence interval of the estimates are shown by black vertical lines. 
Estimated measures of independency using CCF are shown by black 
cross sign, (a) Moderate and strong influence. Eight pairs of spike 
trains are generated using the probabilistic model taking the strength of 
influence from the range fi-om 0.5 to 4: 
PBA — (0-5,1,1-5,2,2.5,3,3.5,4). The average number of spikes in the 
reference spike train B is about 400. Estimated Cox coefficients 0BA 
identify accurately all the strengths of influences (blue line with circle 
markers and vertical black bars for confidence intervals) and are 
monotically increasing. The highest peaks pg^ of the CCF 
(independency measure) are shown by the magenta line (with cross 
markers), they also can identify functional connectivity but do not 
demonstrate a monotonic increase, (b) Short spike train. A short 
version of eight pairs of spike trains described in (A) are considered. 
The average number of spikes in the reference spike train B is about 
70. The estimated Cox coefficients ^BA identify accurately all the 
strengths of influences pg^ except for one {figA = 0-5) and 
demonstrate a monotonic increase. The independency measure of CCF 
(PBA) show connection for large strength but they fail to identify 
connection for Pg/^ = (0.5,1). Also these values do not demonstrate a 
monotonic increase, (c) Weak influence. Eight pairs of spike trains are 
generated with weak influences ^^/i = (01,0.2,0.3,0.4,0.5,0.6,0.7,0.8). 
The number of spikes in the reference spike train B is about 1400. 
Estimated Cox coefficients (figA) identify accurately all these 

XV 



strengths of influences (fiBA) ^^'^ ^^ monotonically increasing. 
Independency measures of CCF (PBA) identify functional connectivity 
though they do not indicate an increase of influence, (d) Length of 
spike train. Eight pairs of spike trains of a different length are 
generated keeping the same connection strength PBA = 1- Th^ length n 
of the reference spike train B increases: n = 50,60, ,120 . 

Estimated Cox coefficients (0BA) are almost constant for all lengths 
but independency measvires of CCF (PBA) fail to identify strengths of 
influences for shorter lengths of reference spike trains 
(«= 50, 60, 70, 80) 

131 
5.18 (a) Connection scheme of three spike trains which have common 

source. Spike train #1 influences both spike train #2 and spike train #3 
with time delays 11 ms and 14 ms respectively, (b) Confidence regions 
of the estimated Cox coefficients in three cases: influences to spike 
train #1 (left), influences to spike train #2 (middle), influences to spike 
train #3 (right), (c) Estimated coefficients of the Cox method with 
confidence intervals. Significant connections are indicated by solid 
arrows 135 

5.19 Pair-wise cross correlation functions of three spike trains. Each CCF is 
shown for selected pair of spike trains (called target and reference). 
Diagram of connections (common source) is shown in Fig. 5.18(a) 137 

5.20 (a) "Indirect connection" scheme of three spike trains. Spike train #1 
influences spike train #2 which influences spike train #3 with time 
delays 11 ms and 12 ms respectively, (b) Confidence regions of the 
estimated Cox coefficients in three cases: influences to spike train #1 
(left), influences to spike train #2 (middle), influences to spike train #3 
(right), (c) Estimated coefficients of the Cox method with confidence 
intervals. Significant connections are indicated by solid arrows 139 

5.21 Pair-wise cross correlation functions of three spike trains. Each CCF is 
shown for selected pair of spike trains (called target and reference). 
Diagram of connections (indirect connection) is shown in Fig. 5.20(a). 141 

5.22 Connection scheme of the twenty spike train. There are forty nine non 
zero connections which are shown by arrows. These forty nine 
connections are coupled in five groups 145 

5.23 (a) Connection scheme of twenty spike trains in matrix format (the 
same as the scheme shown in Fig. 5.22 in graph format), (b) A diagram 
of functional connections of twenty spike trains obtained by the pair-
wise analysis of Cox method, (c) A diagram of functional connections 
of twenty spike trains obtained by the Cox method considering all 
spike trains at once 148 

5.24 Groups of similar spike trains revealed by the Cox metric of twenty 
spike trains shown in Fig. 5.22. (a) Cox metric using pair-wise 
analysis, (b) Cox metric considering all spike trains at once 149 

5.25 (a) The 3 directed graph of 2 vertices (b) The 2 motif ID of 2 

XVI 



vertices 151 
5.26 (a) The 16 directed graph of 3 vertices (b) The 13 motif ID of 3 

vertices 152 
5.27 (a) Diagram of fiinctional connectivity of four spike trains identified by 

the Cox method considering all spike trains at once, (b) Structural 
motif identified fi-om the diagram of connectivity in (a). Numbers 
represent motif ID 153 

5.28 (a) Diagram of fimctional connectivity of all triplets identified by the 
triplet-wise analysis of Cox method, (b) Structural motif identified 
fi-om the diagram of connectivity in (a). Numbers represent motif ID... 154 

5.29 (a) Diagram of fimctional cormectivity of the twenty spike trains by the 
Cox method obtained fi-om the neural circuit of twenty spike train in 
section 5.6 (Fig. 515(a)). (b) Significant structural motifs from this 
diagram of fimctional connectivity. Here only motif ID 9 is shown by 
blue arrows for illustration 155 

5.30 (a) Structural motif count of size m = 3 for the diagram of 
connectivity of twenty spike trains. Significant motif ID's are 
displayed as green, (b) Structural motif count of size m = 3 for the 
randomized diagrams 156 

5.30 Structural motif count of all possible triplets of the twenty spike trains.. 156 

6.1 Functional connectivity of the 29 spike trains of stimulus 5 identified 
by the Cox method, (a) In the small interval [60000 ms, 66000 ms]. (b) 
In the small interval [66000 ms, 72000 ms] 163 

6.2 Raster plot of 32 spike trains of stimulus 1. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional 
cormectivity 165 

6.3 (a) Significant connections obtained from pair-wise CCF analysis of 
the 29 spike frains of stimulus 1. (b) Direct connections obtained from 
the significant connections in (a) after the clustering algorithm. The 
radius of the circle indicates the relative sfrength of the 
connections 166 

6.4 Inter spike interval histogram of the spike frains #1, #6 and #18 of 
stimulus 1 168 

6.5 (a) Functional connectivity of the 29 spike frains identified by the Cox 
method of stimulus 1. Radius of the circle indicates the relative 
sfrength of connection, (b) Connections that are identified both by the 
MCG method and the Cox method 169 

6.6 Groups of similar spike frains revealed by the Cox metric of the 29 
spike frains of stimulus 1. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike frains at once 171 

6.7 Structural motif count of all 3654 triplets of the 29 spike frains of 
stimulus 1 173 

6.8 Structural motif count of all 6 stimuli 177 
6.9 Total number of coimections identified by the Cox method and the 

xvii 



modified correlation grid method with the number of connections 
common to these methods 178 

6.10 (a) Common connections identified by the modified correlation grid 
method for all 6 stimuli, (b) Common connections identified by the 
Cox method for all 6 stimuli, (c) Common connections identified both 
by the Cox method and the modified correlation grid method for all 6 
stimuli 179 

7.1 (a) Directed graph composed of 9 nodes and 18 directed edges. The 
graph has 72 (9^ — 9) possible connections among the nodes. The 
density of this directed graph is 18/72 =0.25. (b) Adjacency matrix 
represents the presence (black square) and absence (white square) of 
the connections between the nodes. Main diagonals are indicated in 
grey and self-connections are excluded, (c) Indegree of node #8 
(orange circle). This node has 4 indegree, from nodes #1, #9, #5 and #7 
(green circles), (d) Outdegree of node #8 (orange circle). This node has 
3 outdegree, to nodes #1, #3 and #6 (green circles) 184 

7.2 Calculation of path from node #1 to node #4 (orange circles), (a) Path 
from #1 to #4 of length 3, denoted by {#1, #9, #3, #4} nodes of green 
circle, containing the directed edges (blue) (#1, #9), (#9, #3) and (#3, 
#4). An alternative path of the same length 3 is denoted by {#1, #8, #3, 
#4} nodes of green circle, (b) Path from #1 to #4 of length 4, denoted 
by {#1, #9, #8, #3, #4} nodes of green circle, containing the directed 
edges (blue) (#1, #9), (#9, #8), (#8, #3) and (#3, #4). An alternative 
path of the same length 4 is denoted by {#1, #9, #2, #3, #4} nodes of 
green circle. The shortest possible path length from node #1 to #4 is 3, 
hence the distance from node #1 to node #4 is 3 186 

7.3 (a) Clustering coefficient of node #9 (orange circle). This node's 
neighbours are #1, #2, #3 and #8 (green circle), which maintain 6 
connections (blue edges) among them out of 12 possible (4^ — 4). 
Thus the clustering coefficient of this node is 6/12=0.5. (b) Distance 
matrix of the 9 node, indicates the shortest path from node i (1,2 ••• ,9) 
to node (1,2 ••• ,9) i ^ j . Pairwise distances are integers ranging from 

1 to a maximum of 5 188 
7.4 (a) Connection matrix of the 29 spike frains of stimulus 1. Connection 

patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike frains is displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike frains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike frains. 
High-degree spike frains are displayed as green 195 

7.5 Clustering coefficient and betweenness centrality of the 29 spike frains 
of stimulus 1. The solid horizontal line indicates the mean and the 
dashed horizontal line indicates the mean plus one standard deviation. 

xviii 



High-degree spike trains are displayed as green, (a) Clustering 
coefficient of 29 spike trains is displayed in descending order, (b) 
Betweenness centrality of the 29 spike trains is displayed in 
descending order 197 

7.6 Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 1. High-degree spike trains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Attractiveness coefficient displayed in descending order 198 

7.7 (a) Structural motif count of size m = 3 of the 29 spike trains of 
stimulus 1. Significant motif ID's are displayed as green, (b) Structural 
motif count of size m = 3 for the randomized diagram jpg 

7.8 Spike trains which have high degree, high betweenness centrality, high 
expansiveness coefficient and high attractive coefficient among all the 
spike trains in different stimuli 202 

7.9 Hub spike train in six stimuli. The hub spike train is shaded in magenta 
colour, (a) Spike train #28 is the hub spike train in stimulus 1. (b) 
Spike train #32 is the hub spike train in stimulus 2. (c) Spike train #32 
is the hub spike train in stimulus 3 (d) Spike train #32 is the hub spike 
train in stimulus 4 (e) Spike train #32 is the hub spike train in stimulus 
5 and (f) Spike train #32 is the hub spike train in stimulus 6 

7.10 Significant motif ID in different stimuli 204 

B.l Raster plot of 32 spike trains of stimulus 2. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional 
connectivity 217 

B.2 (a) Significant connections obtained fi-om pair-wise CCF analysis of 
the 29 spike trains of stimulus 2. (b) Direct connections obtained fi-om 
the connections in (a) after the clustering algorithm. The radius of the 
circle indicates the strength of the connections 218 

B.3 Inter spike interval histogram of the spike trains #7, #10 and #13 of 
stimulus 2 220 

B.4 (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 2. Radius of the circle indicates strength of 
connection, (b) The connections that are identified both by the MCG 
method and the Cox method 221 

B.5 Groups of similar spike trains revealed by the Cox metric of the 29 
spike trains of stimulus 2. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike trains at once 223 

B.6 Structural motif count of all 3654 triplets of the 29 spike trains of 
stimulus 2 225 

B.7 Raster plot of 32 spike trains of stimulus 3. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional 
connectivity 226 

B.8 (a) Significant connections obtained fi-om pair-wise CCF analysis of 
the 29 spike trains of stimulus 3. (b) Direct connections obtained fi-om 
the connections in (a) after the clustering algorithm. The radius of the 

xix 



circle indicates the strength of the connections 227 
B.9 Inter spike interval histogram of the spike trains #15, #19 and #20 of 

stimulus 3 228 
B.IO (a) Functional connectivity of the 29 spike trains identified by the Cox 

method of stimulus 3. Radius of the circle indicates strength of 
connection, (b) The connections that are identified both by the MCG 
method and the Cox method 229 

B.ll Groups of similar spike trains revealed by the Cox metric of the 29 
spike trains of stimulus 3. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike trains at once 231 

B.12 Structural motif coimt of all 3654 triplets of the 29 spike trains of 
stimulus 3 233 

B.13 Raster plot of 32 spike trains of stimulus 4. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional 
connectivity 234 

B.14 (a) Significant connections obtained fi-om pair-wise CCF analysis of 
the 29 spike trains of stimulus 4. (b) Direct connections obtained fi"om 
the connections in (a) after the clustering algorithm. The radius of the 
circle indicates the strength of the connections 235 

B.15 Inter spike interval histogram of the spike trains #12, #19 and #20 of 
stimulus 4 237 

B.16 (a) Fimctional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 4. Radius of the circle indicates strength of 
connection, (b) The connections that are identified both by the MCG 
method and the Cox method 238 

B.17 Groups of similar spike trains revealed by the Cox metric of the 29 
spike trains of stimulus 4. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike trains at once 240 

B.18 Structural motif count of all 3654 triplets of the 29 spike trains of 
stimulus 4 242 

B.19 Raster plot of 32 spike trains of stimulus 5. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional 
connectivity 243 

B.20 (a) Significant connections obtained from pair-wise CCF analysis of 
the 29 spike trains of stimulus 5. (b) Direct connections obtained from 
the connections in (a) after the clustering algorithm. The radius of the 
circle indicates the sfrength of the connections 244 

B.21 Inter spike interval histogram of the spike frains #17, #18 and #22 of 
stimulus 5 246 

B.22 (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 5. Radius of the circle indicates sfrength of 
connection, (a) The connections that are identified both by the MCG 
method and the Cox method 249 

B.23 Groups of similar spike frains revealed by the Cox metric of the 29 
spike frains of stimulus 5. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike frains at once 227 

B.24 Structural motif count of all 3654 triplets of the 29 spike frains of 
stimulus 5 251 

B.25 Raster plot of 32 spike frains of stimulus 6. Spike frains #4, #5 and #29 
have high spiking rates and are not considered for analysing functional 

XX 



connectivity 252 
B.26 (a) Significant connections obtained from pair-wise CCF analysis of 

the 29 spike trains of stimulus 6. (b) Direct connections obtained from 
the connections in (a) after the clustering algorithm. The radius of the 253 
circle indicates the strength of the connections 

B.27 Inter spike interval histogram of the spike frains #17, #18 and #19 of 
stimulus 6 254 

B.28 (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 6. Radius of the circle indicates sfrength of 
connection, (b) The connections that are identified both by the MCG 
method and the Cox method 255 

B.29 Groups of similar spike trains revealed by the Cox metric of the 29 
spike trains of stimulus 6. (a) Cox metric using pair-wise analysis, (b) 
Cox metric considering all spike frains at once 257 

B.30 Structural motif count of all 3654 triplets of the 29 spike frains of 
stimulus 6 259 

C.l (a) Connection matrix of the 29 spike trains of stimulus 2. Connection 
patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike frains displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike frains and the dashed horizontal 
line indicates the mean plus one standard deviation. High-degree spike 
frains are displayed as green 262 

C.2 (a) Clustering coefficient and betweenness cenfrality of the 29 spike 
frains of stimulus 2. The solid horizontal line indicates the mean and 
the dashed horizontal Une indicates the mean plus one standard 
deviation. High-degree spike frains are displayed as green, (a) 
Clustering coefficient of 29 spike frains is displayed in descending 
order, (b) Betweenness cenfrality of the 29 spike frains is displayed in 
descending order 263 

C.3 Expansiveness and atfractiveness coefficient of the PI model of the 29 
spike frains of stimulus 2. High-degree spike frains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Atfractiveness coefficient displayed in descending order 265 

C.4 a) Structural motif count of size m = 3 of the 29 spike frains of 
stimulus 2. Significant motif ID's are displayed as green, (b) Structural 
motif count of size m = 3 for the randomized diagram 266 

C.5 (a) Connection matrix of the 29 spike trains of stimulus 3. Connection 
patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike frains is displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike frains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike frains. 

xxi 



High-degree spike trains are displayed as green 268 
C.6 Clustering coefficient and betweenness centrality of the 29 spike trains 

of stimulus 3. The solid horizontal line indicates the mean and the 
dashed horizontal line indicates the mean plus one standard deviation. 
High-degree spike trains are displayed as green, (a) Clustering 
coefficient of 29 spike trains is displayed in descending order, (b) 
Betweenness centrality of the 29 spike trains is displayed in 
descending order 269 

C.7 Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 3. High-degree spike trains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Attractiveness coefficient displayed in descending order 271 

C.8 (a) Structural motif count of size m = 3 of the 29 spike trains of 
stimulus 3. Significant motif ID's are displayed as green, (b) Structural 
motifcoimtof sizem = 3 for the randomized diagram 272 

C.9 (a) Connection matrix of the 29 spike trains of stimulus 4. Connection 
patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike trains is displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. 
High-degree spike trains are displayed as green 274 

CIO Clustering coefficient and betweenness centrality of the 29 spike trains 
of stimulus 4. The solid horizontal line indicates the mean and the 
dashed horizontal line indicates the mean plus one standard deviation. 
High-degree spike trains are displayed as green, (a) Clustering 
coefficient of 29 spike trains is displayed in descending order, (b) 
Betweenness centrality of the 29 spike trains is displayed in 
descending order 276 

C. 11 Expansiveness and attractiveness coefficient of the P1 model of the 29 
spike trains of stimulus 4. High-degree spike trains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Attractiveness coefficient displayed in descending order 277 

C.12 (a) Structural motif count of size m = 3 of the 29 spike trains of 
stimulus 4. Significant motif ID's are displayed as green, (b) Structural 
motifcount of sizem = 3 for the randomized diagram 278 

C.13 (a) Connection matrix of the 29 spike trains of stimulus 5. Connection 
patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike trains is displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. 
High-degree spike trains are displayed as green 280 

xxii 



C.14 Clustering coefficient and betweenness centrality of the 29 spike trains 
of stimulus 5. The solid horizontal line indicates the mean and the 
dzished horizontal line indicates the mean plus one standard deviation. 
High-degree spike trains are displayed as green, (a) Clustering 
coefficient of 29 spike trains is displayed in descending order, (b) 
Betweenness centrality of the 29 spike trains is displayed in 
descending order 282 

C.15 Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 5. High-degree spike trains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Attractiveness coefficient displayed in descending order 283 

C.16 (a) Structural motif count of size m = 3 of the 29 spike trains of 
stimulus 5. Significant motif ED's are displayed as green, (b) Structural 
motif count of size m = 3 for the randomized diagram 284 

C.17 (a) Connection matrix of the 29 spike trains of stimulus 6. Connection 
patterns are represented by the presence of connection (black square) 
and absence of connection (white square). Main diagonals are 
indicated in grey and self-connections are excluded, (b) Degree of the 
spike trains is displayed in descending order. The solid horizontal line 
indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. 
High-degree spike trains are displayed as green 286 

C. 18 Clustering coefficient and betweenness centrality of the 29 spike trains 
of stimulus 6. The solid horizontal line indicates the mean and the 
dashed horizontal line indicates the mean plus one standard deviation. 
High-degree spike trains are displayed as green, (a) Clustering 
coefficient of 29 spike trains is displayed in descending order, (b) 
Betweenness centrality of the 29 spike trains is displayed in 
descending order 287 

C.19 Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 6. High-degree spike trains are displayed as 
green, (a) Expansiveness coefficient displayed in descending order, (b) 
Attractiveness coefficient displayed in descending order 289 

C.20 (a) Structural motif count of size m = 3 of the 29 spike trains of 
stimulus 6. Significant motif ID's are displayed as green, (b) Structural 
motif count of sizem = 3 for the randomized diagram 290 

xxin 



List of Tables 

3.1 Parameter values of the ELIF model to generate ten spike trains 40 
3.2 Parameter values of the ELIF model to generate fifteen spike trains... 43 
3.3 Significant connections of the fifteen spike trains with peak and time 

shift. Connections are indicated fi-om reference spike train to the target 
spike train 45 

3.4 Classification of 24 significant connections of fifteen spike trains 47 
3.5 Parameter values of the ELIF model to generate twenty spike trains 52 

5.1 Connection strengths, time delays of spike propagation, and decay 
times of postsynaptic potential that are used for generating four spike 
trains 100 

5.2 Neuron parameters of the ELIF model of four spike trains 100 
5.3 Time lags obtained fi-om Fig. 5.4. These time lags are used to get the 

fiinctional connectivity of four spike trains 102 
5.4 Results of pair-wise analysis of four spike trains. The estimates of Cox 

coefficients and corresponding confidence intervals are shown. Cox 
coefficients which significantly differ from zero (i.e. the confidence 
interval does not include zero) are in bold 103 

5.5 Result of analysis of four spike trains by the Cox method considering 
the effects of all four spike trains. The estimates of Cox coefficients 
and corresponding confidence intervals are shown. Cox coefficients 
which significantly differ from zero (i.e. the confidence interval does 
not include zero) are in bold 115 

5.6 Connection strengths, time delays of spike propagation and decay 
times of postsynaptic potential that are used for generating five spike 
trains 120 

5.7 Neuron parameters of the ELIF model of five spike trains 120 
5.8 Time lags obtained from Fig. 5.13. These time lags are used to get the 

fijU functional connectivity of neural circuit of five spike train 121 
5.9 Result of analysis of five spike frains by the Cox method. The 

estimates of Cox coefficients and corresponding confidence intervals 
are shown. Cox coefficients which significantly differ from zero (i.e. 
the confidence interval does not include zero) are in bold 123 

5.10 Parameter values of the ELIF model to generate twenty spike frains 126 

5.11 Neuron parameters of the ELIF model of two spike frains with 
common source connection 134 

5.12 Neuron parameters of the ELIF model of two spike frains with indirect 
connection 138 

5.13 Parameter values of the ELIF model to generate twenty spike frains 146 

XXV 



7.1 Friendship of two nodes 191 
7.2 Y matrix for the friendship of two nodes 192 
7.3 Four graph theory measures for six stimuli 201 

XX VI 



Acknowledgements 

I would like to take this opportunity to thank a number of people, whose support has 

been crucial to me throughout my work on this thesis. 

Primarily I would like to acknowledge my supervisor Professor Roman Borisyuk, for 

first giving me the chance to pursue this interesting line of research, and subsequently 

for his wise and patient guidance over the past three years. I also owe thanks to my 

second supervisor Dr. Liz Stuart, always generous with her time, her aid and advice was 

a treat. 

My examiners, Professor Leslie Smith and Dr. Thomas Wennekers suggested 

corrections and changes that significantly improved the thesis. 

I also thank Dr. Abul Kalam Al Azad for taking the time to read this thesis, and whose 

helpfiil comments were welcome. I am grateful for the support of the entire department, 

all of whom are great colleagues, many of whom are fiiends. In particular I thank 

Jonathan Waddington for his support. 

Finally, I am grateful to my family members especially to my parents for their 

continuous support and encouragement throughout my entire study period. 

xxvii 



Author's Declaration 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award without prior agreement of the Graduate 

Committee. 

This study was financed with the aid of a studentship fi-om the Engineering and Physical 

Sciences Research Council (EPSRC). 

Relevant scientific seminars and conferences were regularly attended at which work 

was presented on several occasions. One research paper has been published in refereed 

journals. One abstract has also been published. 

Referred journal article: 

Masud M.S. and Borisyuk R. Statistical technique for analysing fiinctional connectivity 

of multiple spike trains. Journal ofNeuroscience Methods, 196 (2011); 201-219. 

(Associated with chapter 4 and 5) 

Abstract: 

Masud M.S. and Borisyuk R. Modulated renewal process and statistical analysis of 

multiple spike trains. Frontiers in Neuroinformatics 2009. Conference Abstract: 2nd 

INCF Congress of Neuroinformatics, pp 49. 

Poster presentations: 

2009: Workshop on Mathematical Neuroscience, Edinburgh. A new method to study 

fiinctional connectivity of spike trains. 

2009: The S"' International Workshop on Neural Coding, Tainan, Taiwan. Modulated 

renewal process and statistical analysis of multiple spike trains. 

2010: Workshop on Spike Train Measures and Their Applications to Neural Coding, 

Plymouth. Spike train metric based on Cox method. 

XXIX 



Other conferences attended: 

2008: Workshop on Mathematical Neuroscience, Edinbvirgh. 

2008: Workshop on Nonlinear Neurodynamics, Exeter. 

2009: Workshop on Spike Train Data Analysis, Newcastle. 

2009: Workshop on Robotics and Neural Systems, Plymouth. 

Word count for the main body of this thesis: 48528 

Signed: Mnk/XTmwaA Shah^ tiaS>UiJ( 

Date: 12.03- ^IQH 

XXX 



Chapter 1 

Introduction 

The brain consists of billions of cells of two types - glia cells and neurons. The neurons 

are considered as the main units dealing with information processing. One way that 

information is transmitted between neurons is through changes in their electrical activity 

known as action potential or spike. Typically action potentials or spikes have duration 

of 1-2 milliseconds. A chain of action potentials emitted by a single neuron is called a 

spike train. 

Usually, generation of action potential happens as a response to the incoming signal 

either from other neurons or external input. Thus, it is important to study both activity 

of a single neuron and a group of interactive neurons recorded simultaneously. The 

main mechanism of neural interaction is called synaptic transmission. Synapse is a 

special part of the neuron which provides a possibility to transmit electrical pulse from 

one neuron to another. Although single unit activity is irregular and complex enough, a 

small system of interconnected neurons can exhibit complex behaviour and 

information-processing capabilities not present in a single neuron. The understanding of 

networks of coupled neurons is one of the major issues in the neuroscience. 

For decades a common experimental method in neuroscience was based on the activity 

of a single neuron. It was especially useful for studies of the effects of sensory inputs. A 

substantial part of recent research in neuroscience involves the study of the activity of 

neurons to behaviour and cognition. Such studies require the simultaneous recording of 

many neurons. Recent advances in multi elecfrode neural recording systems have made 

it possible to record activity from a large number of neurons simultaneously. 



Chapter 1 Introduction 

One of the important problems of the simultaneously recorded spike trains is the study 

of the functional connectivity. The term functional connectivity is used to identify 

statistical dependencies and influences between spike trains. Despite the developments 

in recording technology, the progress in the methods to study functional connectivity 

has been rather slow. Most of the existing techniques that are used to identify functional 

connectivity are based on pair-wise analysis. These pair-wise techniques are usually 

focused on a pair of spike trains but they fail to consider all possible influences from 

other simultaneously recorded spike trains. For this reason, these pair-wise estimates of 

the fimctional connectivity sometimes can lead to inaccuracies. Therefore, new 

techniques are required which can capture all possible influences from other 

simultaneously recorded spike frains and can estimate accurate functional connectivity. 

1.1 Objective of the study 

This section provides a brief summary of the objectives of the study. The questions 

addressed to infer functional connectivity are important in computational neuroscience 

and they need the appropriate statistical techniques to answer them. There are some 

recent developments of statistical techniques that are used to answer the questions 

related to functional connectivity of multiple spike frains. Although there are a number 

of statistical techniques used for the analysis of functional connectivity of multiple 

spike frains, a great deal of work is still necessary in this area in order to provide 

researchers with appropriate tools for the analysis of multiple spike frain data. The 

objective of this study is to develop new statistical techniques for analysing multiple 

spike frains which can provide some insights on the understanding of complex neural 

activity and neural interactions. 
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1.2 Tour of the thesis 

This section provides an overview of the structure and the contents of the thesis. The 

thesis contains eight chapters. 

Chapter 1 is an introduction where the objectives are formulated. 

Chapter 2 is devoted to the review of literature and the papers relevant to study of 

fimctional connectivity of spike trains are discussed. The techniques that are used to 

infer functional connectivity of spike trains are reviewed. Studies of the graph 

theoretical methods that are used to analyse a connectivity pattern are also discussed. 

Chapter 3 presents a new statistical method known as modified correlation grid (MCG) 

to analyse functional connectivity of multiple spike trains. This MCG method is related 

to the correlation grid (Stuart et al., 2005). The MCG method is able to distinguish the 

direct connections from the spurious (common source and indirect) connections and 

thus reveals the functional connectivity of multiple spike frains. This method is based 

on the calculation of cross-correlation function of all possible pair-wise spike frains. A 

clustering algorithm is applied to the significant peak and corresponding time shift to 

distinguish the connections. Application of this method is shown for two sets of spike 

frains generated by the Enhanced Leaky Integrate and Fire (ELIF) model (Borisyuk, 

2002). The description, dynamics and parameters of the ELIF model are presented in 

appendix A. 

Chapter 4 describes a probabilistic model for generation of dependent spike frain. This 

probabilistic model is based on the theory of modulated renewal process (MRP). To 

generate a dependent spike frain from an influence of independent spike frain, an 

influence function is described which is used in neuroscience to describe synaptic 

connectivity between neurons. To assess how the generated dependent spike frain agrees 

3 



Chapter 1 Introduction 

with the theoretical probability distribution two 'goodness of fit' tests are used. An 

optimization procedure is described by which the parameters of the probabilistic model 

can be adjusted in such a way that these parameter values can be used to generate spike 

trains similar to the 'integrate and fire' neuron model. This probabilistic model is used 

to test the Cox method. 

Chapter 5 presents a statistical method known as the Cox method to analyse fimctional 

connectivity of multiple spike trains. This technique is based on the theory of modulated 

renewal processes (MRP) and is the generalization of the Cox method developed by 

Borisyuk et al. (1985). Application of this method is shown for several sets of spike 

trains generated by the ELIF model. A comparison of the Cox method with the cross-

correlation fiinction (CCF) is presented using pairs of spike trains generated by the 

probabilistic model. Due to the common probabilistic basis of the probabilistic model 

and the Cox method, the probabilistic model is a convenient technique to test the Cox 

method. The analysis of a set of three spike trains is used to demonstrate that the Cox 

method can find a scheme of connections in a case of 'common source' connection 

architectures. Similarly, the method is successful when it is used to analyse sets of three 

spike trains with 'indirect connection' architecture. A new technique based on the pair-

wise analysis of the Cox method known as the Cox metric is demonstrated to find the 

groups of coupled spike trains. An application of the Cox metric is shown for a set of 

twenty spike trains generated by the ELIF model. Another new technique known as 

motif analysis is introduced which is useful in identifying interconnections among the 

spike trains. This technique is based on the triplet-wise analysis of the Cox method. An 

application of this technique is demonstrated by a set of twenty spike trains generated 

by the ELIF model. 
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Chapter 6 presents the application of the MCG method and the Cox method to a set of 

experimental data recorded from the cat's visual cortex (Nikolic, 2007; Schneider et al., 

2006). The experimental conditions include six different stimuli corresponding to 

different orientation of the stimulation grid. For each stimulus, functional cormectivity 

of 29 spike trains are analysed by the MCG method and by the Cox method. The 

connections that are common to the MCG method and the Cox method are presented for 

each stimulus. Also the connections that are common to all stimuli identified separately 

by the MCG method and the Cox method are shown. The Cox metric is applied to the 

29 spike trains to identify the groups of similar spike trains for each stimulus. Similarly, 

to identify the interconnection among the 29 spike trains the motif analysis is conducted 

for each stimulus. In this chapter, the results of analysing functional connectivity of 

stimulus 1 are presented. The results of analysing fianctional cormectivity of another 5 

stimuli are presented in appendix B. 

Chapter 7 describes some graph theoretical methods (Rubinov and Spoms, 2010) that 

are used for the comprehensive analysis of the cormectivity derived from statistical 

analysis of multiple spike frains. These graph theoretical methods are applied to the 

connectivity matrix of each stimulus identified by the Cox method. A statistical model 

known as PI model (Holland and Leinhardt, 1981) which is used to identify the 

attractive and influential people in the social science network, is also applied to the 

connectivity matrix. Application of this model to the connectivity matrix is useful to 

identify the influential and atfractive spike frains. In this chapter, the results of the graph 

theoretical methods of stimulus 1 are presented. The results of graph theoretical 

methods of another 5 stimuli are presented in appendix C. 

Chapter 8 draws contribution and conclusion regarding the techniques proposed to 

analyse functional coimectivity and their applications to the experimental data. 
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Chapter 2 

Review of spike train analysis 

In this chapter a review of studies related to the interaction between stimulus and spike 

train is discussed. In addition to these studies, methods of analysing functional 

connectivity of simultaneously recorded multiple spike trains are discussed. Studies of 

the analysis of functional connectivity by graph theoretical methods are also discussed. 

2.1 Introduction 

The brain receives, processes, and transmits information about a particular stimulus 

through stereotyped electrical discharges called action potentials or spikes. The signals 

from the stimulus are transformed into sequences of these spikes at an early stage of 

processing within the central nervous system. Spike trains are the starting point for 

virtually all of the processing performed by the brain (Kandel, 2000; Dayan and Abbott, 

2001). Characterizing the relationship between the stimulus and the spike trains is an 

important issue in neuroscience to understand how the brain works in response to the 

stimulus. Many studies have been done to understand the relationship between stimulus 

and spike trains (Espinosa and Gerstein, 1988; Gochin et al., 1990, 1991; Eggermont, 

1991; Lindsey et al., 1992c; Vaadia et al., 1995; Wilson and McNaughton, 1994; 

Skaggs and McNaughton, 1996; Li et al., 1999; Shannon et al., 2000; Louie and Wilson, 

2001). 

Besides the relationship between stimulus and spike trains, it is also important to study 

the functional connectivity between spike trains in response to a particular stimulus. 

This is a challenging problem in neuroscience which needs statistical methods to 

analyse multiple spike trains (Brown et al., 2004). To study the functional connectivity 
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of the spike trains it is obUgatory to observe the spiking activity of muUiple single 

neurons recorded simultaneously. 

Recent advances in multi electrode (micro electrode) neural recording systems have 

made it possible to record spiking activity from a large number of neurons 

simultaneously (Boven et al., 2006). Despite the pioneering work by Thomas et al. 

(1972), Wise et al. (1970), and Gross (1979), a remarkable step forward in Multi 

Electrode Array (MEA) applications has been achieved only over the last ten years. 

With the advent of affordable computing power (Boven et al., 2006) and commercial 

MEA hardware and software (Potter, 2001), multi electrode recording technology is 

now common in neuroscience study. This technology has been applied to record from 

the hippocampus (Wilson and McNaughton, 1993; Harris et al., 2003), retina and 

primary visual cortex (Pillow et al., 2008; Jermakowicz et al., 2009), cortical 

sensorimotor areas in behaving nonhuman primates (Hatsopoulos et al., 1998; Nicolelis 

et al., 2003; Riehle et al., 1997), and humans (Hochberg et al., 2006; Truccolo et al., 

2008a, 2008b; Truccolo et al., 2010). 

The detection and identification of neural spiking activity from multi electrode 

technology is an important problem that is a prerequisite for studying multiple spike 

frains (Lewicki, 1998). There are three stages between the multi elecfrode recording and 

the identification of spikes: (i) detection of spikes, (ii) determination of the number of 

neurons being recorded and (iii) assignation to the neurons that produced the spikes 

(Brown et al., 2004). These three steps together are termed as spike sorting. There are 

many algorithms for spike sorting (Fee et al., 1996; Lewicki, 1998; Harris et al., 2000; 

Quiroga et al., 2004; Shahid and Smith, 2008; Shahid et al., 2010). Different algorithms 

produce different results due to non-stationary backgroimd noise, elecfrode drift and 
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proper spike alignment. The decision about which one is appropriate depends on the 

requirements of the experiment (Lewicki, 1998). 

2.2 Spike train analysis 

After assigning the spike train to the corresponding neuron, the next step is to analyse 

the functional connectivity of these spike trains. The analysis of functional connectivity 

can be divided into two groups, namely: (i) pair-wise spike train analysis and (ii) 

multiple spike train analysis. 

2.2.1 Pair-wise spike train analysis 

In neuroscience, the Cross-Correlation Function (CCF) is a widely used measure of 

functional connectivity between spike trains (Perkel et al., 1967). CCF has been applied 

to many neural systems to make powerful inferences about functional connectivity. This 

statistical technique is used for testing the independence of two spike trains using the 

theory of stochastic point processes. This technique is also applied to assess oscillation, 

propagation delay, effective connection strength, synchronization, and spatiotemporal 

structure of a network (Konig et al., 1995; Brown et al., 2004). In order to make 

statistically significant judgements of the CCF, Brillinger (1976c) introduced a 

normalization technique of the CCF with the confidence interval. Peaks exceeding the 

confidence interval of the CCF are considered as significant. 

Although the CCF has been widely used in neuroscience study over the last few decades 

this technique has several limitations. This technique assumes that the two spike trains 

are stationary which can be hard to justify in many cases (Brown et al., 2004). The use 

of CCF also assumes that spike trains are sufficiently large in sample size (Aertsen and 

Gerstein, 1985). The result of cross-correlation function is inaccurate if the sample size 

of the recorded spike trains is small (Shao and Tsau, 1996). The reason for the 
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inaccuracy is that the confidence interval is too wide to find the significant connection. 

Peaks in the CCF usually indicate the interaction of spike timing between neurons but 

there are two biological plausible ways that can draw peaks similar to the CCF and 

interpreting the interaction between spike trains may be a problem (Brody, 1999). 

A related measure of fiinctional interaction between spike trains is the cross intensity 

fiinction (Cox and Lewis, 1972; Brillinger, 1976b, 1992). This fiinction estimates the 

spike rate of one neuron at different lags relative to the spiking activity of a second 

neuron. There are other methods to characterize the relationship between spike trains. 

These include product densities, cumulant densities, cumulant spectra, methods of 

moments (Bartlett, 1966; Brillinger, 1975a, 1975b) and coherence (Brillinger, 1976a, 

1992). These techniques are usually applied to characterize the dependencies between 

pairs of neurons at a time, ignoring possible effects fi-om other neurons (Okatan et al., 

2005), which lead to erroneous fimctional connectivity in many cases. 

Since behaviour provides a key window into neural responses, it is of great interest to 

know how relationships between neurons vary as a fiinction of stimuli or external events. 

A statistical display joint peri-stimulus-time histogram (JPSTH) (Gerstein and Perkel, 

1969), which reflects the dynamics of the correlation, is used for this analysis. This 

technique is a logical extension of the peri-stimulus-time histogram (PSTH). It is a two-

dimensional histogram of the joint occurrence of the pairs of spike trains. The main 

diagonal of the JPSTH displays the observed rate at which both neurons fire 

simultaneously. A modification of the JPSTH, the normalized JPSTH (Aertsen et al., 

1989) is also used. The JPSTH has been used to investigate relationships between 

neurons (Vadia et al., 1988; Eggermont, 1994). 

Like the CCF, the JPSTH has some drawbacks. The major drawback is applying the 

statistical calculation on nonstationary data. However, recent advances in the JPSTH 
10 
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have identified some promising approaches to mitigating the nonstationarity problem. 

Another problem is the difficulty in interpretation of small quantities of data. Like CCF, 

this technique also applies to characterizing the dependencies between pairs of spike 

trains at a time, ignoring possible effects fi^om other spike trains. 

Besides the CCF and JPSTH, there are some techniques which are used to find the 

interaction of two spike trains such as partial correlation analysis (Eichler et al., 2003) 

and partial cross-correlation matrices (PCCM) (Stark et al., 2006). As with the CCF, 

these methods requires stationary spike trains and sufficiently large number of spikes in 

the spike train. 

Pair-wise correlation methods discussed above measure the statistical association of a 

single spike train to each member of the ensemble separately but for simultaneously 

recorded spike trains one should be able to make inference about the collective 

properties of all spike trains. Gravitational clustering is one approach to an efficient 

search for evidence for interactions among simultaneously recorded spike trains. 

Although the representation is still fiindamentally pair-wise, it allows evaluation of all 

observed spike trains at the same time. This method can be used for nonstationary data. 

Gravitational clustering is a direct visualization method for examination of dynamic 

interactions among a group of simultaneously recorded neurons. In the gravitational 

clustering algorithm (Gerstein & Aertsen, 1985; Gerstein et al, 1985), the activity of 

neurons is mapped into motions of particles in Euclidean space of the appropriate 

dimension. The forces exerted on particles by others are due to 'charges' that represent 

interactions between the corresponding neurons. The particles are allowed to move 

about until they begin to cluster as a result of the charges and the resulting aggregation 

of the particles into smaller subgroups then presumably represents the fianctionally 

related, or cooperative, subgroups that are sought. Baker and Gerstein (2000) presented 
11 
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several modifications to the gravitational clustering approach to improve its sensitivity 

in detecting neural synchronization. 

An implementation of the original Gravity Transform algorithm is presented by Stuart 

et al. (2002) along with simulation results. The gravitational clustering approach has 

been successfully applied to a range of experimental data (Aertsen et al., 1987, 1991; 

Gochin et al., 1990; Lindsey et al., 1989, 1992a, 1992b, 1997; Lindsey 2001; 

Maldonado and Gerstein 1996; Gerstein et al., 1998; Arata et al., 2000; Martin 2001; 

Morris et al., 2003). Lindsey and Gerstein (2006) presented a new three dimensional 

display method that allows possible relationships between the observed spike trains. 

Spike train similarity or dissimilarity measures are important tools in quantifying the 

relationship between pairs of spike trains. The use of distance between pairs of spike 

trains known as spike train metric can be used to find similarity or dissimilarity among 

pairs of spike trains. If the distance between a pair of spike trains is small enough, one 

can assume that the pairs of spike trains are identical. Severed measures of spike train 

similarity based on distance have been proposed for the analysis of spike trains. Among 

these measures Victor and Purpura (1996, 1997) introduced a distance measure based 

on a cost function. This function evaluates the cost needed to transform one spike train 

into the other, using certain elementary steps. They define the distance between two 

spike trains in terms of the minimum cost of transforming one spike train into the other 

by using three basic operations: spike insertion, spike deletion and spike movement. In 

their work they proposed several spike train distances: spike time distances, spike 

interval distances and spike coimt distances. Spike time distances are further extended 

to multineuronal data by Aronov et al. (2003). There are a number of applications of 

spike time distances on the electrosensory system (Kreiman et al., 2000), vision 

(Mechler et al., 1998; Keat et al., 2001; Reich et al., 2001; Reinagel and Reid, 2002; 

12 
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Grewe et al., 2003; Samonds et al., 2003; Samonds and Bonds, 2004; Chichilnisky and 

Rieke, 2005), the auditory system (Machens et al., 2001), chemical senses (MacLeod et 

al., 1998; Di Lx)renzo and Victor 2003), and the motor system (Vaknin et al., 2005). 

Another metric proposed by van Rossum (2001), measures the Euclidean distance 

between the two spike trains after convolution of the spikes with an exponential 

function. A generalization of van Rossum (2001) measures to multiple spike trains is 

proposed by Houghton and Sen (2008). Schreiber et al. (2003) proposed a spike train 

metric which is derived from the correlation-based measure. Kreuz et al. (2007) 

proposed a spike train metric which is based on the inter-spike intervals (ISI) of the 

spike train. Paiva et al. (2009) compare different spike metric measures for the analysis 

of spike trains. The results reveal that no single measure performs the best or 

consistently throughout for spike train analysis. 

2.2.2 Multiple spike train analysis 

There are several methods in the literature for multiple spike train analysis. One of the 

methods is the unitary event analysis (Grun et al., 2002a). This method is designed to 

detect coincident spike patterns between two or more simultaneously recorded spike 

trains and to assess the significance of the patterns. The statistical significance of a 

pattern is evaluated by comparing the number of occurrences to the number expected on 

the basis of the firing rates of the spike trains. Proper formulation of the null hypothesis 

and the derivation of the corresponding count distribution are important steps in this 

method. This method allows one to analyse correlations not only between pairs of spike 

trains but also between multiple spike trains, by considering the various spike patterns 

across the spike trains. In addition, this method allows one to extract the dj'namics of 

correlation between the spike trains by performing the analysis in a time-resolved 

manner. 

13 
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Its application has provided important insights into principles of information processing 

in the cortex in a number of studies: in the visual (Maldonado et al. 2008), the prefrontal 

(Grun et al. 2002b), and the motor cortex (Riehle et al. 1997, 2000; Grammont and 

Riehle 1999, 2003; Kilavik et al. 2009). The technique for the detection of unitary 

events is based on the assumption that the firing rates of the neurons are stationary 

within the analysis time window. An adjustment for the nonstationary firing rate is also 

proposed (Grun et al., 2002b). Like nonstationarity of firing rate, experimental data may 

also exhibit nonstationarity across trials. For this case a nonparametric method was 

presented (Grun et al., 2003) for the analysis of unitary events in case of experimental 

data. 

Another method based on the estimation of higher order correlations has been suggested 

by Martignon et al. (1995; 2000) for the analysis of multiple spike trains. This technique 

is aimed at estimating a huge amount of parameters and, therefore, requires very long 

recordings and can be applied to a relatively small number of spike trains (about ten 

spike trains). This approach has been fiirther developed in Staude et al. (2010a) where a 

Cumulant-Based Inference of higher-order Correlations (CuBIC) method has been 

presented. This method estimates the low order cumulants and is able to decide whether 

the high order correlations are needed. Thus, both a direct calculation of higher-order 

correlations and a requirement of a large sample size might be avoided. Staude et al. 

(2010b) reported a modified version of the CuBIC method, this version is based on a 

statistical model which includes the non-stationary compound Poisson process. 

Study of functional connectivity using Maximum Likelihood (ML) is a usefiil method 

for the analysis of multiple spike trains. This method estimates the probabiHty of a spike 

occurring as a result of multiple influences from other spike frains. Using the ML 

fimction, the algorithm calculates the regression parameters, which characterise the 

14 
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strength of the influences. Brillinger (1988) and Chomoboy et al. (1988) presented such 

a method where functional relationships between neurons can be detected and modelled. 

The method proposed by Chomoboy et al. (1988) is based on a point process model 

which involves stochastic intensities and an additive rate function. This method is 

suitable for the investigation of the presence or absence of ftmctional relationships 

between neurons. Although they restrict their analysis to spike train data, the method 

can be generalized to include external covariates such as sensory stimuli or motor 

behaviour other than spike trains. A review of maximum likelihood methods and their 

validity is presented by Pillow (2007). 

There are several models that are used to characterize the functional relationship 

between external variables and neural spike trains. The simplest model is the linear-

nonlinear Poisson (LNP) model (Simoncelli et al., 2004). The LNP neuron model 

consists of a linear filter, a static nonlinear transfer fiinction and a Poisson spike 

generating mechanism. To determine the neural response to a given stimulus, the 

stimulus is first convolved with the linear filter. Subsequently, the filter output is 

converted into an instantaneous firing rate via a static nonlinear transfer function, and 

finally spikes are generated from an inhomogeneous Poisson-process according to this 

firing rate. This model has a number of desirable features, including conceptual 

simplicity and computational tractability. 

More recent work has focused on extending the simple LNP model to include spike-

history effects, such as refractoriness, burstiness or adaptation. The extension of the 

LNP model is known as the generalized linear model (GLM) (Paninski, 2004; Paninski 

et al., 2007; Truccolo et al., 2005; Okatan et al., 2005; Pillow 2007; Stevenson et al., 

2008; Pillow et al., 2008). The GLM generalizes the LNP model to incorporate 

feedback from the spiking process, allowing the model to account for history-dependent 
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properties of neural spike trains. In this model each cell's input is described by a set of 

linear filters: a stimulus filter or spatio-temporal receptive field, a post-spike filter that 

captures dependencies on spike-train history (for example, refractoriness, burstiness and 

adaptation), and a set of coupling filters that capture dependencies on the recent spiking 

of other cells. For each neuron the summed filter responses are exponentiated to obtain 

an instantaneous spike rate. 

Several variations and extensions of the basic GLM have been used to characterize the 

interaction between stimulus and spike trains (Stevenson et al., 2008). Truccolo et al. 

(2005) proposed a point process-GLM to relate a neuron's spiking probability to three 

typical covariates: the neuron's own spiking history, concurrent ensemble activity, and 

extrinsic covariates such as stimuli or behavior. This parametric model uses the 

conditional intensity fiinction to define a neuron's spiking probability in terms of the 

covariates. The discrete time likelihood fimction for point processes is used to carry out 

model fitting and model analysis of multivariate single unit activity data simultaneously 

recorded from the motor cortex of a monkey. 

Okatan et al. (2005) introduced a GLM to estimate the fimctional connectivity of 

stochastic neural networks based on a discrete time version of the approach developed 

by Chomoboy et al. (1988). This model is applied to the analysis of simultaneously 

recorded spike trains of a population of rat hippocampal place cells. Kulkami and 

Paninski (2007) developed a multivariate point-process model in which the firing rates 

of the neurons depend on the experimentally controlled stimulus history, the spiking 

history of the observed neurons, Jind the common input from an vmobserved population 

of neurons. Czaimer et al. (2008) presented a state-space generalized linear model (SS-

GLM) to formulate a point process representation of between-trial and within-trial 

neural spiking dynamics for analysis of multiple trial neural responses. They illustrate 
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their model using simulated hippocampal spiking activity and actual neural spiking 

activity of six hippocampal neurons recorded in a macaque monkey. Eldawlatly et al. 

(2009) introduced an approach for identifying functionally interdependent neurons that 

does not consider the interval length over which the functional relationship exists. This 

approach is specifically tailored to large-scale ensemble recordings obtained across 

multiple cortical areas where identifying the dynamics of neural circuits is highly 

desirable. A number of recent studies (Pillow, 2007; Pillow et al., 2008; Paninski et al., 

2007) use the GLM to investigate the influence of sensory stimuli to spiking activity of 

neural population. 

There are some limitations of the GLM approach. For example, the result of analysis 

depends on the window (bin) size. The window is used to find estimates of parameters 

describing influences to the spike train (Eldawlatly et al., 2009) and these estimates vary 

with the bin size. Also, GLM might contain many parameters resulting in the 

optimization problem (finding the maximum of likelihood) having a non-unique 

solution (Stevenson et al., 2008; Chomoboy et al., 1988). A standard approach to 

resolve this difficulty is to incorporate a prior knowledge about the nature of the 

inference. There are different methods to deal with this problem: regularization 

techniques, Bayesian approach, calculation of the maximum a posteriori (MAP) 

estimate, etc. (Paninski, 2004; Rigat et al., 2006; Gerwinn et al., 2007; Stevenson et al., 

2009). 

A number of alternative methods have been developed for modelling multi-neuron spike 

train data and inferring functional connectivity. Utikal (1997) proposed a stochastic 

model based on counting process intensities in order to analyse the firing times of an 

ensemble of neurons. The counting process intensity for a neuron is used to characterize 

the probability of a spike given the neuron's backward recurrence time as well as the 
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backward recurrence times of some or all of the other neurons in the ensemble. Another 

method of measuring associations among simultaneously recorded neural spike trains is 

the combinatorial method (Lee and Wilson, 2002, 2004). This method explores a 

particular sequential firing pattern based on the relative firing order. It is useful in 

applications such as memory of a sequence of experienced events, a sequence of actions 

in an overall movement, or sequential recruitment of different brain areas during a task. 

This method is applied to quantify memory traces of sequential experience in the rodent 

hippocampus during subsequent slow wave sleep (SWS) (Lee and Wilson 2002). 

Stuart et al. (2005) presented a visualization technique called correlation grid to analyse 

synchronous firings of simultaneously recorded multiple spike trains. The fiindamental 

idea of this technique is to arrange spike trains into clusters that are functionally 

connected and display them in a symmetrical grid. A measure of distance, based on 

normalized CCF of two spike trains is used to perform the cluster analysis. Nykamp 

(2007) presented an approach to distinguish between causal connection and common 

input connection among neurons in a network. This approach is based on modelling the 

relationship between the activity of neurons, their history dependence and measurable 

external variables such as stimulus. 

2.3 Connectivity study using graph tlieory 

Graph theory is a branch of mathematics that originated with Leonhard Euler's famous 

1736 treatment of the Konigsberg bridge problem. Today, its applications are extremely 

broad, ranging from urban planning and traffic control to epidemiology, financial 

planning, internet search engines, and the analysis of complex biological systems fi-om 

ecological to molecular scales (Barabasi and Oltvai, 2004). Graph theory has been 

applied to study the brain connectivity over the past ten years as well as other biological 

networks, e.g. cellular metabolism, gene regulation, or ecology (Spoms, 2007, BuUmore 
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and Spoms, 2009). Graph theory is applied to anatomical, functional and effective brain 

connectivity by a connection matrix or adjacency matrix. This cormection matrix is used 

to identify different graph theoretical measures such as degree, motif, clustering 

coefficient, path length and centrality measure as well as others (Reijneveld et al., 2007; 

BuUmore and Spoms, 2009; Rubinov and Spoms, 2010). 

The term anatomical connectivity refers to the set of physical or stmctural connections 

linking neuronal elements. Functional connectivity captures deviations from statistical 

independence between neuronal elements (Friston et al., 1993; Friston, 1994). The basis 

of all fiinctional connectivity is time series data from neural recordings. These data may 

be exfracted from fimctional magnetic resonance imaging (fMRI), 

elecfroencephalography (EEG), magnetoencephalography (MEG) or multielecfrode 

array (MEA). Functional connectivity can be estimated in a variety of ways, for 

example through computing CCF, mutual information or specfral coherence (Spoms, 

2007). Most of the brain connectivity studies to date have been based on measures of 

functional connectivity (BuUmore and Spoms, 2009). Effective connectivity describes 

the network of causal effects between neural elements (Friston, 1994; Buchel and 

Friston, 2000). Various techniques for exfracting effective connectivity have been 

pursued such as structural causal modelling, dynamic causal modelling and Granger 

causality (BuUmore and Spoms, 2009). 

Watts and Strogatz (1998) studied the anatomical connectivity of the nervous system of 

C. elegans. Two graph theory measures such as path length and the clustering 

coefficient were studied in this study. Spoms and Zwi (2004) studied data sets of 

macaque visual and cat cortex. They computed scaled values of path length, clustering 

coefficient and cycles. Some of the same data studied in Watts and Sfrogatz (1998) and 

Spoms and Zwi (2004) were re-investigated for the presence of motifs by Spoms and 
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Kotter (2004). Kaiser and Hilgetag (2004) studied the edge vulnerability of macaque 

and cat cortex, protein-protein interaction networks, and transport networks. The 

average shortest path length was used as a measure of network integrity and four 

different measures were used to identify critical connections in the network. 

The first attempt to apply graph theoretical concepts to fMRI was a methodological 

paper by Dodel et al. (2002). In this methodological study, graph theory was used as a 

new approach to identify functional clusters of activated brain areas during a task. 

Starting with blood oxygen level dependent (BOLD) time series of brain activity a 

matrix of correlations between the time series was computed. Eguiluz et al. (2005) and 

Chialvo (2004) were the first to study clustering coefficients, path length and degree 

distributions in relation to fMRI data. They studied fMRI in 7 subjects during three 

different finger tapping tasks and derived matrices of correlation coefficients from the 

BOLD time series. In the study (Salvador et al., 2005a), fMRI measures were recorded 

in 12 healthy subjects and a matrix of partial correlations was obtained from the BOLD 

time series. The clustering coefficient and path length were studied using graph theory. 

Similar graph theory methods were studied by Salvador et al. (2005b) where the 

connection matrix was obtained by the partial coherence and normalized mutual 

information measure. Extensive graph theory methods were performed-by Achard et al. 

(2006) on the data obtained from Salvador et al. (2005b). Here, wavelet analysis was 

used to study connectivity patterns. The global and local efficiency measures were 

applied in an fMRI study in 15 healthy young and 11 healthy old subjects (Achard and 

BuUmore, 2007). The connection matrix was based upon wavelet correlation analysis. 

Data derived from fMRI experiments are very suitable for graph analysis because of 

their high spatial resolution. In contrast, spatial resolution is more problematic with 

EEC and MEG techniques. However, these techniques do measure directly the elecfro 
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magnetic field related to neuronal activity, and have a much higher temporal resolution. 

The first application of graph theory to MEG was published in 2004 (Stam, 2004). In 

this experiment correlations between the time series of the 126 artefact-free channels 

were analysed with synchronization likelihood (SL), a non-linear measure of statistical 

interdependencies (Stam and van Dijk, 2002; Montez et al., 2006). Clustering 

coefficient and path length were analysed in this study. Graph theoretical properties of 

MEG recordings in healthy subjects were studied more extensively by Bassett et al. 

(2006). The authors applied graph theory techniques such as clustering coefficient, path 

length and betweenness centrality to MEG recordings in 22 healthy subjects. In this 

study wavelet analysis was used to obtain correlation matrices. Bartolomei et al. (2006) 

applied clustering coefficient and path length to MEG resting state recordings in a group 

of 17 patients with brain tumours and 15 healthy controls. 

The first application of graph theory to EEG was published in 2007 (Stam et al., 2007). 

Here a group of 15 Alzheimer patients was compared to a non-demented control group 

of 13 subjects. EEG recorded from 21 channels were analysed with the SL. The authors 

computed the clustering coefficient and path length from the connection matrix. In two 

related studies Micheloyannis et al. (2006a, 2006b) applied graph theory to 28 channel 

EEG recorded during a 2-back working memory test. In both studies EEG filtered in 

different frequency bands was analysed with SL. There are several studies that applied 

clustering coefficient and path length to the data obtained from EEG recordings 

(Posthuma et al., 2005; Wu et al., 2006; Ferri et al., 2007; Ponten et al., 2007 and Smit 

et al., 2008). 
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2.4 Importance of this research 

In this Chapter several techniques for analysing the functional connectivity from 

simultaneously recorded multiple spike trains have been reviewed. Although these 

methods are used for studying experimental data and demonstrate some important 

results, all these methods have a number of limitations which should be taken into 

account. For example, the majority of the existing methods of analysing fiinctional 

connectivity require stationarity of spike trains. This assumption may not be met for 

data simulated by a large neural network and is even less likely to be met for 

experimental data. A second limitation is that some methods require long spike trains. 

These two limitations contradict each other: the longer spike trains are, the less likely it 

is that they will be stationary. Yet another common limitation is that the majority of 

methods require a small time window (bin) for data analysis. Of course, the result of 

analysis depends on the bin size. The widely used CCF method is a bin based method 

and is applied under the assumption of stationary spike trains. Similarly, recently 

introduced GLM techniques that are used for identifying fiinctional connectivity from 

experimental data are bin based methods, also GLM as a rule requires long spike train 

data. Therefore, development of new statistical techniques for analysing multiple spike 

trains and deriving the fimctional connectivity is a very actual and important problem. 

This problem is timely because MEA are now available for experiments in neuroscience 

and this tool enables researchers to simultaneously record multiple spike trains. 

In this thesis a new statistical method is developed to overcome the limitations of the 

existing spike train analysis methods. This statistical method is based on the 

mathematical idea of the Modulated Renewal Process (MRP) and is very useful for 

identifying functional connectivity in generated and experimental data. Fimctional 

connectivity identified by this statistical method is a useful tool for the graph theoretical 
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brain connectivity analysis, while currently graph theoretical brain connectivity analysis 

is based on the pair-wise correlation methods. In this thesis, another useful method for 

identification of functional connectivity developed by Stuart et al. (2005) is modified in 

such a way that this modified method enables researchers to distinguish the direct 

connections from spurious connections using an automatic algorithm. 
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Statistical techniques to improve the analysis of 

functional connections based on pair-wise cross-

correlation function 

Although the CCF is widely used in neuroscience to analyze multiple spike trains, it is a 

difficult problem to identify fiinctional connectivity using a pair-wise method which 

only considers a pair of spike trains at a time and does not take into account influences 

from other spike trains. Analyzing pairs of spike trains and finding a statistically 

significant influence from one spike frain to another, it is difficult to distinguish this 

influence. This influence may occur as a result of direct connection between this pair, 

due to a common source to both spike frains or due to an intermediate spike frain. In this 

chapter a statistical method is developed for classification of significant influences into 

three groups: 'direct connection', 'connection due to a common source' and 'indirect 

connection'. It is shown that this method is efficient and significantly improves a result 

of study of fiinctional connectivity by a pair-wise method. 

3.1 Introduction 

Identifying functional connectivity between spike frains is important for understanding 

how the brain works. In neuroscience a common widely used measure of fiinctional 

connectivity between spike frains is the cross-correlation fimction (Perkel et al., 1967). 

A significant peak in a cross-correlation function can be interpreted as a functional 

connection between spike frains (Aertsen et al., 1989) and the corresponding time of the 

peak can be interpreted as a time shift in spike propagation (Nikolic, 2007). A peak in a 

cross-correlation function indicates that there is a high probability to find a spike in one 
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spike train due to spike in another spike frain with some time shift. This significant peak 

in the cross-correlation function indicates that the null hypothesis on independence of 

two spike frains is not supported by data and should be rejected. Consequently there is 

an influence from one spike train to another. Interpretation of this influence in terms of 

fiinctional connectivity is not an easy problem because this influence can be considered 

as a direct connection between two spike trains or this influence can be considered as a 

result of some common source to both spike frains. Another possibility is to interpret the 

influence as an indirect connection, i.e. connection via some intermediate spike frain. 

A 'direct connection' is a connection where one spike frain modulates the firing pattern 

of another spike frain directly. An 'indfrect connection' is a spurious connection due to 

connectivity via an intermediate spike frain. A 'common source' is a spurious 

connection due to an influence from the common source to both spike frains in a pair. 

Analyzing functional connectivity of a large number of spike frains using cross-

correlation function, it is difficult to distinguish the direct connection, indirect 

connection and common source (Dahlhaus et al., 1997; Eichler et al., 2003; Makarov et 

al., 2005; Nykamp, 2005; Stivenson et al., 2008; Park et al., 2008; Nedungadi et al., 

2009). The Correlation Grid (Stuart et al., 2005) is a method which is used for 

investigating the functional connectivity of a large number of spike frains using cross-

correlation function. Correlation grid has been successfully used for study of functional 

connectivity, however, the correlation grid cannot automatically distinguish dfrect and 

spurious (both indirect and common source) connections. The aim of this chapter is to 

present a method for analyzing functional connectivity of a large number of spike frains 

using cross-correlation fimction which can differentiate direct connections from 

spurious (indfrect and common source) connections by an automatic algorithm. This 

method is called the modified correlation grid (MCG). 
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3.2 Cross-correlation function (CCF) 

The cross-correlation ftmction works on a pair of spike trains A and B, one spike train is 

considered as the target spike train (A) and another one is considered as the reference 

spike train (B). A correlation window consists of (2 * u + 1) bins of small time length h 

is considered. For each spike of the reference spike train B, this correlation window is 

set in such a way that a centre of the middle bin of the correlation window coincides 

with this spike of the reference spike train and there are u bins on the left and there are u 

bins on the right (Fig. 3.1). The counting function n^eCi') counts and accumulates the 

number of spikes of the target spike train A falling in the correlation window for the 

spikes of the reference spike train B. The counting function n^g (y) is calculated over 

the experiment time T. 

1+11 0 I+2I+2I 0 I 

-2 -1 0 +1 +2 

1+11+210 1+110 I 
Correlation window j j [ [ j j 

I I I I I I 

Target train | I L j i j j j . , j _ l _ l _ _ i l I I I I I 
~-2~-i'^o~+T +Y 

Reference train | | | 1 
1 

Referer 

1 1 

1 ^ Reference spike n+1 

ice spike n 

Figure 3,1: Counting procedure of the target spikes that fall within the correlation 
window for the reference spike. 

To test the independence of two spike trains Brillinger (1976c) considers the estimate 

PAB(.V) = y/pAB(v)/PApB, wherc PAB(.V) = nAB(v)/2hT, pA = njT and pg = UQIT 

and normalises the counting function n/^Q{v) accordingly. Here, Uj^.n^ denote the 

number of spikes in the spike trains A and B, respectively. For a large sample size the 
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random variables pAsiv) are independent and the distribution of each of them is the 

normal with the mean m = y/pAB(v)/PAPB ^^^ the standard deviation 

s = l/il^lhTpAPs)- Therefore, in the case of two independent spike trains the mean 

of pAeiy^ equals to one (because in independent case PAsi}') — PAPB)-^'^ test the 

null hypothesis HQ that two spike trains are independent, the boundaries of the 

confidence interval at the significance level a are plotted by two horizontal lines at 

levels 1 ± Q^/(2^2hTpAPB) , where Q^ is a critical value of the normal distribution 

corresponding to the significance level a. If HQ is correct then all values of the CCF 

corresponding to different bins fall inside the confidence interval and the estimated 

value of the CCF (P>IB(V)) is zero. If some value of the CCF exceeds the upper 

boimdary of the confidence interval, then the null hypothesis HQ is rejected and it is 

concluded that the two spike trains are not independent. The highest value of the CCF 

exceeding the upper boimdary of the confidence interval can be considered as a measure 

of influence strength from spike train A to spike train B and the corresponding time can 

be considered as a time shift (A) in spike propagation (Stuart et al., 2005) (Fig. 3.2). 
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Figure 3.2: An example of a cross-correlation function with confidence interval, 
significant peak and time shift. 

28 



Chapter 3 Modified Correlation Grid Method 

3.3 Classification of functional connection 

The interpretation of the CCF results is a difficult task. If the CCF shows that there are 

no significant peaks, then it can be considered that there is no connection between two 

spike trains. However, if there is a significant peak of the CCF then there is an influence 

fi-om one spike train to another. This influence can be interpreted either as a direct 

coupling or as a spurious connection. 

The two measurements fi"om the CCF that can be used for distinguishing direct and 

spurious connections are the highest significant peak (p) (Aertsen et al., 1989) and the 

corresponding time shift (A) (Nikolic, 2007). The following examples show different 

connection types and corresponding values of p and A. 

0 /B\ 

n s / 

23 ms 

(b) 

\l2ms 

-->(c) 

11 ms, 

C L 

(AJ 
/ \ l 4 ms 

}-—->(c) 
3 ms ^— 

(c) 

11 ms 

(B) 

(a) 
Figure 3.3: Schematic diagram of (a) Direct connection where neuron A is directly 
connected to neuron B. (b) Indirect connection where neuron A is connected to neuron 
C through neuron B. (c) Common source where neuron A is connected to both neuron B 
andC. 

1. Direct connection. Fig. 3.3(a) shows an example of a direct connection from 

neuron A to neuron B with delay of spike propagation of 11 milliseconds. Two 

spike trains corresponding to this connectivity have been generated using the 

Enhanced Leaky Integrate and Fire model (Borisyuk, 2002) with moderate 

connection strength. Fig. 3.4(a) shows the CCF for generated spike frains A and 

B. The value of significant peak of the CCF is 4.51 and the corresponding time 
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shift is 11 milliseconds. Note, there is a good correspondence between a time 

delay of spike propagation in ELIF model and a time shift of CCF. 

2. Indirect connection. An example of connection diagram with indirect 

connection is shown in Fig. 3.3(b). A time delay of spike propagation from a 

neuron A to neuron 5 is 11 milliseconds and a time delay of spike propagation 

from neuron B to neuron C is 12 milliseconds. Three spike trains corresponding 

to this connection diagram have been generated using the ELIF model with 

moderate connection strengths. Fig. 3.4(b) shows the result of analyzing spike 

trains A and C by the CCF. A height of the significant peak is 1.7 (note, this 

value is lower than the significant peak of direct connection in previous case) 

and a corresponding time shift of the CCF is 23 milliseconds (note, this time is 

longer in comparison with time shift in previous case of direct connection). 

Thus, a relatively low value of the significant peak and a relatively long time 

shift compared to direct connections are important characteristics of the 'indirect 

connection'. 

3. Connection due to a common source. Fig. 3.3(c) shows a 'common source' 

connectivity diagram of 3 neurons. Neuron A influences both neurons B and C 

with delay of spike propagation of 11 and 14 milliseconds, respectively. Three 

spike trains corresponding to this connection diagram have been generated using 

the ELIF model with moderate connection strengths. Fig. 3.4(c) shows the CCF 

for spike trains B and C where a value of significant peak is 1.93 (note, this 

value is lower than a significant peak in case of direct connection) and a time 

shift is 3 milliseconds (note this value of time shift is relatively small). 

These examples provide an important guidance how p and A can be used to justify the 

result of the CCF analysis corresponding to the direct or spurious connection. The direct 

connection is characterized by a high value of the significant peak and a relatively short 
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time shift, 'indirect connection" is characterized by a relatively low value of the 

significant peak and a relatively long time shift in comparison with direct connection. 

'Common source connection" can be characterized by a relatively low significant peak 

near zero time shift and both the significant peak and time shift are lower comparison 

with direct connection. Thus, to derive a diagram of functional connections from the 

pair-wise CCF analysis, the spurious connections should be ignored and the only direct 

connections should be included to the diagram. 

4 « 

4 

U 

* 
u 

1 

^S 

1 

U 

5 

tvinr-^N^AAvv^ 

1 - « -K - » -M 

\ J ^ ^r^PAhk 
- v V ' ' « 

M K 90 « 90 
1(1 • • ) 

(a) 

Figure 3.4: Examples of cross-correlation for the three types of connection, (a) Direct 
cormection. (b) Indirect connection and (c) Common source. 

All these considerations are relevant to the case of generated data and. of course, they 

may not completely correct in case of experimental data. Nevertheless, these simple 

examples provide a useful guidance how to distinguish between direct and spurious 

connections when deriving the diagram of connectivity from the pair-wise CCF 
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analysis. Further in this chapter, examples of 10, 15 and 20 generated spike trains with 

different connection diagrams and distributed parameters are considered and shown that 

simple ideas which have been described here are useful for deriving a functional 

connectivity (i.e. connection diagram) trom the result of pair-wise CCF analysis. 

3.4 Correlation Grid 

The fundamental idea of Correlation Grid (Stuart et al., 2005) is to arrange spike trains 

into clusters of functionally connected spike trains using a measure of similarity. This 

similarity measure is based on a distance between two spike trains. The distance is 

calculated using the value of hi^est si^ficant peak of the cross-correlation function. 

For multiple spike trains, all pair-wise cross-correlation functions are calculated with a 

specified bin and correlation window. The main sigmficant peaks are calculated and the 

results of these cross-correlations are displayed in a matrix format. In the matrix, the 

magnitudes of the main significant peaks are encoded fi'om wliite, representing a non­

significant peak, to black, representing the largest peak (Fig. 3.5). The rows and 

columns of the matrix are reordered using a clustering algorithm. A difference between 

maximum of the main peaks and main peak in the corresponding cross-correlation is 

considered for clustering the spike trains. After applying the clustering algorithm the 

most similar spike trains cluster together and show fiinctional connectivity. 
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Figure 3.5: An example of a correlation grid to find functional connectivity of multiple 
spike trains. 

Fig. 3.5 shows the functional connectivity often spike trains using Correlation Grid 

method. The functional connectivity obtained by this method is displayed in a 

symmetrical way. For example, in Fig. 3.5 there is a functional connection between 

spike trains #1 and #6 and both the cells (1,6) and (6,1) are encoded with black meaning 

that there is a strong influence between these spike trains and the connection is direct. 

Similarly, there is a functional connection between spike trains #2 and #9 and the grey 

color means there is a connection (not strong) between them. It is not easy to identify 

whether the connection between spike trains #2 and #9 is direct, indirect or due to a 

common source. To identify this connection the Correlation Grid requires additional in-

depth analysis. To overcome this limitation a new statistical method based on the 

significant peak and time shiff of the CCF is developed. This method enables 

researchers to distinguish the direct connections from spurious (common source and 

indirect) connections using an automatic algorithm. 
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3.5 Modified Correlation Grid (MCG) 

The steps involved in modified correlation grid method are described below: 

3.5.1 Calculation of CCF 

Let us consider n simultaneously recorded spike trains and k = (n^ — n) /2 is the 

number of the CCF which have been calculated. To test the hypothesis of independence 

of two spike trains, k independent tests are run for the n spike trains. In statistics a 

multiple comparison problem occurs when a set of simultaneous statistical tests is 

considered. This problem occurs when all the tests are considered as a family and set the 

significance level a for the family. For this reason the errors of incorrectly rejecting the 

null hypothesis are more likely to occur. Several statistical techniques have been 

developed to prevent this problem. Bonferroni correction is a method that can be used to 

address the problem. The correction is based on the idea that for testing a set of 

dependent or independent hypotheses, the significance level a should be adjusted 

according to the number of tests being performed. So if the significance level for a set 

of k simultaneous tests is considered to be a, the significance level for each individual 

tests will be a/k. 

Applying Bonferroni correction to the k pair-wise CCFs, the upper and lower 

boundaries of the confidence interval are calculated for each pair-wise CCF. Any peak 

that exceeds the upper boundary of the confidence interval is considered as significant. 

Significant peaks can be found on both positive and negative side of the CCF. Here, 

significant peak on the positive side of the CCF is considered as a measure of 

dependence ti-om one spike train to another. For several significant peaks, the highest 

significant peak is considered as the measure of influence strength. All the highest 

significant peaks pij (i,j = 1,2, ,n). i^j and the corresponding time shifts 

&ij ii.j = 1,2, ,n), I ^ j are calculated for n spike trains. Non-significant peaks 
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Pij of the pair-wise CCF supports the null hypothesis (spike trains are independent). 

Therefore there is no connection from spike train ; to spike train j and so Pjy is not 

distinguishable from zero. These non significant peaks are not included in the analysis. 

3.5.2 Outlier detection 

In multiple spike trains there may exist some very strong synaptic connections between 

neurons. Cross-correlation functions for these neurons show very big significant peaks 

and they can be considered as outliers. These very big significant peaks are considered 

outliers because they deviate markedly from the other significant peaks. These outlier 

connections are considered as direct connections and are not used for the algorithm to 

distinguish the direct connections from the indirect connections and common source. 

In statistics there are two kinds of outlier detection methods, tests of discordancy and 

outlier labeling methods. Most tests of discordancy need test statisfics for hypothesis 

testing and the tests are usually based on an assumption of some distribution. Some tests 

of discordancy are for a single outlier and others for multiple outliers. Selection of these 

tests mainly depends on the numbers and type of target outliers, and type of data 

distribufion (Acuna and Rodriguez. 2004). Though the tests of discordancy are powerfiil 

for invesfigating the outliers, most distributions of real-world data may be unknown or 

may not follow specific distributions. Another limitadon is that the tests of discordancy 

are susceptible to masking or swamping problems (Acuna and Rodriguez, 2004). 

Masking problem can occur when few outliers are specified in the test though there are 

in fact more outliers. These additional outliers may influence the value of the test 

statistic enough so that no points are declared as outliers. Swamping problem can occur 

when many outliers are specified in the test though there are in fact few outliers and all 

the points are declared as outliers. 
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On the other hand, most outlier labeling methods generate an interval or criterion for 

outlier detection instead of hypothesis testing, and any observation beyond the interval 

or criterion is considered as an outlier. There are two reasons for using an outlier 

labeling method. One is to find possible outliers as a screening device before 

conducting a test of discordancy. The other is to find the outliers away from the 

majority of the data regardless of the distribution. When it is difficult to identify the 

distribution of the data or transform it into a proper distribution, labeling methods can 

be used to detect outliers (Seo, 2006). 

Among several outlier labeling methods, the commonly used method is the Z-score. The 

Z-score is defined as 

Xi—X 
7 — — 

where XI'^N(JI,G^), and x and sd are the sample mean and sample standard deviation 

of data. The basic idea of this rule is that if A" follows normal distribution with mean fi 

and variance u^, then Z tbllows standard normal distribution with mean 0 and variance 

1. The Z-scores that exceed 3 in absolute value are generally considered as outliers. 

According to Shiftier (1988), a maximum Z-score is dependent on sample size, and it is 

computed as (n — 1)/Vn. Since no Z-score exceeds 3 in a sample size less than or 

equal to 10, the Z-score mefliod is not very good for outlier labeling, particularly in 

small data sets (Iglewicz and Hoaglin, 1993). Another limitation of this rule is that the 

standard deviation can be inflated by a few or even a single observation having an 

outlier value. Thus it can cause a masking problem. 

Two estimators are used in the Z-Score, the sample mean and sample standard 

deviation. These estimators can be affected by a few outlier values or by even a single 

outlier value. To avoid this problem, another outlier labelling method known as 
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modified Z-score can be used. In the modified Z-score the median and the median of the 

absolute deviation of the median (MAD) are employed instead of the mean and standard 

deviafion of the sample, respecrively (Iglewicz and Hoaglin, 1993): 

MAD = median{\Xi — x\} 

where x is the sample median. The modified Z-Score (M;) is computed as 

0.6745Cx,-y) 

^'= MAD 

where E(^MAD) ^ 0.6745a for large data. Iglewicz and HoagUn (1993) suggested that 

observations are labeled outliers when |M,[ > 3.5. Applying modified Z-score to the 

significant peaks pij obtained fi"om pair-wise cross-correlation function enables to 

detect the outliers. In this study, only upper outliers are investigated to indicate that 

these outliers have very strong connections and can be considered as direct connections. 

For this reason significant peaks are labelled outliers when M, > 3.5. 

3.5.3 Cluster analysis 

All the non outher significant peaks pij and the corresponding time shifts Ajy are used 

for the classification of functional connections. For a set of significant peaks Pij that do 

not have outliers with corresponding shifts A,j, the typical scatter plot can be observed 

as in Fig. 3.6. From the Fig. 3.4, it can be assumed that the direct coimections can be 

identified with high significant peak and moderate time shift, common source can be 

identified with low significant peak and short time shifl:, and indirect connections can be 

identified with low significant peak and large time shift. To achieve this classification 

from the set of significant peaks p̂ y and time shifts Ajj a clustering algorithm is used. 
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Figure 3.6: An example of a typical scatter plot of a set of significant peaks p^^ and the 
time shifts Aj, where the classification of direct connection, indirect connection and 
common source are indicated by circles. 

A cluster analysis is used for finding clusters of similar objects within a data set. A 

cluster analysis begins by calculating distances among objects in the data set. For a data 

set having two or more variables the distances are greatly affected by differences in 

scale of measurement of the objects. It is a good practice to transform the variables so 

that they have the similar scales. At the first step, each object represents its own cluster. 

Clustering begins by finding the two clusters that are most similar, based on the 

distance, and merging them into a single cluster. The characteristics of this new cluster 

are based on a combination of all the objects in that cluster. This procedure combining 

two clusters and merging their characteristics is repeated until all the objects have been 

joined into a single large cluster. 

A variety of measures can be used to calculate the distance. For data that show linear 

relationships, the Euclidean distance is a useful measure. A variety of linkage methods 

can be used to determine in what order clusters may join. The nearest neighbor or single 
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linkage method is based on the elements that are most similar. The farthest neighbour or 

complete linkage method is based on the elements that are most dissimilar. Both of 

these are based on outliers of distributions, which may not be desirable. The average 

emphasizes the central tendency of clusters and is less sensitive to outliers. 

To apply cluster analysis to the set of significant peaks pij and time shifts A^j, both 

measurements are normalized so that the values of significant peaks and fime shifts are 

in the range between 0 and 1. The normalization is done so that the values of significant 

peaks and time shifts have the similar scale. A clustering algorithm is applied to these 

normalized significant peaks and time shifts. In the clustering algorithm the distance 

between pairs of observafions is calculated using the Euclidean distance and the average 

linkage is used for calculating the distance between two clusters. The average linkage is 

used due to its less sensitivity to outliers. This clustering algorithm creates three 

clusters; the cluster of direct connections, the cluster of common source and the cluster 

of indirect connections. 

3.5.4 Classification of significant connections 

The outlier connections and the cluster of direct connections are considered as direct 

connections and displayed in the resulting n-by-n matrix of ftinctional connectivity. In 

the matrix of functional connectivity rows of the matrix indicate the target spike train 

and columns of the matrix indicate the reference spike train. In Fig. 3.7, a circle in the 

cell (i.j) indicates that there is direct connection from spike train y to spike train /. The 

radius of the circle shows the normalized strength of connection of the pair of spike 

trains which is the proportional to the height of the significant peak in a pair-wise CCF. 

Fig. 3.7 shows an example of a matrix of direct functional connectivity for a data set of 

10 spike trains generated by the ELIF (Borisyuk, 2002) model. The description, 

dynamics and parameters of the ELIF model are given in appendix A. 
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Figure 3.7: (a) Connection scheme of the ten spike trains, (b) An example of a direct 
functional connectivity matrix of these ten spike trains. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amphtude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Connection parameter 

Connection strength 

Decay rate of postsynaptic potential 

Time lag of spike propagation 

Mean 

44.89 

2.96 

14.84 

4.89 

10.00 

-28.89 

19.76 

-0.05 

5.6 

12.18 

4.12 

14.8 

S.D. 

0.45 

0.43 

0.65 

0.41 

0.03 

0.43 

1.13 

0.43 

2.7 

1.56 

0.47 

2.78 

Table 3.1: Parameter values of the ELIF model to generate ten spike trains. 
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The parameter values of the ELIF model for the generation often spike trains is given in 

Table 3.1. From the functional connectivity matrix ten direct functional connections can 

be observed. 

All the significant connections in the common source cluster are further investigated to 

identify whether these connections are due to common source or not. Two spike trains i 

and j are taken fi-om the common source cluster and the aim is to identify the 

connection from spike train i to spike train j . Keeping spike trains i and j fixed all 

groups of three spike trains (i,j,k),k = l,2,---,nare detected that have the diagram of 

connection in Fig. 3.3(c}. The triplet time shifts (A,j, A/d, A^y) of these groups are 

calculated from the CCF. Time shifts (Ajî j, A^j) indicate the delay of direct connections 

from spike frain k to spike train i and 7, respectively and time shift Ajy indicates the 

delay of connection from spike train i to spike train j . The connection from spike train i 

to spike train/ is considered as a common source connection if the time shifts of these 

spike frains meet the following formula; 

Aij=\&^i-&,j\ (3.1) 

This procedure is repeated for all significant connections in the common source cluster 

to identify their connections. 

Similarly, all the significant connections in the indirect cluster are fiirther investigated 

to identify whether these connections are indirect or not. Two spUce trains i and j are 

taken from the indirect cluster and the aim is to identify the connection from spike train 

i to spike frain j . Keeping spike frains i and / fixed all groups of three spike frains 

(i,j,k),k — l ,2 , - - ,nare detected that have the diagram of connection in Fig. 3.3(b). 

The triplet time shifts (Ajy, A[fc, Aĵ y) of these groups are calculated from the CCF. 

Time shifts (Affc, Afcy) indicate the delay of direct connections from spike frain i to 
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spike train k and from spike train k to spike train j , respectively. Time shift Ây 

indicates the delay of connection from spike train i to spike frain y. The connection from 

spike train t to spike frain j is considered as an indirect connection if the time shifts of 

these spike frains meet the following fonnula: 

Aij= A,-̂  + A;,̂  (3.2) 

This procedure is repeated for all significant connections in the indirect cluster to 

identify their connections. 

To consider the prescribed tolerance (e) in time shifts (ms), common source and 

indirect connections of formula (3.1) and (3.2) can be written as: 

lAfci -&^j\-€< Aij< |Afci - A^j\ + € (3.3) 

and 

^ik + Afcj - e < Aij< A^^ + Akj + ^ (3.4) 

The common source and indirect connections obtained from (3.3) and (3.4) are 

displayed at the n-by-n connectivity matrix in a similar way to direct connection but by 

different colors. 

3.6 Analysis of functional connectiviU' of Hfteen spike trains 

The Modified correlation grid method is applied to a simulated fifteen spike trains to 

identify fiinctional connectivity. The Enhanced Leaky Integrate and Fire (ELIF) model 

(Borisyuk. 2002) is used for simulations with a given scheme of connecfions. The 

parameter values of the ELIF model for the generation of fifteen spike frains is given in 

Table 3.2. Fifteen spike trains are generated for a period of 30,000 milliseconds using 

the connection architecture shown in Fig. 3.8(a) with the connection sfrengths shown in 

Fig. 3.8(b) in matrix format. The connection from spike train #5 to spike train #13 has 

the maximum sttength. 

42 



Chapter 3 Modified Correlation Grid Method 

I 
I 
I 

1 

M 

11 

•a 
n 
M 

W 

• 

• 

• 

* 

• 

* 

• 
• 

• 

* 

• 

• 

« 

• 
» 

• 

I 1 3 4 S I T I I N I I t l l t U l f 

(a) (b) 
Figure 3.8: (a) Connection scheme of fifteen spike trains. There are sixteen non zero 
connections which are shown by arrows, (b) Connection strengths of the sixteen non 
zero connections in the matrix format. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Connection parameter 

Connection sfrength 

Decay rate of postsynaptic potential 

Time lag of spike propagation 

Mean 

44.82 

2.98 

14.24 

5.13 

10.00 

-28.98 

19.65 

O.OI 

5.2 

14.38 

2.95 

12.5 

S.D. 

0.73 

0.38 

0.92 

0.42 

0.03 

0.40 

0.85 

0.35 

1.61 

7.31 

0.75 

1.15 

Table 3.2: Parameter values of the ELIF model to generate fifteen spike frains. 
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*«4 

Figure 3.9: Raster plot of fifteen spike trains generated for the connection scheme given 
in Fig. 3.8 over the duration 30,000 milliseconds. 

Fig. 3.9 shows the raster plot of spiking activity of these fifteen spike trains. These 

spike trains are considered as a data set for analysing the fiinctional connectivity. For 

anal>^ing the functional connectivity only spike trains are used and assume that the 

scheme of connections as well as parameter values of neurons and connections are 

unknown. In this analysis the self coupling is not considered for finding fiinctional 

connectivity of the fifteen spike trains. 

3.6.1 Calculation of CCF 

For these fifteen spike trains a total of (15^ — 15)/2 = 105 pair-wise CCF are 

calculated with a bin size of 1 ms and a correlation window of 100 ms. To test the 

independence of the pair-wise spike trains the level of significance a = 0.05 is 

considered with the Bonferroni correction. A connection is considered significant if a 

peak of the cross-correlation fimction exceeds the upper boundary of the confidence 

interval. A total of 25 significant connections are foimd for fifteen spike trains (Table 

3.3). 

44 



Chapters Modified Correlation Grid Method 

Reference 
spike 
train 

1 

1 

1 

2 

2 

2 

3 

3 

S 

6 

7 

7 

9 

Target 
spike 
train 

6 

8 

12 

3 

11 

14 

11 

14 

13 

8 

4 

9 

4 

Peak 

4.37 

4.57 

3.05 

3.50 

1.64 

3.26 

2.73 

3.23 

6.52 

2.44 

1.72 

3.57 

3.27 

Time 
shift 

13 

15 

11 

12 

27 

14 

12 

12 

12 

2 

23 

11 

12 

Reference 
spike 
train 

10 

10 

11 

12 

12 

12 

14 

14 

15 

15 

15 

15 

Target 
spike 
train 

4 

9 

2 

4 

6 

8 

11 

15 

2 

3 

11 

14 

Peak 

1.74 

3.46 

2.57 

1.69 

1.90 

1.92 

2.98 

1.73 

2.71 

3.57 

3.73 

2.14 

Time 
shift 

25 

13 

13 

23 

2 

4 

13 

40 

12 

14 

11 

26 

Table 3.3: Significant connections of the fifteen spike trains with peak and time shift. 
Connections are indicated from reference spike train to the target spike train. 

Table 3.3 shows the significant connections of the fifteen spike trains wdth 

corresponding peaks and time shifts. The peaks of the significant connections range 

ft^om 1.64 to 6.52 and the time shifts range from 2 ms to 40 ms. These significant 

connections are also shown in a matrix format where the connections are indicated by a 

cell filled by a circle (Fig. 3.10(a)). The direction of the significant connection in the 

matrix format is considered fi-om reference spike train to target spike train. For example, 

spike train #1 has significant connections to spike trains #6, #8, and #12 (first column of 

the matrix in Fig. 3.10(a)). 
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Figure 3.10: (a) Significant connections obtainal from pair-wise CCF analysis. A total 
of 25 significant connections are obtained from the fifteen spike trains, (b) Scatter plot 
of these 25 significant connections showing the significant peak with corresponding 
time shift. The error connections are shown in blue and green circles. 

3.6.2 Outlier detection and cluster analysis 

The clustering algorithm is applied to the 25 significant connections for distinguishing 

direct connections from the indirect connections and common source. Before starting 

clustering algorithm the modified Z-score is used for searching very strong connections 

which are considered as outlier connections. Here one outlier is identified from spike 

frain #5 to spike train #13. The peak of this connection is 6.52 and time shift is 12 ms. 

This outlier connection is considered as a direct connecfion. A scatter plot of 25 

significant connections with the outlier is shown in Fig. 3.10(b). 
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Reference 
spike 
train 

1 

1 

1 

2 

2 

2 

3 

3 

6 

7 

7 

9 

Target 
spike 
train 

6 

8 

12 

3 

11 

14 

11 

14 

8 

4 

9 

4 

Peak 

4.37 

4.57 

3.05 

3.50 

1.64 

3.26 

2.73 

3.23 

2.44 

1.72 

3.57 

3.27 

Time 
shift 

13 

15 

11 

12 

27 

14 

12 

12 

2 

23 

11 

12 

Cluster 

Direct 

Direct 

Direct 

Direct 

Indirect 

Direct 

Direct 

Direct 

Common 

Indirect 

Direct 

Direct 

Reference 
spike 
train 

10 

10 

11 

12 

12 

12 

14 

14 

15 

15 

15 

15 

Target 
spike 
train 

4 

9 

2 

4 

6 

8 

11 

15 

2 

3 

11 

14 

Peak 

1.74 

3.46 

2.57 

1.69 

1.90 

1.92 

2.98 

1.73 

2.71 

3.57 

3.73 

2.14 

Time 
shift 

25 

13 

13 

23 

2 

4 

13 

40 

12 

14 

11 

26 

Cluster 

Indirect 

Direct 

Direct 

Indirect 

Common 

Common 

Direct 

Indirect 

Direct 

Direct 

Direct 

Indirect 

Table 3.4: Classification of 24 significant connections of fifteen spike train. 

All the remaining 24 significant peaks iind corresponding time shifts are normalized 

(between 0 and 1) and the clustering algorithm is applied to these normalized values. In 

the clustering algorithm the distance between pairs of observafions is calculated using 

the Euclidean distance and the average linkage is used for calculating distance between 

clusters. Clustering algorithm classifies all the significant connections according to their 

significant peaks and time shifts. The tree of a dendro^am is cut in such a way that it 

creates three clusters. A dendrogram of the three clusters is shown in Fig. 3.11 by three 

different colours. Investigation fi"om dendrogram reveals that the connections of the red 

colour have high significant peaks and moderate time shifts and are considered as direct 

connections (Table 3.4). The connecfions of the blue colour have low significant peaks 
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and short time shifts and are considered as common source connections. The 

connections of the green colour have low significant peaks and long time shifts and are 

considered as indirect connections. 

I 

IT 

Figure 3.11: Dendrogram of 24 significant connections. Three clusters are indicated by 
different colours with the connection labels. Red colour indicates direct connection, 
blue colour indicates common source and green colour indicates indirect connection. 

3.6.3 Classification of connection 

To investigate the connections obtained from common source cluster, all the groups of 

three spike trains are detected that have the diagram of connection in Fig, 3.3(c) and 

also include the connecfions: from spike train #6 to spike train #8, spike train #12 to 

spike frain #6 and spike train #12 to spike train #8 (Table 3.4). Investigation from 

Fig. 3.12(a) reveals that the groups of three spike trains are (#1, #8, #6), (#1, #6, #12), 

and (#1, #8, #12). In the group (#1, #8, #6), spike train #1 influences both spike frain #8 

and #6 with corresponding time shifts 15 ms and 13 ms. The connection from spike 

frain #8 to spike train #6 is a common source (Eq. 3.1) where spike train #1 connects 

both spike trains #6 and #8 and the time shift for this connection is 2 ms which is short. 

The connection from spike frain #12 to spike frain #6 is a common source where spike 

train #1 influences both these spike frain with corresponding time shifts 11 ms and 13 
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ms, respectively. Spike train #1 also influences both spike trains #8 and #12 with 

corresponding time shifts 15 ms and 11 ms. Thus the connection from spike train #12 to 

spike train #8 is a common source and the time shift for this connection is 4 ms. 

^ 9 ^ 8 

(«) (b) 
Figure 3.12: (a) Common source connections obtained from the common source cluster 
in Table 3.4. (b) Indirect connections obtained from the cluster of indirect connections 
in Table 3.4. 
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(a) (b) 
Figure 3.13; (a) Direct connection similar to the connection scheme shown in Fig. 
3.8(b). Radius of the circle shows the strength of connection and is proportional to the 
strength of connection in Fig. 3.8(b). (b) Common source and indirect connections. 
Blue circle shows a common source connection and red circle shows an indirect 
connection. Radius of the circle shows the strength of connection and the connections 
are small relative to the direct connection. 

Like common source cluster, all connections obtained from indirect cluster are 

investigated using a group of three spike trains that have the diag"am of connection in 

Fig. 3.3(b) and also include the connections: from spike train #2 to spike trains #11, 
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spike train #7, #10 and#12 to spike train #4, spike train #14 to spike train M5 and spike 

train #15 to spike train #14 (Table 3.4). Investigation from Fig. 3.12(b) reveals that the 

group of three spike frains are (#2, #3, #11), (#4, #7, #9), (#4, #9, #10) and (#3, #14, 

#15). In the group {#2, #3, #11), spike train #2 influences spike train #3 with time shift 

12 ms and spike train #3 influences spike train #11 with time shift 12 ms. The 

connection from spike train #2 to spike train #11 is an indirect connection (Eq. 3.2) 

where spike train #3 is an intermediate spike train. The time shift for the connection 

from spike train #2 to spike train #11 is 27 ms which is long. Connection from spike 

train #7 to spike train #4 and connection from spike train #10 to spike train #4 are 

indirect. For both these conntxitions spike train #9 acts as an intermediate spike train. 

Similarly, connection from spike train #15 to spike train #14 is indirect. For this 

connection spike train #3 acts as an intermediate spike train. More importantly, all these 

three indirect connections have long time shifts: 23 ms, 25 ms and 26 ms, respectively. 

Two connections (spike train #12 to spike train #4 and spike train #14 to spike train 

#15) of the indirect cluster reveal that in fact these connections are not indirect. 

Investigation from Fig. 3.12(b) shows that keeping fixed spike train #4 and #12, there is 

no spike train in the group which can make the diagram of connection like in Fig. 3.3 

(b). Again, to identify the connection from spike train #14 to spike train #15, a group of 

three spike trains (#3, #14 and #15) is found but the diagram of connection is not the 

same as Fig. 3.3 (b). 

Classifying all the significant connections into direct, indirect and common connections, 

the functional connectivity of the fifteen spike trains is displayed by two square 

matrices (Fig. 3.13). One matrix shows the functional connectivity of the direct 

connections (Fig. 3.13(a)) which reveals the correct connectivity of the diagram used to 

generate the fifteen spike trains (Fig. 3.8(a)) with corresponding connection strengths 
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(Fig. 3.8(b)). The other matrix (Fig. 3.13(b)) shows the connections which are not 

present in the connectivity diagram but are due to common source or indirect coupling. 

The radius of the circle shows the strength of the connections. More importantly, the 

common source and indirect connections have small radius compared to the direct 

connections indicates that they are spurious connections. The red circle shows the 

indirect connections and the blue circle shows the common source. 

3.7 Analysis of functional connectivity of twenty spike trains 

In section 3.6 it is shown that in case of very big connections the MCG method is useful 

for identifying functional connectivity. In this section it is demonstrated that this 

method is useful for identifying fijnctionai connectivity in case of medium strength of 

connections. Here it is also shown that this method is useful for identifying functional 

connectivity of a large set of spike trains with large number of connections. A set of 

twenty spike trains are generated for a period of 30000 milliseconds using the 

connection architecture shown in Fig. 3.14(a) with the connection strengths shown in 

Fig. 3.14(b) in matrix format. The parameter values of the ELIF mode! for the 

generation of twenty spike trains is given in Table 3.5. The connection from spike train 

#5 to spike train #7 and spike train #16 to spike train #17 have the same maximum 

sfrengths which is 14.92; all other connections have medium strength of connection 

which range from 10.40 to 14,23. Fig. 3.15 shows the raster plot of spiking activity of 

these twenty spike trains. 
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Figure 3.14: (a) Connection scheme of twenty spike trains. There are twenty five non 
zero connections which are shown by arrows, (b) Connection strengths of the twenty 
five non zero connections in the matrix format. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Connection parameter 

Connection strength 

Decay rate of postsynaptic potential 

Time lag of spike propagation 

Mean 

44.80 

2.89 

14.15 

5.07 

10.01 

-28.86 

20.35 

-0.05 

6.35 

12.65 

2.83 

12.04 

S.D. 

1.09 

0.36 

0.96 

0.35 

0.02 

0.35 

0.60 

0.38 

2.08 

1.25 

0.99 

1.13 

Table 3.5: Parameter values of the ELIF model to generate twenty spike trains. 
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(m) 

Figure 3.15: Raster plot of twenty spike trains generated for the connection scheme 
given in Fig. 3.14 over the duration 30,000 milliseconds. 

3.7.1 Calculation of CCF 

For these twenty spike trains a total of (20^ — 20)/2 = 190 pair-wise CCF are 

calculated with a bin size of 1 ms and a correlation window of 100 ms. To test the 

independence of the pair-wise spike trains the level of significance a = 0.05 is 

considered with the Bonferroni correction. A total of 34 significant connections are 

found for the twenty spike trains (Fig. 3.16(a)). In the Fig. 3.16(a) significant 

connections are shown by a circle and the direction of connection is considered from the 

reference spike train to the target spike train. Scatter plot of all significant connections 

is shown in Fig. 3.16(b). This scatter plot shows the significant peaks with 

corresponding time shifts of the 34 significant connections. The peaks of the significant 

connections range fi-om 1.70 to 4.81 and the time shifts range ft"om 2 ms to 26 ms. 
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(a) (b) 

Figure 3.16: (a) Significant connections obtained firom pair-wise cross-correlation 
analysis, (b) Scatter plot of these 34 significant connections showing the significant 
peak with corresponding time shift. 

3.7.2 Outlier detection and cluster analysis 

Before starting clustering algorithm the modified Z-score is used for searching very 

strong connections which are considered as outlier connections. Here no outlier is 

identified fi"om the 34 significant connections. A Clustering algorithm is applied for 

classifying the 34 significant connections in three clusters according to their significant 

peaks and time shifts. Fig. 3.17 shows the result of clustering analysis of all significant 

connections. Thecluster of common source is shown in Fig. 3.17(a). In this cluster there 

are 4 si^ificant connections which are: spike train #1 to spike train #7, spike train #8 to 

spike train #15, spike train #9 to spike train #15 and spike train #14 to spike train #7. 

All these significant connections have low si^ficant peaks and short time shifts (Fig. 

3.17(d)). Fig. 3.17(b) shows the cluster of direct connections. A total of 25 connections 

are considered as direct connections. These connections have high significant peaks and 

moderate time shifts (Fig. 3.17(d)). Fig. 3.17(c) shows the cluster of indirect 

connections. This cluster includes 5 significant connections which are: spike train #1 to 

spike trains #8 and #10, spike train #5 to spike train #3, spike train #8 to spike train #10 
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and spike train #20 to spike train #3. All these connections have low significant peaks 

and long time shifts (Fig. 3.17(d)). 
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Figure 3.17: Cluster analysis of all significant peaks and time shifts, (a) Cluster of 
common source, (b) Cluster of direct connections (c) Cluster of indirect connections. 
(d) Scatter plot of the significant peaks and time shifts. The scatter plot shows that low 
significant peaks and short time shifts constitute the cluster of common source. High 
significant peaks and moderate time shifts constitute the cluster of direct connections 
and low significant peaks and longtime shifts constitute the indirect cormections. 

3.7.3 Classification of coanection 

To investigate the connections obtained from common source cluster (Fig. 3.17(a)) all 

the groups of three spike trains are detected that have the diagram of connection in 

Fig. 3.3(c) and include the connections: spike train #1 to spike train #7, spike train #8 to 

spike train #15, spike train #9 to spike train #15 and spike train #14 to spike train #7. 

Investigation from Fig. 3.18(a) reveals that the groups of three spike trains are (#1, #5, 

#7), (#8, #15, #18), (#9, #15, #18) and (#7, #14, #20). In the group (#1, #5, #7), spike 

train #5 influences both spike train #1 and #7 with corresponding time shifts 10 ms and 

14 ms. The connection from spike train #1 to spike train #7 is a common source 

55 



Chapter 3 Modified Correlaiion Grid Method 

connection (Eq. 3.1) where spike train #5 connects both spike trains #1 and #7 and the 

time shift for this connection is 4 ms. The connection from spike train #8 to spike train 

#15 is a common source connection where spike train #18 influences both these spike 

trains with corresponding time shifts 11 ms and 14 ms, respectively. Spike train #18 

also influences spike trains #9 and #15 with corresponding time shifts 12 ms and 14 ms. 

Thus, the connection from spike train #9 to spike train #15 is a common source. Spike 

train #20 influences both spike trains #14 and spike train #7 with time shifts 12 ms and 

14 ms, respectively. Therefore, the connection from spike frain #14 to spike frain #7 is 

considered common source connection. More importantly, all these three common 

source connections have short time shifts 3 ms, 2 ms and 2 ms, respectively. 

Like common source cluster, all connections obtained from indirect cluster (Fig. 

3.17(c)) are investigated using the group of three spike trains that have the diagram of 

connection in Fig. 3.3(b) and include the connections: spike train #1 to spike trains #8 

and #10, spike train #5 to spike train #3, spike train #8 to spike train #10 and spike train 

#20 to spike frain #3. Investigation from Fig.3.18(b) reveals that the groups of three 

spike frains are (#1, #8, #18), (#1, #9, #10), (#5, #7, #3), (#8, #9, #10) and (#20, #7, #3). 

hi the group (#1, #8, #18), spike train #1 influences spike frain #18 with time shift 12 

ms and spike train #18 influences spike train #8 with time shift 11 ms. The connection 

from spike frain #1 to spike train #8 is an indfrect connection (Eq. 3.2) where spike train 

#18 is an intermediate spike frain. The time shift for the connection from spike train #1 

to spike train #8 is 23 ms, which is long. Connection from spike frain #1 to spike train 

#10 and connection from spike train #18 to spike frain #10 are indirect. For both these 

connections spike frain #9 acts as an intermediate spike train. Similarly, connection 

from spike frain #5 to spike frain #3 and connection from spike frain #20 to spike train 

#3 are indfrect. For both these connections spike train #7 acts as an intermediate spike 
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train. More importantly, all these four indirect connections have long time shifts 25 ms, 

25 ms. and 26 ms and 26 ms respectively. 

ir •" 

Figure 3.18: (a) Common source connections obtained from the cluster of common 
source (Fig. 3.17(a)). (b) Indirect connections obtained from the cluster of indirect 
connections (Fig. 3.17(c)). 
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Figure 3.19: (a) Direct connections which are exactly the same as at the connection 
scheme shown in Fig. 3.14(b). Radius of the circle shows the strength of connection 
estimated from CCF and is proportional to the strength of connection in Fig. 3.14(b). (b) 
Common source and indirect connections. Blue circle shows a common source 
connection and red circle shows an indirect connection. Radius of the circle shows the 
strength of connection and the connections are small relative to the direct connection. 

Classification of all the significant connections into direct, indirect and common source 

connections, the fimctional connectivity of the twenty spike frains are displayed into 

two square matrices (Fig. 3.19). One matrix shows the fiinctional connectivity of the 
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direct connections (Fig. 3.19(a)) which reveals the correct connectivity of the diagram 

used to generate the twenty spike trains (Fig. 3.14(a)) with corresponding connection 

strengths (Fig. 3.14(b)). The radii of the circles (Fig. 3.19(a)) show the estimated 

strength of connections which are very similar to the radii of the circles in the diagram 

of connections (Fig. 3.14(a)). The other matrix (Fig. 3.19(b)) shows the connections 

which are not present in the connectivity diagram but are due to common source or 

indirect coupling. The radius of the circle shows the estimated strength of the 

connections. More importantly, the common source and indirect connections have small 

radius compare to the direct connections means that they are spurious connections. The 

red circle shows the indirect connections and the blue circle shows the common source 

connection. 
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Chapter 4 

A generator of multiple spike trains based on the 

Modulated Renewal Process 

In this chapter, a new probabilistic model for the generation of dependent spike train is 

described. The dependency is based upon the Modulated Renewal Process. In order to 

define realistic parameter values (i.e. in a range corresponding to the experimental data) 

the probabilistic model is fitted to the Enhanced Leaky Integrate and Fire Model. The 

probabilistic model based on realistic parameter values is of interest as it can be used to 

generate spike trains with prescribed stochastic properties. In particular, the emphasis of 

this research is on the use of this probability model for the generation of spike trains to 

test the Cox method. 

4.1 Introduction 

Experimental recordings can be considered to be a series of points in time (a spike 

train), where each point marks the moment of spike generation. In mathematics the 

series of points in time is called a point process (Eden, 2008). In neuroscience, the most 

popular representation of a spike train is based on a Poisson process (Eden, 2008). 

However, the more general case requires the consideration of the renewal process. In 

order to introduce dependencies between spike trains, a Modulated Renewal Process 

(MRP) is introduced (Cox, 1972). In this chapter a probabilistic model based on a MRP 

for spike train generation is developed. In a MRP, the generation of a spike train is 

based on the influences it receives from other spike trains in the neural circuit. This 

probabilistic model is relatively straightforward and it generates spikes similar to 

biophysically-based integrate-and-fire models. 
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4.2 Point process 

A point process is a set of discrete events that occur in continuous time. There are three 

useftil ways to describe a point process: (a) as a sequence of times at which an event 

occurs, (b) as a sequence of time elapsed between events occurring, (c) as a counting 

process. Let us assume that 5i,52, are random variables describing the event times 

of a point process. The identification of a process in terms of when it occurred is the 

event S-i = Si,S2 = S2, for some collection of times 0 < Sj < S2 < 

(Fig. 4.1(a)). Let us assume that Xi,X2, are random variables describing the 

interevent times of a point process. Interevent times of a point process can be calculated 

by evaluating the difference between subsequent event times. Mathematically, X^ = Si 

and Xi= Si — Si_i. The identification of a process as a point process in terms of 

interevent times is represented in Fig. 4.1(b). Assume that N(t) is the counting process 

which is defined as the total number of events thai have occurred up to and including 

time t. The identification of a process as a point process in terms of counting process is 

represented in Fig. 4.1(c). Assume that /V(ti),/V(t2) are the total number of events that 

have occurred up to and including times t-i. (2 respectively assuming that the start time 

t = 0 and N(ti,t2) is the total number of events observed in an interval (ti,t2). The 

counting process /VCti,t2) is calculated as iV(t2) — Af(Ci) and this is called the 

increment of the point process between times t^ and ta-

The Poisson process is a simple structure of any point process. It is defined as a point 

process where the occurrences of events are random, independent and have uniform 

probability. Furthermore, a Poisson process is a stationary point process and the number 

of events that occur in any time interval depends only on the length of the time interval 

but not on the specific time. A Poisson process is also a memoryless process where 

interevent times of the process have an exponential distribution. A renewal process is a 
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particular type of point process where the occurrences of events are random and also 

depend on the last event. A renewal process is a generalization of the Poisson process 

which supports a variety of interevent distributions. 

Event Times: 

I I ^̂  
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Interevent Times: 
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Figure 4.1: Multiple specifications for point process data, (a) Point process in terms of 
event occurrence, (b) Point process in terms of interevent occurrence and (c) Point 
process in terms of counting process. 

4.3 Influence function 

An influence function describes the effect of an incoming spike from a pre-synaptic 

neuron B on the membrane potential of the post synaptic neuron A. To study neuronal 

interactions, it is important to choose an appropriate influence function which accurately 

describes the dynamics of the post-synaptic potential: this influence function increases 

when a spike arrives at the post-synaptic neuron and the probability of spike generation 

by the post-synaptic neuron increases; after that the influence function decays to zero. 

Among different influence fLinctions, it is found that the best influence function can be 

approximated by the alpha flmction which is used in neuroscience to describe synaptic 

connectivity between neurons (Gerstner and Kistler, 2002). 
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Thus, the influence function can be defined as: 

^ B ( t ) = ^ ; ^ ( e " i - e " i ] , t > 0 (4.1) 

where Zgit) is the influence function from pre synaptic neuron B to the post synaptic 

neuron A, where r^ and T^ are the characteristic times of decay and rise of post-synaptic 

potential, respectively. Parameter 5 ^ provides the normalization so that the maximum 

influence fimction equals one and is defined by: 

9"'= _lm 
Ts-T^ 

e ^s — e ^r 

where 

1-1. ' 

A simplified version of the influence function, corresponding to the case T^ = r^, is 

given by the following formula: 

ZB(0=T e'~""'- f >0- (4-2) 

(a) <b) 

Figure 4.2: Influence function, (a) The influence function of (4.1) with rise time of post 
synaptic potenfial T^ = 0.1 ms for different decay times T̂  = (5 ms, 10 ms, 15 ms, 
20 ms). At rise dme T^ = 0.1 ms the peak value of the influence function is 1 and then 
it decays to zero, (b) The influence function of (4.2) for difTerent decay time Tj = 
(5 ms. 10 ms, 15 ms, 20 m.s). At time f = 0, the value of influence function is zero. 
The influence function has peaks at time t = r^ which is 1 and then decays to zero for 
large values of t. 
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The influence function of (4.1) for different values of decay time 

Ts = (5 ms, 10 ms, 15 ms, 20 ms) with a fixed value of rise time 7 ^ = 0 . 1 

milliseconds is shown in Fig. 4.2(a). This influence function increases to one in a very 

short time (0.1 milliseconds) and then decays to zero. For a small decay time T^, the 

influence function decays rapidly to zero and for a large decay time r^, the influence 

function takes subsequently large to return back to zero. Fig. 4.2(b) shows the influence 

function of (4.2) for different values of decay time T^ = (5 ms, 10 ms, 15 ms, 

20 ms) where Zr = is- Th's influence function reaches its peak value (which equals one 

at time T^) and then returns back to zero. Like (4.1) this influence function takes a long 

time to fall back to zero when TJ is large. 

> Neuron A 

* Neuron B 

^',iO iJ.iO 

^A':) 

Figure 4.3: Illustration of the backward recurrence time of post-synaptic neuron B. The 
backward recurrence time is calculated using the difference between the spike time in 
neuron A and the last spike time in neuron B. Assuming that the spike times in neuron A 
^^ ^A'^A ^"^ ^A ^"'̂  ^^^ Spike times in neuron B are tg.tg and t^, the backward 
recurrence time for neuron B at time t^ is the time form Ĉ  to the time tg and is denoted 
t>y t̂ eC tj)- Similarly the backward recurrence times for the neuron B at times tj and t j 
are calculated and denoted by Ug( tj) and Ug{ t j ) , respectively. 

In influence functions (4.1-4.2) it is assumed that the pre synaptic neuron B has 

generated a spike at time zero and that this spike arrives to the post synaptic neuron A 

without any time delay. The functions (4.1) and (4.2) can be rewritten to incorporate the 

spiking at the pre synaptic neuron B. It is assumed that the influence function depends 
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on the backward recurrence time of the pre synaptic neuron B. which is denoted as 

t̂ fiCt) (Fig- 4.3) and can be substituted for this variable as the argument to the function 

(4.1). 

This means that the influence described by function (4.1) starts increasing when the last 

spike occurs in neuron B before time /. To account for the time delay in spike 

propagation, the argument in formula (4.1) should be shifted by the time lag A. Thus, 

the influence fUnction is defined by the following formula: 

9m 
2BC0 = 

(Ts - T.) 
e ^̂  - e '•r , ( t - A ) > 0 (4.3) 

Note that Ugit) is the backward recurrence time of 5; A is a time lag corresponding to 

delay of spike propagation from neuron B to neuron A. Similarly to (4.2), a simplified 

version of the influence fimction with time lag A is given by the following formula: 

Zs(.t)=~VBit~£i)e ^^ , ( t - A ) > 0 (4.4) 

2.(r) 

/ . 

Neuron A 

Influence function Z,(() 

Neuron B 

t / - (^-A) 

^ - A ' . 

Neuron A 

• Influence function 

Neuron B 

(a) 
tJAt^ -A) 

(b) 

Figure 4.4: Influence function accounting for the time delay A of spike propagation. 
The square indicates the value of influence fiinction when a spike t^ in neuron A is 
shifted by the time delay A. (a) influence function by formula (4.3) (b) Influence 
function by formula (4.4). 
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Both the influence functions (4.3) and (4.4) are shown in Fig. 4.4 with their 

corresponding values shown. 

In the formulas (4.3-4.4), the influence function is defined by solely taking the last spike 

in neuron B before the time (t — A). In some cases it is productive to consider 

accumulation of the post-synaptic potential in time interval T, considering a history of 

spiking in B over the time interval (t — T, t). This type of the influence function is 

useful when the decay time of the post-synaptic potential is relatively small in 

comparison to the mean interspike interval of neuron B. Thus, a generalized influence 

fimction is defined as: 

e ""r (t - A) > 0 (4.5) 

here A: is an index which denotes the highest order of the backward recurrence time in 

the history interval (the first order corresponds to a spike which is the most close to the 

moment (t — A) in backward time, the second order relates to the previous spike in the 

reward time etc.). Fig. 4.5 shows the generalized influence function over the 

accumulation time T, thus, Us{t) < T and Ug'^^(_t) >T. A simplified version of the 

generalised influence function, corresponding to the case T^ = r^, is given by the 

following formula: 

u'^t-^) 

2e(£) = 5 : ;= i f t / ^ (£ -A)e ' ^̂  , C £ - A ) > 0 (4.6) 

t - T t-A t 
Influence function 

Neuron A 

Neuron B 

'B 'B 

Figure 4.5: Generalized influence function which accumulates influence from previous 
spikes of neuron B in the time interval (t — T, t) with propagation delay A. 
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4.4 The probabilistic model 

One of the simplest, most commonly used classes of neural spiking models is the 

Poisson process (Tuckwell, 1988; Riekeet al., 1997; Gabbiani and Koch, 1998; Reich et 

al., 1998). In the Poisson spiking model, the probability distribution of spiking at any 

point in time is independent of previous spiking activity. EJue to this independent 

spiking structure, the Poisson spiking model cannot be used to accurately model many 

neural systems (Gabbiani and Koch, 1998; Shadlen and Newsome, 1998). Therefore, it 

is essential that new models of spiking activity that also incorporate the eftect of 

previous spike events of a neuron are developed. The simplest type of spiking model 

which depends on previous spike events is a renewal process model. A renewal process 

model is specified by a distribution fiinction for the inter-spike intervals (ISI). This 

model includes gamma, lognormal and inverse Gaussian (Rodieck et al., 1962; 

Tuckwell. 1988; Gabbiani and Koch, 1998) and generalized inverse Gaussian (Iyengar 

and Liao, 1997) probability distributions. TTie gamma distribution is a common basis for 

renewal models (Bishop et al., 1964; Nakahama et al.. 1968; Correia and Landolt, 1977; 

Gabbiani and Koch, 1998; Eden, 2008) that is defined by two values, a scale and a 

shape parameter. If the shape parameter is equal to one, then the gamma distribution 

simplifies to an exponential distribution. If the shape parameter is less than one, then the 

density drops faster than an exponential distribution. This is useful for describing point 

processes that fire in rapid bursts. Lf the shape parameter is greater than one, then the 

gamma density function starts from zero, rises to a maximum at some positive value and 

then falls back to zero. This is useful when describing the refractory nature of point 

processes, that is the property that after firing a spike, the process is less likely to fire 

again immediately afterward. In the next section, a probabilistic model is developed 

which generates two spike trains, one is the reference spike train based on renewal 

process and the other is the target spike train based on the modulated renewal process 
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(Cox. 1972). The target spike train is generated based upon its backward recurrence 

time, the backward recurrence time of the reference spike train and the strength of 

influence from the reference spike train. 

4.4.1 Modulated renewal process 

Let us consider a renewal process where X^,X2, are independent and identically 

distributed inter-spike intervals (ISI) with a probability density function f{x). Another 

approach to the specification of renewal process comes from hazard function. The 

hazard function or age dependent death rate is defined as the event rate at time i 

conditional on survival until time t or later: 

Pr{t < X < t + ^t\t <X') 
<pit) = lim — . 

At-.0 A t 

This hazard function can be calculated in terms of the probability density function of the 

ISPs: 

^ W = ^ (4.7) 

where F(t) is the cumulative distribution function of ISI. 

A spike train A is said to be generated by a modulated renewal process if the hazard 

fijnction of the spike train A can be represented at the moment t as: 

<PC0 = (PA{UA(t))exp{fiZM)- (4.8) 

where <p,j(.) is the hazard function of the spike train A without influence from the other 

spike train B, t/^Ct) is the backward recurrence time of the spike train A at the moment 

/, ZgCt) is the influence function determining how spike train B influences spike train A, 

and P is the unknown regression coefficient describing the strength of the influence 

from spike train B to spike train A. The modulated renewal process supports the 

introduction of interaction between the spike trains considering the strength of influence 

P and the influence function Zg^t). The hazard function is a history dependent rate 
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fiinction which completely characterizes the stochastic structure of a point process 

(Daley and Vere-Jones, 2003). Therefore, in order to model the neural spike train in 

terms of a point process, a hazard fiinction (Truccolo et al., 2005) must be defined. 

In the case of multiple reference spike trains B = {Bi.Bi, ,fik), the influence 

fiinction should be defined independently for each reference spike train. The hazard of 

the target spike train A is 

<Pit) = (PA{UA{t))exp[p,ZB,(.t)+P2ZB,(t) + ••• + PkZB,it)]. (4.9) 

where (p^(.) is the hazard fimction of the spike train A without influence from the 

reference spike trains B = {8-^,82, .Bfc), t/>i(t) is the backward recurrence time of 

the spike train A at the moment t, Z^.it) is the influence fiinction determining how the 

spike train 8^ influences the spike train A, and ,̂- is the parameter describing the 

strength of the influence from the spike train fij to A {i=\,2,,..,k). 

AA.l Model description 

The probabilistic model presented in this research generates two spike trains, one is the 

target (A) and the other one is the reference (5). The reference spike train S is a renewal 

process and spikes of S modulate the probability of spike generation in the target spike 

train A. This target spike train A is the modulated renewal process with the hazard 

defined by (4.8). The reference spike train B is generated with gamma-distribution 

/ (x ; a. b) of inter-spike intervals (ISI) where a and b are the shape and the scale 

parameters respectively. The cumulative sum of these inter-spike intervals gives the 

spike times of the reference spike train B over the spike train generation time [0,T]. The 

spike train generation time is divided into n small sub intervals of length At = T/n, and 

tfc = feAt, k — 1,2 ,n. For each time t^, the backward recurrence times of the 

target spike train A and reference spike train B are calculated. It is assumed that the 

hazard function of the backward recurrence times of the target spike train A is 
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distributed as Weibull W(x: c, d) (Cox, 1972), where c and d are the scale and the shape 

parameters respectively. In fact, the type of the ISI distribution of spike train B and the 

distribution of backward recurrence times of spike train A can vary. The choice of the 

gamma distribution and the Weibull distribution was motivated by the fact that both 

distributions include the exponential distribution which has been observed in 

experimental ncuroscience data. Now the hazard of the backward recurrence time of the 

target spike train A is calculated using (4.7). The influence function defined by (4.3), or 

(4.4), is specified with specific values of the characteristic times r^, T^, time lag A and 

the backward recurrence time of the reference spike train B. Considering all these 

values, the hazard of the target spike train is calculated using (4,8), with a specified 

strength of influence /? from the reference spike train B to the target spike train A. If this 

hazard is greater than a randomly chosen number which has the uniform distribution in 

the range [0,1 ]. then a spike is generated in the target spike train A. Repetition of the 

procedure for each time t/^ over the entire spike train generation time results in the 

generation of the target spike train A which is a modulated renewal process and the 

probability distribution of ISI of this spike train is represented by a Weibull distribution. 

The same procedure can be used to generate the target spike train A under the influence 

of multiple independent reference spike trains B = {8-1,82, .^k)- All the reference 

spike trains B = (Bi,fi2' -^fc) ^re generated with the gamma distribution of ISI 

with different scale and shape parameters. The cumulative sum of the inter-spike 

intervals give the spike times of the reference spike trains over the spike train generation 

time [0,T]. For each time tk the hazard of the backward recurrence times of the target 

spike train is calculated using the Weibull distribution. The influence of each reference 

spike train B^ with i = 1,2, ,k to the target spike train A is calculated by (4.3) or 

(4.4) with a specified characteristic time T Ĵ with i = 1,2, ,fe, Tri with 

69 



Chapter 4 Probabilislic Model 

( = 1,2, .k and a time lag A( with i = 1,2, ,k. The hazard of the target spike 

train is calculated using (4.8) with a specified vector of influence strength /? = 

(^i,p2' -Pk) from the reference spike trains B = (B1.B2, ,B^) to the target 

spike train A. If this hazard is greater than a randomly chosen number which has the 

uniform distribution in the range [0,1], then a spike is generated in the target spike train 

A. Repetition of the procedure for each time t^ over the entire spike train generation 

time results in the generation of the target spike train A. 

The algorithm for generating spike train A based on the influence of spike train B over 

the generation time Tis given below: 

(i) Generate ISl of the spike train B using gamma Y(X; a, b) distribution. 

(ii) Find spike time of 5 using cumulative sum of ISl over the time T. 

(iii) Divide the spike generation time T into n small sub intervals of length 

At = T/n. 

(iv) Set the time tfc = k.At.k = 1,2 ,n. 

(v) Compute the hazard of the backward recurrence time of spike train A 

using (4.7) with Weibull W(x; c, d) distribution, 

(vi) Compute the influence function Z^ using (4.3) or (4.4) with specified 

values of Tj, TJ- and A. 

(vii) Set the strength of influence p. 

(viii) Compute the hazard of the spike train A using (4.8). 

(ix) Pick a random number using uniform distribution over [0,1 ]. 

(x) If the hazard in (viii) is greater than the random number in (ix) then a 

spike is generated in neuron A. 

(xi) Go to (iv). 
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4.5 Goodness of fit 

An essential component of the statistical analysis is the assessment of the goodness of 

fit, i.e. the evaluation of how well the observed data is described by the given 

probability distribution. Measures of goodness of fit typically summarize the 

discrepancy between the distribution of observed values and the values expected under 

the model in question. Two goodness of fit measures are considered, the Q-Q plot and 

K-S test. These are used to observe how well ISI's of the generated spike trains are 

described by the probability distribution used in the model. 

4.5.1 Q-Q plot (Quantile-Quantile plot) 

A Q-Q plot is a graphical display invented by Wilk and Gnanadesikan (1968) to 

compare an observed dataset with a particular probability distribution. A Q-Q plot is a 

plot of the quantiles of the obser\'ed dataset against the quantiles of the probability 

distribution. The plotting positions of the quantiles are computed by the following 

formula 

Pi = '-—. 1 = 1.2, ,n (4.10) 
n 

where n is the total number of observations in the data. To compare the dataset to the 

theoretical probability distribution, the empirical quantiles of the data i.e. the order 

statistics of the data are plotted on the vertical axis (y-axis) and the corresponding 

quantiles from the assumed probability distribution are plotted on the horizontal axis (x-

axis). The quantiles of the assumed probability distribution are computed based on the 

plotting positions associated with the empirical quantiles of the data. A 45-degree 

reference line is also plotted. If the dataset and the assumed probability distribution are 

similar, the points in the Q-Q plot will fall approximately along the reference line. The 

greater the departure from the reference line, the greater the evidence that the data and 

the assumed probability distributions are not simitar. 

71 



Chapter 4 Probabilisiic Model 

4.5.2 K-S test (Kolmogorov-Smirnov test) 

The Kolmogorov-Smimov test is concerned with the degree of agreement between the 

distribution of a set of observed data and a specified theoretical probability distribution. 

Tlie Kolmogorov-Smimov test is based on the empirical distribution fianction 5 ( J : ) and 

a specified theoretical distribution function F(x). Given A' ordered data points 

Xi.Xz, .Xfj, the empirical distribution function is defined as 

where n(i) is the number of points less than X^ and the Xf are ordered from the smallest 

to the largest value. This is a step function that increases by 1/N at the value of each 

ordered data point. Under the null hypothesis, that the set of observed data follow the 

theoretical distribution, it is expected that every value X,-, 5(Xi) should be fairly close to 

F(Xi). That is when the null hypothesis HQ is true, it is expected that the differences 

between 5(ar,) and F(Xi) will be small. The Kolmogorov-Smimov test focuses on the 

largest deviation and the test statistic is defined as 

D = max\FiXi) - SiXi)\ i = 1,2, .N 

The null hypothesis is rejected if the test statistic D is greater than the critical value 

obtained from the table of Kolmogorov-Smimov test. 

4.6 Fitting with ELIF model 

The probabilistic model is easy to understand, requires few parameters and can be used 

for generating spike trains similar to those produced by the enhanced leaky integrate 

and fire neuron (ELIF) model (Borisyuk, 2002). In this section, an optimization 

procedure is discussed which can be used to find the parameters of the probabilistic 

model in such a way that the spike train generated by the probabilistic model using 

these optimal parameter values provides the best fit to the spike train generated by the 

ELIF model. In this optimization procedure, a cost function is used which depends on 
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the difference between the histogram of ISI of the probabilistic model and the ELIF 

model. The minimum value of this cost function shows the minimum difference of the 

histogram of ISI of the probabilistic model and the ELIF model. The minimum value of 

the cost fiinction suggests that both models generate almost the same shape for ISI 

distribution. 

Two spike trains {AI and BJ) are generated using the enhanced leaky integrate and fire 

model (ELIF) with directed coupling fi-om Bi to AJ. It is assumed that spike train AI is 

given and the aim is to adjust the parameters of the probabilistic model in such a way 

that the probabilistic model will be able to generate spike train A which is similar to the 

given spike train AI with directed coupling fi"om B to A. The probabilistic model for the 

generation of two spike trains requires five parameters (fi, a, b. c,d). Here /J is the 

strength of the influence fi-om spike train B to spike train A, (a,b) are the shape and 

scale parameters of the gamma distribution which is used to generate the ISI, of the 

spike train B and (c, d) are the scale and shape parameters of the Weibull distribution 

which is used to find the hazard of the backward recurrence time of spike train A. To 

start the optimization procedure some initial parameter values of the probabilistic model 

(/?o. UQ, bo. Co, do) are selected. Using these parameter values two spike trains A and B 

are generated by the probabilistic model. The cost function Q accounts for the 

difference between the ISI distributions of the spike train Al generated by the ELIF 

model and the spike train A generated by the probabilistic model: 

Q=iU{hr-hty (4.11) 

where h^ ̂  and hf are the frequency of appearance of ISI in the bin i of the histogram 

for J / and A respectively and k is the number of bins. The optimal parameter values are 

obtained for the minimum value of the cost function. Thus, generation of spike tram A 
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using these optimal parameter values gives the best fit to the spike train AJ generated by 

ELIF model. 

4.7 Generation of two spike trains by the probabilistic model 

In this section an example of the generation of two spike trains; is given. Two spike 

trains, the target {A) and the reference (B) are generated using the probabilistic model. 

The spike train generation time T is 2000 milliseconds and the time interval [0 T] is 

divided into n (n = 200,000) small sub-intervals of length M = T/n(= .01). A 

gamma-distributed set of inter-spike intervals (ISl) of the reference spike train B are 

generated with the shape parameter a = S and the scale parameter b — 3. The reference 

spike train B is obtained using the cumulative sum of these ISI's over the interval [0,7"]. 

The generation of spikes in the target spike train A depends on the strength of influence 

from the reference spike train B to the target spike train A. the influence function from 

spike train B to spike train A and the hazard function of the target spike train A without 

influence. For the generation of spike train A^ the strength of influence is considered as 

P = 1, the influence function is determined by the formula (4.4) with r^ = 5, A= 0 and 

the hazard function of spike train A without influence from B, which depends on the 

backward recurrence time of the target spike train A. is calculated by formula (4.7). For 

each time ti(, where t^ = /cA where k = 1,2 ,n. the backward recurrence times of 

the reference spike train B and target spike train A are calculated. The influence flmction 

of spike train B to spike train A is calculated using the backward recurrence time of the 

reference spike frain B. A WeibuII distribution with the scale parameter c = 15 and the 

shape parameter d = 5 is considered for the backwtu-d recurrence time of the target 

spike train A and the hazard fianction is calculated for the backward recurrence time. 

Based on all these values, the hazard of the target spike train A is calculated using the 

formula (4.8). If this hazard is greater than a randomly chosen number which has the 
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uniform distribution in the range [0,1], then it is concluded that a spike is generated in 

the target spike train A. 

SC*mt^xA 

apliakiftiB 

I W 

(*) 

Figure 4.6: (a) Raster plot of the target spike train A (red) and the reference spike train 
B (blue), (b) ISI histogram of the target spike train A superimposed with the fitted 
Weibull probability density (c) ISI histogram of the reference spike train B 
superimposed with the fitted gamma probability density. 

The raster plot of the target spike train A and reference spike train B is shown in Fig. 

4.6(a). There are 165 spikes in the target spike train and 133 spikes in the reference 

spike train. The coefficient of variation of the target spike train A is 0.2412 and the 

reference spike train B is 0.4475. Thus, spike train A is more regular than the spike train 

B. Fig 4.6(b) shows the interspike interval histogram of the spike train A. A fitted 

Weibull probability density is superimposed on the interspike interval of A. TTie Weibull 

model under predicts the short ISIs (<12 ms) and predicts accurately for long ISIs (>I2 

ms). A fitted gamma probability density is superimposed on the interspike interval 
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histogram of the reference spike train B (Fig. 4.6(b)). The gamma model also 

underpredicts the short ISls (<9 ms), the moderate ISIs (between 12 ms and 18 ms) and 

the long ISIs (>23 ms) but overpredicts the ISIs between 9ms and 11 ms and the ISIs 

between 19 ms and 22 ms. Fig. 4.6(b) and Fig. 4.6(c) show thai there is agreement 

between the ISI of the generated spike trains and the theoretical probability distribution. 

To assess how much the probability distribution of ISI of the generated spike trains 

agrees with the theoretical probability distribution the Q-Q and K-S goodness of fit tests 

are performed. 
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Figure 4.7: (a) Q-Q plot of the ISI of target spike train A fitted with the WeibuU 
probability distribution. The red line shows the 45-degree reference line and the blue 
cross represents points of the empirical and WeibuU quantile. (b) K.-S plot of the ISI of 
target spike train A fitted with the Weibull probability distribution. The red line shows 
the cumulative distribution function of the fitted Weibull distribution function and the 
blue line shows the empirical cumulative distribution function of the interspike interval. 

The Q-Q plot for the ISI of target spike train A is shown in Fig. 4.7(a). The empirical 

qoantiles of the ISI i.e. the order statistics of the ISI are plotted on the vertical axis. The 

plotting positions of the fitted Weibull quantiles are calculated using the formula (4.10). 

The Weibull quantiles are computed at the plotting position and are plotted on the 

horizontal axis. These plotting points are depicted by a blue cross. A 45-degree 

reference line (red) is shown to aid the comparison of points. All of the plotted points 
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are very close to the reference line indicating that there is a good agreement between the 

probability distribution of ISI of the spike trains and the Weibull distribution. 

Another goodness of fit test, that is K-S test, is used for evaluating the agreement 

between the probability distribution of ISI of spike train A and the Weibull probability 

distribution. The K-S plot of the ISI is shown in Fig. 4.7(b). The empirical distribution 

function of the ISI (blue) and the theoretical Weibull distribution function (red) are very 

similar depicting an accurate estimation of the distribution. The maximum distance of 

flie empirical distribution fLinction and the Weibull distribution fiinction is 0.0355 for 

which the null hypothesis is accepted at 0.05 significance level. TTius, it can be deducted 

that the probability distribution of the ISI of spike train A follows the Weibull 

probability distribution. 
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Figure 4.8: (a) Q-Q plot of the ISI of reference spike train B fitted with a gamma 
probability distribution. The red line shows the 45-degree reference line and the blue 
cross represents point of the empirical and gamma quantile. (b) K-S plot of the ISl of 
reference spike train B fitted with the gamma probability distribution. The red line 
shows the cumulative distribution fijnction of the fitted gamma distribution function and 
the blue line shows the empirical cumulative distribution function of the interspike 
interval. 

A random generator of gamma distribution was used ('gammd" is the routine for 

generating gamma distribution in Matlab). It is anticipated that fiulher testing will 

reinforce initial conclusion, that the mode! is accurate that it generates biologically 
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realistic data. The Q-Q plot for the ISI of target spike train B is shown in Fig. 4.8(a). 

The empirical quantiles of the ISI i.e. the order statistics of the ISI are plotted on the 

vertical axis. The gamma quantiles are plotted on the horizontal axis. These plottmg 

points are very close to the 45-degree reference line and indicate that there is an 

agreement between the probability distribution of ISI of the spike train B and the 

gamma distribution. The K-S plot of the ISI is shown in Fig. 4.8(b). The empirical 

distribution function of the ISJ (blue) and the theoretical gamma distribution fiinction 

(red) are very similiir. The maximum distance of the empirical distribution function and 

the gamma distribution function is 0.0408 for which the null hypothesis is accepted at 

0.05 significance level. Thus, the probability distribution of ISI of spike train B follows 

the gamma probability distribution accurately. 

4.8 FittLog probabilistic model with ELIF model for two spike trains 

In this section an example is demonstrated for the best fitting of the spike trains 

generated by the ELIF model and the probabilistic model. This fitting derives a set of 

parameters which enable the generation of spikes which are physiologically realistic. 

Two spike trains, the target A and the reference B are generated using the ELIF model 

(Borisyuk, 2002) using a connection from spike train B to spike train A. The connection 

strength is 12.86 and the time delay of spike propagation is 12 milliseconds. Spike 

trains A and B are generated for a period of 20,000 milliseconds. It is assumed that the 

spike train A is given and that the aim is to adjust the parameters of the probabilistic 

model in such a way that this model will be able to generate spike train A! which is 

similar to the given spike train A. To generate the spike train Al from a connection of 

the spike train Bl the optimization procedure is initialized using parameter values of the 

probabilistic model. For the optimization procedure, the initial value of the strength of 

influence ^ from Bl io Al is considered to be equal to 1. Estimation of the parameters 
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of ISl of spike train B using the gamma distribution gives the initial value of the 

parameters {a,b) of gamma distribution which are (3.3191, 23.5735). Estimation of the 

parameters of the ISl of spike train A using Weibull distribution gives the initial value 

of the parameters {c.d) of Weibull distribution which are (94.5186, 1.9060). Thus the 

Optimization procedure begins with the initial value 

{ji.a.b.c.d) = (1,3.31,23.57,94.51,1,90). The cost function Q is calculated using 

(4.11) which takes account for the sum of the squared difference in the frequency 

corresponding to each bin of ISl of the spike train A and the ISl of spike train AJ. The 

number of bins for the optimization procedure is taken as 10 and the minimum value of 

the cost function Q is 5.88O8>=10"*. For this cost fiinction, the optimal parameter values 

are obtained as (p, a, b. c. d) = (1.02,3.23,21.19,97.43,1.96). 
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Figure 4.9; (a) Raster plot of the spike train A (red) generated by ELIF model and the 
spike train Al (blue) generated by probabilistic model for the period of 20,000 ms. (b) 
ISl histogram of the spike train A generated by the ELIF model (c) IS! histogram of the 
spike train A1 generated by probabilistic model. 
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Now using the optimal parameter values spike trains AI and Bl are generated for a 

period of 20,000 ms with Tj = 5, time lag A=: 12. Fig. 4.9(a) shows the raster plot of 

the spike train A generated by ELIF model and spike train A1 generated by probabilistic 

model. The number of spikes in spike train A is 240 and the number of spikes in spike 

train A] is 269. The coefficients of variation of these spike trains are very similar which 

are 0.5621 and 0.5004 respectively. Fig. 4.9(b) shows the ISI histogram for the ELIF 

generated spike train A and Fig. 4.9(c) shows the ISI histogram for the spike train AJ 

generated by the probabilistic model and these histograms are very similar. 

Figure 4.10: K-S plot of the ISI of spike train A! generated by the ptrobabilistic model 
for different strength of influence p. The red line shows the cumulative distribution 
ftmction of the fitted Weibull probability distribution and the blue hne shows the 
empirical cumulative distribution function of the interspike interval. 

It is assumed that, even in the case of influence from spike train, the probability 

distribution of the ISIs of Al can be approximated by the Weibull distribution. To assess 

how well the ISI of the generated spike train AI agrees with the Weibull probability 
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distribution, the K-S goodness of fit test is used. Spike train AI is generated using 

different strengths of influence ^ = (1.0254,2,3,4) whilst keeping all other parameter 

values set to their optimal value. The K.-S plot of the ISI of spike train AI is shown in 

Fig. 4.10 for each strength of influence f3. The empirical distribution function of the ISI 

(blue) and the theoretical Wetbull distribution function (red) show a good agreement for 

all strengths of influence. The maximum distances of the empirical distribution function 

and the WeibuU distribution function for different strength of influences p = 

(1.0254,2,3,4) are 0.0536, 0.0234, 0.0446 and 0.0558, respectively. For all the 

strength of influences the null hypothesis is accepted at 0.05 significance level. That is 

the ISI of spike train -47 follows the WeibuU distribution. 
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Chapter 5 

Statistical technique for the analysis of functional 

connections of multiple spike trains 

A new statistical technique is presented for analyzing fiinctional connectivity of 

simultaneously recorded multiple spike trains. This method is based on the theory of 

Modulated Renewal Process (MRP) and it estimates a vector of influence strengths 

from multiple spike trains (called reference trains) to the selected (target) spike train. 

Selecting another target spike train and repeating the calculation of the influence 

strengths from the reference spike trains enables researchers to find all fiinctional 

connections among muhiple spike trains. Application of the Cox method to muhiple 

sets of data generated by the ELIF model (Borisyuk, 2002) with a prescribed 

architecture of connections suggest that this method is highly successful for analyzing 

functional connectivity of simultaneously recorded multiple spike trains. 

5.1 Introduction 

Development of Multi-Electrode Arrays (MEA) enables researchers to record multiple 

spike trains simultaneously from associated neurons. Simultaneously recorded multiple 

spike trains are used to study how groups of neurons process information and how they 

interact with each other. Developing a new statistical method for analyzing multiple 

spike trains and, in particular, estimating the functional connectivity between spike 

trains, is a challenging problem that has resulted in substantial research (Brown et al., 

2004; Reed and Kaas, 2010). 
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The standard approach for analyzing functional connectivity is based on the calculation 

of the CCF (Perkel et al., 1967). Though the CCF is widely used in neuroscience study, 

this technique has several limitations. This technique assumes that the spike trains are 

stationary. It also assumes that the number of spikes should be large enough to ensure 

reliable estimation. This technique is usually applied to characterize the dependencies 

between pairs of spike trains at a time, ignoring possible effects from other spike trains 

which can lead to inaccurate results in many cases (Okatan et al., 2005). 

In this chapter, a new statistical technique called the Cox method (Cox 1972; Borisyuk 

et al., 1985) based on MRP is developed for analyzing functional cormectivity of 

simultaneously recorded multiple spike trains. The MRP is considered in terms of spike 

generation under multiple influences from other spike trains and estimates of the 

strength of each influence using the Cox method, which itself is based on the 

conditional likelihood method (Cox, 1972). The MRP model describes the hazard 

function of spike appearance at the MRP and it includes a modulation which is the 

exponential of the linear combination of influence fimctions. In fact, this model is 

similar to the regression model and the set of influence strengths is similar to the 

regression coefficients. The defrnition of the influence function is based on some 

neurobiological details of spike generation and propagation, This influence fimction 

reflects the dynamics of postsynaptic potential under bombardment by spikes from other 

neurons. 

The Cox method (Borisyuk et al., 1985) was developed for analyzing pairs and triplets 

of spike trains. Here it is further developed to support simultaneous consideration of any 

possible set of multiple spike trains. The corresponding formulas for the calculation of 

estimates of the influence strengths and their confidence intervals have been derived. 

Thus, this new development of the Cox method enables researchers to simultaneously 
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analyze any number («) of spike trains. In comparison to existing techniques, the Cox 

method has the following advantages: it does not require the specification of a bin 

(binless method); it is applicable in situations where sample sizes are small; it is 

sufficiently sensitive such that it estimates weak influences; it supports the simultaneous 

analysis of multiple spike trains and provides statistical estimates of influence strengths 

and their confidence interval (to test the null hypothesis that the influence is zero); it is 

able to identify a correct connectivity scheme in difficult cases of'common source" or 

'indirect' connectivity. 

5,2 The Cox method 

Cox (1972) considered a point process in which the hazard fiincfion of a renewal 

process is expressed by a factor depending on quantities. The quantities are thought to 

influence the probability of occurrence and each quantity is combined with an unknown 

regression coefficient. The unknown regression coefficients depict the strength of 

influence of the probability of occurrence. Cox suggested a statistical method to 

estimate these unknown regression coefficients using a conditional maximum likelihood 

principle. Application of the Cox method to analyze influences between two and three 

spike trains is described by Borisyuk et at. (1985). In this section a generalization of the 

Cox method for simultaneous analysis of arbitrary number (n) of spike trains is 

developed. 

The Cox method is based on the MRP and the MRP allows introduction of 

dependencies (influences) between spike trains. It is assumed that for two spike trains A 

and B, spike generation in spike train A depends on spikes of spike train B and the 

hazard fimction of spike train .,4 is a product of two multipliers: one is the own hazard of 

spike train A without influence from B and another multiplier describes influence from 

spike train B. Thus, the hazard function at the moment f is: 
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(Pit) = (PA{UA(t)) expWZB(t)}, (5.1) 

where ^^C.) is the hazard function of the spike train A without influence from the spike 

train B, U^^t) is the backward recurrence time of the spike train A at the moment t, 

Zsit) is the influence function determining how the spike train B influences the spike 

train A, and ^ is the unknown parameter (Cox coefficient) describing the strength of the 

influence from spike train B to A. Therefore, given the influence function Zg{t), the 

goal is to estimate the parameter ^Af p = 0 then there is no influence from spike train 

B to A. To test the null hypothesis HQ:{P = 0} the statistical technique based on 

conditional maximum likelihood (Cox, 1972) is used. 

The Cox method is applied to analyze a set of n simultaneously recorded spike trains. 

One spike train is selected to be considered as a target spike train and all other (n - 1) 

spike trains are considered to be the reference spike trains. The Cox method allows 

analyzing of all n spike trains and estimating the (n — 1) dimensional vector P of 

regression coefficients under the assumption (5.1), where Zgi^t) is (n — 1) dimensional 

vector-function of influences from reference spike trains to the target and ^Zg(t) is the 

dot product. Application of the Cox method provides both the estimates of unknown 

parameter (Cox coefficients) (ft,^2- -Pn-i) ^nd the corresponding confidence 

intervals of these estimates {[Ibj.ubi], i = 1,2, ...(n — 1)), where /b, and ubi are 

lower and upper boundaries respectively of the confidence interval for 0i. The null 

hypothesis //^: /?, = 0 is accepted if the corresponding confidence interval contains 

zero (0 6 [lbi,ubi]) otherwise the null hypothesis is rejected and the estimate 0^ is 

considered as a measure of influence strength from the ith reference spike train to the 

target. To study the con^lete diagram of fimclional connectivity this method is applied 

consequently (n times) selecting the target and estimating the influence strengths from 

reference spike trains. 
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5.2.1 Derivation of the formula 

A derivation of the formula of the Cox method follows the paper by Cox (1972). Ths 

derivation of the formula for two and three spike trains was done by Borisyuk et al. 

(1985). In this section the derivation of the formula of the Cox method is done for {p+\) 

spike trains. To describe dependencies and influences among (p+\) spike trains a spike 

train is selected as a target spike train denoted by A. other p spike trains are selected as 

reference spike trains and they are denoted by S = (61,62- -^p)- Th^ goal is to 

estimate the vector of unknown parameters ^ = (fii.pj- -Pp) which describe the 

strengths of influences from reference spike trains B = (Bi, Bz, , Bp) to the target 

spike trains. Thus p^ (m = 1,2, ,p) represents the strength of influence from the 

reference spike train 6^ 0^ = 1.2, ,p) to the target A. The main assumption is 

thai the target spike train A is the MRP with the hazard function: 

p 

C^(t) = (PA{UM)exp\Y^ PmZB,„(.t) 
" " T f l ^ l 

(5.2) 

where 0^(1) is the hazard of the MRP A, (PA^.) is the hazard function of the renewal 

process A without modulation (i.e. without influence from another spike trains), U^ (t) is 

the backward recurrence time of the renewal process A at the moment t, Zg^(t) 

(m = 1,2, ,p) is the influence function determining how the reference spike train 

6m ("^ = 1-2, ,p) influences the renewal process A, and ^ ^ is the parameter 

describing the influence strength from spike train 6^ (m = 1,2, ,p) to the target .^. 

To estimate the parameters /? = (/?i,/?2- -Pp) the method of conditional likelihood 

is used which eliminates the nuisance function <PA(.) (COX, 1972). The influence 

function Zg (t) is defined by: 

^ « m W = - ^ ^ ^ 3 ^ U ^̂  - e ^r j , C t - A ) > 0 (5.3) 
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where T^ and r^ are the characteristic times of decay and rise of postsynaptic potential 

respectively. Parameter g^ provides the normalization that the maximxim of the 

influence function is one and is defined by: 

^ ' " ^ - l a _£ia 
e ŝ — e Tr 

where 

1 _ J_ ' 

Ug (t) is the backward recurrence time of spike train Bm and A is the time lag 

corresponding to delay of spike propagation from S^ t o ^ . A simpHfied version of the 

influence function corresponding to the case TJ = Zj. is given by the following formula: 

1 , "B^(t-A) 
Z B ^ ( t ) = - ( / e ^ ( t - A > " ^s , C £ - A ) > 0 (5.4) 

It is assumed that spike train A contains n interspike intervals XI,J:2. ^n- For 

simplicity all intervals Xi,X2, ,Ĵ n are considered as of different length. If there are 

several identical intervals a randomization procedure is used and a small normally 

distributed random number to the interval length is added. The intervals are arranged in 

order of increasing size X(i) < ;C(2) < < X(„). For i > j . assume that x^^-^ = x^ and 

X(j) = Xi- Now Zg is defined to be the value of ZB^Ct)(m= 1,2, ,p) where 

time t is calculated in the following way: the interval X[ is allocated inside of the 

interval X^ and the left ends of both intervals coincide, time t corresponds to the right 

end of the interval r,. Respectively, Zg^^^ is the value of Z^^Ct) at the right end of the 

interval Xk-

The likelihood is constructed for the data conditionally on the magnitudes of the 

intervals, by considering contributions in order starting with the smallest interval. Thus 

the contribution from the first interval is: 
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exp{l.l,=,P^Zs^J 

Conditionally on the first interval, the contribution from the second interval is 

sr=2«^p(s:,.,/JmZ«„j 

and so on. 

The likelihood has the form 

UZUexpO:l,=,(imZB^, 

The log likelihood is defined as 

V the first derivative of the log hkehhood is 

„ - T.U^og[lUexvO:'m=iP^ZB^u)] 

; ( m ^ l , 2 , ,p). 

The estimate for Pm 'S obtained by setting the first 

The second deri 

' I 

derivative to zero, 

ivative can be obtained Iby 

i = l 

n 

\y.?-,exp(yL_^B„Z,Af 

•m=iPmZi ^m^B^u) 

Cr,s = l,2, ,p). 

-I 
i = l 

n 

B^li Er= i ^flfi, •^B 

•m^lPmZB^a)] 

If.iZ^ 

•UIZB^U) 

^^B^,exp{r.l.^,(i^Z,^Jr.UZ> .m=li^'n'^n,n,iJ£^t=i'^aiU^^P{^m^lP'nZB^i,) 

(r ,s = 1,2, ,p). 

^ m ^ B . J | 
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_ \^\I.liZB.u^B,,exp{T.l,.,p^Zs^J -n-
z 

Cr,s = l,2, ,p) . 

Let U{B') = \~r—\ be the score vector and /(/?) = — ,„ ,„ is the Fisher 

information matrix. 

Now to obtain maximum likelihood estimate ^^ a numerical solution of the equation 

U(p) = 0 should be obtained. The Newton-Raphson iterative method starting from the 

initial guess ^f°' is used. Formula for iterations is: 

/?, = P^.^ + [/(^,_:)]"V(^,_0, q = 1.2,...,(?. (5.5) 

The iterations converge to the estimates: 

0^^P.0 = 0,J2, Jp) • 

To obtain the confidence interval for ^^ , it is assumed that -— has asymptotically 

normal distribution /V(0,/(^m)) where IQim) is the m"" diagonal element o f / ( ^ ) . The 

confidence interval with the confidence level y is obtained by the following equation: 

bm - yJiiMKi^ . Pm + yji(jm)f<^ (5-6) 

where /f(i_y)/z is the upper (1 - Y)/2 quantile of normal distribution. The null 

hypothesis that spike train 6 ^ ; (m = 1,2, ,p) does not influence A is accepted if 

the confidence interval includes zero. 

To obtain the confidence region for (i^ and p^, it is assumed that U^Ors)~^fJ ^^ X^ 

distribution with two degrees of freedom. The use of ]^ distribution to obtain 
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confidence region is a natural choice in statistics. Here U = f-r—'T^rl ^nd the matrix 

\dpj- dps-f 

/rs is 

lrs = 
dp} d0,dp. 

The confidence region on the plane {fi^, Ps) with the confidence level y is defined by 

the following equation: 

{Pr - PrJs - Ps)'[lrs{0r Js)]~\^r ' Pr.Ps " ft) < Xl-y2) C5.7) 

where XII-Y.I) '^ ^^ upper (1 - y) quantile of chi-square distribufion with two degrees 

of freedom. The null hypothesis that Cox coefficients {Pr.Ps) = 0 is accepted if the 

confidence region includes zero. 

5.2.2 Parameters of the influence function (Xr, r^ and A) 

To apply the Cox method to multiple spike trains, one spike train should be selected as a 

target and other spike trains are considered as the reference spike trains. The influence 

functions should be specified to describe the intluence irom the reference spike trains to 

the target. In this section it is assumed that all influences are identical and the influence 

function is specified by (5.3). This function includes three parameters (r^, T,-, A) and 

their values should be defined for each reference spike train. 

In the case of generated data the characteristic times of rise (T^) and decay (TJ) of the 

postsynaptic potential (PSP) are usually known but they are difficult to determine fi-om 

experimental data and should be assumed (Lansky and Ditlevsen, 2008). How the result 

of analyzing the functional connectivity depends on chosen values of PSP characteristic 

times was studied and it was found that the Cox method has low sensitivity to the 

selected values of these parameters. In other words, there is no requirement to choose 
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these times accurately. In fact, these characteristic times can be varied over a broad 

range and the results of the analysis will be similar. 

To specify the time lag A corresponding to the delay of spike propagation, the 

traditional CCF is used which provides both the statistical estimate of dependency and 

the corresponding time lag A. To do this a pair of spike trains, the target and the 

reference spike train, are considered. The highest value of the CCF exceeding the upper 

boundary of the confidence interval can be considerKl as a measure of influence 

strength from the reference spike train to the target spike train, and the corresponding 

time shift can be considered the time lag A in spike propagation (Stuart et al., 2005). If 

there are no values of the CCF exceeding the upper boundary of the confidence interval, 

both the influence strength and the corresponding time lag A are considered zero. For 

example a pair of spike trains, A (target) and B (reference), are generated with a 

connection from .6 to .̂  by the ELIF model (Borisyuk, 2002). The connection strength 

from .S to ^ is considered 18.04 with a time delay A= 11 ms of spike propagation. TTie 

CCF of this pair of spike trains is shown in Fig. 5.1(c) which indicates the influence 

sfrength is 4.673 and the corresponding time shift is 11 ms. 

The time lag A of spike propagation can also be found by analyzing a pair of spike 

frains with the Cox method. The same spike trains A and B in the above example are 

considered and the aim is to find the time delay of spike propagation using the Cox 

method. It is assumed that two spikes of the reference spike train B appear at times tg 

and t j and there is a time delay 6Q of spike propagation from the reference spike train B 

to the target spike train A. This indicates that if there is a spike in train B at time 

moment t j then the probability of spike at frain A at time moment t>5 = £| + SQ is very 

high. The time delay SQ is unknown, therefore the estimation of the Cox coefficient for 

different values of time lag A is repeated. Fig. 5.1(a) shows estimates ;Sg^ versus time 
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lag A. The increment of time lag is 1 ms and the corresponding confidence intervals are 

shown by vertical bars. The estimate PBA increases with increase of A and reaches its 

highest value at A= 10 ms but for A= 11 ms this coefficient drops down to a negative 

value (Fig. 5.1(a)). The estimation of the Cox coefficient for values of the time lag in 

the interval [10.95, 11.03] (ms) with an increment of 0.01 ms. is shown in Fig. 5.1(b). 

The Cox coefficient drops down from a high positive value to a negative value in a 

small interval [10.99, 11] {ms). 

Figure 5.1: Pair-wise analysis of Cox method and the CCF for the analysis of influence 
strength from spike train B to spike frain A. (a) Cox coefficient PBA with different time 
delays, (b) Cox coefficient 0g^ in the interval 10.95 ms to 11.03 ms with a small step of 
time delays, (c) The CCF for the analysis of influence strength from spike train Bto A. 

Thus the conclusion is that a time delay of spike propagation is considered to be 11 ms 

(5o = 11) and an estimate of the Cox coefficient P^A — 2-1. To justify this 

interpretation of the data analysis, it is assumed that a chosen time lag is smaller than 
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the time delay of spike propagation; A_s< 6o- According to formula (5.3), the backward 

recurrence time is calculated at the moment (t^ — As) and this backward recurrence 

time is smaller than the time delay of spike propagation; UgitA — A5) < dg. Therefore, 

the value of the influence fimclion depends on the backward recurrence time 

Zg(f/g(t^ — A5)), which is shown by the circle in Fig. 5.2. This value is less than the 

maximum of the influence function and if the time lag Ag increases, then the influence 

Junction also increases and tends to the maximum of the influence function if the time 

lag tends to 5Q. A described calculation of the backward recurrence time can be applied 

in a small vicinity of each spike of the train B under the main assumption that the time 

delay of spike propagation is SQ. This consistency in calculation of the backward 

recurrence time is important for a reliable numerical procedure for calculation of 

estimate of the Cox coefficient. 
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Figure 5.2: Illustration for the calculation of influence fimction. 
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Now it is assumed that a time lag A, of the influence function is larger than the time 

delay of spike propagation A[> 5Q (Fig. 5.2) and the calculation of the backward 

recurrence time is based on the spike at time tg, which is a previous spike according to 

the spike at moment tg (Fig. 5.2). Thus, for the time lag A(> SQ the backward 

recurrence time can get an arbitrary value. The backward recurrence time is calculated 

for each spike of frain B, therefore, the estimate of the Cox coefficient is calculated 

using arbitrary (random) values of the influence ftmction. Thus, tiie estimate will be 

very different from the correct value and it might be zero or a negative number. The 

time lag A obtained by the CCF and pair-wise Cox method is same. In this chapter the 

lag A is calculated by the CCF method for analyzing functional cormectivity of multiple 

spike trains. 

5.3 Analysis of functional connectivity by the Cox method 

The Cox method is used for the analysis of functional connectivity of two spike trains, 

three spike trains and the general case of p spike trains. The choice of analysis depends 

on the nature of the experiment and the desire of the experimenter. In this section the 

Cox method procedure for the analysis of functional connectivity based on two spike 

trains, three spike trains and the general case of p spike trains are discussed. 

5.3.1 Analysis of two spike trains 

To identify the functional connectivity of two spike trains, one spike train is considered 

as the target spike train and another one is considered as the reference spike train. 

Assume that spike train A is the target spike train and spike train B is the reference spike 

train. The Cox method is used to identify the influence strength from reference spike 

train B to the target spike train A. The hazard function (5.2) of the target spike train A 

with p = 1 can be represented as: 
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The influence frinction Zg(t) from fi to ^ is determined by (5.3) with the specified 

values of T^.T^and A. The values Tj, T^ are assumed and time lag A is obtained from 

pair-wise CCF. The Cox coefficient (i is estimated using (5.5) and the corresponding 

confidence interval is calculated using (5.6). The null hypothesis that the reference spike 

train B does not influence the target spike train A is tested using the confidence interval 

If the confidence interval contains zero, then it is concluded that the corresponding Cox 

coefficient is not distinguishable from zero; therefore the functional connection from the 

reference spike train B to the target spike train A is absent. If the confidence interval 

does not include zero, it is concluded that there is a significant influence from the 

reference spike train B to target spike train A and the value of the estimate characterizes 

the strength of this frmctional connection. 

5.3.2 Analysis of three spike trains 

To identify the frmctional connectivity of three spike trains, one spike train is 

considered as the target spike train and the two other spike trains are considered as the 

reference spike trains. Assume that three spike trains. A, B and C are used to identify the 

functional connectivity between them. To understand the procedure of analysing three 

spike trains, assume that spike train A is the target spike train, and that B and C are the 

reference spike frains. The Cox method is used to identify the influence strength from 

the reference spike frains B and C to the target spike train A. The hazard fiinction (5.2) 

of the target spike frain A wifri p = 2 can be represented as: 

C^it) = (PA{UA{t))exp{fiBZB(.t) + PcZcit)]. 

The influence fiinction Z^it) from B to A and Zc(^t) from C to A arc detennined by 

(5.3) with the specified values of T^, Zr and A. In this chapter it is assumed that for both 

influence fimctions ZB(_t) and Z^CO the values of T^ and T^ are the same, in fact the 
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values can be different for Zg(t) and Zdt). The parameter time lag A is obtained by the 

CCF method for ZB(C) and Zc(£)- The Cox coefficients /Jg and /?,; are estimated using 

(5.5) and the corresponding confidence intervals are calculated using (5.6). The 

confidence region for the coefficients pg and pc 's calculated using (5.7). The 

confidence region has an elliptical shape and the centre of the confidence region is 

located at the point (^B-PC)- The null hypothesis that the pair of Cox coefficients 

{,PB'PC} 'S equal to zero (i.e. both components of the pair are zero) is tested and the null 

hypothesis is accepted (i.e. the data does not contradict the null hypothesis) if the origin 

is inside the confidence region, concluding that both connections are absent (i.e. 

connection strength is zero). If the null hypothesis is rejected then the null hypothesis 

that one Cox coefficient is equal to zero is tested. This null hypothesis is tested 

separately for each coefficient. Two projections of the elliptical confidence region to the 

coordinate axis {0B) ^nd (/?c) are considered. If projection to the axis (pg) contains 

zero then the null hypothesis is accepted and it is concluded that the connection is 

absent (i.e. the connection strength is zero), otherwise the null hypothesis is rejected and 

a centre of the interval (^g) is considered as strength of connection. Similarly, if a 

projecfion to another axis C/?̂ ) contains zero then the null hypothesis is accepted and it 

is concluded that the connection is absent, otherwise the null hypothesis is rejected and 

a centre of the interval (^c) ^̂  considered as strength of connection. To identity the 

complete diagram of fianctional cormectivity of spike trains A, B and C, the above 

procedure is repeated considering B is a target spike train and A and C are reference 

spike trains, and that C is a target spike train and A and B are reference spike trains. 

Thus, to identify the functional cormectivity of three spike trains using the Cox method, 

six simultaneous statistical tests are done. For this reason a Bonferroni correction is 

applied to the significance level a and the corrected significance level is considered as 

a = il-Y)/6. 
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5.3.3 Analysis of the general case ofp spike trains 

Besides the analysis of two spike trains and three spike trains, fiinctional connectivity of 

p spike trains are analysed considering the effects of all spike trains at once. In this 

method one spike train is considered as a target spike train and the remaining p — 1 

spike trains are considered as reference spike trains. For the analysis of functional 

connectivity ofp spike trains, assume that Ai is the target spike train and A2, ,Ap 

are the reference spike trains. The Cox method is used to idenrity the influence strength 

fi-om the reference spike trains A2, ,Ap to the target spike train A^. The hazard 

function (5.2) of the target spike train A-^ with p = p — 1 can be represented as: 

The influence functions Z^.(t),i = 2,3, ,p are determined by (5.3) with the 

specified values of T5, T̂  and A. Here it is assumed that the values of T^ and T^ are same 

for all influence fimcfions and A is calculated from the CCF method. The Cox 

coefficients ^^^,1 = 2,3, ,p are estimated using (5.5) and the corresponding 

confidence intervals are calculated using (5.6). The null hypothesis that the reference 

spike train i4i,i = 2,3, ,p does not influence the target spike train yl̂  is tested using 

the confidence interval. If the confidence interval contains zero, then it is concluded that 

the corresponding Cox coefficient is not distinguishable fix)m zero, therefore the 

functional connection from the reference spike train Aj.i = 2,3, ,p to the target A^ 

is absent. If the confidence interval does not include zero, it is concluded that there is a 

significant influence from the reference spike train Ai,i = 2,3, ,p to the target A^ 

and the values of the estimates characterize the strengths of this functional connections. 

To identify the complete diagram of functional connecfivity of spike trains 

Ai.Az, ,Ap, the above procedure is repeated considering A2 is target and spike 

trains A^.A^ ,Ap are reference; ,43 is target and spike trains Ai,A2,A4 ,Ap are 
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reference and so on. Thus, for p spike trains this procedure should be repeated p times 

and for this repetitive application of Cox method the Bonferroni correction is applied to 

the significance level a and the corrected significance level is considered as a = 

a - y ) / p ( p - i ) . 

5.4 Simultaneous analysis oip spike trains gives better result than 
pairs and triplets 

In this section using an example it is shown that how the best result of functional 

connectivity can be obtained by the Cox method for multiple spike trains. A small 

neural circuit of four spike trains is generated using the ELIF model (Borisyuk, 2002) 

with a given scheme of coupling. Functional connectivity of four generated spike trains 

are analyzed using pairs, triplets and all four spike trains at once. 

20000 

Figure 5.3: (a) Connection scheme of the four spike train. There are three non zero 
connections which are shown by arrows, (b) Raster plot of four generated spike trains of 
the duration 20,000 ms. (c) ISI histograms of the generated four spike trains. 

The four spike trains are generated using the connection architecture shown in Fig. 

5.3(a). The values of connection strength, time delay of spike propagation and time of 
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decay of postsynaptic potential are given in Table 5.1. The values of the neuron 

parameters of the ELIF model are given in Table 5.2. Fig. 5.3(b) shows the result of 

ELIF model generation, i.e. the rastCT plot of spiking activity of these four spike trains 

in time interval of 20 seconds. 

Connection strength (w) 

Wi^2 = 18.047 

Wi^3 = 17.281 

W2^4 = 15.764 

Time delay (A) 

A,2= 11 

Ai3= 10 

^ 2 4 = 9 

Decay time (TJ) 

2.86 

3.08 

3.42 

Table 5.1: Connection strengths, time delays of spike propagation, and decay times of 
postsynaptic potential that are used for generating four spike trains. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Mean 

44.87 

3.02 

15.20 

5.03 

9.99 

-28.77 

19.73 

-0.25 

5.25 

S.D. 

0.74 

0.22 

1.42 

0.26 

0.02 

0.19 

0.50 

0.48 

1.50 

Table 5.2: Neuron parameters of the ELIF model of four spike trains. 

These spike trains are considered as a data set for analyzing the functional connectivity. 

It is important to note that for analyzing the functional connectivity only spike trains are 

used and it is assumed that die scheme of connections is unknown. It is also assumed 
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that values of neuronal parameters and parameters characterizing connections 

(connection strength, delay of spike propagation and time of decay of PSP) are 

unknown. After completing the analysis the results are compared with the parameter 

values that were used for spike train generation. Fig. 5.3(c) shows the histogram of 

inter-spike intervals (ISIs) for each spike train. 

5.4.1 Pair-wise analysis 

To apply pair-wise analysis of the Cox method to the four spike trains a total of twelve 

possible pairs of spike trains are analyzed, taking one spike train as target and one other 

spike train as reference. All the influence fimctions are considered identical and 

specified by (5.3). In this case the values of PSP decay time are known (Table 5.1); 

however, it is assumed that these values are unknown. For the analysis of functional 

connectivity the characteristic times of rise and decay are assumed as T^ = 0.1 ms and 

Ts = 10 ms. The other parameter, time lag A is specified by the pair-wise CCF method 

which is given in Fig. 5.4. For the pair-wise CCF, 6 simultaneous tests are conducted to 

find the independence of the pairs of spike trains. For these 6 simultaneous tests the 

Bonferroni correction is applied to the significance level a and the adjusted significance 

level is considered as a/6. In Fig. 5.4 the boundaries of the confidence interval of the 

pair-wise CCF is calculated using the Bonferroni correction and is considered as 

.05/6 = .0083. 

The highest peak outside the confidence interval is interpreted as an indicator of 

influence and the corresponding time shift of the CCF is considered as a time lag A 

corresponding to delay of spike propagation. Time lags A are summarized in the Table 

5.3 and these values are used for analyzing the fiinctional connectivity of pairs of spike 

trains. For example, if the second spike train is selected as a target, then the second row 
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and first column of the Table 5.3 provides a parameter value of time lag A from spike 

train #1 to spike train #2 and this value is: Ai2= 11. 

M 

ThTH(mB) 

Figure 5.4: Cross correlation function of the four spike trains. 

\ . Reference 
\ , spike train 

Target \ , 
spike train x,^ 

1 

2 

3 

4 

1 

0 

11 

10 

20 

2 

0 

0 

0 

9 

3 

0 

I 

0 

0 

4 

0 

0 

0 

0 

1 

1 

2 * 

\ 
i^f^-^V^^V ^ L / ^ S W V ^ 
• I f * 

a 

i, 

* 

i 

Hr\Hr tt\M\Pii' 

^#f̂  1 
;/M^ 

1 
• • N 

* 

4 

3 

Myys^.uyvAjy^jWf 
i» * m 

'. 1 
'm¥\^ 
•« • • 

f M ^ ( i « - i ^ 

i—-̂  
M^j-if^/w^ 
• ' ^ 1 y — 

m 

* 

\ 
I 

1 

& 

a 

V^vJ j i ' v ^ i ^ ^ ' / l - ^ 
• « « 

1 
^{4my 
• • « 

t 

VhiW 
t 4 - m 

1 

a 1 
M V 

% ' 

4 

M̂* 
1 > 

1 

-vA/Wi./K' 
j j — . 

I J 

'^r-W^'^A 
M 

•iWMlMAf u 

— q̂̂ ^̂ ^ ^ i m 

Table 5 3 : Time lags obtained from Fig. 5.4. These time lags are used to get the 
ftmctional coimectivity of four spike frains. 
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\ ^ Reference 
N, spike 

\ t r a i n 
Target \ , 
spike train \ ^ 

1 

2 

3 

4 

1 

0 

2.678 
(2.154,3.203) 

3.232 
(2.691,3.773) 

0.967 
(0.357,1.577) 

2 

0.318 
(-0.520, 1.157) 

0 

-0.304 
(-1.268,0.659) 

2.494 
(2.030, 2.959) 

3 

-0.029 
(-1.117, 1.058) 

0.715 
(-0.020,1.451) 

0 

0.225 
{-0.482, 0.932) 

4 

-0.264 
(-1.098,0.568) 

0.453 
(-0.264, 1.172) 

-0.597 
(-1.543,0.349) 

0 

Table 5.4: Results of pair-wise analysis of four spike trains. The estimates of Cox 
coefficients and corresponding confidence intervals are shown. Cox coefficients which 
significantly differ from zero (i.e. the confidence interval does not include zero) are in 
bold. 

Now using the parameter values T̂  = 0.1 ms and Tj = 10 ms and time lags obtained 

ft-om Table 5.3, the parameters are estimated using (5.5) with the corresponding 

confidence interval from (5.6). Applying Bonferroni correction to the significance level 

a = 0.05 changes the significance level to a = 0.05/4(4 — 1) — .0042. Functional 

connections can be derived from these estimates and their confidence intervals. 

Table 5.4 summarizes the result of analyzing four spike frains with the pair-wise 

analysis. Each row of the table shows the Cox coefficients that characterize the 

influence strength from the reference spike trains to the target spike trains. The first row 

of Table 5.3 corresponds to the case that the first spike frain is considered as a target and 

this row shows the estimates of Cox coefficients characterizing influences to the target 

spike train (#1) from the reference spike trains (#2 to #4): ^21 = 0-318, ^31 = -0.029, 

^41 = -0.264 with the corresponding confidence mtervals. In the first row all the 

confidence intervals include zero, therefore fiinctional connection fi-om spike trains #2, 

103 

file:///train


Chapter 5 Cox Method 

#3 and #4 to the spike train #1 are concluded to be absent. In the second row there is 

only one Cox coefficient that significantly differs fix>m zero (shown in bold) which 

characterizes the influence from spike frain #1 to spike train #2. This non-zero influence 

strength is interpreted as strength of the functional connection from spike train #1 to 

spike train #2 and the strength of influence is 0i2 — 2.7. All other Cox coefficients at 

the second row are not distinguishable from zero and the corresponding fimctional 

connections to the target spike train #2 are concluded to be absent. Similar to the second 

row there is only one Cox coefficient in the third row that significantly differs from zero 

(shown in bold) which characterizes the influence from spike train #1 to spike train #3, 

This non-zero influence strength is interpreted as strength of the fijnctional connection 

from spike frain #1 to spike train #3 and the strength of influence is p^^ = 3.2. All other 

Cox coefficients at the third row are not distinguishable from zero and the 

corresponding functional connections to the target spike train #3 are concluded to be 

absent. In the fourth row there are two Cox coefficients that significantly differ from 

zero (shown in bold) which characterize the influence from spike train #1 to spike frain 

#4 and from spike train #2 to spike train #4. These non-zero influence sfrengths are 

interpreted as sfrength of the functional coimection from spike train #1 to spike frain #4 

and from spike train #2 to spike train #4. The strength of influences of these functional 

connections are ^^4 = 1 and ^24 = 2.5, respectively. All other Cox coefficients at the 

fourth row are not distinguishable from zero and the corresponding fijnctional 

connections to the target spike train #4 are concluded to be absent. Thus, considering 

Table 5.4 it is concluded that there are four Cox coefficients that significantly differ 

from zero; therefore there are four fiinctional connections of the four spike frains. These 

fijnctional connections are shown by circles in Fig. 5.5(b) and the radius of the cfrcle is 

proportional to the relative strength of influence: a small radius corresponds to a 

relatively weak fimctional cormection. The diagonal is shown by filled squares. 
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Figure 5.5: (a) Connection scheme of four spike trains in matrix format (the same as 
the scheme shown in Fig. 5.3(a) in graph format), (b) A diagram of functional 
connections of four spike trains obtained by the pair-wise analysis. 

Comparison of the matrix of functional connectivity (Fig. 5.5(b)) with the matrix of 

connections {Fig. 5.5(a)) used for simulating the spike trams reveals a good 

correspondence between these two schemes of connections except one connection. The 

diagram of cormectivity in Fig. 5.3(a) contains three direct connections which are 

shown by arrows; from spike train #1 to spike train #2, from spike train #1 to spike train 

#3, and from spike train #2 to spike train #4. In Fig 5.3(a) there are some "spurious" 

connections which are not direct: a connection due to a ''conimon source" and a 

coimection due to ''indirect coupling". There is no direct connection between spike 

frains #2 and #3; however, spike train #1 is a coitmion source, delivering spikes to both 

spike trains (#2 and #3). Similarly, there is no direct connection between spike frains #1 

and #4, however, there is an indirect influence (coupling) from spike train #1 to Spike 

frain #4 via spike frain #2. Distinguishing the direct coimections and these spuriotis 

connections is difTicuh using pair-wise analysis. For instance the connection from spike 

frain #1 to spike train #4 is in fact an indirect cormection but incorrectly identified by 

the pair-wise analysis (green circle in Fig. 5.5(b)). 
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5.4.2 Triplet analysis 

Triplet analysis of the Cox method for the four spike trains considers all possible groups 

of three spike trains. A total of 4 groups of three spike trains are obtained (Fig. 5.6). All 

four groups of three spike trains are analyzed to find functional connectivity by the 

triplet analysis. All the influence functions are considered identical and specified by 

(5.3) with parameters T^ = 10 7ns and z^ = 0.1 ms. The time lags A are obtained using 

the CCF method {Fig.5.4 and Table 5.3). 

Figure 5.6: All possible groups of three spike trains for the four spike trains. 
Connection schemes obtained fi-om Fig. 5.3(a). (a) For spike trains #1, #2 and #3. (b) 
For spike trains #1, #2 and #4. (c) For spike trains #1, #3 and #4. (d) For spike trains #2, 
#3 and #4. 

5.4.2.1 Analysis of spike trains {#1, #2, #3} 

To apply triplet analysis to the first group consisting of spike trains {#1, #2 and #3} 

(Fig. 5.6(a)), spike train #1 is considered as a target spike train and influences from 

reference spike trains #2 and #3 to this target are estimated using (5.5) with confidence 

intervals using (5.6). A confidence region is also calculated using (5.7) which has an 

elliptical shape. Similarly, spike train #2 is considered as a target spike train and 

influences from reference spike trains #1 and #3 to this target are estimated with 
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confidence intervals and confidence regions. Finally, spike train #3 is considered as a 

target spike train and influences from reference spike trains #1 and #2 to this target are 

estimated with confidence intervals and confidence regions. The Bonferroni correction 

is applied to the significance level a and the corrected significance level is considered 

as a = .05/6 = .0083. 

Fig. 5.7 shows the functional connections of this group of spike frains with three 

confidence regions (Fig. 5.7(b)). The region on the left side corresponds to the target 

spike frain #1; the region in the middle corresponds to the target spike train #2, and the 

region on the right side corresponds to the target spike train #3. It is shown in Fig. 

5.7(b) that the region on the left side contains zero, therefore both connections to spike 

train #1 are concluded to be absent. This result is shown in Fig. 5.7(c) by two dashed 

arrows pointing to spike frain #1. These dashed arrows indicate an absence of both 

connections from spike train #2 and #3 to spike frain #1. 

The region in the middle does not contain the origin and this indicates that the null 

hypothesis should be rejected. The cenfre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (y?i2 .^32) • Th^ projection to tfie vertical axis 

^32 contains zero, therefore it is concluded that the null hypothesis should be accepted 

and the connection from spike frain #3 to #2 is concluded to be absent. The projection to 

the horizontal axis P12 ^^^^ ^^^ contain zero, therefore it is concluded that the null 

hypothesis should be rejected and the estimate ^12 's the sfrength of the connection from 

spike train #1 to #2. This result is shown in Fig. 5.7(c) by two arrows pointing to the 

spike train #2: the dashed arrow indicates the absence of a connection from spike train 

#3 to #2, the solid arrow indicates the presence of a connection fiism spike train #1 to 

#2, and the value of the connection sfrength is /5i2 — 2.8. 
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Figure 5.7: (a) Connection scheme of the spike trains #1, #2 and #3. (b) Confidence 
regions of the estimated Cox coefficients in three cases: influences to spike train #1 
(left), influences to spike train #2 (middle), influences to spike train #3 (right), (c) 
Estimated coefficients of the Cox method with confidence intervals. Significant 
connections are indicated by solid arrows. 

The region on the right side can be interpreted in a similar way. The result is shown in 

Fig. 5.7(c) by two arrows pointing to spike train #3: the dashed arrow indicates the 

absence of a connection from spike train #2 to #3, the soUd arrow indicates the presence 

of a connection from spike train #1 to #3, and the value of the cormection strengtfi is 

^13 = 3.3. The results of the analysis are in good agreement with the connection 

scheme shown in Fig. 5.7(a). The results in Fig. 5.7(c) indicate that there are two 

significant influences (shown by solid arrows, all others are shown by the dashed 

arrows): from spike train #1 to spike frain #2 and from spike train #1 to spike train #3, 

the influence strengths are shown with their confidence intervals. 
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5.4.2.2 Analysis of spike trains {#1, #2, #4} 

The second group consisting of spike trains {#1, #2 and #4) (Fig. 5.6(b)) are analyzed 

by the Cox method and the ftmctional connections of this group of spike trains are 

shown in Fig. 5.8 with three confidence regions (Fig. 5.8(b)). The region on the left side 

corresponds to the target spike train #1; the region in the middle corresponds to the 

target spike train #2, and the region on the right side corresponds to the target spike 

train #4. It is shown in Fig. 5.8(b) that the region on the left side contains zero, therefore 

both connections to spike train #1 are concluded to be absent. This resuh is shown in 

Fig. 5.8(c) by two dashed arrows pointing to spike train #1. These dashed arrows 

indicate an absence of both connections. 

fii, =2.4(2,2.9) '•?' '> ' 

A J =0.6 (-0.1,1.2) 

(c) 

m-

A i O i 

•0.4 -(L2 0 0.2 0.4 0.0 OJ 

Figure 5.8: (a) Connection scheme of the spike trains #1, #2 and #4. (b) Confidence 
regions of the estimated Cox coefficients in three cases: influences to spike train #1 
(left), influences to spike train #2 (middle), influences to spike train #4 (right), (c) 
Estimated coefficients of the Cox method with confidence intervals. Significant 
connections are indicated by solid arrows. 
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The region in the middle does not contain the origin and this indicates that the null 

hypothesis should be rejected. The centre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (^12 ,^^2) • The projection to the vertical axis 

^42 contains zero, therefore it is concluded that the null hypothesis should be accepted 

and the connection from spike train #4 to #2 is absent. The projection to the horizontal 

axis ^12 "^o^ not contain zero, therefore it is concluded that the null hypothesis should 

be rejected and the estimate P12 's the sfrength of the connection from spike train #1 to 

#2. This result is shown in Fig. 5.8(c) by two arrows pointing to the spike frain #2: the 

dashed arrow indicates the absence of a connection from spike frain #4 to #2, the solid 

arrow indicates the presence of a connection from spike frain #1 to #2, and the value of 

the connection strength is 0i2 = 2.8. 

The region on the right side can be interpreted in a similar way. The result is shown in 

Fig. 5.8(c) by two arrows pointing to spike frain #4: the dashed arrow indicates the 

absence of a connection from spike frain #1 to #4, and the solid arrow indicates the 

presence of a connection from spike frain #2 to #4, and the value of connection sfrength 

is /?24 = 2.4. The results of the analysis are in good agreement with the connection 

scheme shown in Fig. 5.8(a). The results in Fig. 5.8(c) indicate that there are two 

significant influences (shown by solid arrows, all others are shown by the dashed 

arrows): from spike frain #1 to spike train #2, from spike train #2 to spike frain #4, and 

the influence strengths are shown with their confidence intervals. 

5.4.2.3 Analysts of spike trains {#1, #3, #4} 

The thfrd group consisting of spike trains {#1, #3 and #4} (Fig. 5.6(c)) are analyzed by 

the Cox method and the functional connections of this group of spike trains are shown 

in Fig. 5.9 with three confidence regions (Fig. 5.9(b)). The region on the left side 

corresponds to the target spike train #1; the region in the middle corresponds to the 

110 



Chapter 5 Cox Method 

target spike train #3, and the region on the right side corresponds to the target spike 

train #4. It is shown in Fig. 5.9(b) that the region on the left side contains zero, therefore 

both connections to spike train #1 are concluded to be absent. This result is shown in 

Fig. 5.9(c) by two dashed arrows pointing to spike train #1. These dashed arrows 

indicate an absence of both connections. 
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Figure 5.9: (a) Connection scheme of the spike trains #1, #3 and #4. (b) Confidence 
regions of the estimated Cox coefficients in three cases: influences to spike train #1 
(left), influences to spike train #3 (middle), influences to spike train #4 (right), (c) 
Estimated coefficients of the Cox method with confidence intervals. Significant 
connections are indicated by solid arrows. 

The region in the middle does not contain the origin and this indicates that the null 

hypothesis should be rejected. The centre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (^13 ,^43) . The projection to the vertical axis 

^43 contains zero, therefore it is concluded that the null hypothesis should be accepted 

and the connection from spike train #4 to #3 is absent. The projection to the horizontal 

axis /?i3 does not contain zero, therefore it is concluded that the null hypothesis should 
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be rejected and the estimate ^13 is the strength of the connection from spike train #1 to 

#3. This result is shown in Fig. 5.9(c) by two arrows pointing to the spike train #3: the 

dashed arrow indicates the absence of a connection fixjm spike train #4 to #3, the solid 

arrow indicates the presence of a connection from spike train #1 to #3, and the value of 

connection strength is ^13 = 3.2. The region on the right side can be interpreted in a 

similiir way. The result is shown in Fig. 5.9(c) by two arrows pointing to spike train #4; 

the dashed arrow indicates the absence of a connection from spike train #3 to #4, the 

solid arrow indicates the presence of a connection from spike train #1 to #4, and the 

value of the cormection strength is p^^ = 1. 

The result of analyzing functional connectivity is not in good agreement with the 

connection scheme shown in Fig. 5.9(a). The reason is that out of four spike trains, only 

three spike trains are analyzed at a time without considering the effect of the other spike 

train. In the connection scheme there is no connection from spike train #1 to spike train 

#4, however, triplet analysis shows this spurious connection. The result in Fig. 5.9(c) 

indicates that there are two significant influences (shown by solid arrows, all others are 

shown by the dashed arrows): from spike train #1 to spike train #3, from spike train #1 

to spike train #4. and the influence sfrengths are shown with their confidence intervals. 

5.4.2.4 Analysis of spike trains {#2, #3, #4} 

The fourth group consisting of spike trains {#2, #3 and #4} (Fig. 5.6(d)) are analyzed by 

the Cox method. Functional connections of this group of spike trains are shown in Fig. 

5.10 with three confidence regions (Fig. 5.10(b)). The region on the left side 

corresponds to the target spike train #2; the region in the middle corresponds to the 

target spike train #3, and the region on the right side corresponds to target spike frain 

#4. 
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Figure 5.10: (a) Connection scheme of the spike trains #2, #3 and #4. (b) Confidence 
regions of the estimated Cox coefficients in three cases: influences to spike train #2 
(left), influences to spike train #3 (middle), influences to spike train #4 (right), (c) 
Estimated coefficients of the Cox method with confidence intervals. Significant 
connections are indicated by sohd arrows. 

The region on the left side does not contain the origin and this indicates that the null 

hypothesis should be rejected. The centre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (fi^z • P42) • The projection to the vertical axis 

^42 contains zero, therefore it is concluded that the null hypothesis should be accepted 

and the connection from spike frain #4 to #2 is absent. The projection to the horizontal 

axis /?32 does not contain zero, therefore it is concluded that the null hypothesis should 

be rejected and the estimate ^32 is the sfrength of the connection from spike frain #3 to 

#2. This result is shown in Fig. 5.10(c) by two arrows pointing to the spike frain #2: the 

dashed arrow indicates absence of a connection from spike frain #4 to #2, the solid 

arrows indicate the presence of a connection from spike train #3 to #2, and the value of 

the connection strength is ^32 = 0.7. The region on the right side can be interpreted in a 
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similar way. The result is shown in Fig. 5.10(c) by two arrows pointing to spike train 

#4: the dashed arrow indicates the absence of a connection from spike train #3 to #4, the 

solid arrow indicates the presence of a connection from spike train #2 to #4, and the 

value of connection strength is ^24 = 2.5. It is shown in Fig. 5.10(b) that the region in 

the middle contains zero, therefore both connections to spike train #3 are concluded to 

be absent. This result is shown in Fig. 5.10(c) by two dashed arrows pointing to spike 

train #3. These dashed arrows indicate an absence of both connections. 

The result of analyzing functional connectivity is not in good agreement with the 

connection scheme shown in Fig. 5.10(a). The reason is that out of four spike trains, 

only three spike trains are analyzed at a time without considering the effect of the other 

spike train. In the connection scheme there is no connection from spike train 3 to spike 

train 2, however triplet analysis shows this spurious connection. The result in Fig. 

5.10(c) indicates that there are two significant influences (shown by solid arrows, all 

others are shown by the dashed arrows): from spike train #3 to spike train fl2, from 

spike train #2 to spike train #4, and the influence sfrengths are shown with their 

confidence intervals. 

As with pair-wise analysis, triplet analysis of Cox method identifies spurious 

connections from the four spike trains. Analyzing the first two groups of three spike 

trains {#1, #2, #3}, {#1, #2, #4} (Fig. 5.6(a)-5.6(b)) reveals the correct connectivity 

pattern but analysis of the other two groups of three spike frains {#!,#3,#4}, {#2, #3, 

#4} (Fig. 5.6(c)-5.6(d)) reveals two spurious connections which are from spike train #1 

to spike train #4 and spike train #3 to spike train #2. The reason for finding these 

spurious connections is that, in triplet analysis, effects of all four spike trains are not 

considered for identifying functional connectivity as with pair-wise analysis. 
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5.4.3 Analysis considering all four spike trains 

To identify the functional connectivity of the four spike trains by the Cox method, 

effects of all four spike trains are considered in finding influence strengths from the 

reference spike trains to the target spike train. 

\^^ Reference 
x,̂  spike train 

Target \ , 
spike train \ , 

1 

2 

3 

4 

1 

0 

2.790 
(2.264,3.316) 

3.275 
(2.738,3.812) 

0.307 
{-0.292. 
0.907) 

2 

0.338 
(-0.496, 1.174) 

0 

-0.818 
(-1.775,0.138) 

2.440 
(1.975, 2.905) 

3 

-0.014 
(-1.098,1.070) 

-0.326 
(-1.053,0.400) 

0 

0.228 
(-0.495, 0.952) 

4 

-0.287 
(-1.121,0.546) 

0.564 
(-0.145,1.274) 

-0.488 
(-1.435,0.457) 

0 

Table 5.5: Result of analysis of four spike trains by the Cox method considering the 
effects of all four spike trains. The estimates of Cox coefficients and corresponding 
confidence intervals are shown. Cox coefiicients which significantly differ from zero 
{i.e. the confidence interval does not include zero) are in bold. 

To apply the Cox method one spike train is considered as a target spike train and the 

other three spike trains are considered as reference spike trains. The influence functions 

are considered identical for all reference spike trains and are specified by the formula 

(5.3). The characteristic times are considered as T^ = 10 ms and Tr = 0.1 ms and the 

time lags A are obtained from the CCF method (Fig.5.4 and Table 5.3). First, spike train 

#1 is considered as the target and influences from reference spike trains #2, #3 and #4 to 

this target are estimated using (5.5) with confidence intervals using (5.6). Second, spike 

train #2 is considered as the target and influences from reference spike trains #1, #3 and 

#4 to this target are estimated with confidence intervals. Third, spike train #3 is 
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considered as the target and influences from reference spike trains #1, #2 and #4 to this 

target are estimated with confidence intervals and fourth, spike train #4 is considered as 

the target spike train and influences from reference spike trains #1, #2 and #3 to this 

target are estimated with confidence intervals. The Bonferroni correction is applied to 

the significance level a and the corrected significance level is considered as a = 

0 . 0 5 / 4 ( 4 - 1 ) = .0042. 

Table 5.5 summarizes the result of analyzing four spike trains by the Cox method 

considering all spike trains. Each row of the table shows the Cox coefficients 

characterizing the influence sfrength to the target spike trains. TTie first row of Table 5.5 

corresponds to the case that the first spike train is considered as a target and this row 

shows the estimates of Cox coefficients characterizing influences to the target spike 

train (#1) from the reference spike frains (#2 to #4): ^2: = 0.338, ^31 = -0.014. 

^41 = -0.287 with the corresponding confidence intervals. On the first row all the 

confidence intervals include zero, therefore functional connection from spike trains #2, 

#3 and #4 to the spike train #1 are concluded to be absent. 

On the second row there is only one Cox coefficient that significantly differs from zero 

(shown in bold) which characterizes the influence from spike train #1 to spike train #2. 

This non-zero influence strength is interpreted as strength of the fiinctional connection 

from spike train #1 to spike train #2 which is fi^2 = 2.8. All other Cox coefficients on 

the second row are not distinguishable from zero and the corresponding functional 

connections to the target spike train #2 are concluded to be absent. On the third row 

there is only one Cox coefficient that significantly differs from zero. This non-zero 

influence strength is interpreted as strength of the fiinctional cormection from spike train 

#1 to spike train #3 which is ^13 = 3.3. AH other Cox coefficients on the third row are 

not distinguishable from zero and the corresponding functional connections to the target 
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Spike train #3 are concluded to be absent. On the fourth row there is only one Cox 

coefficient that significantly differs from zero. This non-zero influence strength is 

interpreted as strength of the functional connection from spike train #2 to spike frain #4 

which is ^24 — 2-5. All other Cox coefficients on the fourth row are not distinguishable 

from zero and the corresponding functional coimections to the target spike train #4 are 

concluded to be absent. Thus, considering Table 5.5, it is concluded that there are three 

Cox coefficients that significantly differ from zero; therefore there are three fiinctional 

coimections of four spike trains. These functional connections are shown by circles in 

Fig. 5.11(b) and a radius of the circle is proportional to the relative strength of 

influence: a small radius corresponds to a relatively weak functional connection. The 

diagonal is shown by filled squares. 
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(a) (b) 

Figure 5.11: (a) Connection scheme of four spike trains in matrix format (the same as 
the scheme shown in Fig. 5.3(a) in graph format), (b) A diagram of functional 
connections of four spike trains obtained by the Cox method considering all spike trains 
at once. 

A comparison of the matrix of functional connectivity (Fig. 5.11(b)) with the matrix of 

connections (Fig. 5.11(a)), which has been used for simulation of spike frains, reveals a 

good correspondence between these two schemes of connections. Moreover, relative 

connection strengths have been correctly identified: circles with smaller radius 
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correspond to weaker connections (Table 5.1). The Cox method, considering the effects 

of all spike train at a time, ignores all 'spurious' connections and correctly finds the 

direct connections which have been used for data generation. For example, there is no 

direct connection between spike trains #1 and #4; however there is an indirect 

connection from spike train #1 to spike train #4 via spike train #2. This connection is 

identified by pair-wise analysis and triplet analysis of the Cox method but is not 

identified by the Cox method considering all four spike trains at once. Thus, it is shown 

that the Cox method can distinguish between "direct connection" and the connectivity 

due to a "common source' (or similarly, to distinguish 'direct' and 'indirect' 

connections) if all spike trains are included in the analysis. 

From this section using the analysis of four spike trains, it can be assumed that to 

identify the correct fimctional connectivity of multiple (/?) spike trains, all spike trains 

(p) should be analyzed at once. Though there are limitations of the pair-wise and triplet-

wise analysis, these methods are useful in certain conditions. For example, the similarity 

and dissimilarity measures are useful in order to identify the relationship among pairs of 

spike trains (Paiva et al., 2009). A traditional similarity or dissimilarity measure 

depends on the CCF method which is bin based. The use of pair-wise analysis to 

identify the relationship among the pairs of spike trains is useful and it shows a good 

result which is discussed in section 5.8. Motif analysis (Milo et al., 2002; Spoms and 

Kotter, 2004) is a useful technique to identify the patterns of intercoimections among 

the spike trains. A motif is a connected ^aph consisting of a certain number of vertices 

(neurons) with different patterns of edges. A motif with three vertices with different 

patterns of edges is useful in fmding the patterns of interconnections among the spike 

trains. To find these patterns, the triplet analysis of Cox method is a useful technique 

which is discussed in section 5.9. 
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5.5 Analysis of functional connectivity of five spike trains 

In this section an application of Cox method considering the effects of all spike trains at 

once is demonstrated for the identification of functional connectivity. A small neural 

circuit of five spike trains is considered, generated using the connection architecture 

shown in Fig. 5,12(a). The values of connection strength, time delay of spike 

propagation and time of decay of postsynaptic potential are given in Table 5.6. The 

values of the neuron parameters of the ELIF model are given in Table 5.7. 

Fig. 5.12(b) shows the raster plot of spiking activity of these five spike trains over a 

time interval of 20 seconds and the histogram of inter-spike intervals (ISIs) for each 

spike train are shown in Fig. 5.12(c). 

20.000 

Figure 5.12: (a) Connection scheme of the five spike train. There are five 
cormections which are shown by arrows, (b) Raster plot of five spike trains 
for the neural circuit (a) of the duration 20,000 ms. (c) ISI histograms of the 
five spike trains. 

200 4O0 

non zero 
generated 
generated 
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Connection strength (w) 

W4^i = 10.786 

W4^2 = 11.081 

W4^3 = 8.973 

Wi^4 = 7.354 

W3^s = 6.901 

Time delay (A) 

^41= 12 

A42= 10 

A43= 10 

Ai4= 10 

A35=6 

Decay time ( T , ) 

2.09 

1.63 

4.66 

4.35 

4.35 

Table 5.6: Connection strengths, time delays of spike propagation and decay times of 
postsynaptic potential that are used for generating five spike trains. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hypcrpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Mean 

45.00 

2.87 

14.83 

4.99 

9.97 

-28,87 

20.00 

0.10 

5.20 

S.D. 

0.68 

0.21 

1.07 

0.25 

0.04 

0.17 

0.00 

0.46 

2.38 

Table 5.7: Neuron parameters of the ELIF model of five spike trains. 
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Figure 5.13: Cross correlation function of the neural circuit of five spike trains. 

\ Reference 

\ spike train 

Target \ 

spike train \ 

1 

2 

3 

4 

5 

1 

0 

0 

21 

10 

0 

2 

2 

0 

0 

0 

0 

3 

2 

9 

0 

0 

6 

4 

12 

10 

10 

0 

0 

5 

0 

0 

0 

41 

0 

Table 5.8: Time lags obtained from Fig. 5.13. These time lags are used to get the full 
fiinctional connectivity of neural circuit of five spike train. 
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To apply the Cox method to this neural circuit of five spike trains, all the influence 

functions are considered identical and specified by formula (5.3) with the characteristic 

times Ts = 10 ms and T^ = 0.1 ms. The time lags A are obtained from the CCF method 

(Fig. 5.13). The highest peak outside the confidence interval is interpreted as an 

indicator of influence and the corresponding time shift of the CCF is considered as a 

time lag corresponding to delay of spike propagation. Time lags are summarized in the 

Table 5.8 and these values are used for analyzing the functional connectivity. 

Funcfional connections of these five spike trains can be derived by estimating the 

parameters of the Cox method with their confidence intervals using (5.5) and (5.6), 

taking one spike train as the target and finding the influence firom the other four spike 

trains to this target. To define a complete diagram of functional connectivity the 

procedure is repeated for each target spike train, each time estimating the parameters of 

the Cox method and confidence intervals to the target. Thus, for these five spike trains 

this procedure should be repeated five times. 

Table 5.9 summarizes the result of analyzing spike trains by the Cox method. Each row 

of the table shows the Cox coefficients characterizing the influence strength to the target 

spike trains. The first row of Table 5.9 corresponds to the case that the first spike frain is 

considered as a target and this row shows the estimates of Cox coefficients 

characterizing influences to the target spike train (#1) from the reference spike trains 

(#2 to #5): /521 =0.5, ^31=0.2, ^41=1.6, /?5i =0.09. Also the corresponding 

confidence intervals (the confidence level here is 0.95) are shown. These intervals are 

used to test the null hypothesis that the Cox coefficient is zero: if the confidence interval 

includes zero then the null hypothesis should be accepted and it is concluded that there 

is no influence fixtm the reference spike train to the target (i.e. influence sfrength is 

zero). On the first row there is only one Cox coefficient that significantly differs from 
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zero (shown in bold) which characterizes the influence from spike train #4 to spike train 

#1. This non-zero influence strength is interpreted as strength of the functional 

connection from spike train #4 to spike train #1 and the strength is ^41 = 1.6. All other 

Cox coefficients on the first row are not distinguishable from zero and the 

corresponding functional connections to the target spike train #1 are absent. This 

procedure of estimation of Cox coefficients is repeated for the target spike train #2 and 

the result is shown in row 2, etc. 

\ Reference 

\spikc train 

Target \ 

spike train \ 

1 

2 

3 

4 

5 

1 

0 

-0.2 

(-1.0,0.4) 

0.5 

(-0.06, 1.2) 

1.2 

(0.7, 1.8) 

-0.1 

(-0.8. 0.6) 

2 

0.5 

(-0.09,1.1) 

0 

-0.3 

(-1.0,0.4) 

-0.1 

(-0.9, 0.6) 

-0.2 

(-1.1,0.5) 

3 

0.2 

(-0.4, 0.9) 

0.4 

(-0.1,1.1) 

0 

0.1 

(-0.5, 0.8) 

1.2 

(0.7,1.8) 

4 

1.6 

(1.1,2.1) 

1.9 

(1-4, 2.4) 

1.1 

(0.5,1.7) 

0 

0.003 

(-0.7, 0.7) 

5 

0.09 

(-0.6, 0.8) 

0.3 

(-0.3,1.0) 

-0.2 

(-1.1,0.5) 

-0.2 

(-1.0,0.5) 

0 

Table 5.9: Result of analysis of five spike trains by the Cox method. The estimates of 
Cox coefficients and corresponding confidence intervals are shown. Cox coefficients 
which significantly differ from zero (i.e. the confidence interval does not include zero) 
are in bold. 
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Thus, considering Table 5.9 it is concluded that there are five Cox coefficients that 

significantly differ ft^om zero; therefore there are five functional connections between 

spike trains, these are: 0^^ = 1.6, ^42 = 1.9, 5̂43 = 1.1, p-^^ = 1.2, ^35 = 1.2. These 

fiinctional connections are shown by circles in Fig. 5.14(b) and the radius of the circle is 

proportional to the relative strength of influence: a small radius corresponds to a 

relatively weak functional connection. The diagonal is shown by filled squares. 
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(a) (b) 

Figure 5.14: (a) Connection scheme of five spike trains in matrix format (the same as 
the scheme shown in Fig. 5.12(a) in graph format), (b) A diagram of functional 
connections of five spike trains obtained by the Cox method. 

Comparison of the matrix of functional connectivity (Fig. 5.14(b)) with the matrix of 

connections (Fig. 5.14(a)), which has been used for simulation of spike trains, reveals a 

good correspondence between these two schemes of connections. Moreover, relative 

connection strengths have been correctly identified: circles with smaller radius 

correspond to weaker connections (Table 5.6). 

To emphasize the importance of this result, it is noted that the diagram of connectivity 

in Fig. 5.12(a) contains direct connections shown by arrows (e.g. from spike train #4 to 

spike train #3) and some 'spurious' coimections: i.e., connections due to a "common 

source' and connections due to 'indirect coupling'. For example, there is no direct 
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connection between spike trains #1 and #2; however, spike train #4 is a common source 

which delivers spikes to both spike trains (#1 and #2). Again, there is no direct 

connection between spike trains #1 and #3. however, there is an indirect influence 

(coupling) from spike train #1 to spike train #3 via spike train #4. Thus, from this 

example it is shown that the Cox method can distinguish between 'direct connection' 

and the connectivity due to a 'common source' (or similarly, to distinguish 'direct' and 

'indirect* connectioi^). 

5.6 Analysis of functional connectivity of twenty spike trains 

In this section a relatively large set of twenty spike trains is analyzed which are 

generated by the ELIF model with twenty elements and with forty two connections. A 

diagram of connections is shown in Fig. 5.15(a). 

5,000 KLOOO 

(C) 

1S.DD0 xuoa 

Figure 5.15: (a) Connection scheme of the twenty spike trains. There are forty two non 
zero connections which are shown by arrows, (b) ISI histograms of the first four 
generated spike trains, (c) Raster plot of twenty spike trains generated for the neural 
circuit. This raster plot shows a portion of time (20,000 ms) of the duration 50,(M)0 ms. 
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Parameter values of the ELIF model are similar to the parameter values which have 

been used in the previous example of five spike trains. Parameter values of the ELIF 

model are given in Table 5.10. A simulation has been run over a time interval of 50 

seconds and Fig. 5.15(c) shows an initial part of the raster plot of twenty spike trains 

generated by the model (from zero to twenty seconds). Fig. 5.15(b) shows an example 

of the four ISI histograms of spike trains #1 to #4. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Connection parameter 

Connection strength 

Decay rate of postsynaptic potential 

Time lag of spike propagation 

Mean 

45.12 

3.02 

14.47 

5.06 

10.01 

-29.10 

20.03 

0.009 

4.75 

10.44 

2.96 

10.14 

S.D. 

0.97 

0.30 

1.02 

0.35 

0.03 

0.41 

0.78 

0.40 

1.51 

1.85 

0.78 

2.26 

Table 5.10: Parameter values of the ELIF model to generate twenty spike trains. 

The procedure for analyzing the functional connectivity is the same as with the neural 

circuit of five spike frains. The target spike train is selected and the other nineteen spike 

trains are considered as reference spike trains. All the influence functions are considered 
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identical and specified by the formula (5.3). The characteristic times are the same as in 

the case of five spike trains TJ = 10 ms and T^ = 0.1 ms. To select a proper time lag 

for the influence function the pair-wise CCF between the reference spike train and the 

target spike train is calculated and the highest significant peak is identified. The 

corresponding time shift of the CCF is used as the value of time lag A. Thus, the 

influence function is defined and the estimates (fiuPz- —•^13) of Cox coefficients and 

their confidence intervals are calculated. 

To simplify, the result of data analysis is compared with the connection scheme used for 

data generation, both the connection schemes in matrix format are shown in Fig. 5.16. 

Fig. 5.16(a) shows connections of a neural circuit of twenty ELLF elements used for 

data generation (the same scheme is shown in Fig. 5.15(a) in a graph format). 

Fig 5.16(b) shows a diagram of functional connections in matrix format which have 

been identified by the Cox method. The results from twenty repetitive applications of 

the Cox method give a matrix of fimctional connectivity in Fig. 5.16(b). The first row of 

the matrix corresponds to the case when the first spike train is selected to be a target; the 

second row corresponds to the case when the second spike train is the target, etc. A 

circle indicates that there is a significant influence (fimctional connection) to the target 

spike train and the radius of the circle shows the relative strength of the influence. 

Comparison of the connectivity matrix in Fig. 5.16(a) with the matrix in Fig. 5T6(b) 

shows that the Cox method correctly identifies all forty two direct connections between 

spike trains. The connectivity matrix is derived from the repetitive testing of the null 

hypothesis that there are no dependencies between the target and reference spike trains, 

using the Cox method. In the hypothesis testing, two null hypotheses of independence 

are incorrectly rejected. These two false positive connections are shown by green circles 
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(Fig. 5.16(b)) and these erroneous connections are not present in the circuit of the spike 

train generation. 
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Figure 5.16: (a) Connection scheme of the neural circuit of twenty spike trains in 
matrix format (the same as a scheme of connections in a graph format in Fig. 5.15(a)). 
(b) Functional connections identified by the Cox method, (c) Functional connections 
obtained by the CCF method. 

Fig. 5.16(c) shows the matrix of fiinctional connectivity which has been constructed by 

using the pair-wise CCF technique. Comparison of this matrix with the matrix of 

connections which have been used for data generation shows that all forty two null 

hypotheses of independency are correctly rejected. It means that all forty two non-zero 

connections have been correctly identified. However, in addition, fifteen null 
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hypotheses of independency are incorrectly rejected. Thus, there are fifteen type I errors 

(false positives) and the corresponding non-zero erroneous connections are shown by 

green circles (Fig. 5.16(c)). The radius of circles corresponding to these erroneous non­

zero connections is relatively large; therefore, strength of erroneous influence is also 

relatively large. From this example it can be shown that the Cox method has some 

advantages over the CCF technique. 

5.7 Cox method versus CCF 

In this section the Cox method is compared with a traditional technique based on the 

CCF and the advantages of the Cox method are shown, especially in cases which are 

difficult for analysis. The CCF is a pair-wise method and therefore in this section it is 

mainly the connection of two spike trains that are analyzed. The main assumption of the 

Cox method is that the target process is the MRP with the hazard fijnction described by 

formula (5.1). A probabilistic model has been developed to generate the MRP which is 

discussed in chapter 4. It is expected that for this data the estimate p of the Cox 

coefficient equals the influence strength /? in formula (5.1). Of course, in the general 

case of data generation using the ELIF model, it is not expected that the target spike 

train is a MRP. However, in this section it is demonstrated that the Cox method can be 

successfully applied to analyse fionctional connectivity and that the estimate ^ 

monotonically increases with increase of connection strength in generated data. Also, in 

this section connectivity of three spike trains generated by the ELIF model with 

'common source' connections is studied. This connection scheme is very difficult for 

analysing by pair-wise methods and in particular by the CCF. It is shown that for the 

neural circuit of three spike trains, the Cox method can analyse three spike trains at once 

to identify functional connectivity. In a similar way another set of three spike trains with 

'indirect' connections, is studied. 
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5.7.1 Analysis of two spike trains 

In this section two spike trains, A (target) and B (reference), are generated using the 

probabilistic model discussed in chapter 4 with a connection from B to A denoted by 

PBA- The reference spike train B is generated with a gamma-distribution y(5,3) of inter 

spike intervals. The influence function from reference spike train B to target spike train 

A is specified by (5.4) with characteristic times T^ = Tr = 5 and time lag A= 0. The 

backward recurrence time of spike train A is calculated using a WeibuU distribution 

iy(15,5). Using these values the target spike train A can be generated with the formula 

(5.1). After generating the target spike train A and the reference spike train B, the Cox 

method and the CCF method are used for estimating the connection strength /Jg^. 

To apply the Cox method, the influence function is specified by (5.4) with characteristic 

times Tj = Tr = 5 ms and zero time lag (A= 0). The Cox coefficient PBA is estimated 

using (5.5) and the confidence interval using (5.6). Also, the CCF has been calculated 

and the value of the highest peak outside of the confidence interval pg^ is considered as 

an estimate of the connection strength. Of course, if there are no peaks outside of the 

upper bound of the confidence interval, the connection strength is considered to be zero 

3nd PB_4 = 0. In this section some advantages of the Cox method, both in the case of 

short spike trains and in the case of a weak coupling, are demonstrated. 
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n m ti« tM ta 

Figure 5.17: Estimate of the Cox coefficient and CCF measure for two spike trains. 
Estimated Cox coefficients are shown by black circles and the confidence interval of the 
estimates are shown by black vertical lines. Estimated measures of independency using 
CCF are shown by black cross sign, (a) Moderate and strong influence. Eight pairs of 
spike trains are generated using the probabilistic model taking the strength of influence 
from the range from 0.5 to 4: ^g^ = (0.5,1,1-5,2,2.5,3,3.5,4). The average number of 
spikes in the reference spike train B is about 400. Estimated Cox coefficients PBA 
identify accurately all the strengths of influences (blue line with circle markers and 
vertical black bars for confidence intervals) and are monotically increasing. The highest 
peaks PBA of the CCF (independency measure) are shown by the magenta line (with 
cross markers), they also can identify functional connectivity but do not demonstrate a 
monotonic increase, (b) Short spilte train. A short version of eight pairs of spike trains 
described in (A) are considered. The average number of spikes in the reference spike 
train B is about 70. The estimated Cox coefficients Pg^ identify accurately all the 
strengths of influences PBA except for one (PBA — 0-5) and demonstrate a monotonic 
increase. The independency measure of CCF (PBA) show connection for large strength 
but they fail to identify connection for Pg^ = (0.5,1). Also these values do not 
demonstrate a monotonic increase, (c) Weak influence. Eight pairs of spike trains are 
generated with weak influences PBA = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). The number 
of spikes in the reference spike train B is about 1400. Estimated Cox coefficients 0BA) 
identify accurately all these strengths of influences (J3BA) and are monotonically 
increasing. Independency measures of CCF (PBA) identify functional connectivity 
though they do not indicate an increase of influence, (d) Length of spike train. Eight 
pairs of spike trains of a different length are generated keeping the same connection 
strength PBA = 1- The length n of the reference spike train B increases: n = 
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50,60, ,120. Estimated Cox coetBcients (^BA) 3 ^ almost constant for all lengths 
but indqiendency measures of CCF {PBA) fail to identify strengths of influences for 
shorter lengths of reference spike trains (n= 50,60, 70, 80). 

Moderate and h i ^ strengths of influence. Varying the strength of influence ^g^ in a 

range from moderate to high, eight pairs of spike trains are generated and for each pair 

connectivity is analyzed. The average number of spikes in the reference spike train B is 

about 400 and the target spike train A has a larger number of spikes. The blue line in 

Fig. 5.17(a) shows the estimated Cox coefficient ^SA (with its corresponding confidence 

interval which is shown by a black vertical bar) versus the strength of influence ^g^. 

This plot shows that the estimated values axe close to the values which have been used 

for data generation. The magenta line shows the independency measure of the 

CCF(PB^) versus the strength of influence /Jg^. It is clear from Fig. 5.17(a) that the 

CCF also identifies this connection, however, the plot of the CCF(PB^) is not 

monotonically changing and fails to indicate the increase of influence. 

Short spike trains. To test sensitivity of the Cox method in the case of short spike trains 

the same pairs of spike trains are used as in the previous example with the epoch time 

shortened and considering only a part where the independent spike train has about 70 

spikes. Thus a time epoch is about six times shorter than in the previous example. 

Fig. 5.17(b) shows the estimate of Cox coefficient ^g^ versus the strength of 

influence ^g^ for the moderate and high strengths of influence (shown by the blue line 

with the black vertical bars of confidence intervals). This line shows that the estimated 

values are similar to the strengths which have been used for data generation with only 

one exception: for ^g^ = 0.5 the confidence interval contains zero and therefore the 

Cox coefBcient is not distinguishable from zero. The magenta line in Fig. 5.17(b) shows 

that the CCF fails to identify functional connections for the moderate influences pg^ = 

(0.5,1). For the higher influences PBA = (1-5,2,2.5,3,3.5,4) the CCF measure is 
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nearly constant and fails to indicate the increase of influence. Theretbre, the Cox 

method has some advantages in the case of short spike trains. 

Weak influence. To test the efficiency of methods and to identify weak connection 

strength the same probabilistic model is used for generating another e i ^ t pairs of spike 

trains with weak influence; PBA = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). hi this case the 

time epoch should be long enough {about 1400 spikes in the reference spike train B) to 

allow distinguishing of weak influence connections. Fig. 5.17(c) shows that both 

methods demonstrate good results and identify the connection. The Cox coefficient 

increases with the connection strength increase but the CCF measure is not 

monotonically increasing. 

Sensitivity to the length of spike trains. How sensitivity of the methods depends on the 

length of spike trains, under a constant value of the influence strength, is studied. The 

conclusion is that for shorter spike trains the Cox method identifies the connection but 

the CCF method fails. The strength of influence jffĝ  = 1.0 is relatively small. The value 

of influence strength is fixed and eight pairs of spike trains are generated with different 

numbers of spikes in the reference spike train B: n = 50,60, ,120. Fig. 5.17(d) 

shows that the estimated Cox coefficient is almost constant 0gA = 1) and does not 

depend on the length of spike train. The CCF measure (_PBA) identifies the connection 

for the larger spike trains in- 90, 100, 110, 120) but fails to identify a strength of 

influence for the shorter lengths of reference spike trains (n= 50, 60, 70, 80). 

5.7.2 Analysis of three spike trains 

Here it is shown that the Cox method is very effective in analyzing connections which 

are not direct such as 'common source' circuits (Fig. 5.i8(a)) and "indirect connection' 

circuits (Fig. 5.20(a)). Usually it is very difficult to analyze these types of connections 
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using the pair-wise CCF technique. The Cox method is multivariate and can analyze 

three spike trains at once, making this method more sensitive than pair-wise CCF. For 

example, this advantage enables the Cox method to distinguish between 'direct" 

connections and connections due to a "common source" in case of a moderate influence 

from the common source. 

5.7.2.1 Common source connection 

Three spike trains {{#1, #2, #3}) are generated using ELIF with the parameters given in 

Table 5.11 and with a 'common source' connection (Fig. 5.18(a)). The 'common 

source' circuit includes two connections from spike train #1 to spike frains #2 and #3. 

Connection strengths are 12,6 and 10.6; delays of spike propagation are 11 ms and 14 

ms, respectively. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Mean 

44.70 

2.83 

14.40 

4.59 

10.01 

-28.68 

19.85 

0.16 

7.00 

S.D. 

0.36 

0.46 

0.47 

0.49 

0.02 

0.68 

0.48 

0.23 

1.73 

Table 5.11: Neuron parameters of the ELIF model of two spike trains with common 
source connection. 
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These three spike trains are analyzed by the Cox method with the influence function 

given by formula (5.3), characteristic times are r^ = 10 ms and r^ = 0.1 ms. To 

prescribe the time lags the CCF function is calculated for all pairs of spike trains 

(Fig. 5.19): Ai2= 11ms, ^i^^ 14ms, ^23= 3ms, and all other time lags are zero. It is 

assumed that the target spike train is #/£, (fc = 1,2,3). The estimates {Puc.Pjk) (.'• ~ 

1,2,3;J = 1,2,3; ^ = lf2,3, i ^ j,i ^ k.,j =t^ k) of two Cox coefficients have been 

calculated using formulas (5.5) and (5.6) as well as a confidence region on the plane 

{Ptk-Pjk} using formula (5.7). The confidence region (a = 0.05) has an elliptic shape 

and the centre of the confidence region is located at jwint {Puc.Pjk}-

fti=0,2 (-0.1.0.4) 
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Figure 5.18: (a) Connection scheme of three spike trains which have common source. 
Spike train #1 influences both spike train #2 and spike train #3 with time delays 11 ms 
and 14 ms, respectively, (b) Confidence regions of the estimated Cox coefficients in 
three cases: influences to spike train #! (left), influences to spike train #2 (middle), 
influences to spike train #3 (right), (c) Estimated coefficients of the Cox method with 
confidence intervals. Significant connections are indicated by solid arrows. 
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Fig. 5.18(b) shows three confidence regions. The region on the left side corresponds to 

the target spike train #1; the region in the middle corresponds to target spike train #2, 

the region on the right side corresponds to target spike train #3. It is shown in Fig. 

5.18(b) that the region on the left side contains zero, therefore it is concluded that both 

connections to spike train #1 are absent. This result is shown in Fig. 5.18(c) by two 

dashed arrows pointing to #1. These dashed arrows indicate an absence of both 

connections. 

The region in the middle does not contain the origin and this indicates that the null 

hypothesis should be rejected. The centre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (^12 < ^3z) • The projection to the vertical axis 

^32 contains zero, therefore, it is concluded that the null hypothesis should be accepted 

and that the connection from #3 to #2 is absent. The projection to the horizontal axis ̂ 12 

does not contain zero, therefore, it is concluded that the null hypothesis should be 

rejected and the estimate ^12 is the strength of the connection fi'om #1 to #2. This result 

is shown in Fig. 5.18(c) by two arrows pointing to #2: the dashed arrow indicates the 

absence of a connection from #3 to U2 and the soHd arrow indicates presence of a 

connection from #1 to #2 and the value of connection strength is /j]2 = 2.6. The region 

on the right side can be interpreted in a similar way. The result is shown in Fig. 5.18(c) 

by two arrows pointing to #3: the dashed arrow indicates the absence of a connection 

from #2 to #3 and the solid arrow indicates the presence of a cormection from #1 to #3 

and the value of the connection sfrength is ^13 = 1.7. 

The results of analysis are in good agreement with the architecture of connections which 

were used to generate the data (compare Fig 5.18(a) with Fig. 5.18(c)). For example, for 

data generation, a higher coimection sfrength was selected for connection from #1 to #2 
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and the estimated connection strength from #1 to #2 is also higher than the estimated 

connection strength from #1 to #3. 

Thus, the result in Fig. 5.18(c) indicates that there are two significant influences only 

(shown by solid arrows, all others are shown by the dashed arrows): from spike train #\ 

to spike train #2, from spike train #1 to spike frain #3, and the influence strengths are 

shown with their confidence intervals {a = 0.05). 
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Figure 5.19: Pair-wise cross correlation fimctions of three spike trains. Each CCF is 
shown for selected pairs of spike trains (called target and reference). Diagram of 
connections (common source) is shown in Fig. 5.18(a)-

Fig. 5.19 illustrates the result analyzing of the same three spike trains by the pair-wise 

CCF method. Each row of the figure shows two CCF corresponding to the selected 

target spike train - spike train #1 is the target for the first row, spike train #2 is the 

target for the second row, etc. The CCF analysis reveals three connections: from spike 
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train #1 to spike train #2 (second row, first coluom), fiom spike train #1 to spike train 

#3 (third row, first column), and from spike train #2 to spike train #3 {third row, second 

column). The first two of these connections correspond well to the diagram of 

connectivity (Fig. 5.18(a)) but the third one is erroneous and this connection appears to 

be due to the common source to spike trains #2 and #3. Thus, the Cox method is able to 

distinguish the common source from the direct connections but the CCF method fails. 

5.7.2.2 Indirect connection 

Similar to the previous example, a set of three spike trains ({#1, #2, #3}) are generated 

using the ELIF model with the parameters given in Table 5.12 and with indirect 

connections (Fig. 5.20(a)). The 'indirect connection' circuit includes two direct 

influences: from spike train #1 to spike train #2 with the time lag 11 ms, and from spike 

frain #2 to spike train #3 with the time lag 12 ms. The connection strengths are 11.2 and 

9.1, respectively. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

Extemal input 

Absolute refractory period 

Mean 

45.20 

2.93 

15.20 

4.67 

10.00 

-28.92 

19.56 

0.08 

6.00 

S.D. 

0.74 

0.51 

1.06 

0.50 

0.009 

0.64 

0.78 

0.33 

3.46 

Table 5.12: Neuron parameters of the ELIF model of two spike trains with indirect 
connection. 
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To analyse fimctional connectivity by the Cox method with the influence function given 

by fonnula (5.3), the characteristic times are specified as Tj = 10 ms and T̂  = 

0.1 ms . To specify a time lag the CCF is calculated for all pairs of spike trains 

(Fig. 5.21): Ai2= 11ms, ^23= 12ms, Ai3= 23 ms, and all other lags are zero. It is 

assumed that the target spike train is #/c, (fc = 1,2,3)- The estimates {0iic,$jk) (i = 

1,2,3;7 = 1,2,3; k = 1,2,3,1 ^ },l^ k.j ^ k) of two Cox coefficients have been 

calculated using formulas (5.5) and (5.6) as well as a confidence region on the plane 

{Pik-Pjk} using formula (5.7). The confidence region (a = 0.05) has an elliptic shape 

and the centre of the confidence region is located at point (^j^, Pj^). 
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Figure 5.20: (a) 'Indirect connection" scheme of three spike trains. Spike train #1 
influences spike train #2. which influences spike train #3, with time delays 11 ms and 
12 ms, respectively, (b) Confidence regions of the estimated Cox coefficients in three 
cases: influences to spike train #1 (left), influences to spike train #2 (middle), influences 
to spike train #3 (right), (c) Estimated coefficients of the Cox method with confidence 
intervals. Significant connections are indicated by solid arrows. 
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Fig. 5.20(b) shows three confidence regions. The region on the left side corresponds to 

the target spike train #1; the region in the middle - target spike train #2, the region on 

right side - target spike train #3. The region on the left side contains zero, therefore both 

connections to spike train #1 are concluded to be absent. This result is shown in Fig. 

5.2Q(c): two dashed arrows pointing to #1 indicates the absence of both connections. 

The region in the middle does not contain the origin and this indicates that the null 

hypothesis should be rejected. Tlie centre of the confidence region is shown by the blue 

cross and its coordinates are the estimates (̂ 12 ,^32) • The projection to the vertical a.xis 

^32 contains zero, therefore, it is concluded that the null hypothesis should be accepted 

and the connection from #3 to #2 is absent. The projection to the horizontal a.xis ^^2 

does not contain zero, therefore, it is concluded that the null hypothesis should be 

rejected and the estimate P12 is the strength of connection from #1 to #2. This result is 

shown in Fig. 5.20(c) by two arrows pwinting to the #2: the dashed arrow indicates the 

absence of a cormection from #3 to #2, the solid arrow indicates the presence of a 

connection from #1 to #2, and the value of the connection strength is ^^2 ~ 2-3. 

The region on the right side can be interpreted in a similar way. The result is shown in 

Fig. 5.20(c) by two arrows pointing to #3: the dashed arrow indicates the absence of a 

connection from #1 to #3, the solid arrow indicates the presence of a connection from 

#2 to #3, and the value of the connection strength is ^23 = 1-5-
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Figure S.21: Pair-wise cross correlation functions of three spike trains. Each CCF is 
shown for selected pair of spike trains (called target and reference). Diagram of 
connections (indirect connection) is shown in Fig. 5.20(a). 

The results of analysis are in good agreement with the architecture of connections which 

were used to generate the data (compare Fig 5.20(a) with Fig. 5.20(c)). For example, for 

data generation, a higher connection strength was selected for connection from #1 to #2 

and the estimated connection strength from #1 to #2 is also higher than the estimated 

connection strength from #2 to #3. 

Thus, the result in Fig. 5.20(c) indicates that there are two significant influences only 

(shown by solid arrows, all others are shown by the dashed arrows): from spike train #1 

to spike train #2, from spike train #2 to spike train #3, and the influence sfrengths are 

shown with their confidence intervals (a = 0.05). 
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Fig. 5.21 illustrates the result of analyzing the same three spike trains by the pair-wise 

CCF method. Each row of the figure shows two CCF corresponding to the selected 

target spike train - spike train #1 is the target for the first row, spike train #2 is the 

target for the second row, etc. The CCF analysis reveals three connections: from spike 

train #1 to spike train #2 (second row, first column), fi^om spike train #2 to spike train 

#3 (third row, second column), and from spike train #1 to spike train #3 (third row, first 

column). The first two of these connecfions correspond well to the diagram of 

connectivity (Fig. 5.20(a)) but the third one is spurious (from #1 to #3) and this 

connection appears to be due to the 'indirect' connection from trains #1 to train #3. 

Thus, the Cox method is able to distinguish the 'indirect' connection from the direct 

connections but the CCF method fails. 

5.8 Cox metric 

Spike train similarity or dissimilarity measures are important tools to quantify the 

relationship among pairs of spike trains (Paiva et al., 2009). Such measures are essenfial 

for classification, clustering, or other forms of spike frain analysis. By using a distance 

measure it is possible to idenfifythesimilarityordissimilarity of the pair of spike trains. 

If the distance between two spike frains is small enough then it can be assumed that 

these spike trains are 'identical". A traditional measure of similarity between two spike 

trains is based on the calculation of the pair-wise cross-correlation fijnction (CCF) 

(Perkel et al., 1967). It is a bin based method which requires stationarity and a 

sufficiently large length of spike trains. There are several binless spike train similarity 

measures (Victor and Purpura, 1997; van Rossimi, 2001; Schreiber et al, 2003; Himter 

and Milton, 2003; Kurtz et al, 2007; and Floughton, 2009). In this section a new binless 

spike train metric is proposed which is based on the pair-wise analysis of the Cox 

method and hence the name Cox metric. The Cox metric is used to identify the groups 

142 



Chapter 5 Cox Method 

of similar spike trains, between multiple spike trains, with a clustering algorithm. This 

is a mathematical metric which has the following properties: 

1. diSPTA,SPTs) > 0 (non-negativity) 

2. diSPTA.SPTA) - 0 

3. dCSPT^.SPTB) ^ diSPTe.SPTA) (symmetry) 

4. d(_SPTA,SPTc) < diSPTA.SPTe) + dC^SPTB.SPTc) (triangle inequality) 

where SPT^.SPTB are pairs of spike trains. 

The Cox metric is based on the pair-wise estimate of the Cox coefficient (Jiij) from (th 

spike train to ; th spike train (i = 1,2, ,p, j = 1,2, ,p, i ^ / ) , where p is the 

total number of spike trains. Estimation of the pair-wise Cox coefficient (fiij) and the 

confidence interval are described in section 5.3.1 and an example is given in section 5.4 

for four generated spike trains. If the confidence interval contains zero, then it is 

concluded that the corresponding Cox coefficient is not distinguishable from zero and 

the influence from spike train i to spike train ; is absent. If the confidence interval does 

not include zero, it is concluded that there is a significant influence from spike train i to 

spike train y and the value of the estimate characterizes the strength of this influence. 

In fact, the Cox coefficient (fiij) from ( th spike frain to ) th spike frain can also be 

estimated considering all spike trains at once instead of pair-wise analysis. The analysis 

based on all spike trains at once identifies better functional connections than the pair-

wise analysis which is demonstrated in section 5.4. Analysis based on all spike trains at 

once takes very long computation time. For example, analysing 30 spike frains at a time 

each have 1000 spikes (average) needs 16 minutes in FORTRAN on a PC computer 

with 2.8 dual core processor. On the other hand, the pair-wise analysis is faster than the 

analysis based on all spike trains at once. For example, the same 30 spike trains needs 
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only 26 seconds in FORTRAN. More importantly, the Cox metric based on pair-wise 

analysis and all spike trains at once produces similar result. 

To formulate the Cox metric, it is assumed that Cox coefficient from spike train i to 

spike train j ifiif) is the same as the Cox coefficient from spike train j to spike train 

(/?ji), i.e., they are symmetric. To get the symmetric Cox coefficient, the maximum 

value of ifiij) and {p,i) is taken as a measure of functional connectivity between spike 

trains i and / . Thus, a symmetric matrix of functional connectivity is obtained from p 

spike trains. This matrix is considered as a matrix of similarities between p spike frains. 

Thus, the pair of spike trains whose Cox coefficient has the largest value in the 

similarity matrix is considered to be the most similar pair of spike trains. The distance 

between two points i and j in the clustering algorithm is considered as a difference 

between the maximum Cox coefficient in the similarity matrix and the Cox coefficient 

between spike trains i and). Thus, a metric (distance) between spike train i and spike 

train j is calculated: 

Djy = max^iy-max(^^y,/?y,), i,;" = 1,2, ,p, i^j (5.8) 

hi combination with a clustering algorithm this metric is used for finding fiinctional 

connectivity and identifying the groups of interacting neurons, hi the clustering 

algorithm the average linkage is used for calculating a distance between clusters. 

5.8.1 Application to twenty spike trains 

To apply the Cox metric to generated data, a set of twenty spike trains is generated with 

the ELIF model. The connection diagram includes forty nine connections and the 

connections are coupled into five groups. A diagram of connections is shown in 

Fig. 5.22. Parameter values of the ELIF model are given in Table 5.13. A simulation has 

been run over the time interval of 50 seconds. 
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Figure 5.22: Connection schemeof the twenty spike train. There are forty nine non zero 
connections which are shown by arrows. These forty nine connections are coupled in 
five groups. 

In order to apply the Cox metric to the twenty spike trains the pair-wise analysis of the 

twenty spike trains is conducted. A total of 380 possible pairs of spike trains are 

analyzed by the pair-wise Cox method taking one spike train as a target (y) and the 

other spike train as a reference (i). All the influence functions are considered to be 

identical and specified by (5.3) with the parameters TJ- = 0.1ms and T^ = 10 ms. 

Another parameter, time lag A of the influence function, is specified by the pair-wise 

CCF method. Now using the parameter values T^ = 0.1 ms and r^ = 10 ms, and time 

lags A obtained from CCF, the parameters of pair-wise analysis of the Cox method are 

estimated using (5.5) with the corresponding confidence interval by (5.6). Fig. 5.23(a) 

shows the connection of the twenty spike trains used for data generation (the same 

scheme is shown in Fig. 5.22 in a graph format). Fig 5.23(b) shows a diagram of 

fiinctional connections in matrix format which has been identified by the pair-wise Cox 
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method. A circle indicates that there is a significant influence (functional coimection) 

from the reference spike train (i) to the target spike train (J) and the radius of the circle 

shows the relative strength of the influence. Comparison of the connectivity matrix in 

Fig. 5.23(a) with the matrix in Fig. 5.23(b) shows that the pair-wise analysis of the Cox 

method correctly identifies all forty nine direct connections. This result is accurate 

enough, however, there are eight erroneous connections shown by small red circles. 

Neuron parameter 

Maximum value of the threshold 

Threshold decay rate 

Asymptotic threshold value 

Amplitude of the noise 

Noise decay rate 

Initial value of after spike hyperpolarisation 

Soma's membrane potential decay rate 

External input 

Absolute refractory period 

Connection parameter 

Connection strength 

Decay rate of postsynaptic potential 

Time lag of spike propagation 

Mean 

44.93 

2.92 

14.47 

4.94 

10.02 

-28.84 

20.15 

-0.03 

5.20 

12.35 

2.80 

11.73 

S.D. 

1.17 

0.46 

1.08 

0.38 

0.03 

0.42 

0.76 

0.38 

1.60 

1.11 

0.73 

1.33 

Table 5.13: Parameter values of the ELIF model to generate twenty spike trains. 

The Cox metric is also applied to the connectivity matrix obtained by the Cox method 

considering all spike train at once. Using the same parameter values of the pair-wise 

analysis, the parameters of the Cox coefficient and their confidence intervals are 
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estimated considering all spike trains at once. Fig 5.23(c) shows a diagram of fimctional 

connections in matrix format which has been identified by the Cox method considering 

all spike frains at once. Comparison of the connectivity matrix in Fig. 5.23(a) with the 

matrix in Fig. 5.23(c) shows that the Cox method considering all spike trains at once 

correctly identifies all forty nine direct cormections with only three erroneous 

connections shown by the small red circles. 

In the Cox metric it is assumed that the Cox coefficients (fiij) and (fiji) are symmetric, 

for example, in Fig. 5.23(b) there is a connection from spike train #12 to spike train #1 

but there is no connection from spike train #1 to spike train #12. In the Cox metric it is 

also assumed that there is a connection fi-om spike train #1 to spike train #12 with the 

same strength as from spike train #12 to spike train #1. Again, in the connection matrix 

there is a connection from spike train #1 to spike train #10 and from spike train #10 to 

spike train #1, but the connection sfrength from spike train #1 to spike train #10 is 

sfronger than the connection strength from spike train #10 to spike train #1. In the Cox 

metric it is assumed that both connections are the same and the connection sfrength is 

considered to be the maximum of these two connection strengths, which in this case is 

from spike train #1 to spike train #10. After having the symmetric matrix of fiinctional 

connections the Cox metric is obtained by (5.8). A clustering algorithm is applied to the 

Cox metric which enables the identification of the groups of similar spike frains in the 

set of twenty spike trains. The result of the clustering algorithm applied on the Cox 

metric is presented in Fig. 5.24. 
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Figure 5.23: (a) Connection scheme of twenty spike trains in matrix format (the same 
as the scheme shown in Fig. 5.22 in graph format), (b) A diagram of functional 
connections of twenty spike trains obtained by the pair-wise analysis of Cox method, (c) 
A diagram of functional connections of twenty spike trains obtained by the Cox method 
considering all spike trains at once. 
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Figure 5.24: Groups of similar spike trains revealed by the Cox metric of twenty spike 
trains shown in Fig. 5.22. (a) Cox metric using pair-wise analysis, (b) Cox metric 
considering all spike trains at once. 

In Fig. 5.24(a) the grey circles show the connections revealed by the pair-wise analysis 

of Cox method. The black circles are not identified by pair-wise analysis of the Cox 

method but are shown in the matrix to keep symmetry. Similarly, in Fig. 5.24(b) the 

grey circles show the connections revealed by the Cox method considering all spike 

trains at once. The black circles are not identified by the Cox method considering all 

spike trains at once but are shown in the matrix to keep symmetry. From Fig. 5.24, it is 

observed that Cox metric based on pair-wise analysis and considering all spike trains at 

once correctly identifies all the five coupled groups of spike trains. The ordering of the 

groups of similar spike trains in Fig. 5.24 is different because of clustering. In Fig. 

5.24(a) there are some connections which do not exist in Fig. 5.24(b). For example, 

there is a connection from spike train #6 to spike train #16 in Fig. 5.24(a), but this 

connection does not exist in Fig. 5.24(b). Investigation fi-om the diagram (Fig. 5.22) that 

is used for the generation of the spike trains shows that there is no connection fi"om 

spike train #6 to #16. This indicates that Cox method based on all spike trains at once 

seems to give better functional connectivity than the pair-wise analysis of Cox method. 
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Though there are differences to identify functional connectivity, these two methods 

enable to identify groups of coupled spike trains which are similar. TTius the Cox metric 

is useful for ordering and visualising of spike train couplings, as well as for finding the 

groups of mutually coupled spike trains. 

5.9 Motif analysis using Cox mettiod 

Patterns of interconnections among multiple spike trains are important to understand 

their relationships. A pattern of interconnections is usually meant as a connected m-

vertex graph which is a subgraph of a larger graph. To find these patterns of 

interconnections a motif analysis is used (Milo et al., 2002; Spoms and Kotter, 2004). A 

motif is a connected subgraph of m vertices occurring in a directed graph at a number 

significantly higher than in randomized versions of the graph. That is, in graphs with the 

same number of vertices, edges and degree distribution as the original one, but where 

the edges are distributed at random. 

A directed graph is a configuration whose figures are ordered pairs of points. In this 

context, the content of a figure is one or zero in respective accordance with the 

existence or non-existence of a directed line from the first member of the figure to its 

second member. Hence the figure counting series is 1 + j : . Let dj^ix) is the counting 

polynomial for directed graphs with m vertices. The counting polynomials d^i^x) for 

m = 1 to 5 is provided by Harary and Palmer (1973): 

diCx) = 1 

daCx) = l + x+x^ 

djix) = l + x + 4x^ + 4x^ + 4x* + x^ + x^ 

d^ix) = l+x + Sx^ + 13x^ + 273:* + 38x^ + 48x^ + 38x^ + 27x^ + 13x^ + Sx^'^ 
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dsCx) = l + x + Sx^ + 16x^ + 61x* + 154;c^ + 379x^ + 707x^ + 1155x^ 

+1490x^ + 1670x^° + 1490:c" + 1155x^2 + 7 0 7 ^ " + 379xi* 

+154x1^ + 61x^^ + 16x ' ' + 5x^^ + x^^ + x^o 

Using the counting polynomial dn,(x) the numbers of directed graphs for m = 2 and 3 

vertices are shown in Fig. 5.25(a) and Fig. 5.26(a). To obtain the number of motifs from 

the directed graph, all vertices must have either outdegree or indegree of at least one. 

Thus the number of motifs for m = 2 and 3 vertices are 2 and 13 which are identified 

from Fig. 5.25(a) and Fig. 5.26(a). The motif ID for m = 2 and 3 vertices are shown in 

Fig. 5.25(b) and Fig. 5.26(b). For m = 4 and 5 the corresponding numbers of directed 

graphs are 218 and 9608; and the motif ID's are 199 and 9,364 (Harary and Palmer 

1973). In this section motifs of size m = 3 are considered. There are some connected 

motifs thai form a strongly connected graph. For m = 3, motifs with ID = 7, 9, 10, 12, 

and 13 are connected motifs. In a connected motif all vertices can be reached from all 

other vertices. 

(a) 

I . 

(b) 

Figure 5.25: (a) The 3 directed graph of 2 vertices (b) The 2 motif ID of 2 vertices. 
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Figure 5.26: (a) The 16 directed graph of 3 vertices (b) The 13 motif ID of 3 vertices. 

For multiple spike trains the diagram of functional connectivity is identified by the Cox 

method considering all spike trains at once. From this diagram of cormectivity a 

structural motif count can be obtained by counting the number of distinct motif ID. 

Given the structural motif count for distinct motif ID, the bar diagram of structural 
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motif count is obtained. The diagram of fimctional connectivity can also be obtained 

using the triplet analysis of Cox method. For multiple spike trains all possible triplets 

are analysed and a diagram of ftinctional connectivity can be identified. An example of 

triple analysis of Cox method is demonstrated in section 5.4.2. Structural motif can also 

be identified by the diagram of connectivity obtained from triplet analysis. The 

advantage of triplet analysis is that it requires less computational time than the analysis 

of a!! spike trains at once. The motif obtained from the triplet analysis is also very 

similar to the motif obtained from the analysis of all spike frains at once. 

3 
f 

1 

(a) (b) 

Figure 5.27: (a) Diagram of functional connectivity of four spike trains identified by 
the Cox method considering all spike trains at once, (b) Structural motif identified from 
the diagram of cormectivity in(a). Numbers represent motif ID. 

To understand the motif analysis a small set of four spike trains is considered, which 

was used in section 5.4. The diagram of functional connectivity of these four spike 

frains. obtained by the Cox method considering all spike trains at once, is given in Fig. 

5.27(a). The diagram of functional connectivity of all possible triplets, obtained by the 

triplet-wise analysis of Cox method, is given in Fig. 5.28(a). From the diagram of 

cormectivity (Fig. 5.27(a)), two possible structural motifs are identified (Fig. 5.27(b)). 

Similarly, from the diagram of connectivity (Fig. 5.28(a)). four possible structural 

motifs are identified (Fig. 5.28tb)). 
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(a) (b) 
Figure 5.28: (a) Diagram of fiinctional connectivity of all triplets identified by the 
triplet-wise analysis of Cox method, (b) Structural motif identified from the diagram of 
connectivity in (a). Number represents motif ID. 

To search the significant structural motifs from the diagram of fiinctiorml connecfivity, a 

large number of randomized diagrams (n=100 or 1000) are generated keeping the same 

number of vertices and edges as the original diagram but distributing the edges at 

random. In order to quantify the significance of a given motif ID i, its Z-score can be 

computed (Boccaletti et al., 2006). If nj'^^" is the number of times that a motif ID i 

appears in the real diagram of functional connectivity, < nf"^ > and a:^"'" ' are the 

average and standard deviation of the motif ID i obtained from the randomized 

diagrams, then its Z-score can be computed as 

Zi = <F^^ (5.9) 

A structural motif is considered to be significant if the Z-score of this motif is h i^er 

than 2 (Spoms et al.. 2007). 

5.9.1 Application to twenty spike trains 

To identify the patterns of interconnections using structural motifs, a set of twenty spike 

trains is considered. The connection scheme of these twenty spike frains is given in 

Fig.5.15(a). The diagram of functional connectivity of these twenty spike trains is given 

in Fig. 5.29(a) which is obtained by the Cox method considering all spike trains at once. 
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This diagram of fiinctional connectivity is similar to the Fig. 5.16(b) which is inmatrix 

form. Fig. 5.30(a) shows the structural motif count of size m = 3 found within the 

diagram of connectivity in Fig. 5.29(a). To identify the significant structural motif, 1000 

randomized diagrams are generated, with the same number of twenty vertices, forty four 

edges and degree distribution as the original one, but the edges are distributed at 

random. The structural motif count of size m = 3 found within the randomized 

diagrams is shown in Fig. 5.30(b). The motif ID 6, 9 and 12 appear more than the 

randomized diagrams, where as all other motif ID's appear less than the randomized 

diagrams. The Z-score is calculated using (5.9) and the result shows that motif ID 6 

(Zg > 2.15, p < 0.04), motif ID 9 (Zq > 14, p < 0.0001) and motif ID 12 (1^2 > 

3.70, p < 0.0001) are significant. An example of the significant patterns of 

interconnections (motif ID 9) that appears more than the randomized diagram is shown 

in the Fig. 5.29(b) with blue arrows. 

Figure 5.29: (a) Diagram of functional connectivity of the twenty spike trains by the 
Cox method obtained fi-om the neural circuit of twenty spike train in section 5.6 
(Fig. 515(a)). (b) Significant structural motifs from this diagram of functional 
connectivity. Here only motif ID 9 is shown by blue arrows for illustration. 
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Figure 5.30: (a) Structural motif count of size m = 3 for the diagram of connectivity of 
twenty spike trains. Significant motif ID"s are displayed as green, (b) Structural motif 
count of size m = 3 for the randomized diagrams. 

Figure 5.31: Structural motif count of all possible triplets of the twenty spike trains. 

Structural motifs of the twenty spike trains can also be identified by applying the triplet 

analysis of the Cox method to the all possible triplets. For the set of twenty spike trains 

a total of 1140 groups of triplets are analysed. Diagram of connectivity of each triplet is 

used to identify the structural motif. A structural motif count for different motif ID's is 

shown in Fig. 5.31. Out of 1140 triplets, 103 triplets have different structural motif ID's. 

Among these 103 triplets. 22 triplets have structural motif ID's 1 and 2, which are the 

highest among the motif ID's. There are no triplets which have structural motif ID's 7, 

8, 10, 11. 12 and 13. There are a very low proportion of connected motifs (10.68%) in 
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the triplets which indicates that the connection from every spike train to every other 

spike trains in the triplet is very low. More importantly, the structural motif count in 

Fig. 5.30(a) is mostly similar to that in the Fig. 5.31. 
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Application of the methods to the experimental 
data 

In previous chapters, the MCG method and the Cox method for studying the fimctional 

connectivity have been described and tested thoroughly using simulated spike trains. In 

this chapter these two methods are applied to analyse experimentally recorded multiple 

spike trains and derive a functional connectivity. These recordings fi"om the cat's visual 

cortex (Nikolic, 2007; Schneider et al., 2006) have been kindly provided for analysing 

by Dr. Danko Nikolic (Max Planck Institute for Brain Research, Frankfurt, Germany). 

Also, the Cox method has been used to identify groups of similar spike trains (Cox 

metric) and reveal the patterns of interconnections among spike trains (motif analysis). 

The connections obtained by the MCG method and the Cox method are analysed. 

6.1 Methods for data acquisition 

6.1.1 Preparation 

The cat was initially anesthetized with ketamine, and the anaesthesia was maintained 

with a mixture of 70% NjO and 30% O2 supplemented with halothane (0.4-0.6%). The 

animal was paralysed with pancuronium bromide (Pancuronium, Organon, 0.15 mg kg 

h~'). All the experiments were conducted according to the guidelines of the Society for 

Neuroscience and German law for the protection of animals, approved by the local 

government's ethical committee and overseen by a veterinarian. 

6.1.2 Recording 

Multi-unit activity (MUA) was recorded from a region of area 17 corresponding to the 

central part of the visual field by using a Sl-based multielectrode probe (16 channels per 
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electrode) supplied by the Centre for Neural Communication Technology at the 

University of Michigan (Michigan probes) with inter-contact distance 200 /fm (0.3-0.5 

Mi2 impedance at 1000 Hz). Signals were filtered between 500 and 3.5 kHz for 

extracting multi-unit activity (MUA), digitized with 32 kHz sampling frequency and 

stored in computer memory. All analyses were made on the basis of discrete spike 

events detected by a threshold that was set to a value of about two times the noise level. 

The probe was inserted in the cortex approximately perpendicular to the surface and 

allowed simultaneous recording from neurons at different cortical depths and along an 

axis tangential to the cortical surface. Fourteen MUA signals showed good responses to 

visual stimuli, orientation selectivity and overlapping receptive fields (RF). This 

resulted in a cluster of overlapping RFs that were stimulated simultaneously by a single 

visual stimulus. 

6.1.2 Visual stimulation 

Stimuli were presented binocularly on a 21 inch computer screen (HITACHI 

CM813ET) with 100 Hz refresh rate. To obtain binocular fiision the optical axes of the 

two eyes were first determined by mapping the borders of the respective RFs and then 

aligned on the computer screen with adjustable prisms placed in front of one eye. The 

software for visual stimulation was a commercially available stimulation tool, 

AcfiveSTIM (http://www.ActiveSTIM.com). The stimuli consisted either of one white 

bar moving over a black background or consisted of two bars moving in dilTerent 

directions (60° difference). The bars always appeared at about 3° eccentricity of the 

centre of the cluster of RFs and moved with a speed of l7s such that they completely 

covered the cluster of RFs. In the stimuli with two bars, the bars crossed their paths at 

the centre of the RF cluster. At each trial the stimulus was presented in total for 5 s. but 

only 
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2 s with strongest rate response were used for the 

conditions the bars moved in the following directions 

and 210°; (4) 180°; (5) 30° and 150° ; (6) 210° and 330° 

Application to 

analysis. In the 

(1) 30° and 330° 

Experimental Data 

six stimulation 

(2) 0"; (3) 150° 

, Each stimulation condition was 

presented 20 times, different conditions being presented in a randomized order. 

6.2 Data description 

To identity the fimctional connectivity of multiple spike trains, the MCG method and 

the Cox method are applied to a set of experimental data recorded from cat's visual 

cortex (Nikolic, 2007; Schneider et al, 2006). The experimental condition includes 

application of six different stimuli (different orientations of the moving grid). Each 

stimulus is repeated 20 times resulting in 120 applications of all stimuli. The order of 

stimuli presentations is random. Thus for 120 stimuli the spiking activity of 32 channels 

is recorded. From each channel one spike train is selected - the one with a medium 

firing rate. This spike train is used to prepare six spike trains corresponding to six 

stimuli. The twenty time intervals (each of six seconds duration), where the stimulus 1 

is presented, have been selected to represent a total interval (120 seconds) of the 

application of stimulus I. All spikes from this interval are considered continuously 

despite the gaps between the intervals of stimulus 1 representation. There are 32 

channels in the experiment which results in 32 spike trains for this stimulus. The same 

operation has been repeated for stimulus 2: all subintervals of six seconds 

corresponding to application of stimulus 2 have been selected, considered continuously 

and all spikes have been taken for analysis of the functional connectivity. The same 

selection is done for each channel and 32 spike trains have been constructed for 

stimulus 2. Repeating this operation for other stimuli, six sets of 32 simultaneous spike 

trains have been constructed. Each set corresponds to application of one stimulus. For 
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each stimulus, 32 spike trains are analysed to identify functional connectivity by the 

MCG method and the Cox method. 

6.3 Analysis of functional connectivity 

For each stimulus the analysis of functional connectivity includes the following 4 

procedures: 

1. MCG method 

2. Cox method 

3. Cox metric 

4. Motif analysis 

Analysis of fiinctional connectivity by the MCG method is based on the calculation of 

CCF which is discussed in chapter 3. This technique is able to differentiate direct 

connections from spurious connections (common source and indirect connections). In 

this chapter only direct connections are considered for analysing fimctional 

connectivity. Analysis of fiinctional connectivity by the Cox method is based on the 

modulated renewal process and the procedure is discussed in chapter 5. This method 

considers the simultaneous effect of all spike trains and identifies only direct fxinctional 

connectivity. Result of fimctional connectivity obtained by this method is analysed and 

compared to the result of functional connectivity obtained by the MCG method. 
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Figure 6.1: Functional connectivity of the 29 spike trains of stimulus 5 identified by the 
Cox method, (a) In the small interval [60000 ms, 66000 ms]. (b) hi the small interval 
[66000 ms, 72000 ms]. 

A simple study using the Cox method shows that this method is useful for the 

application to experimental data. Two small intervals of stimulus 5, each of duration of 

6 seconds ([60000 ms, 66000 ms] and [66000 ms, 72000 ms]) are chosen to identify the 

functional connectivity of the spike trains. For this study, three outlier spike trains (#4, 

#5 and #29) are not considered. These three spike trains have higher spiking rates than 

those of other spike trains. Functional connectivity of the 29 spike trains is identified by 

the Cox method, TTie functional connectivity of these two small intervals identified by 

the Cox method is shown in Fig. 6.1. In the Fig. 6.1, the functional connections are 

shown by circles and the direction of the connections is considered from reference spike 

train to target spike frain. The radius of the circle shows the relative strength of 

influence. A big radius corresponds to a strong functional connection, whereas a small 

radius corresponds to a weak functional connection. The functional connections of the 

29 spike trains in the two small intervals show a good agreement. In the interval [60000 

ms, 66000 ms], 34 functional connections are identified by the Cox method. Similarly, 

24 functional connections are identified by the Cox method in the interval [66000 ms. 
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72000 ms]. Investigation from these diagrams reveals that there are 18 connections 

which are common to both intervals. As these two diagrams of ftinctional connectivity 

show a good agreement in the small time interval, it can be said that Cox method is 

useful for analysis of this experimental data. On the other hand MCG method is not 

applied to these small intervals, because the number of spikes is too small for the 

application. 

The Cox method is fUrther applied to identify the groups of similar spike trains by 

clustering algorithm. To identify the groups of similar spike trains. Cox metric is 

applied which is discussed in section 5.8. Another application of the Cox method is the 

motif analysis which is based on the analysis of triplet spike trains at once and is 

described in section 5.9. Motif analysis is usefijl in obtaining the patterns of 

interconnections among the spike trains. 

6.4 Analysis of functional connectivity of stimulus 1 

The raster plot of 32 spike trains is shown in Fig. 6.2. Raster plot reveals that three 

spike trains (#4, #5 and #29) have high spiking rates compared to all other spike trains. 

Therefore, these three spike trains are considered to be outliers and they are excluded 

from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these 

29 spike trains are high over time interval [78000 ms, 95000 ms]. These 29 spike trains 

are analysed to identify functional connectivity keeping the original numeration of the 

spike trains. 
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40000 80000 
Time(ms) 

120000 

Figure 6.2: Raster plot of 32 spike trains of stimulus I. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing functional coimectivity. 

6.4.1 MCG method 

For the 29 spike trains a total of (29^ - 29)/2 = 406 pair-wise CCF are calculated 

with a bin size of 1 ms and a correlation window of 100 ms. To test the independence of 

two spike trains the significance level a = 0.05 is used with the Bonferroni correction. 

A cormection is considered to be significant if a peak of the CCF exceeds the upper 

boundary of the "confidence interval'. A total of 100 significant connections are found 

for 29 spike trains. These significant connections are shown in a matrix format in 

Fig. 6.3(a) where the connecUons are indicated by circles. The direction of cormection is 

considered from the reference spike train to the target spike train. For example, spike 

train #10 has a connection to spike train #28. Among the 29 spike trains, spike train #28 

has 14 outgoing cormections to other spike trains which is the highest among 29 spike 

trains and similar 15 incoming connections from other spike trains. 
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Figure 6.3: (a) Significant connections obtained from pair-wise CCF analysis of the 29 
spike trains of stimulus 1. (b) Direct connections obtained ft-om the significant 
connections in (a) after the clustering algorithm. The radius of the circle indicates the 
relative strength of the connections. 

A clustering algorithm is applied to the 100 significant connections for distinguishing 

direct connections from spurious ones (i.e., indirect connections and common source). 

Here only direct connections are considered to identify tunctional connectivity. After 

clustering, the 85 connections are identified as direct connections (Fig. 6.3(b)). The 

strengths of direct connections are normalized between 0 and 1 according to their 

significant peaks. These strengths are shown by circles in Fig. 6.3(b). Big radius 

indicates strong fijnctional connecfion and small radius indicates weak fimctiona! 

connection. Among 85 connections 10 connections have strong strength compared to 

others. These connections are; (#7, #8), (#8, #7), (#8, #12), (#9, #15), (#12, #8), (#16, 

#9), (#19, #20), (#20, #19), (#30, #32) and (#32, #30). All other connections have 

medium strength. Spike train #28 has 12 outgoing connections and 12 incoming 

connections, which are the highest among 29 spike trains. There are 31 pairs of 

connections where both spike trains have fiinctional connectivity to each other. For 

example the pair (#7, #8); where there is a connection fi-om spike train #7 to spike train 

#8 and vice versa. 
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6,4.2 Cox method 

To analyse functional connectivity of the 29 spike trains, one spike train is considered 

as the target spike train and other 28 spike trains are considered as the reference spike 

trains. The influence function (and its parameters) which determines how the reference 

spike train influences the target spike train should be specified. Here it is assumed that 

all the influence functions are identical. The inter spike interval (ISI) histogram of three 

spike trains, spike train #1, #6 and #18 are given in Fig. 6,4. These histograms have 

high count for the short ISl and the ISI count decreases with increase of the ISI length. 

That suggests that the influence fiinction should be specified by the formula (5.3). The 

parameters of the influence fianction (5.3) are r^ = 0.1 rns, T^ = 10 m s . Another 

parameter, the time lag A is specified from pair-wise CCF analysis. Thus, the influence 

functions are defined and the Cox coefficients and the corresponding confidence 

intervals are calculated using formulas (5.5) and (5.6). This procedure is repeated 29 

times to obtain the fiill fimctional connectivity of the 29 spike trains. The confidence 

intervals are calculated using the significance level a = 0.05 with Bonferroni correction. 

The 71 connections, identified by the Cox method, are shown by circles in 

Fig. 6.5(a). The radius of the circle indicates the strength of functional connection. The 

direction of functional connection is fi-om the reference spike train to the target spike 

train. Among the 71 connections, the 9 connections have stronger strength compared to 

others. These connections are; (#8. #9), (#16, #9), (#20, #19), (#24, #19), (#24, #23), 

(#25, #1), (#26, #25), (#28, #27) and (#32, #30). 8 connections have a small strength 

compared to others. These connections are: (#2, #14), (#7, #28), (#10, #28), (#14, #28), 

(#15, #3), (#15, #28), (#27, #28) and (#28, #2). All other connections have a medium 

strength. Spike train #8 has 6 outgoing connections and spike train #28 has 6 incoming 
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connections, which are the highest among 29 spike trains. There are 16 pairs of 

connections where both spike trains have fimctional connectivity to each other. 

«1 «6 

Tin (Ml Tkn|M| 

#18 

Figure 6.4: Inter spike interval histogram of the spike trains #1, U6 and #18 of stimulus 
1. 

Functional connectivity obtained by the MCG method and the Cox method show a good 

agreement between them (Fig. 6.5(b)). There are 43 connections which are common in 

both techniques. Among the common connections spike train #8 has 6 outgoing 

connections to other spike trains and spike trains #3, #15 and #28 have 4 incoming 

connections which are the highest among the 29 spike trains. There are 9 pairs of 

connections where both spike trains have fimctional connectivity to each other. These 

pairs of connections are: (#3, #7), (#3, #15), (#8, #12), (#8, #15), (#19, #20), (#23, #24), 

(#27. #28) and (#30, #32). 
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Figure 6.5: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 1. Radius of the circle indicates the relative strength of connection. 
(b) Connections that are identified both by the MCG method and the Cox method. 

6.4.3 Cox metric 

To apply the Cox metric to the 29 spike trains a total of 812 possible pairs of spike 

trains are analysed by pair-wise Cox method where one spike train is taken as the target 

and the other spike train as the reference. All the influence functions are considered 

identical and specified by (5.3) with the parameters Zr = 0.1 ms and T̂  = 10 ms. 

Another parameter of the influence function, the time lag A is obtained by the pair-wise 

CCF analysis. Using the parameter values, the influence functions are determined and 

the Cox coefficients are estimated using (5.5) with the corresponding confidence 

interval by (5.6). The Cox metric is applied to the significant cormections to reveal the 

groups of similar spike trains. The result of the Cox metric is shown in Fig. 6.6(a) where 

the grey circles indicate the significant coimections obtained by the pair-wise analysis of 

the Cox method. The black circles indicate symmetric of the grey circles but not 

identified by the pair-wise analysis of the Cox method. Similarly, the Cox metric is 

applied to the functional connections identified by the Cox method considering all spike 

trains at once. This functional connection is shown in Fig, 6.5(a) and the result of the 
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Cox metric is shown in Fig. 6.6(b). In the figure the grey circles indicate the significant 

connections obtained by the Cox method considering at! spike trains at once. The black 

circles indicate symmetric of the grey circles but not identified by the Cox method 

considering all spike trains at once. 

From Fig. 6.6(a) four groups of similar spike trains are identified. The first group 

consists of 4 spike trains, these are: spike trains #30, #32, #31 and #21. In this group, 

the connection fi^m spike train #30 to #32 and spike train #32 to #30 have the highat 

strength among other connections. The second group consists of 3 spike trains, these are: 

spike trains #22, #25 and #26. The third group consists of 9 spike trains; these are; spike 

trains #2, #10, #14, #19, #20, #23, #24. #27 and #28. In this group, five connections 

(#19, #20), (#20, #19), (#23, #24), (#24, #23) and (#28, #27) have big strength 

compared to others. Spike train #19 has 6 outgoing connections to spike trains #14, #20, 

#23, #24, #27 and #28, and 5 incoming connections from spike trains #14, #20, #23, 

#24 and #28. As this spike train has the highest outgoing connections, this spike train 

can be considered as the most influential spike train of this group. The forth group 

consists of 8 spike trains, these are: spike trains #16, #3, #7, #15, #8, #9, #12 and #11. 

In this group there are 3 big strengths of connections: (#16, #9), (#8, #9) and (#12, #9). 

Spike train #8 has 6 outgoing connections to spike trains #3, #7, #15, #9, #11 and #12 

and can be considered as the most influential spike train of this group. Spike trains #13, 

#18, #6 and #17 do not follow any group. 
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(a) (b) 
Figure 6.6: Groups of similar spike trains revealed by the Cox metric of the 29 spike 
trains of stimulus 1. (a) Cox metric using pair-wise analysis, (b) Cox metric considering 
all spike trains at once. 

Similarly, from Fig. 6.6(b) four groups of similar spike trains are identified. The first 

group consists of 5 spike trains, these are: spike trains #30, #32, #31, #18 and #21. In 

this group, the connection fi-om spike train #30 to #32 and spike train #32 to #30 have 

the hi^est strength among other connections. The second group consists of 4 spike 

trains, these are: spike trains #1, #25, #26 and #22. The third group consists of 10 spike 

trains; these are: spike trains #2, #14, #19, #20, #23, #24, #27, #28, #6 and #10. In this 

group, four connections (#19, #20), (#20, #19), (#27, #28) and (#28, #27) have big 

strength compare to others. Spike train #20 and #28 have 5 outgoing connections to 

other spike trains of this group. As these spike trains have the highest outgoing 

connections, these spike trains can be considered as the most influential spike trains for 

this group. The forth group consists of 8 spike trains, these are: spike trains #3, #7, #15, 

#11, #8, #9, #12 and #16. hi this group there are 2 big strength of connections: (#8, #9) 

and (#16, #9). Spike train #8 has 6 outgoing connections to other spike trains and can be 

considered as the most influential spike train of this group. Spike trains #13 and #17 do 

not follow any group. 
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Investigation from Fig. 6.6(a)-(b) reveal that the Cox metric identified by the pair-wise 

analysis and considering all spike trains at once show a good agreement. For example, 

the first group of both figures consists the same four spike trains (#30, #32, #31 and #21) 

except one (#18) in Fig. 6.6(b). Similarly, the other three groups of Fig. 6.6(a) and Fig. 

6.6(l3) consist same spike trains except a few. From this analysis it can be said that 

application of the Cox metric to this experimental data using pair-wise analysis and 

analysis of all spike trains at once enables to create similar result. 

6.4.4 Motif analysis 

To find the patterns of interconnections among the 29 spike trains, a structural motif 

analysis is conducted using triplet-wise analysis of Cox method. For 29 spike trains, a 

total of 3654 triplets are analysed. All the influence functions are considered identical 

and specified by (5.3) with the parameters T̂  = 0.1 ms and T5 = 10 ms. Another 

parameter of the influence function, the time lag A is obtained by the pair-wise CCF 

analysis. Using the parameter values, the influence fimctions are determined and the 

Cox coefficients are estimated using (5.5) with corresponding confidence interval using 

(5.6). Functional connectivity of each triplet spike trains is used to identify the structural 

motif The structural motif coimt is obtained by analysing all 3654 triplets of spike 

trains which is shown in Fig. 6.7. 

Out of 3654 triplets, 753 triplets have different structural motif ID's. Among the 753 

triplets. 160 triplets have motif ID 2 which is the highest among other motif ID's. Only 

6 triplets have motif ID 7 which is the lowest. Motif ID's 1, 3, 4 and 6 have similar 

number of triplets and motif ID's 8, 9. 10. 11 and 12 have similar number of triplets. A 

total of 96 triplets have connected motifs (connected motifs are motif ID 7, 9, 10, 12 

and 13). On the other hand, 657 triplets have unconnected motifs. Thus, there are low 
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proportions of connected motifs (14.61%) in the groups of triplet spike trains which 

indicate that connection from every spike train to every other spike trains is very low. 
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Figure 6.7: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
1. 

The same procedure is applied to the other five stimuli to analyse functional 

connectivity of the spike trains. The results of analysing the five stimuli are presented in 

Appendix B. 

6.5 Summary of functional connectivity of all stimuli 

In this chapter functional connectivity of 29 spike trains are analysed for six different 

stimuli. To analyse the functional connectivity the MCG method and the Cox method 

are used, tn stimulus 1, 85 direct connections are identified by the MCG method (Fig. 

6.3(b)). Investigation from this diagram reveals that spike train #8 and #28 have the 

highest outgoing connections to other spike trains. That means these spike trains are the 

most influential spike trains. Application of the Cox method to this stimulus reveals 71 

connections (Fig. 6.5(a)). Investigation from this diagram of fiinctional connectivity 

reveals that similar to MCG method, spike trains #8 and #28 have the highest outgoing 
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connections. Importantly, spike train #8 has 7 out going connections to spike trains U3, 

#7, #9, #11, #12 #15 and #28 which are the same in both the MCG method and the Cox 

method. Also, spike train #28 has 4 outgoing connections to spike trains #19, #20, #23 

and #26 are same in both the MCG method and the Cox method. From the analysis, it 

can be concluded that spike trains #8 and #28 are the most influential spike trains in 

stimulus 1. 

Application of MCG method to stimulus 2 reveals 129 direct connections (Fig. A.2(b)). 

From this diagram it is observed that spike trains #28 and #32 have the highest outgoing 

connections and can be considered as the most influential spike trains. These two spike 

trains are also tfie most influential spike trains identified by the Cox method. The 

diagram of functional connectivity identified by the Cox method revels 62 connections 

(Fig. A.4(a)). Spike trains #28 and #32 have the highest 8 outgoing connections to other 

spike trains. Like stimulus I, spike train #28 has 7 outgoing connections to spike trains 

#2, #23, #24, #25, #26, #27 and #32 which are same in both the MCG method and the 

Cox method. Also, all the outgoing connections fi-om spike train #32 to spike trains #19, 

#20, #24, #25, #26, #27, #30 and #31 are same in both the MCG method and the Cox 

method. 

In stimulus 3, a small number of 16 direct connections are identified by the MCG 

method (Fig. A.8(b)). Here spike train #8 has only 3 outgoing coimections and can be 

considered as the most influential spike trains. A different result is obtained from the 

diagram of functional connectivity identified by the Cox method (Fig. A. 10(a)) where 

95 connections are identified. Investigation reveals that similar to stimuli 1 and 2, spike 

train #32 has the highest outgoing cormections. This spike train can be considered as the 

most influential spike train. 
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Diagram of functional connectivity identified by the MCG method reveals thai there are 

51 direct connections in stimulus 4 (Fig. A.14(b)). Investigation shows that spike train 

#32 has the highest outgoing connections and can be considered as the most influential 

spike train. The similar result is identified by the Cox method. The diagram of 

fiinctional connectivity (Fig. A. 16(a)) shows that there are 71 connections and spike 

train #32 has the highest outgoing connections. Investigation shows that spike train #32 

has 4 outgoing connections to spike trains #20, #25, #27 and #30 which are the same in 

both the MCG method and the Cox method. 

Like stimulus 3, in stimulus 5 a different result is obtained from the diagram of 

functional connectivity identified by the MCG method (Fig. A.20(b)) and by the Cox 

method (Fig. A.22(a)). Only 49 connections are identified by the MCG method where 

spike train #23 has the highest outgoing connections. This spike train can be considered 

as the most influential spike train. On the other hand, 116 connections are identified by 

the Cox method. Here, spike train #28 has the highest outgoing connections and can be 

considered as the most influential spike train. 

In stimulus 6, the diagram of functional cormectivity identified by the MCG method 

reveals that there are 154 direct connections (Fig. A.26(b)). Investigation shows that 

spike train #32 has the highest outgoing connections and can be considered as the most 

influential spike train. The similar result is idenfified by the Cox method. The diagram 

of fimctional connectivity (Fig. A.28(a)) shows that there are 76 connections and spike 

train #32 has the highest outgoing connections. Investigation shows that spike train #32 

has 8 outgoing connections to spike trains #9, #19, #23, #25, #27, #28, #30 and #31 

which are same in the MCG method and the Cox method. 

From this analysis it can be concluded that spike trains #28 and #32 are the most 

influential spike trains among the 29 spike trains, also the most of the information are 
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transmitted through these spike trains. Though the results of identification of most 

influential spike train are different in stimuli 3 and 5 by the MCG method and the Cox 

method, the results are same for other stimuli. Thus, there is a good agreement of these 

two methods. 

The Cox metric is applied to identify the groups of similar spike trains. Importantly, for 

all stimuh the Cox metric based on pair-wise analysis and the analysis considering all 

spike trains at once show similar results. Investigation from the Cox metric based on the 

pair-wise analysis reveal that there are some groups of spike trains which are same in 

different stimuli. In stimulus 1, the forth group (Fig. 6.6(a)) consists of 9 spike trains 

(#1, #3, #7, #8, #9, #11, #12, #15 and #16). This group of spike trains is very similar to 

the first group of stimulus 2 (Fig. A.5(a)) and the second group of stimulus 3 (Fig. 

A.n(a». In stimulus 2, the first group consists of 10 spike trains (#3, #6, #7, #8, #9, 

#11, #12, 14, #15 and #16) where 8 spike trains are same to fourth group of stimulus I. 

In stimulus 3, the second group consists of 7 spike trains (#1, #3, #7, #9, #11, #15 and 

#16) where all the spike trains are same to fourth group of stimulus 1. Similarly, in 

stimulus 2, the third group consists of 11 spike trains (#19, #20, #23, #24, #25, #26, #27, 

#28, #30, #31 and #32) which is very similar to the first groi^ of stimulus 3 and the 

third group of stimulus 6 (Fig. A.29(a)). In stimulus 3, the first group consists of 12 

spike trains (#14, #19, #20, #21, #23, #24, #25, #26, #27, #28, #30 and #32) where 10 

spike trains are same to third group of stimulus 2. In stimulus 6, the second group 

consists of 13 spike trains (#18, #19, #20, #21, #23, #24, #25, #26, #27, #28. #30, #31 

and #32) where 11 spike trains are same to third group of stimulus 2 and 10 spike trains 

are same to first group of stimulus 3. Fourth group of stimulus 5 (Fig. A.23(a)) consists 

spike train #13 and #16 which is exactly same to the fourth group of stimulus 6. 
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Figure 6.8: Structural motif count of all 6 stimuli. 

Patterns of interconnections among the 29 spike trains are identified by the structural 

motif analysis. Structural motif analysis for all stimuli shows similar results. Among all 

stimuli, stimulus 5 has the highest structural motif count for all motif ID"s except motif 

ID 3. Structural motif count (Fig. 6.8) shows that motif ID's 2 and 6 have the highest 

structural motif count whereas motif ID 7 has the lowest structural motif count for all 

stimuli. Motif ID 1, 3 and 4 have the similar structural motif count for all stimuli. 

Structural motif count for connected motifs (motif ID 7, 9, 10, 12 and 13) are less than 

that for the unconnected motif which indicates that the spike trains are weakly 

connected to each other for all stimuli. 

Functional connectivity of all stimuli obtained by the MCG method and the Cox method 

shows a good agreement. Among the stimuli, stimulus 6 has the highest number of 

connections which are common to the MCG method and the Cox method (Fig. 6.9). 

That is these connections exist both in the MCG method and the Cox method. In this 

stimulus, 76 connections are identified by the Cox method and 154 connections are 

identified by the MCG method which is the highest among all stimuli. There are 57 
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connections which are common to the both methods. On the other hand, stimulus 3 has 

the lowest connections which are common to both the methods. In this stimulus, 95 

connections are identified by the Cox method and only 16 connections are identified by 

the MCG method. A total of 14 connections are identified which are common to both 

methods. Stimuli 4 and 5 have the same number of 31 connections identified by the 

both methods. 
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Figure 6.9: Total number of connections identified by the Cox method and the MCG 
method with the number of connections common to these methods. 

In stimulus 4, 71 connections are identified by the Cox method where as 51 connecfions 

are identified by the MCG method. In stimulus 5, the highest number of 116 

connections is identified by the Cox method; where as 49 connections are identified by 

the MCG method which is similar to the stimulus 4. In stimulus 1, 71 connections are 

identified by the Cox method whereas 85 connections are identified by the MCG 

method. There are 43 connections which are common to the MCG method and the Cox 

method. Similar to stimulus 1, 49 connecfions are identified in stimulus 2 which are 

common to both methods. Here 62 connections are identified by the Cox method and a 

large number of 129 connections are identified by the MCG method. 
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Although there is a good agreement between the MCG method and the Cox method, 

there are some differences between them. The reason is that, the MCG method is based 

on the pair-wise CCF and the Cox method is based on the analysis of all spike trains at 

once. The MCG method takes short computation time and can be used as a screening 

method to derive functional connectivity. Among the six stimuli, stimulus 3 shows the 

highest difference between these two methods. On the other hand, stimulus 1 and 4 

show low differences between these two methods. 
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Figure 6.10: (a) Common connections identified by the MCG method for all 6 stimuli. 
(b) Common connections identified by the Cox method for all 6 stimuli, (c) Common 
connections identified both by the Cox method and the MCG method for all 6 stimuli. 
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Fig- 6.10 shows the common connections identified by the Cox method and the MCG 

method for all stimuli. Total 6 common connections are identified by the MCG method 

for all stimuli (Fig. 6.10(a)). These connections are: (#7, #8), (#8, #7), (#19, #20), (#20, 

#19), (#30, #32) and (#32, #30). Investigation of these connections from each stimulus 

shows that these connections have strong strength. There are 10 common connections 

identified by the Cox method for all stimuh (Fig. 6.10(b)). These connections are: (#7, 

#15), (#8, #7), (19, #20), (#20, #19), (#26, #25), (#28, #27), (30, #32), (#31, #32), (32, 

#30) and (#32, #31). Like the MCG method, investigation of these connections shows 

that the connections have strong strength. There are 5 connections identified both by the 

Cox method and the MCG method which are common to all stimuli (Fig. 6.10(c)). 

These connections are: (#8, #7), (#19, #20), (#20, #19), (#30. #32) and (#32, #30). 
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Chapter 7 

Methods of graph theory for analysing the 
connectivity 

This chapter presents different graph theory methods that are useful for the 

comprehensive analysis of connectivity of multiple spike trains. The connectivity matrix 

is calculated from the experimental data of cat's visual cortex (NikoHc, 2007; Schneider 

et al-, 2006) by the Cox method. The graph theory methods are then applied to analyse 

the matrix of connections. This experimental data are organized in six sets of spike 

trains. Therefore, the statistical technique provides six graphs. To analyse the structure 

of a graph and to compare the graphs, some measures from the graph theory are 

calculated. 

7.1 Introduction 

Due to the recent advances in neuroscience and neuroinformatics, an increasing number 

of neuronal connectivity datasets in the brain areas are available for analysis. The 

availability of such data sets requires the development of appropriate computational 

tools for their comprehensive analysis (Kotter, 2001). That is the connection density of 

the spike frains, the average number of steps required to pass information from one 

spike train to another, the atfractive and influential spike trains, the degree of the spike 

trains to make cluster with other spike trains, spike trains which pass the most of the 

information to other spike trains and the significant patterns of intercoimections of the 

spike trains. The methods discussed in chapter 3 and 5 are used to derive functional 

connectivity of multiple spike trains. In addition to this functional connectivity, it is 

necessary to study the comprehensive analysis of the connectivity. One way for such a 
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comprehensive analysis is provided by graph theory, a branch of mathematics which has 

many applications in diverse fields such as physics, communication science, genetics, 

linguistics and sociology (Spoms, 2002). 

The graph theory methods are based on the connection matrix. In neuroscience this 

connection matrix can be derived from the analysis of simultaneously recorded multiple 

spike trains. Most of the connection matrices are derived by the pair-wise analysis of 

spike trains using cross-correlation. This technique produces symmetrical connection 

matrix and undirected graph (Bullmore and Sporas, 2009) while functional connectivity 

of spike trains are characterized as directed graphs (Hilgetag et al., 2002). The Cox 

method described in chapter 5 can be used for deriving the asymmetrical connection 

matrix and the directed graph. The distinction between undirected and directed graphs is 

especially imjrortant as different graph measures are computed slightly differently for 

these two major classes of graphs. 

There are several graph theory methods (Rubinov and Spoms, 2010) that are of special 

relevance to the comprehensive analysis of connectivity. In this chapter, some of them 

are discussed for the directed graph such as: graph density, nodes degree, characteristic 

path length, efficiency of a graph, clustering coefficient and betweenness centrality. 

Motif analysis is another usefiil graph method which is discussed in section 5.9. 

Another important method of graph theory is the PI model (Holland and Leinhardt, 

1981), which is used in social science network to find the influential and attractive 

people in the network. Application of PI model to the neuroscience is useful in finding 

the influential and attractive neurons in the brain regions. All these graph methods are 

applied to the connection matrices obtained by the Cox method from the experimental 

datasets discussed in chapter 6. 
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7.2 Graph theory methods 

A graph is a mathematical representation of a system that is composed of interconnected 

elements, comprising a set of nodes and edges. Nodes represent the fijndamental 

elements of the system, such as neurons in the brain region and edges represent 

connections between pairs of nodes. Edges can be undirected or directed from origin to 

destination. Here directed edges are considered and all the graph theory methods are 

discussed for the directed graph. In graph theoretical terms, a directed graph G„i is 

composed of n nodes and / edges, with / ranging from 0 (null graph) to n^ — n 

(complete or fully connected graph excluding self connections). The graph's adjacency 

matrix (connection matrix), A{G), is composed of binary entries a^ (Fig. 7.1(b)), with 

Qjj = 1 indicating the presence of connection from node i to node ;', and Oĵ  = 0 

indicating the absence of connection from node i to node). The diagonal elements of 

adjacency matrix a^ are considered as zero and â y does not necessarily equal to a^j. 

7.2.1 Density 

The density kaen of an adjacency matrix A (C) is the number of all its non-zero entries, 

divided by the maximal possible number of connections. The density ranges from 0 to 

1, 0 indicates null graph and 1 indicates fully connected graph. In the neural network the 

highest levels of connection density are found at the level of cortical areas and the 

pathways interconnecting them. Matrices of connection pathways linking cortical areas 

tend to have k^en- 0-2 - 0.4 (Spoms, 2002). 
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(b) 

Figure 7.1: (a) Directed graph composed of 9 nodes and 18 directed edges. The graph 
has 72 (9^ — 9) possible connections among the nodes. The density of this directed 
graph is 18/72 =0.25. (b) Adjacency matrix represents the presence (black square) and 
absence (white square) of the connections between the nodes. Main diagonals are 
indicated in grey and self-connections are excluded, (c) Indegree of node #8 (orange 
circle). This node has 4 indegree, from nodes #1, #9, #5 and #7 (green circles), (d) 
Outdegree of node #8 (orange circle). This node has 3 outdegree, to nodes #1, #3 and #6 
(green circles). 

7.2.2 Degree 

The adjacency matrix allows the derivation of one of the most fundamental graph 

measures, the degree. In directed graph the indegree and outdegree corresponds to the 

number of incoming and outgoing edges, respectively (Fig. 7.1(c-d)). A node with high 
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indegree is influenced by many other nodes, while a node with high outdegree has many 

potential functional targets. The indegree and outdegree of a node i can be calculated as 

yeftf 

where A'is the set of all nodes in the network. 

7.2.3 Characteristic path length 

Nodes can be linked directly by single edges or indirectly by sequences of intermediate 

nodes and edges. Ordered sequences of unique edges and intermediate nodes are called 

paths (Fig 7-2). If a finite path between two nodes exists, then one node can be reached 

by traversing a sequence of edges starting at the other node. In directed graph, the 

length of a path is equal to the number of edges it contains. Paths of various lengths 

record possible ways by which signals can travel indirectly between two nodes. Longer 

paths are likely to have less of an etfect than shorter paths. Most analyses focus on 

shortest possible paths (distances) between nodes since these paths are likely to be most 

effective for inter node communication. The directed distance fi-om node i to node/, 

(dij) is the length (number of edges) of a shortest path (possible one of several) from 

node i to node/. 

The distance between two nodes is often of particular interest. The structure of the 

adjacency and distance matrices (Fig. 7.3(b)) together describe the pattern of 

communication within the nodes of the graph. 
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Figure 7.2: Calculation of path from node #1 to node #4 (orange cfrcles). (a) Path from 
#1 to #4 of length 3, denoted by {#1, #9, #3, #4} nodes of green circle, containing the 
directed edges (blue) (#1, #9), (#9, #3) and (#3, #4). An alternative path of the same 
length 3 is denoted by {#1, #8, #3, #4} nodes of green circle, (b) Path from #1 to #4 of 
length 4, denoted by {#1, #9, #8, #3, #4} nodes of green circle, containing the directed 
edges (blue) (#1, #9), (#9, #8), (#8, #3) and (#3, U). An alternative path of the same 
length 4 is denoted by {#1, #9, #2, #3, #4} nodes of green circle. The shortest possible 
path length from node #1 to #4 is 3, hence the distance from node #1 to node M is 3. 

One of the most commonly used measures in the brain network is the characteristic path 

length. This is computed as the global average of the graph's distance matrix (Watts and 

Strogatz, 1998). The characteristic path length is calculated as 

nZ-i n - 1 
ieN 

The characteristic path length is a global characteristic; it indicates how well integrated 

a graph is, and how easy it is to transport information to other entities in the network. 
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Generally, shorter paths are thought to be more effective in passing information. Thus 

the average path length for a network can provide an indication of its capacity for global 

information exchange. 

7.2.4 Efficiency 

A related to characteristic path length and often more robust method, the global 

efficiency (Latora and Marchiori, 2001), is computed as the average of the inverse of 

the distance matrix. A fiilly connected graph has maximal global efficiency since all 

distances are equal to one (all pairs of nodes are linked by an edge); while a fully 

disconnected graph has minimal global efficiency since all distance between nodes are 

infinite. A high efficiency indicates that pairs of nodes, on average, have short 

communication distances and can be reached in a few steps. The efficiency of a graph 

should be compared to the efficiency of a random network keeping the same indegree 

and outdegree of the nodes. The global efficiency is calculated as 

p ^ j^YXyeAf,;*i(dij) 
- 1 

7.2.5 Clu§termg coefficient 

A clustering coefficient is a measure of degree to which nodes in a graph tend to cluster 

together. It is one of the most elementary measures of local segregation of the network 

{Watts and strogatz, 1998). There are two versions of this measure, the local and the 

global clustering. The local clustering coefficient of an individual node measures the 

density of connections between the node's neighbours. Neighbours are those nodes that 

are connected, either through an incoming or outgoing connection, to the node 

(Fig. 7.3(a)). Densely interconnected neighbours form a cluster around the node, while 

sparsely interconnected neighbours do not. Clustering of a node is high if the node's 

neighbour's are also neighbour's of each other. The average of the clustering 
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coefficients for each individual node is the clustering coefficient of the graph known as 

global clustering coefficient. 

(a) 
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Figure 7.3: (a) Clustering coefficient of node #9 (orange circle). This node's 
neighbours are #1, #2, #3 and #8 (green circle), which maintain 6 connections (blue 
edges) among them out of 12 possible (4^ - 4). Thus the clustering coefficient of this 
node is 6/12=0.5. (b) Distance matrix of the 9 node, indicates the shortest path from 
node I (1,2 •••,9) to node (1,2 ••-,9) i ^ j . Pairwise distances are integers ranging from 
1 to a maximum of 5. 

The clustering coefficient C; of a node i with indegree fc-" and outdegree fef"' is usually 

calculated as (Fagiolo, 2007) 

jZ jMN {uij + aji)(ai,, + ani){ajh + a^j) 

Ci = 
h *j.h*tj*i 

{kr' + kl"){kf^' + kj- - 1) - 2Zjer<ciijaji 

The clustering coefficient Cj ranges between 0 and 1. Usually Q is averaged over all 

vertices to obtain a mean C of the graph 

ic/v 
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7.2.6 Betweenness centrality 

Centrality measures of a graph determine the relative importance of a node within the 

graph. Measures of centrality are based on the notion of the shortest paths. Betweenness 

centrality of a node is a useful measure to know how much information passes through 

certain nodes of the graph. A node with high betweenness centrality can control 

information flow because it is at the intersection of many shortest paths. The 

betweenness centrality of an individual node is defined as the fraction of all shortest 

paths in the network that pass through the node. The betweenness centrality of a node i 

is calculated as (Freeman, 1978) 

'•- ( n - l ) C n - 2 ) Z . pnj 
h.jeN 

where Pf^j is the number of shortest paths between h and j , and p^y (i) is the number of 

shortest paths between h and ; that pass through i, 

7.2.7 The PI model 

The PI model (Holland and Lcinhardt, 1981) of a graph determines the relationships 

between nodes of the graph. For any pair of nodes in a graph, there are three possible 

relationships between them: no ties (no edges in either direction between the nodes), an 

asymmetric tie (an edge between the two nodes going in one direction for the other but 

not both), or a mutual tie (two edges between the nodes, one going in one direction an 

the other going in the opposite direction). These relationships are known as dyadic 

relationships and is denoted by 

where A is the adjacency matrix. 
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A mutual relationship between node i and node j exists when i -* j and y -• i in the 

dyad which is denoted by i «-• y. A mutual relationship is obvious when both the (t,;) 

and 0 , 0 cells are unity; that is Aij = 1 and Aji = 1, so that the dyad Djj = (1,1). The 

asymmetric dyad can occur in two ways, either i -* j or j -* i , but not both. 

Specifically, Dij = (1,0) or Dij = (0,1). In null dyad the (i,;) and 0 , 0 symmetrically 

placed off-diagonal cells of ^ are both 0; that is, Aij = Aji = 0, implying that Dij = 

(0,0). Thus the three possible dyadic relationships can be represented as 

Ou = 

(0,0) 
(1.0) or (0,1) 

(1,1) 

A dyad with measurements on a directional relation consists of two nodes, i and;, and 

the possible ties between these two nodes. The ties between the nodes are viewed from 

the perspective of either node i or node / . From the perspective of i the relational 

variable A^j records the possible "choice' of) by i, while the relational variable Aji 

records the possible 'choice" received by i from y. From the perspective of node 7 the 

relational variable Aij records the pwssible choice of node i by node y, while the 

relational variable i4iy records the possible choice received by nodey from node i. 

For a pair of nodes the ties in the dyad for both nodes is represented in a 2 x 2 array. 

There are two variables of this array. The first variable is indexed with an k, which can 

be either 0 or 1, codes the value of the tie sent by the row node i to the column node / 

The second variable, also with just two levels is indexed with an /, codes the value of 

the tie sent by the column nodey to the row node i. So, the ties for each and every dyad 

can be presented in one of these 2 x 2 arrays. The new indices k and / equal to either 0 

or 1, depending on the state of the dyad. 
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Considering all dyads and the single dichotomous relation, there will be 5 x ^binary 

matrix for g nodes. If each entry is replaced with the appropriate 2 x 2 table, a new 

contingency table is obtained of size 5 x g x2 x2. The first two dimensions of this 

table are indexed by the nodes. The size of the third and fourth dimensions is 2, are 

coded /c,/ = 0 or 1. 

The g "X g X2 x2 matrix is denoted by Y, and its entries are defined as follows: 

^ijki = 1 if the dyad Dij takes on the values (j4,y = k,Aji = I) 

= 0 otherwise 

The Y-array is a cross-classification of four variables and thus, its entries have four 

subscripts: the nodes as senders (i), the nodes as receivers (J), and the relational 

variables Aij (indexed by the third subscript, k ) and Aji (indexed by the fourth 

subscript, 0- The (i,)) th cell of Y is not a single quantity, but rather a 2 x 2 submatrix. 

In this 2 x 2 submatrix, there is a single 1 found in the {k. I) th cell. The remaining 2" -

I elements are 0. Thus, one can view Aese submatrices as simply indicator matrices, 

giving the "state' of each dyad. 

To understand the Y matrix an example of two nodes is given. The matrix in Table 7.1 

represents the ftiendship of the nodes. The data show that node 2 does not name node 1 

as a Mend he likes, but node 1 nominates node 2. 

Node 

1 

2 

I 

-

0 

2 

1 

-

Table 7.1: Friendship of two nodes. 
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From 1 's perspective, the relational variable sent is A]^2 — l i implying that node 1 liltes 

node 2 as a friend, and the relation received is A21 = 0. implying that node 1 is not 

liked as a friend by node 2. From 2's perspective, the relation sent is A21 = 0, node 2 

does not choose node 1, and the relation received is A12 = 1, node 2 is chosen by node 

1. The recorded data for nodes 1 and 2 in this pair would be D12 = (-^iz, 4̂21) = (1,0), 

so that yi2io = 1, while yi2oo = yizoi = yi2ii = 0- Similarly, D21 = (-42i,i4i2) = 

(0,10). so that 72101 = 1, while y2wo = Vzioi = y z i i i = 0 - Now the Y array is 

presented 

i 

J 

k = Aij 

l = Aji 

0 

1 

0 

1 

0 

-

-

0 

0 

1 

-

-

1 

0 

0 

0 

1 

-

-

I 

0 

0 

-

-

Table 7.2: Y matrix for the friendship of two nodes. 

The PI model is presented by a 4-dimentional Y-array. For a single, directional relation, 

the effects that represent the 'expansiveness' of nodes, the 'popularity' of their partners, 

and the 'reciprocation' of the ties within the dyads are focused. The P1 model consists 

primarily of three sets of parameters: one set of parameters describes the nodes' sending 

behaviour, one set describes the nodes' receiving behaviour, and one set describes the 

interactions between pairs of nodes within a dyad. The first set of parameters are called 

expansiveness effects which reflect the tendency of each node to nominate others as 

friends. The second set of parameters are called popularity effects which reflect the 

tendency for a node to be nominated by others as friends. Positive values of these 

parameters increase the probability of having ties. The final set of parameters are those 
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that reflect the reciprocation, or mutuality, between two nodes, independent of the 

expansiveness or popularity of either node. Reciprocity is the extent to which a dyad 

exhibits mutual, as opposed to asymmetric ties. Positive reciprocity parameters increase 

the likelihood that the dyad is mutual. 

The PI model is expressed in four statements. Each of the four statements represents 

one of the four possible states of any given dyad: the null dyad {Aij = Aji = 

0, or YijQQ = 1) , the mutual dyad i_Aij = Aji — X, or Yijii ~ 1 ) , and two cases of 

asymmetric dyads (Aij = l./l/i = 0,or Yijm = l,anciAij = Q.Aji = l,or Y^JQI = 1) . 

In order to specify PI, the natural logarithm of the probabilities of each of these four 

dyadic states is represented as a function of several parameters: 

logP{Y,joo = 1) = Xij 

logP{YijiQ = 1) = ^ij + 9 + ai+Pj 

logP{Yijo, = 1) = A,j +6 + aj+^i (7.1) 

logP{Yij,, = 1) = Aij + 2e + ai + aj + A + Pj + (a/?) 

The [AJJ] parameters are mathematical necessities included in the model to ensure these 

four probabilities sum to one for each dyad. Thus these parameters appear in all four 

statements, regardless of the state of the dyad. The 9 parameter is interpreted as an 

overall choice effect {analogous to a grand mean), reflecting the overall volume of 

choices sent and received. If one tie is reciprocated, two 6's appear. Note that, 6 does 

not appear in the model statement when ties are not present, and (a^) is present only 

when the dyad is mutual. No substantive parameters appear in the first statement of the 

mode! which represents a null dyad. For asymmetric dyads, the log probabilities depend 

on parameters reflecting only one of the two possible ties in the dyad: dyads in which 

node i chooses node 7 without reciprocation (so an a, but not an aj is relevant, and a (ij 
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but not a Pi is included) and dyads in which node j chooses node i with no reciprocated 

choice (so the relevant parameters are Uj and /?,, but not a, or Pj or (aP)). All the 

parameters appear together only for mutual dyads (the last statement of the model). The 

(ccP) (some times denoted byp), is also called a mutuality parameter. The parameter 

will be positive and large when the relation tends to be mutual. 

In the equations (7.1), the a parameters are interpreted as expansiveness measures for 

each node. If a is positive and large of the corresponding node, it may be said that there 

is a high probability that the node will influence the other nodes. The /? parameters are 

interpreted as attractiveness measures. If ̂  is positive and large of the corresponding 

node, it can be said that there is a high probabiUty that the node is influenced by other 

nodes. The parameters are estimated using the principle of maximum likelihood 

method. To estimate the parameters the package UCINETIV is used. In this chapter, 

only expansiveness and attractiveness parameters are considered for finding the 

relationships of the nodes, 

7 3 Analysis of connectivity of stimulus 1 

The connection matrix (Fig. 7.4(a)) of 29 spike trains shows only 71 connections out of 

812 possible connections. The connection matrix contains a low density (0.0874) which 

means that under the stimulus I the spike trains are not densely connected. The sum of 

indegree and outdegree known as degree is shown in Fig. 7.4(b). The degree of the 

spike trains varies widely from 0 to 11 showing the same number of degrees for certain 

spike trains. For example, spike trains #3, #8, #19, #24 and #32 have 8 degrees each. On 

the other hand spike train 17 has no degree. Some spike trains have very few 

connections known as low-degree spike trains (#13, #18, #21, #22 and #31); whereas 

some spike trains have large connections known as high-degree spike trains (#28, #20 

194 



Chapter 7 Graph Theory Methods 

and #12). A high degree spike train is a spike train whose degree is greater than the 

mean plus one standard deviation of all the spike trains (Spoms et al., 2007). 

t I > I T I I H t l 1111141911 IT1*1*Ml1l3t l ] 
Tsfget spike train 

« . 

M M 11 1 • II M K 7 M i( n > It i« n • 
S^ike train 

I I M t i B n IT 

(b) 

Figure 7.4: (a) Connection matrix of the 29 spike trains of stimulus !. Connection 
patterns are represented by the presence of connection (black square) and absence of 
connection (white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains is displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. High-degree 
spike trains are displayed as green. 
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The characteristic path length of the connection matrix (3.1634) is greater than the 

characteristic path length obtained from a random network (2.6411). This characteristic 

path length indicates that, on average, to pass information from one spike train to 

another spike frain, it takes approximately 3 edges. Similarly, the global efficiency of 

the coimection matrix (0.2456) (random: 0.3040) indicates that pairs of spike trains, on 

average, have long communication distances. 

There is a variation of the clustering coefficient of the spike trains (Fig. 7.5(a)) ranging 

from 0 to 0.72. Some spike trains have high clustering coefficient (#23, #11, #9 and 

#19) indicating that the neighbours of these spike trains are also neighbours of each 

other. There are some spike trains which have a low clustering coefScient (#10 and 

#28), in fact, below the mean of all spike trains. Among the low clustering coefficients, 

the spike train #28 has the highest degree of all the spike trains which indicates that this 

spike ttain communicate to other neighbour spike trains but the neighbours are not 

connected to each other. There are 13 spike trains that do not form any cluster to their 

neighbour spike trains. The clustering coefficient of these spike trains is zero. The 

global clustering coefficient (0.2276) (random: 0.1068) also indicates that many spike 

trains do not have neighbours which are connected to each other. Fig. 7.5(b) shows the 

betweermess centrality of the spike trains. There are some central spike trains (#28, #12, 

#2 and #27) which transfer most of the information to the other spike trains. Among the 

central spike trains, spike trains #28 and #12 have the highest degree. This means that 

these two spike trains communicate to other spike trains through incoming and outgoing 

connections. There are 10 spike trains which do not pass any information to other spike 

trains. That means the betweenness centrality of these spike frains is zero. 
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Figure 7.5: Clustering coefficient and betweenness centrality of the 29 spike trains of 
stimulus 1. The solid horizontal line indicates the mean and the dashed horizontal line 
indicates the mean plus one standard deviation. High-degree spike trains are displayed 
as green, (a) Clustering coefficient of 29 spike trains is displayed in descending order, 
(b) Bctweenness centrality of the 29 spike trains is displayed in descending order. 
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Figure 7.6: Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 1. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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Among the 29 spike trains, spike trains #8, #16, #12 and #20 are the most influential 

(Fig. 7.6(a}) spike trains. Investigation from the connection matrix reveals that these 

spike trains have the high outdegree (6, 4, 5 and 5 respectively). Among the influential 

spike trains there are two high degree spike trains (#12 and #20). Some of the spike 

trains {#1, #11, #17 and #18) do not show any expansiveness because their outdegrees 

are zero. Negative expansiveness coefficient indicates that the indegree is more than the 

outdegree. Spike train #9 has the most negative expansiveness coefficient. Investigation 

from the connection matrix reveals that this spike train has 3 indegree and 1 outdegree. 

Spike trains #15, #28, #27 and #20 are the most attractive spike trains (Fig. 7.6(b)) as 

they have high indegree (5, 6, 4, and 5 respectively) and two of them have the high 

degree (#28 and #20). Similar to expansiveness coefficient some of the spike trains (#13, 

#17, #21, #22 and #31) do not show any attractiveness as their indegrees are zero. 

Negative attractiveness coefficient indicates that the outdegree is more than the indegree. 

Spike train #16 has the most negative attractiveness coefficient (4 outdegree and 1 

indegree). Spike train #20 has the high indegree and outdegree and simultaneously 

considered as influential and attractive spike train. 

1 . 
! 

I 
1 

JdJ. 
1 1 1 4 1 -nnr-irn. • W Tl U 11 

(a) (b) 

Figure 7.7: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 1. 
Significant motif ID's are displayed as green, (b) Structural motif count of size m = 3 
for the randomized diagram. 
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To find the significant interconnections of the spike trains a motif analysis is applied to 

the connection matrix. Fig. 7.7(a) shows the structural motif count of size m = 3 found 

in the connection matrix of 29 spike trains. Motif ID 2 appears 36 times which is the 

highest among the motif IDs. Motif ID 13 appears only 1 time in the connection matrix 

and it is the lowest. To find the significant motif, 1000 random networks are generated 

keeping the same indegree and outdegree of the spike trains. The structural motif count 

of size m = 3 for the random network is shown in Fig. 7.7(b). The motif ID"s 9, 10, 11, 

12 and 13 appear more than the random network. The Z-score of these motif ID's 

(Zg = 3.66, p = .0005; Zjo = 2.60, p = .013; Z ^ = 3.97, p = ,0001; 1^2 = 810, 

p < .0001; Zi3 = 6.51, p < .0001) indicate that they are significant. There are a low 

proportion of connected motifs (25.20%) in the connection matrix indicating that the 

spike trains are not strongly connected. 

The same procedure is applied to the other five stimuH to analyse connectivity of the 

spike trains. The results of analysing the five stimuli are presented in Appendix C. 

7.4 Summary of connectivity of all stimuli 

Comprehensive analysis of connectivity of all stimuli shows ttiat all the connection 

matrices have low density ranging fi-om 0.0764 to 0.1429 (Table 7.3). It is observed that 

stimulus 5 has the highest density. There are two stimuli {1 and 4) which have the same 

density. The characteristic path length of all stimuli shows that on an average, pairs of 

spike trains have long communication distances. The lowest characteristic path length is 

observed in stimulus 5 which indicates that in this stimulus, the communication 

distances between spike trains are less than all other stimuli. A related measure to 

characteristic path lengjh, the global efficiency also shows that on an average, there is a 

long communication distances between spike trains. Like characteristic path length, 

stimulus 5 has the highest global efficiency indicating lowest communication distances 
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among the six stimuli. The global clustering coefficient indicates that most of the spike 

trains in all stimuli do not foim any cluster to their neighbouring spike trains and hence 

the spike trains are not strongly connected to each other. In stimulus 3, the global 

clustering coefficient is the highest which indicates that in this stimulus spike trains 

form some clusters to their neighbouring spike trains. 

Stimulus 

1 

2 

3 

4 

5 

6 

Density 

0.0874 

0.0764 

0.1170 

0.0874 

0.1429 

0.0936 

Characteristic path 

length 

3.1634 

2.7747 

2.8137 

3.1204 

2.3377 

3.0560 

Global 

efficiency 

0.2456 

0.1871 

0.3428 

0.2278 

0.4041 

0.2939 

Global clustering 

coefficient 

0.2276 

0.2213 

0.3749 

0.2408 

0.2715 

0.2139 

Table 7.3: Four graph theory measures for six stimuli. 

The degree distribution of individual spike trains shows that some spike trains have high 

degrees which are common to different stimuli (Fig. 7.8). Spike train #32 has the 

highest degree in the case of five stimuli except stimulus 1. Similarly, spike train #28 

has high degree in the cases of three stimuli (stimulus I, stimulus 2 and stimulus 5) and 

spike train #12, #24 and #27 have high degree in the case of two stimuli. Spike trains #3, 

#9, #14, #20, #21 and #30 have the high degree in the case of only one stimulus. 
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Figure 7.8: Spike trains which have high degree, high betweenness centrality, high 
expansiveness coefficient and high attractive coefficient among all the spike trains In 
different stimuli. 

Investigation from the clustering coefficients reveals that all the high de^ee spike trains 

have low clustering coefficient. Some spike trains have clustering coefficient below the 

mean of all the spike trains. On the other hand, all these high degree spike trains have 

high betweenness centrality. Similar to high degree, spike train #32 has the high 

betweenness centrality in five stimuli except stimulus 1 and spike train #28 has high 

betweermess centrality in three stimuli (stimulus I, stimulus 2 and stimulus 5). Spike 

train #12 has high betweenness centrality in two stimuli which are stimulus 1 and 

stimulus 5. These high degree spike trains have also high expansiveness coefficient and 

high attractiveness coefficient. Spike train #32 has high expansiveness coefficient in 

five stimuli and high attractiveness coefficient in two stimuli. Spike frain #28 has high 

expansiveness coefficient in two stimuli (stimulus 2 and stimulus 5) and high 

attractiveness coefficient in stimulus 1. 
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Figure 7.9: Hub spike train in six stimuli. The hub spike train is shaded in magenta 
colour, (a) Spike train #28 is the hub spike train in stimulus 1. (b) Spike train #32 is the 
hub spike train in stimulus 2. (c) Spike train #32 is the hub spike train in stimulus 3 (d) 
Spike train #32 is the hub spike train in stimulus 4 (e) Spike train #32 is the hub spike 
train in stimulus 5 and (0 Spike train #32 is the hub spike train in stimulus 6. 

An important property of the graph theory measures is the identification of hubs. In 

graph theory measures, highly influential nodes are often referred to as hubs. These 

hubs have the capacity to transfer or process information to the other nodes. Hubs can 

be identified either on the basis of the number of degrees or betweenness centrality 

{Spoms, 2010). From the analysis of high degrees and betweenness centrality, it can be 

concluded that there are some hub spike trains in all stimuli. Fig. 7.9 shows that there is 

a hub spike train in stimulus 1 which is spike train #28, and spike train #32 is the hub 
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Spike train for all other stimuli. From the analysis it can be concluded that spike train 

#28 and #32 are the main spike trains which transfer information to the other spike 

trains and as well receive information from the other spike trains. 

i 

Figure 7.10: Significant motif ID in different stimuli. 

Lastly, Fig. 7.10 shows the significant motif ID obtained from different stimuli. Out of 

13 motifs ID, only 6 motifs ID are found significant. Motif ID's 9 and 12 are significant 

in all 6 stimuli. Motif ID 13 is significant in stimuli 1, 3, 4 and 6. Motif ID 8 is 

significant in 3 stimuli (stimulus 2, stimulus 3 and stimulus 5). Both motif ID's 10 and 

11 are significant in stimulus 1. 
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Chapter 8 

Contribution and conclusion 

In this chapter the contributions of this thesis are highlighted. The main findings of the 

statistical methods are reiterated to highlight the significance of the methods for the 

analysis of fiinctional connectivity. 

8.1 Contribution 

Here the major contributions of this thesis are summarized: 

1. A new statistical method known as the modified correlation grid (MCG) is 

developed to analyse fijnctional connectivity of multiple spike trains. The MCG 

method enables researchers to distinguish the direct connections fi-om the 

spurious (common source and indirect connection) connections using an 

automatic algorithm. 

2. Another statistical method known as the Cox method is developed to analyse 

functional connectivity of multiple spike trains. TTie original paper on the 

application of the Cox method (Borisyuk et al., 1985) to neuroscience data was 

used to analyse only pairs and triplets of spike trains. 

3. A probabilistic model for the generation of dependent spike train is developed. 

In this probabilistic model an influence function is described which is used in 

neuroscience to study synaptic connectivity between neurons. 

4. A technique based on the pair-wise analysis of the Cox method is developed. 

This technique is called the Cox metric. The Cox metric is used to identify the 

groups of similar spike trains among multiple spike trains. 
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5. Another technique based on the triplet-wise analysis of the Cox method is 

developed. This technique is used to identiiy the patterns of interconnections of 

multiple spike trains. 

6. In social science network the PI model is used to identify influential and 

attractive people. In this thesis this PI model is used to the connection matrix of 

multiple spike trains to identify the influential and attractive spike trains. 

8.2 Conclusion 

The MCG, developed in this thesis, is a usefiil method to identify functional 

connectivity of multiple spike trains. In chapter 3, this method is applied to analyse 

functional connectivity generated by the ELIF model. To generate spike trains the 

architecture of connections between ELIF elements is prescribed and in the analysis of 

these spike trains it is assumed that connections are unknown. A diagram of functional 

connection is derived as a result of spike train analysis. This diagram of functional 

connection is compared with the connection of ELIF model which is used for spike train 

generation. Two examples are considered for comparison, a neural circuit of 15 spike 

trains and a neural circuit of 20 spike trains. The neural circuit of 15 spike trains has 

sixteen connections with one very strong connection known as outlier, and fifteen other 

medium strengths of connections. The neural circuit of 20 spike trains has twenty five 

connections where all the connections have medium strength. 

Pair-wise Jinalysis of the CCF of the 15 spike trains reveals 25 significant connections. 

Application of the MCG to these 25 significant connections shows 16 direct 

connections and 9 spurious {common source and indirect) connections. Comparing this 

diagram of fianctional connectivity with the diagram of connectivity of ELIF elements 

used for spike train generation reveals that all the direct connections identified by the 

MCG are the same as the prescribed connections of the ELIF model. 

206 



Chapter 8 Contribution and Conclusion 

Similarly, the pair-wise analysis of the CCF of the 20 spike trains reveals 34 significant 

connections. AppUcation of the MCG to these 34 significant connections shows 25 

direct connections and 9 spurious (common source and indirect) connections. 

Comparing this diagram of fiinctional connectivity with the diagram of connectivity of 

ELIF elements used for spike train generation reveals that all the direct connections 

identified by the MCG are the same as the prescribed connections of the ELIF model. 

Thus using the MCG it is possible to distinguish the direct connection fi-om the spurious 

connections and can reveal the functional connectivity of the multiple spike trains. 

In this thesis a statistical technique known as the Cox method is presented for analysing 

dependencies of point processes for apphcation to neuroscience data. It is found that the 

Cox method is an efficient tool to study functional connectivity. Comparison with the 

CCF which is traditionally used in neuroscience shows significant advantages of the 

Cox method. 

In chapter 5, the Cox method is applied to the multiple spike trains generated by the 

ELIF model to analyse functional connectivity. To generate spike trains the architecture 

of connections between ELIF elements is prescribed and in the analysis of spike trains it 

is assumed that connections are unknown. The diagram of functional connections which 

is obtained by the Cox method is compared with connections of ELIF model which is 

used for spike train generation. Two examples are considered for comparison of the 

result of functional connectivity of the Cox method and the connection of ELIF model. 

The result of analysing five spike trains shows that the Cox method accurately identifies 

all functional connections. The result of analysing a large neural circuit of twenty spike 

trains also accurately identifies all forty two connections but also finds two erroneous 

connections which are relatively weak. 
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Comparison with the CCF shows that the Cox method has advantages over the CCF 

technique. In particular, the Cox method is more accurate in difficult situations such as 

a weak strength or short spike trains. One important advantage of the Cox method is 

that this method allows analysing all simultaneously recorded spike trains. To 

demonstrate this advantage the Cox method is applied to analyse three spike trains 

coupled according to 'common source' scheme and shown that coupling can be 

correctly idenfified, but the pair-wise CCF fails to disfinguish between the direct 

connection and the connection due to a common source. A similar example of three 

spike trains with "indirect connecfion" also demonstrates an advantage of the Cox 

method over the CCF. 

For comparison with CCF, a probabilistic model is used for generating two spike trains 

which satisfy the assumption of the MRP. hi this case the estimated Cox coefficient 

equals the prescribed strength of influence for spike train generation whereas the CCF 

fails to show the propn- strength of influence. In chapter 4, it is shown that the 

probabilistic MRP model can be fitted to a wide range of spike trains generated by the 

integrate-and-fire model. To analyse fiinctional connectivity of multiple spike trains it is 

not known whether the analysed spike trains satisfy the assumption of MRP. However 

application of the Cox method to both probabihstic model and ELIF model shows that 

this method is robust and can be successfully used for finding functional connectivity 

for a wide range of point processes. 

A new technique known as the Cox metric, based on the pair-wise analysis of the Cox 

method is developed in this thesis. This method is applied to a neural circuit of twenty 

spike trains generated by the ELIF model to identify the groups of coupled spike trains. 

The architecture of connections between ELIF elements is prescribed and it is assumed 

that connections are unknown. The groups of mutually coupled spike trains are derived 
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by the Cox metric and results are compared with connections of ELIF model which is 

used for generating groups of coupled spike trains. The result shows that the Cox metric 

accurately identifies the groups of coupled spike trains. 

Another technique known as motif analysis, based on the triplet-wise analysis of the 

Cox method is developed to identify patterns of interconnections among the spike 

trains. Application of this method is presented for a neural circuit of twenty spike trains. 

In addition to this technique, motif analysis is conducted based on the connection matrix 

derived by the Cox method considering all spike trains at once. It is found that the 

patterns of interconnections obtained by the triplet-wise analysis of the Cox method are 

very similar to the patterns of interconnections obtained by the Cox method considering 

all spike trains at once. 

8 3 Application of the methods to the experimental data 

8.3.1 Analysis of functional connectivity 

The MCG method and the Cox method are applied to a set of experimental data 

recorded firom cat's visual cortex to identify ftinctional connectivity. Experimental data 

includes six stimuli. For each stimulus a set of 29 spike trains are analysed to identify 

functional connectivity. A simple study is conducted to understand how the Cox method 

works for experimental data. Two small time intervals are considered for the analysis of 

functional connectivity of 29 spike trains. Analysis of functional connectivity of 29 

spike trains for these intervals show very similar results, which indicate that Cox 

method is useful for analysis of experimental data. The MCG is not applied because the 

number of spikes is too small for the application. 

For each stimulus the diagram of functional cormectivity obtained by the MCG method 

is compared with the diagram of functional connectivity obtained by the Cox method. 
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Although there are differences in the functional connectivity, importantly many 

functional connections are common in both techniques. Application of Cox metric to the 

functional connectivity of each stimulus has identified some groups of spike trains 

which are common in different stimuli. The patterns of interconnections of the spike 

trains in different stimuli obtained by motif analysis are also similar. 

8.3.2 Graph theoretical methods for analysing connectivity 

Matrix of connectivity obtained in chapter 6 by the Cox method for each stimulus is 

further analysed by the graph theoretical methods in chapter 7. Importantly, the results 

of graph theoretical methods found in chapter 7 have similar characteristics as in 

previous studies. The average connection density of all the connection matrices is 

obtained 0.100; this result is similar to the result of macaque cortex done by Young 

(1993) where the density was 0.152. The average of the characteristic path length 

(2.877) is found similar to the characteristic path length of macaque cortex (2.312). The 

degree distribution of individual spike trains obtained in chapter 7 reveals that some 

spike trains have high degrees which are common to different stimuli. Importantly, 

these high degree spike trains have found low clustering coefficient even below the 

mean of all spike trains. The low clustering coefficient of the high degree spike trains is 

common in each stimulus. The similar result is obtained from a previous study (Spoms 

et al., 2007) where the high degree areas of macaque cortex and cat cortex show low 

clustering coefficient. Betweenness centrality of the spike trains obtained from different 

stimulus reveals that the high degree spike trains have high betweenness centrality. 

Importantly, all the high degree spike trains which are common to different stimuli also 

have high betweenness centrality. Previous study (Spoms et al., 2007) also shows that 

the high degree areas of macaque cortex and cat cortex have high betweenness 

centrality. Connection matrices of all five stimuli except stimulus 1 reveal that spike 
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train #32 has high degree and high betweenness centrality and this spike train can be 

considered as the hub spike train which transmits and receives information from other 

spike trains. Analysis of the matrices reveals that spike train #32 shows the high 

expansiveness coefficient which is common in five stimuli except stimulus I. This spike 

train has also high attractiveness coefficient for stimuli 3 and 5. For all stimuli structural 

motif ID'S 9 and 12 are found significant. Studies on the macaque cortex (Spoms and 

Koetter, 2004; Sporns et al., 2007) have also revealed that structural motif ID 9 

significantly appear more than the random network. 
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A.1 Enhanced Leaky Integrate and Fire model 

The description of the Enhanced Leaky Integrate and Fire (ELIF) model follows the 

paper by Borisyuk (2002). A discrete-time version of the model neuron is used with the 

time increment equal to I ms. The state of each neuron at the moment t is characterised 

by a threshold and the total potential which is the sum of postsynaptic potentials and the 

noise. If the value of the total potential has reached the threshold, the neuron generates a 

spike. The spike propagates to other neurons with a time delay. The diagram of 

connection should be defined as well as connection strengths, time delays, and time 

decays of postsynaptic potentials. When the spike reaches another neuron, the 

postsynaptic potential jumps up or down depending on whether the spike is fi-om an 

excitatory or inhibitory neuron, respectively. The value of the cormection strength 

controls the jump height. The postsynaptic potential exponentially decays to the resting 

potential if there are no incoming spikes. After spike generation, the neuron is unable to 

generate a spike during an absolute refractory period. When this period expires, the 

threshold gets the highest value and then exponentially decays to the asymptotic 

threshold value. This decay is used to model a relative refractory period. To model a 

spontaneous background activity, the random noise is added to the membrane potential. 

The amplitude of the noise exponentially decays with time and a normally distributed 

random variable with zero mean and a fixed variance is added to the noise at each time 

step. The noise is independent random process for each element. If the ampUtude of 

noise is large enough, then the element can be spontaneously active even without 

influences from other neurons. 
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A.2 Dynamics of the ELIF model 

The dynamics of the ELIF is governed by the following equations: 

1. The threshold: 

r(£ + 1) = (r,nax - nc)exp(-(f - t^)/ath) + r^ 

where r^a^. is the maximum value of the threshold 

TOT is the asymptotic threshold value when t -* oo 

a^fi is the threshold decay rate 

tgp is the last spike moment before t. 

2. The post-synaptic potential for the input of the neuron: 

PSpi(t + 1) = PSP'(t)exp{- 1/a'psp) + a. 

a = 
. 0, otherwise 

where w^ is the connection strength, positive for the excitatory connection and 

negative for the inhibitory one 

T-' is the time delay 

fTpjp is theyth neuron PSP decay rate 

t'^p is the last spike moment of theyth neuron before t. 

3. The noise: 

N(t + 1) = N(t) exp ( - l / a ^ ) + ^, < e iV(0, (T) 

where a^ is the noise decay rate 

^ is a random variable with the normal distribution 

4. The soma's membrane potential: 

V(t + 1) = Vj^Hpexp{-{t - t^)/av) 

where V'̂ HP is the value of after spike hyperpolarization 

ay is the soma's membrane potential decay rate 
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tgj, is the last spike moment before t. 

5. The total potential: 

P(t + 1) = y PSP^it + 1) + /V(t + 1) + V(t + 1) + /^^((t + 1) 

J 

where l^xt is the value of the external input. 

6. Spike generation: 

If P(,t + 1) > rCt + 1), then t^p = t + 1. 

7. The absolute refractory period: 

There is no spike generation for the time interval t 6 (tjp, tjp + ^^D-

A.3 Parameters for spike train generation by ELIF model 

An ELIF model can be simulated using software from the following website: 

http://www.tech.plymouth.ac.uk/infovis. To run the simulation, the parameters of ELIF 

neurons and their coupling should be specified. 

Neural parameters: 

Neural parameters describe the parameters of each neuron. The parameters are: 

a) Maximum value of the threshold, b) Threshold decay rate, c) Asymptotic threshold 

value, d) Amplitude of the noise {i.e. the standard deviation of the normally distributed 

random variable), e) Noise decay rate, f) Initial value of after spike hyperpolarisation, g) 

Soma's membrane potential decay rate, h) External input, i) Absolute refractory period, 

and j) Type of the neuron (0- non-pacemaker, 1 - pacemaker). 

Connection parameters: 

Connection parameters contain the parameters describing non-zero connections between 

neurons. The parameters are: 
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a ) List of the numbers of those neurons which send their connections to the current 

neuron, b) Connection strengths for these connections (positive for excitatory 

cormection and negative for inhibitory), c) Decay rates of postsynaptic potential for 

each connection respectively and d) Time lag of spike propagation for each incoming 

cormection (ms). 
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In chapter 6 the MCG method and the Cox method are applied to analyse functional 

connectivity of 29 spike trains. The results of analysing the first stimulus are presented 

in chapter 6. In this appendix the results of analysing the five stimuli are presented. 

B.l Analysis of functional connectivity of stimulus 2 

The raster plot of 32 spike trains is shown in Fig, B.l. Like stimulus 1, spike trains #4, 

#5 and #29 have high spiking rates compared to other spike trains and considered as 

outliers. These three spike trains are not considered in the analysis of functional 

connectivity. All other 29 spike trains have similar spiking pattern. Spiking rates of 

these spike trains are high over the time interval [34000 ms, 78000 ms]. Importantly, 

there are no spikes over the time interval [78000 ms, 84000 ms] of the 29 the spike 

trains except spike train #1. TTiese 29 spike trains are analysed to identify functional 

connectivity keeping the original numeration of the spike trains. 

40000 80000 
Time(ms) 

120000 

Figure B.l: Raster plot of 32 spike trains of sfimulus 2. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing functional coimectivity. 
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B.1.1 MCG method 

To identify functional connectivity, 406 pair-wise CCF are calculated with a bin size of 

1 ms and a correlation window of 100 ms for the 29 spike trains. To test the 

independence of two trains the significance level a = 0.05 is used with the Bonfenoni 

correction. A connection is considered to be significant if a peak of the CCF exceeds the 

upper boundary of the "confidence interval'. A total of 199 significant connections are 

found for 29 spike trains. These significant connections are shown in a matrix format in 

Fig. B.2(a) where the connections are indicated by circles. The direction of connection 

is considered fi-om the reference spike train to the target spike train. Among the 29 spike 

trains, spike train #28 has 18 outgoing connections to other spike trains which is the 

highest among 29 spike trains and similar 16 incoming connections from other spike 

trains. 
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(a) (b) 

Figure B.2: (a) Significant connections obtained firom pair-wise CCF analysis of the 29 
spike trains of stimulus 2. (b) Direct connecUons obtained from the connections in (a) 
after the clustering algorithm. The radius of the circle indicates the strength of the 
connections. 

To identify the direct connections from the 199 si^ificant connections, a clustering 

algorithm is applied. After clustering, a total of 129 connections are identified as direct 

connections (Fig. B.2(b)). The radius of the circle indicates the strength of connection. 
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Among 129 connections, 9 connections have strong strength compared to others. These 

connections are: (#6, #9), (#7, #8), (#8, #7), (#8, #12), (#9, #3), (#9, #15), (#12, #8), 

(#14, #9) and (#15, #9). All other connections have medium strength of connection. 

Spike train #28 has 11 outgoing connections and spike train #32 has 12 incoming 

connections, which are the highest among 29 spike trains. There are 38 pairs of 

connections where both spike trains have functional connectivity to each other. 

B.1.2 Cox method 

To identity fiinctional connectivity of the 29 spike trains using Cox method, one spike 

train is considered as the target spike train and other 28 spike trains are considered as 

the reference spike trains. The influence function (and its parameters) which determines 

how the reference spike train influences the target spike train should be specified. The 

inter spike interval (ISl) histogram of three spike trains, spike train #7, #10 and #13 are 

given in (Fig. B.3). These histograms have high count for the short iSI and the ISI count 

decreases with increase of the ISI length. That suggests that the influence fijnction 

should be specified by the formula (5.3). The parameters of the influence functions Eire 

Tr = 0.1 ms, Tg = 10 ms. Another parameter, the lime lag A is specified from pair-wise 

CCF analysis. 

Thus, the influence fiinctions are defined and the Cox coefficients and the 

corresponding confidence intervals are calculated using formulas (5.5) and (5.6). This 

procedure is repeated 29 times to obtain the fiill functional connectivity of the 29 spike 

trains. The confidence intervals are calculated using the significance level a = 0.05 

with Bonferroni correction. 
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#10 

tkBt.0 IW*>« 

#13 

Figure B.3: Inter spike interval histogram of the spike trains #7, #10 and #13 of 
stimulus 2. 

A total of 62 connections are identified by the Cox method which are shown by circles 

in Fig. B.4(a). The radius of the curcle indicates the strength of functional connection. 

The direction of fiinctional connection is from the reference spike train to the target 

spike train. Among the 62 connections, the 3 connections have stronger strength 

compared to others. These connections are: (#8, #7), (#20, #19) and (#32, #30). 9 

connections have a small strength compared to others. These connections are: (#3, #15), 

(#7, #3), (#7, #28), (#8, #3), (#25, #32), (#27, #32), (#28, #12), (#28, #32) and (#32, 

#31). All other connections have a medium strength of connection. Spike trains #8 and 

#32 have 8 outgoing connections and spike train #3 has 6 incoming connections, which 

are the highest among 29 spike trains. There are 13 pairs of connections where both 

spike trains have fiinctional connectivity to each other. 
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Figure B.4: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 2. Radius of the circle indicates strength of connection, (b) The 
connections that are identified both by the MCG method and the Cox method. 

Functional connectivity obtained by the MCG method and the Cox method show a good 

agreement between them (Fig. B.4(b)). There are 49 connections which are common in 

both techniques. Among the common connections spike train #32 has 8 outgoing 

connections to other spike trains and spike train #32 has 5 incoming connections which 

are highest among the 29 spike trains. There are 11 pairs of connections where both 

spike trains have fiinctional connectivity to each other. 

B.1.3 Cox metric 

All possible pairs of spike trains are analysed by pair-wise Cox method where one spike 

train is taken as a target and the other spike train as a reference. All the influence 

functions are considered identical and specified by (5.3) with the parameters Tr = 

0.1 ms and r^ = 10 ms. Another parameter of the influence function, the time lag A is 

obtained by the pair-wise CCF analysis. Using the parameter values, the influence 

functions are determined and the Cox coefficients are estimated using (5.5) with 

corresponding confidence interval by (5.6). The Cox metric is applied to the significant 

connections to reveal the groups of similar spike trains. The result of Cox metric is 
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shown in Fig. B.5(a) where the grey circles indicate the significant connections obtained 

by the pair-wise Cox method. The black circles indicate symmetric of the grey circles 

but not identified by the pair-wise analysis of Cox method. There are three groups of 

coupled spike trains. Similarly, the Cox metric is applied to the functional connections 

identified by the Cox method considering all spike trains at once. This fimctional 

connection is shown in Fig. B.4(a) and the result of Cox metric is shown in Fig. B,5(b). 

In the figure the grey circles indicate the significant connections obtained by the Cox 

method considering all spike trains at once. The black circles indicate symmetric of the 

grey circles but not identified by the Cox method considering all spike trains at once. 

From Fig. B.5(a) three groups of similar spike trains are identified. The first group 

consists of 10 spike trains, these are; spike trains #6, #9, #3, #15, #7, #8, #11, #16, #12 

and #14. In this group, the connection from spike train #6 to #9, spike train #15 to #9, 

spike train #8 to #9 and spike train #8 to #7 have the highest strength among other 

connections. Spike train #8 has 7 outgoing connecHons to spike trains #9, #3, #15, #7, 

#11, #16 and #12 and spike train #3 has 5 incoming connections from spike trains #9, 

#15, #7, #8 and #14. Thus from this group it can be concluded that spike train #8 acts as 

the most influential spike train. The second group consists of 2 spike frains: spike train 

#1 and spike train #10. The third group consists of 11 spike frains; these are: spike frains 

#19. #20, #24, #23. #27, #28, #26, #31, #25, #30 and #32. In this group, 4 connections 

(#19, #20), (#20, #19), (#30, #32) and (#32, #30) have strong strength compared to 

others. Spike train #32 has 8 outgoing connections to spike frains #19, #20, #24, #27, 

#26, #31, #25 and #30 and 5 incoming connections from spike frains #27, #28, #31, #25 

and #30. This spike frain can be considered as the most influential spike train for this 

group. Spike frains #2, #22, #13, #21, #18 and #17 do not form any group. 
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I 
i 

(a) (b) 

Figure B.5: Groups of similar spike trains revealed by the Cox metric of the 29 spike 
trains of stimulus 2. (a) Cox metric using pair-wise analysis, (b) Cox metric considering 
all spike trains at once. 

Similarly, from Fig. B.5(b) three groups of similar spike trains are identified. The first 

group consists of 11 spike frains, these are: spike trains #19, #20, #23, #24, #27, #28, 

#25, #26, #31, #30 and #32. In this group, the connection from spike train #19 to #20, 

spike train #20 to #19, spike train #30 to #32 and spike train #32 to #30 have the highest 

strength among other connections. Spike train #32 has the 8 outgoing connections to 

spike trains #19, #20, #24, #27, #25, #26, #31 and #30 and 5 incoming connections 

from spike trains #27, #28, #25, #31 and #30. Thus fi-om this group it can be concluded 

that spike train #32 is the most influential spike train. The second group consists of 3 

spike trains, these are: spike trains #1, #10 and #13. The third group consists of 9 spike 

trains; these are: spike trains #3, #15, #9, #11, #7, #8, #12, #14 and #16. hi this group, 

spike train #8 has 5 outgoing connections to spike trains #3, #15, #7, #12 and #16. As 

these spike trains have the highest outgoing connections, these spike trains can be 

considered as the most influential spike trains for this group. Spike trains #17, #6, #21 

and #18 do not follow any group. 
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hivestigation from Fig. B.5(a)-(b) reveal that the Cox metric idenfified by the pair-wise 

analysis and considering all spike trains at once show a good agreement. For example, 

the third group of figure B.5(a) consists 11 spike trains which are the same as the first 

group of figure B.5(b). Similarly, the other two groups of both figures consist same 

spike trains except a few. From this analysis it can be concluded that application of the 

Cox metric to experimental data using pair-wise analysis and considering all spike 

trains at once enables to create similar result. 

B.1.4 Motif analysis 

To find the pattern of interconnections among the 29 spike trains, a structural motif 

analysis is conducted using triplet-wise analysis of Cox method. A total of 3654 triplets 

are analysed. All the influence functions are considered identical and specified by (5.3) 

with the parameters x^ = 0.1 ms and T^ = 10 ms. Another parameter of the influence 

function, the time lag A is obtained by the pair-wise CCF analysis. Using the parameter 

values, the influence fijnctions are determined and the Cox coefficients are estimated 

using (5.5) with corresponding confidence interval using (5.6). Functional connectivity 

of each triplet spike trains is used to identify the structural motif. Structural motif count 

is obtained by analysing all 3654 triplets of spike trains which is shown in Fig, B.6. 
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Figure B.6: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
2. 

Out of 3654 triplets, 657 triplets have different structural motifs ID. Among the 657 

triplets, 126 triplets have motif ID 3 which is the highest among others motif ID's. Only 

3 triplets have motif ID 7 which is the lowest. Motif ID's 2 and 6 have similar number 

of triplets; motif ID's 1, 4 and 5 have similarnumber of triplets; motif ID's 8, 9, 10 and 

12 have similar number of triplets. A total of 85 triplets have connected motifs 

(connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, a total of 572 

triplets have unconnected motifs. Thus there are low proportions of connected motifs 

(14.86%) in the groups of triplet spike trains which indicate that in the group, 

connection from every spike trains to every other spike trains is very low. 

B.2 Analysis of functional connectivity of stimulus 3 

The raster plot of 32 spike trains (Fig. B.7) shows that like stimuli 1 and 2, spike trains 

#4, #5 and #29 have high spiking rates compared to other spike trains. Therefore, these 

three spike trains (#4, #5 and #29) are considered to be outliers and are not considered 

in the analysis of fiinctional connectivity. All other 29 spike trains have similar spiking 
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pattern. Spiking rates of these 29 spike trains is high over the time interval [43000 ms, 

90000 ms]. These 29 spike trains are analysed to identify functional cotmectivity 

between them keeping the original numeration of the spike trains. 

40000 80000 120000 
Time (ms) 

Figure B.7: Raster plot of 32 spike trains of stimulus 3. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fiinctional connectivity. 

B.2.1 MCG method 

AH pair-wise CCF are calculated with a bin size of I ms and a correlation window of 

100 ms for the 29 spike trains. To test the independence of two spike trains the 

significance level a = 0.05 is used with the Bonferroni correction. A total of 89 

significant connections are found for 29 spike trains. These significant connections are 

shown in a matrix format in Fig. B.S(a) where the connections are indicated by circles. 

The direcfion of connection is considered from the reference spike train to the target 

spike train. Among the 29 spike trains, spike train #32 has 12 outgoing cormections to 

226 



Appendix B 

other spike trains which is the highest among 29 spike trains and similar 13 incoming 

connections from other spike trains. 
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Figure B.8: (a) Significant connections obtained from pair-wise CCF analysis of the 29 
spike trains of stimulus 3. (b) Direct connections obtained from the connections in (a) 
after the clustering algorithm. The radius of the circle indicates the strength of the 
connections. 

A clustering algorithm is applied to the 89 significant connections to identify the direct 

connections and a total of 16 connections are identified as direct connections (Fig. 

B.8(b)). The radius of the circle indicates the strength of connection. All the 16 

connections have sfrong sfrength. Spike train #8 has 3 outgoing connections to spike 

trains #7, #12 and #13; and 3 incoming connections from spike trains #7, #12 and #13, 

which are the highest among 29 spike trains. There are 7 pairs of connections where 

both spike trains have fiinctiona] conneaivity to each other. These pairs are: (#3, #9), 

(#7, #8), (#8, #12), (#8, #13), (#19, #20), (#19, #23) and (#30, #32). 

B.2.2 Cox method 

Application of Cox method to the 29 spike trains requires the identification of reference 

spike frains, target spike train and the influence function. The inter spike interval (ISI) 

histogram of three spike trains, spike train #15, #19 and #20 are given in (Fig. B.9). 
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These histograms have h i ^ count for the short ISl and the ISI count decreases with 

increase of the ISl length. That suggests that the influence function should be specified 

by the formula (5.3) with parameters T̂  = 0.1 ms, T; = 10 ms. Another parameter, the 

time lag A is specified from pair-wise CCF analysis. TTius, the influence functions are 

defined and the Cox coefficients and the corresponding confidence intervals are 

calculated using formulas (5.5) and (5.6). This procedure is repeated 29 times to obtain 

the full functional connectivity of the 29 spike trains. The confidence intervals are 

calculated using the significance level a = 0.05 with Bonferroni correction. 

•I*IBf«) 

Figure B.9: Inter spike interval histogram of the spike trains #15, #19 and #20 of 
stimulus 3. 

A total of 95 connections are identified by the Cox method which are shown by circles 

in Fig. B.10(a). The radius of the circle indicates the strength of functional connection. 

The direction of functional connection is from the reference spike train to the target 

spike train. Among the 95 connections, the 6 connections have stronger strength 
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compared to others. These connections are: (#7, #15), (#8, #12), (#13, #8), (#17, #18), 

(#20, #19) and (#32, #30). 6 connections have small strength compared to others. These 

connections are: (#10, #32), (#21, #32), (#24, #27), (#24, #32), (#32, #2) and (#32, #10). 

All other connections have a medium strength of connection. Spike train #32 has 12 

outgoing connections and 9 incoming connections, which are the highest among 29 

spike trains. There are 21 pairs of connections where both spike trains have functional 

connectivity to each other. 
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Figure B.IO: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 3. Radius of the circle indicates strength of connection, (b) The 
connections that are identified both by the MCG method and the Cox method. 

Functional connectivity obtained by the MCG method and the Cox method show good 

agreement between them (Fig. B. 10(b)). There are 14 connections which are common in 

both techniques. Among the common cormections spike train #8 has 3 outgoing 

cormections to spike trains #7, #12 and #13. There are 5 pairs of connections where both 

spike trains have functional connectivity to each other. These connections are: (#3, #9), 

(#7, #8), (#8, #13), (#19, #20) and (#30, #32). 
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B.2.3 Cox metric 

All 812 possible pairs of spike trains are analysed by pair-wise Cox method where one 

spike train is taken as a target and the other spike train as a reference. All the influence 

fiinctions are considered identical and specified by (5.3) with the parameters r^ = 

0.1 ms and TJ = 10 ms. Another parameter of the influence function, the fime lag A is 

obtained by the pair-wise CCF analysis. Using the parameter values, the influence 

functions are determined and the Cox coefficients are estimated using (5.5) with 

corresponding confidence interval by (5.6). The Cox metric is applied to the significant 

connections to reveal the groups of mutually coupled spike trains. The result of Cox 

metric is shown in Fig. B.n(a) where the grey circles indicate the significant 

connections obtained by the pair-wise Cox method The black circles indicate symmetric 

of the grey circles but not identified by the pair-wise analysis of Cox method. Similarly, 

the Cox metric is applied to the functional connections identified by the Cox method 

considering all spike trains at once. This flinctional connection is shown in Fig. B.lO(a) 

and the result of Cox metric is shown in Fig. B.l 1(b). In the figure the grey circles 

indicate the significant connections obtained by the Cox method considering all spike 

trains at once. The black circles indicate symmetric of the grey circles but not identified 

by the Cox method considering all spike trains at once. 

From Fig. B.l 1(a) four groups of similar spike trains are identified. The first group 

consists of 12 spike trains, these are: spike trains #19, #20, #23, #14, #21, #24, #27, 

#30, #32, #25, #28 and #26. In this group, the connection fhjm spike train #19 to #20, 

spike train #20 to #19, spike train #30 to #32 and spike train #32 to #30 have the highest 

strength among other connections. Spike train #32 has 9 outgoing connections to spike 

ti-ains #19, #20, #23, #14, #21, #24. #27, #30 and #25 and spike train #27 has 9 

incoming connections fi-om spike trains #20, #23, #21, #24, #30, #32. #25, #28 and #26. 
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Thus from this group it can be concluded thai spike frain #32 is the most influential 

spike train. The second group consists of 7 spike trains; these are: spike trains #1, #16, 

#7, #15, #3, #9 and #11. hi this group connection from spike train #7 to spike train #15 

has sfronger strength compared to others. Spike train #16 has connections to all other 

spike trains except spike frain #3. Spike train ##11 has 5 incoming connections from all 

other spike trains. Spike frain #16 can be considered as the most influential spike train 

for this group. The third group consists of 3 spike frains: #8, #12 and #13. All the 

connections have strong sfrength. Spike train #8 has connections to the spike frains #12 

and #13. This spike train can be considered as the most influential spike frain for this 

group. The fourth group consists only 2 spike trains: #17 and #18, where there is a 

connection from spike frain #17 to spike frain #18. Spike trains #31, #22, #2, #10 and 

#6 do not form any group. 
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Figure B.l l: Groups of similar spike frains revealed by the Cox metric of the 29 spike 
trains of stimulus 3. (a) Cox metric using pair-wise analysis, (b) Cox metric all spike 
trains at once. 

Similarly, from Fig. B. 11 (b) four groups of similar spike trains are identified. The first 

group consists of 11 spike trains, these are: spike trains #8, #13, #12, #1, #16, #3, #9, 

#11, #7, #15 and #10. In this group, the connection from spike train #8 to #13 and spike 
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train #13 to #8 have the highest strength among other connections. Spike train #16 has 

the 6 outgoing connections to spike trains #8, #12, #1, #9, #11 and #7. As this spike 

train has the highest outgoing connections, this spike train is considered as the most 

influential spike train for this group. The second group consists of 2 spike trains, these 

are: spike trains #6 and #23. The third group consists of 13 spike trains; these are: spike 

trains #14, #19, #20, #24, #22, #21, #31, #30, #32, #25, #28, #26 and #27. In this group, 

four connections (#19, #20), (#20, #19), (#30, #32) and (#32, #30) have big strength 

compared to others. Spike train #32 has 9 outgoing connections to other spike trains of 

this group. As this spike train has the highest outgoing connections, this spike train can 

be considered as the most influential spike train for this group. The forth group consists 

only 2 spike trains, these are: spike trains #17 and #18. Spike trains #2 does not follow 

any group. 

Investigation from Fig. B.ll(a)-(b) reveal that the Cox metric identified by the pair-

wise analysis and considering all spike trains at once show a good agreement. For 

example, the first group of Fig. B.ll(a) and the third group of Fig. B. 11(b) consist the 

same 11 spike trains (#19, #20. #14, #21, #24, #27, #30, #32, #25, #28 and #26) except 

one (#23) in Fig. B.ll(a) and two (#22, #31) in Fig. B.l 1(b). Similarly, the other three 

groups of both figures consist same spike trains except a few. From this analysis it can 

be concluded that applicarion of Cox metric to experimental data using pair-wise 

analysis and considering all spike trains at once enable to create similar result. 

B.2.4 Motif analysis 

To find the pattern of interconnections a structural mofif analysis is conducted using 

triplet-wise Cox method to the 3654 triplets. All the influence fijnctions are considered 

identical and specified by (5.3) with the parameters Xj. = 0.1 ms and r^ = 10 ms. 

Another parameter of the influence function, the time lag A is obtained by the pair-wise 
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CCF analysis. Using the parameter values, the influence functions are determined and 

the Cox coefficients are estimated using (5.5) with corresponding confidence interval 

using (5.6). Functional connectivity of each triplet spike trains is used to identify the 

structural motif among the triplets of spike trains. Structural motif count is obtained by 

analysing all 3654 triplets of spike trains which is shown in Fig. B.12. 

1 2 3 4 5 6 7 B S 10 11 12 13 
htotfflD 

Figure B.12: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
3. 

Out of 3654 triplets, 862 triplets have different structural motifs ID. Among the 862 

triplets, 164 triplets have motif ID 6 which is the highest among other motif ID's. Only 

12 triplets have motif ID 7 which is the lowest. 161 triplets have Motif ID 2 which is 

almost same as the motif ID 6. Motif ID's 1, 3 and 4 have similar number of triplets; 

motif ID'S 9, 10, 11 and 12 have similar number of triplets. A total of 145 triplets have 

connected motifs (connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, 

a total of 717 triplets have unconnected motifs. Thus there are low proportions of 

connected motifs (20.22%) in the groups of triplet spike trains which indicate that in the 

group, coimection from every spike trains to every other spike trains is very low. 
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B J Analysis of functional connectivity of stimulus 4 

Similar to stimuli 1, 2 and 3, spike trains #4. #5 and #29 have high spiking rates 

compared to other spike trains (Fig. B.13). Therefore, these three spike trains are 

considered to be outliers and they are excluded fi-om analysis. All other 29 spike trains 

have similar spiking pattern. Spiking rates of these 29 spike trains are high over time 

interval [50000 ms, 83000 ms]. 29 spike trains are analysed for identifying functional 

connectivity between them keeping the original numeration of the spike trains. 

40000 80000 
Twne (ms) 

120000 

Figure B.t3: Raster plot of 32 spike trains of stimulus 4. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing fimctional connectivity. 

B.3.1 MCG method 

All pair-wise CCF are calculated with a bin size of 1 ms and a correlation window of 

100 ms for the 29 spike trains. To test the independence of two spike trains the 

significance level a = 0.05 is used with the Bonferroni correction. A connection is 

considered to be significant if a peak of the CCF exceeds the upper boundary of the 

'confidence intervar. 
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Figure B.14: (a) Significant connections obtained from pair-wise CCF analysis of the 
29 spike trains of stimulus 4. (b) Direct connections obtained from the connections in (a) 
after the clustering algorithm. The radius of the circle indicates the strength of the 
connections. 

A total of 67 significant coimections are found for 29 spike trains. These significant 

connections are shown in a matrix format in Fig. B.14(a)) where the connections are 

indicated by circles. The direction of connection is considered from the reference spike 

train to the target spike frain. Among the 29 spike trains, spike train #32 has 12 

outgoing connections to other spike trains which is the highest among 29 spike trains 

and similar 12 incoming connections from other spike trains. 

Application of clustering algorithm to the 67 significant connections reveals a total of 

51 direct connections (Fig. B.14(b)). The radius of the circle indicates the strength of 

connection. Among 51 connections, 10 cormections have strong strength. These 

connections are: (#3, #9), (#7, #8), (#8, #7), (#9, #30), (#19, #20), (#19, #24), (#20, 

#19), (#24, #19), (#25, #14), (#30, #32) and (#32, #30). Spike train #32 has 6 outgoing 

connections to spike trains #14, #20, #25, #27, #28 and #30; and 8 incoming 

connections from spike trains #2, #6, #14, #25, #26, #27, #28 and #30, which are the 

highest among 29 spike trains. There are 16 pairs of connections where both spike trains 
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have functional connectivity to each other. These pairs are: (#1, #3), (#1, #7), (#3, #7), 

(#7, #8), (#7, #15), (#14, #32), (#19. #20), (#19, #24), (#24, #28), (#25, #28), (#25, #32), 

(#27, #28), (#27. #30), (#27, #32), (#28, #32) and (#30, #32). 

B.3.2 Cox method 

To identify functional connectivity by the Cox method, the target spike train, reference 

spike trains and the influence function which determines how the reference spike train 

influences the target spike train should be specified. The inter spike interval (ISI) 

histogram of three spike trains, spike train #12. #19 and #20 are given in (Fig. B.i5). 

These histograms have high count for the short ISl and the ISI count decreases with 

increase of the ISI length. That suggests that the influence function should be specified 

by the formula (5.3) with parameters T^ = 0.1 ms, r^ = 10 ms. Another parameter, the 

time lag A is specified by the pair-wise CCF. Thus, the influence functions are defined 

and the Cox coefficients and the corresponding confidence intervals are calculated using 

formula (5.5) and (5.6). This procedure is repeated 29 times to obtain the full functional 

coimectivity of the 29 spike trains. The confidence intervals are calculated using the 

level of significance a = 0.05 with Bonferroni correction. 

The 71 connections, identified by the Cox method, are shown by circles in Fig. B. 16(a). 

The radius of the circle indicates the strength of functional connection. The direction of 

functional connection is fiiom the reference spike train to the target spike train. Among 

the 71 cormections, the 5 connections have stronger strength compared to others. These 

connections are: (#10, #31), (#12, #9), (#20, #19), (#26, #31) and (#32, #30). All other 

connections have a medium strength of cormection. Spike train #32 has 8 outgoing 

connections and 6 incoming cormections, which are the highest among 29 spike trains. 

Tliere are 19 pairs of connections where both spike trains have fimctional connectivity 

to each other. 
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Figure B,15: Inter spike interval histogram of the spike trains #12, #19 and #20 of 
stimulus 4. 

Functional connectivity obtained by the MCG method and the Cox method show a good 

agreement between them (Fig. B.16(b)). There are 31 connections which are common in 

both techniques. Among the common connections spike train #32 has 4 outgoing 

connections to spike trains #20, #25, #27 and #30 and 5 incoming connections from 

spike trains #2, #25, #26, #28 and #30. There are 6 pairs of connections where both 

spike trains have flinctional connectivity to each other. These connections are: (#3, #7), 

(#9, #20), (#25, #28), (#25, #32), (#27, #30) and (#30, #32). 
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Figure B.16: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 4. Radius of the circle indicates strength of connection, (b) The 
connections that are identified both by the MCG method and the Cox method. 

B.3.3 Cox metric 

To apply Cox metric to the 29 spike trains all possible pairs of spike trains are analysed 

by pair-wise Cox method where one spike train is taken as a target and the other spike 

train as a reference. All the influence functions are considered identical and specified by 

(5.3) with the parameters T^ = 0.1 ms and TJ = 10 ms. Another parameter of the 

influence function, the time lag A is obtained by the pair-wise CCF analysis. Using the 

parameter values, the influence fiinctions are determined and the Cox coefficients are 

estimated using (5.5) with corresponding confidence interval by (5.6). The Cox metric 

is applied to the significant connections to reveal the groups of similar spike trains. The 

result of Cox metric is shown in Fig. B. 17(a) where the grey circles indicate the 

significant connections obtained by the pair-wise Cox method. The black circles 

indicate symmetric of the grey circles but not identified by the pair-wise analysis of Cox 

method. Similarly, the Cox metric is applied to the functional connections identified by 

the Cox method considering all spike trains at once. This fimctional connection is 

shown in Fig. B.16(a) and the result of Cox metric is shown in Fig. B.17(b), hi the 
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figure the grey circles indicate the significant connections obtained by the Cox method 

considering all spike trains at once. The black circles indicate symmetric of the grey 

circles but not identified by the Cox method considering all spike trains at once. 

From Fig. B. 17(a) five groups of similar spike trains are identified. The first group 

consists of 8 spike trains, these are: spike trains #30, #32, #21, #25, #27, #28, #14 and 

#26. In this group, the connection from spike train #30 to #32, spike train #32 to #30, 

spike train #14 to #26 and spike train #26 to #14 have the bluest strength among other 

connections. Spike trains #30, #25 and #28 have 6 outgoing connections to other spike 

trains. Spike train #30 has 6 incoming connections fi"om all 6 spike trains except spike 

train #14. Thus from this group it can be concluded that spike train #30 is the most 

influential spike tram. The second group consists of 4 spike trains, these are: spike 

trains #19, #20, #23 and #24. In this group, all the connections have strong strength, 

which means that this group is strongly connected group. All the spike trains have 

cormections to each other, which mean there is no most influential spike train in this 

group. The third group consists of only two spike trains: #10 and #31, where there is a 

connection fi'om spike train #10 to spike train #31. TTie fourth group consists of 5 spike 

trains; #1, #7, #8, #11 and #15. All the connecfions in this group have a medium 

strength. The fifth group consists of 4 spike trains: #9, #12, #13 and #16. Connection 

fi^om #12 to #9 has strong strength and spike train #12 can be considered as the most 

influential spike train of this group. Spike trains #16, #2, #3, #17, #22 and #6 do not 

form any group. 
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Figure B.17: Groups of similar spike trains revealed by the Cox metric of the 29 spike 
trains of stimulus 4. (a) Cox metric using pair-wise analysis, (b) Cox metric considering 
all spike trains at once. 

Similarly, from Fig. B. 17(b) five groups of similar spike trains are identified. The first 

group consists of 5 spike trains, these are: spike trains #30, #32, #25, #27 and #28. In 

this group, the connection from spike train #30 to #32 and spike train #32 to #30 have 

the highest strength among other connections. Spike trains #30 and #28 have outgoing 

connections to all other spike trains. Thus from this group it can be concluded that spike 

trains #30 and #28 are the most influential spike trains. The second group consists of 5 

spike frains; these are: spike trains #19, #20, #24, #21 and #23. In this group, all the 

connections have strong strength, which means that this group is strongly connected 

group. In this group spike frains #19 and #20 have 3 outgoing connections to other spike 

trains and are considered as the most influential spike frains in this group. The thfrd 

group consists of 4 spike frains: #10, #31, #14 and #26. Here spike train #26 has two 

outgoing connections to spike frains #31 and #14 and is considered as the most 

influenfial spike frain. The fourth group consists of 6 spike frains: #1, #7, #11, #15, #9 

and #12. There is no influential spike train in this group. The fifth group consists of 3 
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spike trains: #8. #13 and #16. Spike trains #16, #2, #3, #17, #22 and #6 do not form any 

group. 

Investigation from Fig. B.17(a)-(b) reveal thai the Cox metric identified by the pair-

wise analysis and considering all spike trains at once show a good agreement. For 

example, the second group of both figures consists the same four spike trains (#19, #20, 

#23 and #24) except spike train #21 in Fig. B.17(b). Similarly, the other four groups of 

both figures consist same spike trains except a few. From this analysis it can be 

concluded that application of Cox metric to experimental data using pair-wise analysis 

and considering all spike trains at once enables to create similar result. 

B.3.4 Motif analysis 

A motif analysis is conducted to the 29 spike trains to find the pattern of 

interconnections. For 29 spike trains a total of 3654 triplets are analysed. All the 

influence fionclions are considered identical and specified by (5.3) with the parameters 

Tr ~ 0.1 ms and r^ = 10 ms. Another parameter of the influence function, the time lag 

A is obtained by the pair-wise CCF analysis. Using the parameter values, the influence 

funcfions are determined and the Cox coefficients are estimated using (5.5) with 

corresponding confidence interval using (5.6). Functional connectivity of each triplet 

spike trains is used for identifying the structural motif among the triplets. The structural 

motif count is obtained by analysing all 3654 triplets of spike trains which is shown in 

Fig. B. 18. 
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Figure B.18; Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
4. 

Out of 3654 triplets, 789 triplets have different structural motifs ID's. Among the 789 

triplets, 190 triplets have motif ID 2 which is the highest among others motif ID's. Only 

9 triplets have motif ID 7 which is the lowest. 149 triplets have Motif ID 6 which is the 

second highest among other motif ID's. Motif ID's 1, 3 and 4 have similar number of 

triplets; motif ID's 10, 11 and 13 have similar number of triplets and motif ID's 5, 9 and 

12 have similar number of triplets. A total of 121 triplets have connected motifs 

(connected motifs are motif ID 7,9, 10. 12 and 13). On the other hand, a total of 668 

triplets have imconnected motifs. Thus there are low proportions of connected motifs 

(18.11%) in the groups of triplet spike trains which indicate that in the triplet, 

connection from every spike trains to every other spike trains is very low. 

B.4 Analysis of functional connectivity of stimulus 5 

The raster plot of 32 spike trains is shown in Fig. B. 19. Similar to other stimuli, spike 

trains #4, #5 and #29 have high spiking rates compared to £ill other spike trains. 

Therefore, these three spike trains are considered to be outliers and they are excluded 

from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these 
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29 spike trains are high over time interval [37000 ms, 100000 ms]. These 29 spike trains 

are analysed for identitying fijnctional connectivity between them keeping the original 

numeration of the spike trains. 

40000 800(X} 
Time (ms) 

120000 

Figure B.19: Raster plot of 32 spike trains of stimulus 5. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing functional connectivity. 

B.4.1 MCG method 

All possible pair-wise CCF are calculated with a bin size of 1 ms and a correlation 

window of 100 ms for the 29 spike trains. To test the independence of two spike trains 

the significance level a = 0.05 is used with the Bonferroni correction. A connection is 

considered significant if a peak of the CCF exceeds the upper boundary of the 

confidence interval. A total of 175 significant connections are found for 29 spike trains. 

These significant connections are shown in a matrix format in Fig. B.20(a) where the 

connections are indicated by circles. The direction of connection is considered from the 

reference spike train to the target spike train. Among the 29 spike trains, spike trains 
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#30 and #32 have 17 outgoing connections to other spike trains and 16 incoming 

connections from other spike trains, which are the highest among 29 spike trains. 
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Figure B.20: (a) Si^ificant connections obtained from pair-wise CCF analysis of the 
29 spike trains of stimulus 5. (b) Direct connections obtained from the connections in (a) 
after the clustering algorithm. The radius of the circle indicates the strength of the 
connections. 

A clustering algorithm is applied to the 175 significant connections for distinguishing 

direct connections Grom spurious ones (i.e., indirect connections and common source). 

After clustering a total of 49 connections are identified as direct connections (Fig. 

B.20(b)). The radius of the circle indicates the strength of connection. Among 49 

connections, 9 connections have strong strength. These connections are: (#7, #8), (#8, 

#7), (#8, #12), (#12, #8), (#19, #20), (#19, #23), (#20, #19), (#23, #24) and (#24, #23). 

Spike train #23 has 6 outgoing connections to spike trains #9, #14, #20, #24, #28 and 

#30; and spike train 9 has 7 incoming connections from spike trains #3, #7, #8, #10. #15, 

#16 and #23, which are the highest among 29 spike trains. There are 16 pairs of 

connections where both spike trains have functional connectivity to each other. These 

pairs are: (#3, #7), (#3, #9), (#7, #8), (#7, #9), (#7, #15), (#8, #12), (#8, #15), (#9, #15), 
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(#12, #16), (#19, #20), (#21, #25), (#23, #24), (#23, #28), (#27, #28), (#28, #32) and 

(#30, #32). 

B.4.2 Cox method 

Cox method is apphed to the 29 spike frains to analyse functional connectivity, 

considering one spike train as target spike train and other 28 spike trains as reference 

spike trains. The influence function which determines how the reference spike train 

influences the target spike train should be specified with parameters. All the influence 

fiinctions are assumed identical. The inter spike interval (ISl) histogram of three spike 

trains, spike train #17, #18 and #22 are given in (Fig. B.21). These histograms have 

high count for the short ISI and the ISl count decreases with increase of the ISl length. 

That suggests that the influence function should be specified by the formula (5.3). The 

parameters of the influence function (5.3) are T̂  = 0.1 ms» TJ = 10 ms. Another 

parameter, the time lag A is specified from pair-wise CCF analysis. Thus, the influence 

functions are defined and the Cox coefficients and the corresponding confidence 

intervals are calculated using formulas (5.5) and (5.6). This procedure is repeated 29 

times to obtain the full functional connectivity of the 29 spike frains. The confidence 

intervals are calculated using the significance level a = 0.05 with Bonferroni correction. 

A total of 116 connections are identified by the Cox method which are shown by circles 

in Fig. B.22(a). The radius of the circle indicates the strength of functional connecfron. 

The direction of functional connection is from the reference spike frain to the target 

spike train. 
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Figure B.21: Inter spike interval histogram of the spike trains #17, #18 and #22 of 
stimulus 5. 
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Figure B.22: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 5. Radius of the circle indicates strength of connection, (a) The 
connections that are identified both by the MCG method and the Cox method. 
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Among 116 connections. 8 connections have strong strength compare to others. These 

connections are: (#9, #15), (#13, #16), (#19, #20), (#20, #19), (#24, #23), (#25, #26), 

(#28, #27) and (#32, #30). 5 connections have weak strength compared to others. These 

connections are: (#9, #14), (#12, #32), (#14, #28), (#28, #15) and (#28, #32). All other 

connections have a medium strength of connection. Spike train #28 has 11 outgoing 

connections and spike trains #12 and #32 have 8 incoming connections, which are the 

highest among 29 spike trains. There are 22 pairs of connections where both spike trains 

have functional connectivity to each other. 

Functional connectivity obtained by the MCG method and the Cox method show a good 

agreement between them (Fig. B.22(t)), There are 31 cormections which are common in 

both techniques. Among the common connections spike train #9 has 4 outgoing 

connections to spike trains #7, #12, #15 and #30 and 5 incoming connections from spike 

trains #3, #7, #10, #15 and #16, There are 5 pairs of connections where both spike trains 

have ftmctional connectivity to each other. These connections are: (#7, #9), (#8, #12), 

(#9, #15), (#19, #20) and (#30, #32). 

B.4.3 Cox metric 

All possible pairs of spike trains are analysed by pair-wise Cox method taking one spike 

train as a target and the other spike train as a reference. All the influence functions are 

considered identical and specified by (5.3) with the parameters Tr = 0.1 ms and 

Tj = 10 ms. Another parameter of the influence function, the time lag A is obtained by 

the pair-wise CCF analysis. Using the parameter values, the influence functions are 

determined and the Cox coefficients are estimated using (5.5) with corresponding 

confidence interval using (5.6). The Cox metric is applied to the significant connections 

to reveal the groups of similar spike trains. The result of Cox metric is shown in Fig. 

B.23(a) where the grey circles indicate the significant connections obtained by the pair-
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wise Cox method. The black circles indicate symmetric of the grey circles but not 

identified by the pair-wise analysis of Cox method. Similarly, the Cox metric is applied 

to the ftinclional connections identified by the Cox method considering all spike trains 

at once. This functional connection is shown in Fig. B.22(a) and the result of the Cox 

metric is shown in Fig. B.23{b). In the figure the grey circles indicate the significant 

connections obtained by the Cox method considering all spike trains at once. The black 

circles indicate symmetric of the grey circles but not identified by the Cox method 

considering all spike trains at once. 

From Fig. B.23(a) five groups of similar spike trains are identified. The First group 

consists of 7 spike trains, these are: spike trains #19, #20, #21, #23, #24, #27 and #28. 

In this group, the connection fi'ora spike train #19 to #20 and spike train #20 to #19 

have the highest strength among other connections. All other connections have a 

medium strength. Spike train #28 has connections to all other spike trains and similar 

spike train #23 has incoming connections fi-om all other spike trains. Thus fi-om this 

group it can be concluded that spike train #28 is the most influential spike train. The 

second group consists of 6 spike trains; these are: spike trains #1, #14, #25, #26, #30 

and #32. !n this group, all the connections have medium strength. Spike train #32 has 4 

outgoing connections to spike trains #1, #25, #26 and #30 and 5 incoming connections 

ftom all the spike trains. This spike train can be considered as the most influential spike 

train for this group. The third group also consists of 6 spike trains; these are: spike trains 

#3, #10, #6, #12, #9 and #15. In this group, spike train #3 has 4 out going connections 

to all other spike trains except spike train #15. Similarly, spike train #12 has 4 incoming 

connections ftxjm all other spike trains except spike train #15. In this group, spike train 

#3 is considered as the most iniluential spike train. The fourth group consists of 3 spike 

trains; spike trains #7, #18 and #8. The last group consists of 2 spike trains; spike trains 

#13 and #16. Spike trains #31, #11, #22, #17 and #2 do not form any group. 
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Figure B.23: Groups of similar spike trains revealed by the Cox metric of the 29 spike 
trains of stimulus 5. (a) Cox metric using pair-wise analysis, (b) Cox metric considering 
all spike trains at once. 

Similarly, from Fig. B.23(b) five groups of similar spike trains are identified. The First 

group consists of 7 spike trains, these are: spike trains #19, #20, #27, #28, #21, #23 and 

#24. In this group, the connection from spike train #19 to #20 and spike train #20 to #19 

have the highest strength among other connections. All other connections have a 

medium strength. Spike train #28 has connections to spike trains #19, #20, #27 and #21. 

From this group it can be concluded that spike train #28 is the most influential spike 

train. The second group consists of 7 spike trains; these are: spike trains #1, #14, #30, 

#32, #31. #25 and #26. In this group, the connection from spike train #30 to #32 and 

spike train #32 to #30 have the highest strength among other connections. Spike train 

#32 has 4 outgoing connections to spike trains #1, #30, #25 and #26 and 5 incoming 

connections from all the spike trains. This spike train can be considered as the most 

influential spike train for this group. The third group also consists of 6 spike trains; 

these are: spike trains #3, #10, #6, #12, #9 and #15. In this group, spike train #3 has 4 

out going connections to all other spike trains except spike train #15. Spike train #3 is 

considered as the most influential spike train. The fourth group consists of 4 spike trains; 
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Spike trains #7, #8, #13 and #16. The last group consists of 2 spike trains; spike trains 

#17 and #18. Spike trains #11, #2 and #22 do not form any group. 

Investigation from Fig. B.23(a)-(b) reveal that the Cox metric identified by the pair-

wise analysis and considering all spike trains at once show a good agreement. For 

example, the first and third group of both figures consists the same spike trains. 

Similarly, the other three groups of both figures consist same spike trains except a few. 

From this analysis it can be concluded that application of Cox metric to experimental 

data using pair-wise analysis and considering all spike trains at once enables to create 

similar result. 

B.4.4 Motif analysis 

To find the pattern of intercotmections among the spike trains a structural motif analysis 

is conducted using triplet-wise analysis of Cox method. A total of 3654 triplets are 

analysed. All the influence ftinctions are considered identical and specified by (5.3) with 

the parameters T̂  = 0.1 ms and T^ = 10 ms . Another parameter of the influence 

fianction, the time lag A is obtained by the pair-wise CCF analysis. Using the parameter 

values, the influence functions are determined and the Cox coefficients are estimated 

using (5.5) with corresponding confidence interval using (5.6). Functional connectivity 

of each triplet spike trains is used for identifying the structural motif The structural 

motif count is obtained by analysing all 3654 triplets of spike trains which is shown in 

Fig. B.24. 
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Figure B.24: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
5. 

Out of 3654 triplets, 1724 groups have different structural motifs ID's. Among the 1724 

triplets, 339 triplets have motif ID 6 which is the highest among others motif ED's. Only 

12 triplets have motif ID 7 which is the lowest. Motif ID's 2, 4, 9 and 12 have similar 

number of triplets; motif ID"s I and 3 have similar number of triplets. A total of 532 

triplets have connected motifs (connected motifs are motif ID 7, 9, 10, 12 and 13). On 

the other hand, a total of 1938 triplets have unconnected motifs. Thus there are low 

proportions of connected motifs (27.45%) in the groups of triplet spike trains which 

indicate that connection from every spike train to every other spike trains is low. 

B.5 Analysis of functional connectivity of stimulus 6 

The raster plot of 32 spike trains is shown in Fig. B.25, Similar to all the 5 stimuli spike 

trains #4, #5 and #29 have high spiking rates compared to all other spike trains. 

Therefore, these three spike trains are considered to be outliers and they are excluded 

from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these 

29 spike frains are high over time interval [55000 ms, 95000 ms]. Like stimulus 2, there 

are no spikes over time interval [95000 ms, lOiOOO ms] of the 29 the spike trains except 
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spike train #1. These 29 spike trains are analysed for identifying functional connectivity 

between them keeping the ori^nal numeration of the spike trains. 
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Figure B.25; Raster plot of 32 spike trains of stimulus 6. Spike trains #4, #5 and #29 
have high spiking rates and are not considered for analysing functional connectivity. 

B.5.1 MCG method 

All possible pair-wise CCF are calculated with a bin size of 1 ms and a correlation 

window of 100 ms for the 29 spike trains. To test the independence of two spike trains 

the significance leve a = 0.05 is used with the Bonferroni correction. A connection is 

considered significant if a peak in the cross-correlation fimction exceeds the upper 

boundary of the confidence interval. A total of 214 significant connections are identified 

for 29 spike trains. These significant connections are shown in a matrix format in Fig. 

B.26(a) where the connections are indicated by circles. The direction of connection is 

considered from the reference spike train to the target spike train. Among the 29 spike 

trains, spike train #32 have 17 outgoing connections to other spike trains and 18 
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incoming connections from other spike trains, which are the highest among 29 spike 

trains. 
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Figure B.26: (a) Significant connections obtained from pair-wise CCF analysis of the 
29 spike trains of stimulus 6. (b) Direct connections obtained from the connections in (a) 
after the clustering algorithm. The radius of the circle indicates the strength of the 
connections. 

Application of clustering algorithm to the 214 significant connections identified 154 

direct connections (Fig. B.26(b)). The radius of the circle indicates the strength of 

connection. Among 154 connections, 6 connections have sfrong strength compared to 

others. These connections are: (#7, #8), (#8, #7), (#8, #12), (#9, #7), (#12, #8) and (#19, 

#20). Spike train #32 has 14 outgoing connections and spike train #30 has 10 incoming 

connections, which are the highest among 29 spike frains. There are 48 pairs of 

connections where both spike trains have functional connectivity to each other. 

B.5.2 Cox method 

Application of Cox method to the 29 spike frains requires the identification of target 

spike train, reference spike frains and the influence flinction. The inter spike interval 

(ISI) histogram of three spike frains, spike train #17, #18 and #19 are given m Fig. B.27. 

These histograms have high count for the short ISI and the ISI count decreases with 
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increase of the ISl length. That suggests that the influence function should be specified 

by the formula (5.3). The parameters of the influence function (5.3) are T^ = 0.1 ms, 

Tj = 10 ms. Another parameter, the time lag A is specified from pair-wise CCF 

analysis. Thus, the influence fiinctions are defined and the Cox coefficients and the 

corresponding confidence intervals are calculated using formulas (5.5) and (5.6). This 

procedure is repeated 29 times to obtain the fiill fiinctional connectivity of the 29 spike 

trains. The confidence intervals are calculated using the significance level a = 0.05 

with Bonferroni correction. 
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Figure B.27: Inter spike interval histogram of the spike trains #17, #18 and #19 of 
stimulus 6. 

The 76 connections, identified by the Cox method, are shown by circles in Fig. B.28(a). 

The radius of the circle indicates the strength of functional connection. The direction of 

functional connection is from the reference spike train to the target spike train. Among 

76 connections, 3 connections have strong strength compared to others. These 
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connections are: (#1, #9), (#14, #8) and (#32, #30). 4 connections have weak strength 

compared to others. These connections are: (#7, #3), (#16, #13), (#32, #13) and (#32, 

#28). All other connections have a medium strength of connection. Spike train #32 has 

9 outgoing connections and spike trains #14 and #15 have 6 incoming connections, 

which are the highest among 29 spike trains. There are 17 pairs of connections where 

both spike trains have functional connectivity to each other. 
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Figure B.28: (a) Functional connectivity of the 29 spike trains identified by the Cox 
method of stimulus 6. Radius of the circle indicates strength of connection, (b) The 
connections that are identified both by the MCG method and the Cox method. 

Functional connectivity obtained by the MCG method and the Cox method show a good 

agreement between them (Fig. B.28(b)). There are 57 connecfions which are common in 

both techniques. Among the common connections spike train #32 has 8 outgoing 

connections to spike trains #9, #19, #23, #25, #27, #28, #30 and #31. Spike trains #15, 

#19, #20, #24, #27, #30 and #32 have 4 incoming connections from other spike trains. 

There are 12 pairs of connections where both spike trains have functional connectivity 

to each other. 
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B.S.3 Cox metric 

Application of Cox metric to the 29 spike trains requires the analysis of 812 possible 

pairs of spike trains by pair-wise Cox method where one spike train is taken as a target 

and the other spike train as a reference. All the influence functions are considered 

identical and specified by (5.3) with the parameters T̂  = 0.1ms and T^ = 10 ms . 

Another parameter of the influence fiinction, the time lag A is obtained by the pair-wise 

CCF analysis. Using the parameter values, the influence functions are determined and 

the Cox coefficients are estimated using (5.5) with corresponding confidence interval 

using (5.6). The Cox metric is applied to the significant connections to reveal the groups 

of similar spike trains. The result of Cox metric is shown in Fig. B.29(a) where the grey 

circles indicate the significant connecfions obtained by the pair-wise Cox method. The 

black circles indicate symmetric of the grey circles but not identified by the pair-wise 

analysis of Cox method. Similarly, the Cox metric is applied to the functional 

connections identified by the Cox method considering all spike trains at once. This 

functional connection is shown in Fig. B.28(a) and the result of Cox metric is shown in 

Fig. B.29(b). hi the figure the grey circles indicate the significant connections obtained 

by the Cox method considering all spike trains at once. The black circles indicate 

symmetric of the grey circles but not identified by the Cox method considering all spike 

trains at once. 

From Fig. B.29(a) four groups of similar spike trains are identified. The first group 

consists of 2 spike trains, spike trains #1 and #9, where there is a strong connection 

fi"om #1 to #9. The second group consists of 7 spike trains; these are: spike trains #3, #7, 

#8, #15, #14, #12 and #10, In this group, all the connections have a medium strength. 

Spike train #3 has 4 outgoing connections to spike trains #7, #15, #14 and #10 and spike 

train #15 has 5 incoming connections fixim all other spike trains except spike train #14. 
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Spike train #3 can be considered as the most influential spike train for this group. The 

third group consists of 13 spike trains; these are: spike trains #18, #25, #26, #30, #32, 

#31, #19, #20, #21, #24, #27, #28 and #23. hi this group, there are 6 strong strength of 

connections (#30, #32), (#32, #30), (#19, #20), (#20. #19), (#24, #19), (#19, #24) and 

(#23, #19). All other connections have a medium strength. Spike train #32 has outgoing 

connections to all other spike trains except spike train #26. This spike train can be 

considered as the most influential spike train. The fourth group consists of 2 spike trains, 

spike trains #13 and #16, where there is a connection from spike train #13 to #16. Spike 

trains #2, #17, #11, #6 and #22 do not form any group. 

' - • M i l 
* iH 1 1 N i > • • > 1 ! H» 1 
' ' W Itial {• 

'SSSSB-
> 1 B B I U S W * 
~ 1 ••••••••I " MiMWy 
" • ! w 1 

e • 

1 • - " 
t " » • 1 
» " 
1 " * • 

• i 
• i 

Will 1 m i a t ^ 

I I I [ I 

1 1 PI 

^ 1 
1 1 1 ^1 

ffl • 1 ^\ 
I W 1 ' ' 1 Ifl 
SH I w 
* ! • * *r > • • n • I • • 4 » • • 

1 • > 1 1 
1 1 ^ ^ | g ^ ^ pj 1 

Hf l fd 1 IB 
• • • • mSmmm\t 

• • • • • d a ri 1 • • • 1 »'•!. M • 
• • • • « • ! • 

f 1 m, - . 
1 1 i • • 

1 1 * 

' L T T M iP 1 i M 1 1 Ti 

f 
I 
i 

(a) 9» 

Figure B.29: Groups of similar spike trains revealed by the Cox metric of the 29 spike 
trains of stimulus 6. (a) Cox metric using pair-wise analysis, (b) Cox metric considering 
all spike trains at once. 

Similarly, from Fig. B.29(b) four groups of similar spike trains are identified. TTie first 

group consists of 2 spike frains, spike trains #1 and #9, where there is a strong 

connection from #1 to #9. The second group consists of 4 spike trains; these are: spike 

trains #13. #26, #18 and #25. In this group, all the connections have a medium sfrength. 

The third group consists of 10 spike trains; these are: spike trains #19, #20, #21, #24, 

#23, #27, #28, #30, #32 and #31. In this group, there are 2 steong strength of 
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connections: (#30, #32) and (#32, #30). All other connections have a medium strength. 

Spike train #24 and #32 have 6 outgoing connections and can be considered as the most 

influential spike trains. The fourth group consists of 9 spike trains; spike trains #3, #7, 

#8, #14, #15, #12, #6, #10 and #16. hi this group spike trains #3, #7 and #8 have 4 

outgoing connections to other spike trains. Therefore, these spike trains are considered 

as the most influential spike trains for this group. Spike trains #17, #2, #22 and #11 do 

not form any group. 

Investigation from Fig. B.29(a)-(b) reveal that the Cox metric identified by the pair-

wise analysis and considering all spike trains at once show a good agreement. For 

example, the first group of both figures consists the same two spike trains (#1 and #9). 

Similarly, the other three groups of both figures consist same spike trains except a few. 

From this analysis it can be concluded that application of the Cox metric to 

experimental data using pair-wise analysis and considering all spike trains at once 

enables to create similar result. 

B.5.4 Motif analysis 

To find the pattern of interconnections among the 29 spike trains, a structural motif 

analj^is is done using triplet-wise analysis of Cox method. For 29 spike trains a total of 

3654 triplets are analysed. All the influence fijnctions are considered identical and 

specified by (5.3) with the parameters r^ = 0.1 ms and T^ = 10 ms. Another parameter 

of the influence fiinction, the time lag A is obtained by the pair-wise CCF analysis. 

Using the parameter values, the influence ftmctions are determined and the Cox 

coefBcients are estimated using (5,5) with corresponding confidence interval using 

(5.6). Functional connectivity of each triplet spike trains is used to identify the structural 

motif The structural motif count is obtained by analysing all 3654 triplets of spike 

trains which is shown in Fig. B.30. 
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Figure B.30: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus 
6. 

Out of 3654 triplets, 831 triplets have different structural motifs ID's. Among the 831 

triplets, 152 triplets have motif ID 6 which is the highest among others motif ID's. Only 

8 triplets have motif ID 7 which is the lowest. Motif ID's (2, 4); (1, 3); (9, 12) and (5, 

11) have similar number of triplets. A total of 178 triplets have connected motifs 

(connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, a total of 653 

triplets have unconnected motifs. Thus there are low proportions of connected motifs 

(27.26%) in the groups of triplet spike trains which indicate that connection from every 

spike train to every other spike trains is low. 
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In chapter 7, some graph theoretical methods are applied to analyse the connectivity 

matrix of 29 spike trains. The results of analysing the first stimulus are presented in 

chapter 7. In this appendix the results of analysing the five stimuli are presented. 

C.l Analysis of connectivity of stimulus 2 

The connection matrix of the 29 spike trains is shown in Fig. C.l (a). There are 62 

connections of the connection matrix and the connection matrix contains a low density 

(0.0764). This indicates that in stimulus 2 the spike trains are not densely connected like 

stimulus 1. The sum of indegree and outdegree of the spike trains is shown in 

Fig. C.l(b). The degree of the spike trains varies widely from 0 to 13 showing the same 

number of degrees for certain spike trains. There are 4 spike trains that do not have any 

degree (#6, #17, #18 and #21). Some spike trains have high degree (#32, #28, #3 and 

#27); whereas some spike trains have low degree (#2, #9, #11, #13 and #22). 

The characteristic path length of the connection matrix (2.7747) is greater than the 

characteristic path length obtained from a random network (2.6669), This characteristic 

path length indicates that, on average, to pass information from one spike frain to 

another spike train, it takes approximately 3 edges like stimulus 1. Similarly, the global 

efficiency of the connection matrix (0.1871) (random: 0.2336) indicates that pairs of 

spike trains, on average, have long communication distances. 
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Figure C.l: (a) Connection matrix of the 29 spike trains of stimulus 2. Connection 
patterns are represented by the presence of connection (black square) and absence of 
connection {white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation. High-degree spike trains are 
displayed as green. 
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Figure C.2: (a) Clustering coefficient and betweenness centrality of the 29 spike trains 
of stimulus 2. The solid horizontal line indicates the mean and the dashed horizontal 
line indicates the mean plus one standard deviation. High-degree spike trains are 
displayed as green, (a) Clustering coefficient of 29 spike trains is displayed in 
descending order, (b) Betweenness centrality of the 29 spike trains is displayed in 
descending order. 
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Clustering coefficient of the spike trains is shown in Fig. C.2(a). Clustering coefficient 

of spike train #16 is 1 which means that this spike train completely makes a cluster with 

its neighbour spike trains. Investigation reveals (connection matrix) that spike train #16 

has two neighbour spike trains (#12 and #8) and they are cormected to each other. The 

clustering coefficient of the remaining spike trains ranges from 0 to 0.5. Some spike 

trains have high clustering coefficient (#14 and #25) compare to other spike trains 

indicating that the neighbours of these spike trains are also neighbours of each other. 

There are some spike trains which have low clustering coefficient (#12, #3, #32, #28 

and #23), in fact below the mean of all the spike trains. Among the low clustering 

coefficient, three spike trains (#3, #32 and #28) have the high degree of all the spike 

trains which indicates that these spike trains communicate to other neighbour spike 

trains but the neighbour spike trains are not connected to each other. There are 12 spike 

trains that do not form any cluster to their neighbour spike trains. The clustering 

coefficient of these spike trains is zero. The global clustering coefficient (0.2213) 

(random: 0.1078) also indicates that many spike trains do not have neighbours which 

are connected to each other. Fig. C.2(b) shows the betweenness centrality of the spike 

trains. There are some central spike trains (#7, #28, #32 and #8) which transfer most of 

the information to the other spike trains. Among the central spike trains, spike trains 

#28 and #32 have the highest degree. This means that these two spike trains 

communicate to other spike trains through incoming and outgoing connections. There 

are 13 spike trains which do not pass any information to other spike trains. That means 

the betweenness centrality of these spike trains is zero. 
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Figure C3: Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 2. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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There are two influential spike trains (#28 and #32) among the 29 spike trains (Fig. 

C.3(a)). Investigation from the connection matrix reveals that these spike trains have the 

high outdegree (8 each) and they have also high degree. There are 7 spike trains that do 

not show any expansiveness. Spike trains #1 and #16 have the most negative 

expansiveness coefficient. Both the spike trains have 2 indegree and 1 outdegree. 

Among the high degree, spike trains #27 (5 indegree, 3 outdegree) and #3 (6 indegree, 2 

outdegree) show negative expansiveness coefficient. Spike trains #3, #12 and #27 are 

the most attractive spike trains {Fig. C.3(b)) as they have high indegree {6, 5 and 5 

respectively) and two of them have the high degree (#3 and #27). Similar to 

expansiveness coefficient 8 spike trains do not show any attractiveness as their indegree 

are zero. Spike train #28 has the most negative attractiveness coefficient (8 outdegree 

and I indegree) and this spike train has the high degree. 

jllhlnn Ho c. 
i i i 4 i « r i i H i i a t 3 1 t * * f t 7 1 ( H t l t l l l 
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Figure C.4: a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 2. 
Significant motif ID's are displayed as green, (b) Sfructural motif count of size m = 3 
for the randomized diagram. 

Fig- C.4(a) shows the motif coimt for structural motifs of size m = 3 found in the 

connection matrix of 29 spike trains. Motif ID 3 appears 29 times which is the highest 

among the motif ID's. Motif ID's 7 and 13 have no appearance in the connection 

matrix. To find the significant motif, 1000 random networks are generated keeping the 

same indegree and outdegree of the spike trains. The structural motif count of size m = 
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3 for the random network is shown in Fig. C.4(b). The motif ID's 8, 9 and 12 appear 

more than the random network. The Z-score of these motif ID's (Zg = 5.98, p < 

.0001; Zg = 2.93, p = .005; Z^; = 9.02, p < .0001) indicate that they are significant. 

There are a very low proportion of connected motifs (10.79%) in the connection matrix 

indicating that the spike trains are weakly connected. 

C.2 Analysis of connectivity of stimulus 3 

The connection matrix of the 29 spike trains is shown in Fig. C.5(a). There are 95 

connections of the connection matrix and it contains a low density (0.1170) which 

means that in stimulus 3, the spike trains are not densely connected. The sum of 

indegree and outdegree of the spike trains is shown in Fig. C.5(b). The degree of the 

spike trains varies widely fi-om 1 to 21 showing the same number of degrees for certain 

spike trains. Some spike trains have high degree {#32, #24 and #21); whereas some 

spike trains have low degree (#2, #17 and #18). 

The characteristic path length of the connection matrix (2.8137) is greater than the 

characteristic path length obtained fi'om a random network (2.5013). This characteristic 

path length indicates that, on average, to pass information from one spike train to 

another spike train, it takes approximately 3 edges. Similarly, the global efficiency of 

the connection matrix (0.3428) (random: 0.3955) indicates that pairs of spike trains, on 

average, have long communication distances. 
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f H U ^̂ Ĥ •• H ^^^^^^ ^ 
M •• • H ^^^^^H H 
•1 1 f] n 1 1 1 1 1 H B̂ 
n d y U 1 ^ ^M M b ^ 1 1 S • T • • 1111 111I141SiaTT1>1»aiI12mMlIXI71tM31ta 

Target spike train 

i 

(b) 

Figure C.5: (a) Connection matrix of the 29 spike trains of stimulus 3. Connection 
patterns are represented by the presence of connection (black square) and absence of 
connection (white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains is displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. High-degree 
spike trains are displayed as green. 
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Figure C.6: Clustering coefficient and betweenness centrality of the 29 spike trains of 
stimulus 3. The solid horizontal line indicates the mean and the dashed horizontal line 
indicates the mean plus one standard deviation. High-degree spike trains are displayed 
as green, (a) Clustering coefficient of 29 spike trains is displayed in descending order. 
(b) Betweenness centrality of the 29 spike trains is displayed in descending order. 
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Clustering coefficient of the spike trains is shown in Fig. C.6(a). Clustering coefficient 

of spike trains #22 and #31 are 1 which means that these spike trains completely make a 

cluster with their neighbour spike trains. Investigation from connection matrix reveals 

that spike train #22 has two neighbour spike trains (#20 and #24) and they are 

connected to each other. Similarly, spike train #31 has two neighbour spike trains (#21 

and #32) and they are connected to each other. The clustering coefficient of the 

remaining spike trains ranges from 0 to 0.9. Spike train #14 has three neighbour spike 

trains (#24, #25 and #32) and the neighbours are strongly connected to each other. Thus 

the clustering coefficient of this spike train is high which is 0.9. There are 12 low 

clustering spike trains which have the clustering coefficient below the mean of all the 

spike trains. Among them, two spike trains (#24 and #32) have the high degree of all the 

spike frains which indicate that these spike trains communicate to other neighbour spike 

trains but the neighbours are not connected to each other. There are 4 spike trains (#2, 

#6, #17 and #18) that do not form any cluster to their neighbour spike trains. The 

clustering coefficient of these spike trains is zero. The global clustering coefficient 

(0.3749) (random: 0.1701) also indicates that many spike trains do not have neighbours 

which are connected to each other. Fig. C.6(b) shows the betweenness centrality of the 

spike trains. There are some central spike trains (#32, #10 and #7) which fransfer most 

of the information to the other spike trains. Among the central spike trains, spike frain 

#32 has the highest degree. This means that these two spike trains communicate to other 

spike trains through incoming and outgoing connections. There are 7 spike trains which 

do not pass any information to other spike trains. That means the betweenness centrality 

of these spike trains is zero. 
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Figure C.7: Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 3. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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The most influential spike trains are shown in Fig. C.7(a). There are three (#32, #28 and 

#16) spike trains which are the most influential. Investigation from the connection 

matrix reveals that these spike trains have the high outdegree (12, 6 and 6 respectively). 

Among these high outdegree spike trains, spike train #32 has the highest degree also. 

There are 3 spike trains (#2, #11 and #18) that do not show any expansiveness. The 

outdegree of these spike trains is zero. Spike frains #31 and #15 have the most negative 

expansiveness coefficient. Both the spike trains have I outdegree each and 2 and 3 

indegree respectively. Spike trains #27, #24, #19 and #32 iire the most attractive spike 

trains (Fig. C.7(b)) as they have high indegree (7, 7, 5 and 9 respectively) and two of 

them have the high degree (#24 and #32). Similar to expansiveness coefficient, spike 

train #17 does not show any attractiveness as the indegree is zero. Spike train #28 has 

the most negative attractiveness coefficient (6 outdegree and 1 indegree). 
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Figure C.8: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 3. 
Si^ificant motif lD"s are displayed as green, (b) Structural motif count of size m = 3 
for the randomized diagram. 

Fig. C.8(a) shows the moHf count for structural motifs of size m = 3 found in the 

connection matrix of 29 spike trains. Motif ID 6 appears 62 times which is the highest 

among the motif IDs. Motif ID 7 has no appearance in the connection matrix. To find 

the significant motif, 1000 random networks are generated keeping the same indegree 

and outdegree of the spike trains. The motif count for structural motifs of size m = 3 for 
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the random network is shown in Fig. C.8(b). The motif ID's 8, 9, 12 and 13 appear 

more than the random network. The Z-score of these motifs (2g = 2.56, p = .014; 

Zg = 3.50, p = .0009; 1^2 = 6.764, p < .0001; Z13 = 4.95, p < .0001) indicate 

that they are significant. There are a low proportion of connected motifs (21.10%) in the 

connection matrix indicating that the spike trains are weakly cotmected. 

C.3 Analysis of connectivity of stimulus 4 

The connection matrix (Fig. C.9(a)) of 29 spike trains shows 71 connections. The 

connection matrix contains a low density (0.0874) which means that in stimulus 4, the 

spike trains are not densely connected. The degree (Fig. C.9(b)) of the spike trains 

varies widely from 0 to 14 showing the same number of degrees for certain spike trains. 

Spike trains #6 and #22 have no indegree and outdegree, so their degrees are zero. Spike 

trains #32 and #30 have the high degree (14 and 10) compared to other spike trains. On 

the other hand, spike trains #9, #17 and #18 have low degree (1 each). 

The characteristic path length of the connection matrix (3.1204) is greater than the 

characteristic path length obtained from a random network (2.6491). This characteristic 

path length indicates that, on average, to pass information from one spike train to 

another spike train, it takes approximately 3 edges. Similarly, the global efficiency of 

the coimection matrix (0.2278) (random: 0.3055) indicates that pairs of spike trains, on 

average, have long communication distances. 
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Figure C.9: (a) Connection matrix of the 29 spike trains of stimulus 4. Connection 
patterns are represented by the presence of connection (black square) and absence of 
connection (white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains is displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. High-degree 
spike trains are displayed as green. 
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The cluster coefficient of the spike trains (Fig. C. 10(a)) widely varies from 0 to 0.807. 

Spike train #28 has the highest clustering coefficient (0.807). This spike train has 4 

neighbour spike trains (#25, #27, #30 and #32) and the neighbour spike trains are 

strongly connected to each other. Some spike trains have high clustering coefficient 

(#25, #1 and #24) compared to other spike trains indicating that the neighbours of these 

spike trains are also neighbours of each other. There are some spike trains which have 

low clustering coefficient (#32, #31 and #7), in fact below the mean of all the spike 

trains. Among the low clustering coefficient, spike train #32 has the highest degree of 

all the spike trains. This spike train communicates to other neighbour spike trains but 

the neighbours are not connected to each other. There are 10 spike trains that do not 

form any cluster to their neighbour spike trains. The clustering coefficient of these spike 

trains is zero. The overall clustering coefQcient (0.2408) (random: 0.1220) also 

indicates that many spike trains do not have neighbours which are connected to each 

other. 

The betweenness centrality of the spike trains is shown in Fig. C.10(b). Spike train #32 

is the most central spike train which transfer most of the information to the other spike 

trains. There are some other central spike trains (#7, #3, #30 and #27) which pass most 

of the information to other spike trains. Among the central spike trains, spike trains #30 

and #32 have the hi^est degree. This means that these two spike trains communicate to 

other spike trains through incoming and outgoing connections. There are 10 spike trains 

which do not pass any information to other spike trains. That means the betweenness 

centrality of these spike trains is zero. 
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Figure CIO: Clustering coefficient and betweenness centrality of the 29 spike trains of 
stimulus 4. The solid horizontal line indicates the mean and the dashed horizontal line 
indicates the mean plus one standard deviation. High-degree spike trains are displayed 
as green, (a) Clustering coefKcient of 29 spike trains is displayed in descending order. 
(b) Betweenness centrality of the 29 spike trains is displayed in descending order. 
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Figure C.ll: Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 4. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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The most influential spike trains are shown in Fig. C. 11 (a). There are two (#32 and #30) 

spike trains which are the most influential. Investigation from the connection matrix 

reveals that these spike trains have the high outdegree (8 and 6). Both these spike trains 

have the highest degree also. There are 4 spike trains (#6, #9, #18 and #22) that do not 

show any expansiveness. The outdegree of these spike trains is zero. Spike train #15 has 

the most negative expansiveness coefficient. This spike train has 2 outdegree and 6 

indegree connections. Spike trains #15, #23 and #24 are the most attractive spike trains 

(Fig. C. 11(b)) as they have high indegree (6, 5 and 5 respectively). Similar to 

expansiveness coefficient, 4 spike trains (#6. #10, #17 and #22) do not show any 

attractiveness as the indegree of these spike trains are zero. Spike train #8 has the most 

negative attractiveness coefficient (3 outdegree and I indegree). 

l l l l . l -•__•_ 
(a) ^) 

Figure C.12: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 
4. Significant motif ID's are displayed as green, (b) Structural motif count of size m = 3 
for the randomized diagram. 

Fig. C. 12(a) shows the motif count for structural motift of size m = 3 found in the 

connection matrix of 29 spike trains. Motif ID 2 appears 34 times which is the hi^est 

among the motif IDs. Motif ID 7 has no appearance in the connection matrix. To find 

the significant motif, 1000 random networks are generated keeping the same indegree 

and outdegree of the spike trains. The mofif count for structural motifs of size m = 3 for 
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the random network is shown in Fig. C. 12(b). Motif ID's 9, 12 and 13 appear more than 

the random network. The Z-score of these motif ID's (Zg = 3.72, p = .0004; 2^2 = 

12.07. p < .0001; Zi3 = 15.80, p < .0001) indicate that they are significant. There 

are a low proportion of connected motifs (19.70%) in the connection matrix indicates 

that the spike trains are weakly connected. 

C.4 Analysis of connectivity of stimulus 5 

The connection matrix of 29 spike trains is shown in Fig. C. 13(a). There are 116 

connections in this stimulus which is higher than the previous stimuh. The connection 

matrix contains alow density (0.1429) which indicates that in stimulus 5 the spike trains 

are not densely connected. The degree (Fig. C.13(b)) of the spike trains varies widely 

fi-om 0 to 17 showing the same number of degrees for certain spike trains. Some spike 

trains have the high degree (#28, #32, #9 and #12) whereas some spike trains have low 

degree (#2, #11, ^18, #22 and #17). Spike train #28 and #32 have highest 17 indegree 

and outdegree connection whereas spike train 17 has 1 connection. 

The characteristic path length of the connection matrix (2.3377) is greater than the 

characteristic path length obtained from a random network (2.2100). This characteristic 

path length indicates that, on average, to pass information from one spike train to 

another spike train, it takes approximately 3 edges. Similarly, the global efficiency of 

the connection matrix (0.4041) (random: 0.4257) indicates that pairs of spike trains, on 

average, have long communication distances. Compare to other stimuli this stimulus has 

short communication distances. 
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Figure C.13: (a) Connection matrix of the 29 spike trains of stimulus 5, Connection 
patterns are represented by the presence of connection (black square) and absence of 
connection (white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains is displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. High-degree 
spike trains are displayed as green. 
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The clustering coefficient of the spike trains (Fig. C.14(a)) widely varies from 0 to 1. 

Spike train #11 has two neighbour spike trains (#15 and #28) and they are cormected to 

each other, so the clustering coefficient of this spike train is 1. Spike train #22 has two 

neighbour spike trains (#12 and #28) and there is a connection from spike train #28 to 

spike train #12, so the clustering coefficient of this spike train is 0.5. All the high degree 

spike trains (#9, #28, #32 and #12) have the clustering coefficient below the mean of all 

the spike frains. These spike trains communicate to other neighbour spike trains but the 

neighbours are not connected to each other. There are 4 spike trains (#2, #8, #17 and 

#18) that do not form any cluster to their neighbour spike trains. The clustering 

coefficient of these spike trains is zero. The global clustering coefficient (0.2715) 

{random: 0.2080) also indicates that many spike trains do not have neighbours that are 

connected to each other. 

The betweenness centrality of the spike trains is shown in Fig. C.14(b). Spike frain #32 

is the most central spike train which transfer most of the information to the other spike 

trains. There arc some other central spike trains (#14, #15, #12, #9 and #28) which pass 

most of the information to other spike trains. Importantly, all the high degree spike 

trains have high betweenness centrality among the spike trains and most of the 

information go through these spike trains. There are 5 spike frains (#11, #13, #17, #18 

and #22) which do not pass any infomiation to other spike trains. TTiat means the 

betweenness centrality of these spike frains is zero. 
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Figure C.14: Clustering coefticient and betweenness centrality of the 29 spike trains of 
stimulus 5. The solid horizontal line indicates the mean and the dashed horizontal Hne 
indicates the mean plus one standard deviation. High-degree spike trains are displayed 
as green, (a) Clustering coefficient of 29 spike trains is displayed in descending order. 
(b) Betweenness centrality of the 29 spike trains is displayed in descending order. 
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Figure C I S : Expansiveness and attractiveness coefficient of the PI model of the 29 
spike trains of stimulus 5. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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The most influential and attractive spike trains are shown in Fig. C.15. THCTB are 3 (#28, 

#9 and #32) spike trains which are the most influential (Fig. C. 15(a)). Investigation 

fi-om the connection matrix reveals that these spike trains have the high outdegree (11, 9 

and 9 respectively). AH these spike trains have high degree also. There are 3 spike trains 

(#11, #18, and #22) that not show any expansiveness. The outdegree of these spike 

trains is zero. Spike train #19 has the most negative expansiveness coefficient. This 

spike train has 1 outdegree and 6 indegree connections. Spike trains #12, #32, #19 and 

#15 are the most attractive spike trains {Fig. C. 15(b)) as they have high indegree (8, 8, 7 

and 6 respectively). Among the attractive spike trains two (#12 and #32) have high 

degree also. Similar to expansiveness coefficient two spike trains (#13 and #17) do not 

show any attractiveness as the indegree of these spike trains are zero. Spike train #2 has 

the most negative attractiveness coefficient. 

j|||iL.».^ 
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Figure C.16: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 
5. Significant motif ID's are displayed as green, (b) Structural motif count of size m = 3 
for the randomized diagram. 

Fig. C.16(a) shows the motif count for structural raotifs of size m = 3 found in the 

cormection matrix of 29 spike trains. Motif ID 2 appears 139 times which is the highest 

among the motif IDs. Motif ID 13 has no appearance in the connection matrix. To find 

the significant motif, 1000 random networks are generated keeping the same indegree 
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and outdegree of the spike trains. The motif count for structural motifs of size m = 3 for 

the random network is shown in Fig. C.16(b). The motif ID"s 8, 9 and 12 appear more 

than the random network. The Z-score of these motifs (Zg = 2.23, p = .0325; 

Zg = 3.12, p = .003; 2yi = 4.44, p < .0001) indicate that they are significant. There 

are a very low proportion of connected motifs (11.84%) in the connection matrix 

indicating that the spike trains are weakly connected. 

C.5 Analysis of connectivity of stimulus 6 

The connection matrix of 29 spike trains is shown in Fig. C.17(a). There are 76 

connections in this stimulus which is similar as stimuli 1, 2 and 4. The connection 

matrix contains a low density (0.0936) which indicates that in stimulus 6, the spike 

trains are not densely connected. The degree (Fig. C. 17(b)) of the spike trains varies 

from 0 to 14 showing the same number of degrees for certain spike trains. Some spike 

trains have the high degree (#32, #24, #14 and #27) whereas some spike trains have low 

degree (#1, #17 and #18). Spike trains #11 and #22 have no indegree and outdegree, so 

the degree of these spike trains is zero. 

The characteristic path length of the connection matrix is (3.0560) greater than the 

characteristic path length obtained from random network (2.6545). This characteristic 

path length indicates that, on average, to pass information from one spike train to 

another spike train, it takes approximately 3 edges. Similarly, the global efficiency of 

the connection matrix (0.2939) (random: 0.3242) indicates that pairs of spike trains, on 

average, have long communication distances. 
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Figure C.17: (a) Connection matrix of the 29 spike trains of stimulus 6. Connection 
patterns are represented by the presence of connection {black square) and absence of 
cormection {white square). Main diagonals are indicated in grey and self-connections 
are excluded, (b) Degree of the spike trains is displayed in descending order. The solid 
horizontal line indicates the mean degree of the spike trains and the dashed horizontal 
line indicates the mean plus one standard deviation of the spike trains. High-degree 
spike trains are displayed as green. 
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Figure C.18: Clustering coefficient and betweenness centrality of the 29 spike trains of 
stimulus 6. The solid horizontal line indicates the mean and the dashed horizontal line 
indicates the mean plus one standard deviation. High-degree spike trains are displayed 
as green, (a) Clustering coefficient of 29 spike trains is displayed in descending order. 
(b) Betweenness centrality of the 29 spike trains is displayed in descending order. 
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The clustering coefficient of the spike trains (Fig. C. 18(a)) varies from 0 to 0.61. Spike 

train #23 has the highest clustering coefficient which is 0.61. This spike frain has 4 

neighbour spike trains (#19, #24, #27 and #32) and they have 7 cormections to each 

other. That means the neighbour spike trains are strongly connected to each other. Spike 

train #12 has also 4 neighbour spike trains (#7, #8, #14 and #15) and they have 6 

coimections to each other. That means the neighbour spike trains are moderately 

connected to each other. Similarly, the neighbours of spike train #19 are moderately 

connected to each other as the clustering coefficient of this spike train is 0.5. All the 

high degree spike trains (#24, #27, #14 and #32) have the low clustering coefficient 

which means that these spike trains communicate to other neighbour spike trains but the 

neighbours are not connected to each other. There are 8 spike trains that do nol form 

any cluster to their neighbour spike trains. The clustering coefficient of these spike 

trains is zero. The global clustering coefficient (0.2139) (random: 0.1222) also indicates 

that many spike trains do not have neighbours that are connected to each other. The 

betweenness centrality of the spike trains is shown in Fig. C.18(b). Spike train #32 is 

the most central spike train which transfer most of the information to the other spike 

trains. There are 2 other central spike trains (#14 and #30) which pass most of the 

information to other spike trains. There are 6 spike trains which do not pass any 

information to other spike trains. That means the betweenness centrality of these spike 

trains is zero. 
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Figure C.19: Expansiveness and attractiveness coefficient of the PI inodel of the 29 
spike trains of stimulus 6. High-degree spike trains are displayed as green, (a) 
Expansiveness coefficient displayed in descending order, (b) Attractiveness coefficient 
displayed in descending order. 
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The most intluential and attractive spike trains are shown in Fig. C.19. There are 2 (#32 

and #3) spike trains which are the most influential (Fig. C-19(a)). Investigation from the 

connection matrix reveals that these spike trains have the high outdegree (9 and 5). 

There are 4 spike trains (#9, #11, #18 and #22) that not show any expansiveness. The 

outdegree of these spike trains is zero. Spike train #15 has the most negative 

expansiveness coefficient. This spike train has 1 outdegree and 6 indegree connections. 

Spike trains #15, #14, #19 and #21 are the most attractive spike trains (Fig. C.19(b)) as 

they have high indegree (6. 6, 5 and 5 respectively). Similar to expansiveness 

coefficient four spike trains {#1, #11, #17 and #22) do not show any attractiveness as 

the indegree of these spike trains are zero. Spike train #28 has the most negative 

attractiveness coefficient (1 indegree and 4 outdegree). 
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Figure C.20: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 
6. Significant motif ID'S are displayed as green, (b) Structural motif count of size m = 3 
for the randomized diagram. 

Fig. C.20(a) shows the motif count for structural motifs of size m = 3 found in the 

connection matrix of 29 spike trains. Motif ID 6 appears 38 times which is the highest 

among the motif IDs. Motif ID's 8 and 13 appear twice in the connection matrix which 

is the lowest. To find the significant motif, 1000 random networks are generated 

keeping the same indegree and outdegree of the spike trains. The motif count for 
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Structural motifs of size m = 3 for the random network is shown in Fig. C.20(b). The 

motif DD's 9. 12 and 13 appear more than the random network. The Z-score of these 

motifs (Zg = 5.73, p < .0001; 2^2 = 5.47, p < .0001; Z^^ = 13.16, p < .0001) 

indicate that they are significant. There are a low proportion of connected motifs (20%) 

in the connection matrix indicating that the spike trains are weakly connected. 
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A B S T R A C T 

Anew statistical technique, the Cox method, used for analysing functional connectivity o l si mu I tan eously 
recorded muhiple spike trains is presented. This method is based on the theory o f modulated renewal 
processes and it estimates a vector of influence strengths from mulliple spike trams [called reference 
trains) to the selected (laigetl spike train. Selecting another tafget spike train ana repeating the calcula-
tion of the influence strengths from the reference spike trains enables researchers to find all functional 
connections among multiple spike trains. In order to study functional connectivity an 'influence function" 
is identified. This funaion recognises the specificity of neuronal interactions and reflects the dynamics of 
postsynaptic potential. En companion to existing techniques, the Cox method has the following advan-
tages: it does not use bins {binless method): i l is applicable to cases where the sample siie is small; 
i t IS sufficiently sensitive such that i t estimates weak influences; i i supports the simultaneous analysis 
of multiple influences; it is able to identify a correct connenmiy scheme in difficult cases of "common 
source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data 
generated by the neural network model of the leaky mtegrate and (ire neurons with a prescribed archi-
leaure of connections. The results suggest that this method is highly successful for analysing functional 
connectivity of simultaneously recorded muliiple spike trains. 

© 2011 Elseuier B.V. All rights reserved. 

I. Introduction 

Mul t i -e learode array (MEA) enables a simultaneous recortJing 
o f eleari tral activit ies of many neurons (Boven et ai.. 2006). From 
the applicaEion o f a spike sort ing technique (e.g. Quiroga et al.. 
2004) to such recordings, it is possible to extract mul t ip le spike 
t ra ins associated w i t h dif ferent neurons. Simultaneously recorded 
sp i ke l ra insa reused tos tudy how groups of neurons process infor­
mat ion and h o w they i n t e raa w i t h each other. Developing a new 
statistical method for analysing mul t ip le spike Irains and, in part ic­
ular, est imat ing the funct ional connect iv i ty between spike trains, 
is a challenging problem that has resulted in substantial research 
(B^ov^fn et a l „ 2004; Reed and Kaas. 2010], 

The standard approach to analysing funct ional cot inecl iv i ty is 
based on calculation of the cross-correlation funct ion (CCF) (Perkel 
et al.. 1967). However, there are other methods to characterise the 
pair-wise dependencies between spike trains. These include the 
cross-intensity funct ion (Cox and Lewis. 1972; Bri l l inger. 1976a. 
1992). product densities, cumulant densities, cumulant spectra. 

• Corresponding author, Tel.; **4 01732 BM20; fax; *44017S2 586J0O. 
E-mail addressee; moKammad.masud^lymouthJc.uk (M5, Mastid), 

rtionsyuli9plyniotiiluc.uk {(L BortsyuK), 

method of moments [Bartlett. 1966; Bril l inger. 1975a. 1975b), cal­
cu lat ion of the coherence (Bri l l inger. 1976b. 1992), and the j o i n t 
per ist imulus t ime histogram [JPSTH] (Cerstein and Perkei. 1969. 
1972; Aertsen et al.. 1939). A l l these methods are focused on d 
pair o f spike trains but they fail to consider all possible inHuences 
f rom other simultaneously recorded spike trains. For this reason, 
these pair-wise est imates o f the funct ional connect iv i ty sometimes 
can lead to inaccuracies. Furthermore, there ire some wel l k n o w n 
l imi ta t ions of statistical methods based onCCF; [ 1) Most o f the tech­
niques based on the CCF require the spike trains to be stationary, 
( 2 )The number o f spikes should be large enough to ensure reliable 
est imat ion and (3) CCF based methods are linear and only consider 
a l inear component o f interconnect iv i ty. 

Al ternat ively, a di f ferent approach to analysing funct ional con­
nect iv i ty is based on the m a x i m u m l ikel ihood (ML) method wh ich 
estimates the probabi l i ty o f a spike as a result of mu l t ip le influences 
f rom other spike trains. Using the ML funct ion, the a lgor i thm cal­
culates the regression parameters, wh i ch characterise the strength 
o f the influences. 

Recently, a new technique called the generalised l inear mod­
els (CLM) was introduced to the study of neuronal interactions 
(Stevenson et al.. 2008 ]. The GLM assumes that the neuron's spike 
is inf luenced by such factors as the neuron's o w n recent spik­
ing act iv i ty , the recent spiking act iv i ty of other neurons and the 
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aaiviiy of some external variables (stimuli). The conditional inten­
sity function is the exponential of the linear combination of the 
faaors being analysed. Brillinger( 1938) developed such aCI_M for 
a spike train based on the influence from other neurons within the 
group. Chomoboyet al. (1988] also use theCLM for the simultane­
ous analysis of multiple pair-wise interactions among neurons. In 
their model, the probability of a spike response depends upon the 
neuron's own spiking activity as well as the activity of other neu­
rons in the population. Okatan ei al. (2005] introduced a differeni 
method to estimate the funaional connectivity of stochastic neural 
networks, based on a discrete time version of the approach devel­
oped by Chornoboy ei al. (1988]. Truccolo et al. (2005) used the 
CLM to estimate influences to the target spike train from both other 
spike trains of the neural population and the external inputs lo the 
population. Agood performance of this technique has been demon­
strated in a special case of simulated activities of six neurons and 
in case of experimental recordings from motor neurons. A number 
of recent studies (Pillow. 2007; Pillow etal.. 2008; Paninski et al.. 
2007) use the CLM to investigate the influence of sensory stimuli to 
spiking activity of the neural population (neuronal code]. The diffi­
culties associated with the study of neuronal coding are substantial 
but the evidence shows that the CLM based approach is useful. 

However, there are some limitations of CLM approach. For 
example, the resuh of the analysis depends upon the size of the 
testing window (bin) as it is used to find estimates of parame­
ters describing the influences to the spike train (Eldawlatly et al., 
2009]. It is clear that estimated values of parameter depend on 
the selected size of the bin. Additionally. CLM contains many 
parameters (approximately hundred). The result of this is that the 
optimizationproblem (finding the maximumof the likelihood func­
tion) could have a non-unique solution (see e.g. Stevenson et al., 
2008: Chomoboy et al.. 1988). A standard approach to resolve this 
difficulty is to incorporate prior knowledge about the nature of 
the influences. There are a variety of techniques to deal with this 
problem including the regularizaiion method. Bayesian approach, 
and calculation of the maximum a posteriori (MAP) estimate [see 
Paninskl 2004; Rigat et ai., 2006; Cerwinn et al.. 2007: Stevenson 
et al., 2009). 

In this work, study of the functional connectivity of neurons is 
based on the modulated renewal process (MRP) (Cox. 1972 and 
Borisyuk et al., 1985)'. The MRP is considered in terms of spike 
generation under multiple influences from other spike trains and 
estimates of the strength of each influence using the Cox method, 
which itself is based on conditional likelihood method (Cox. 1972). 
The MRP model describes the hazard function of spike appearance 
at the MRP and it includes a modulation which is the exponential of 
the linear combination of influence functions. In fact, this model is 
similar to the regression mode! and the set ofinfluence strengths is 
similar to the regression coefficients. The definition of the influ­
ence function is based on some neu to bio logical details of spike 
generation and propagation. This function reflects the dynamics of 
postsynaptic potential under bombardment by spikes from other 
neurons. 

When the original paper on the application of the Cox method 
to neuroscience data was published, back in 1985 (Borisyuk et al., 
1985), its use was limited by the availability of computation power, 
Al that time, only pairs and triplets of spike trains were consid­
ered. However, in this paper, the Cox method is further developed 
to support simultaneous consideration of any possible set of multi­
ple spike trains. The corresponding formulas for the calculation of 
estimates of the influence strengths and their confidence intervals 
havebeenderived. Thus, this new development of the Cox method 

' Atso, in rnjny uses d simplified jppnudi tu&ed on the moduldtpd Poi^son 
pnxesi iTugft! tv usehiL 

enables researctiers to simultaneously analyse any number (n) of 
spike trains (where n = 3, 4. 5,..,). A numerical method and soft­
ware application have been developed for the identification of the 
functional connectivity from the simultaneously recorded multi­
ple spike trains. Testing results have shown that the Cox method is 
highly successful. Therefore, this method is recommended for the 
analysis of functional connectivity of neuronal circuits from mul­
tiple spike trains. The software is freely available from the authors 
on requesL 

Rigorous testing of the Cox method has shown that this statisti­
cal technique is not only highly efficient but it also overcomes some 
of the limitations of other classical methods. The Cox method has 
been tested on numerous sets of simultaneous spike trains; both 
artificially generated by different mathematical models as well as 
datasetsrecordedinexperiment5,Thesetestshaveshown that this 
method works well and provides reliable estimates of influence 
strengths. These influence strengths are used to define a diagram of 
functional connections. In particular, iheCox method can be used to 
analyse the flinctional connectivity of large groups (up to hundred] 
of spike trains. Thus, we conclude that this Cox method is a useful 
tool for analysing experimental data of multi-electrode recordings. 

In conclusion, the main advantages of this method are: (1) It 
does not require the speciflcarion ofa bin (see Paiva e( aL, 2009 for 
a review of binless techniques): (2) it supports the simultaneous 
analysis of multiple spike trains and provides statistical estimates 
of influence strengths and their confidence intervals [to test the 
hypothesis that the influence is zero): (3) it is applicable in situa­
tions where sample sizes are small; (4) it is sufficiently sensitive 
such that it estimates weak influences: and finally (5) it is able to 
identity a correct connectivity scheme in difficult cases of "common 
source" or "indirect" connectivity. 

This paper describes the Cox method and demonstrates the 
application of the Cox method to both a small neural circuit of five 
spike trains and to a large circuit of twenty spike trains, !n both 
cases, the Cox method is shown to be effective for analysing the 
functional connectivity. In these tests, an enhanced leaky integrate 
and fire model [ELlF)isused to generate the data with a prescribed 
scheme of connections. Naturally, this scheme is never used dur­
ing the analysis phase. It is solely required for evaluation of the 
final results. Additionally, the Cox method is also compared to the 
CCF approach for analysing two and three spike trains. The results 
demonstrate that the Cox method has some significant advan­
tages when compared to the pair-wise CTOSS-correlation approach. 
Although in this paper the only excitatory connections are consid­
ered, the Cox method is applicable for analysing of both excitatory 
and inhibitory connection strengths. 

Section 2 of this paper describes the Cox method and defines the 
influence function for use within neuroscience. Section 3 reports 
the results of applying the Cox method to a neural circuit of five 
and a neural circuit of twenty spike trains generated by EUF model. 
In Section 4, a comparison of the Cox method with CCF is presented 
using pairsof spike trains generated by a probabilistic model. This 
probabilistic model is based on the modulated renewal process. 
Furthermore, it is a convenient technique for testing due to the 
common probabilistic basiiofthe MRP model and the Cox method. 
Subsequently, the analysis of a set of three spike trains is used to 
demonstrate that the Cox method can find a scheme of connections 
in a case of'common source'connection architectures. The method 
was similarly successful when used to analyse sets of three spike 
trains with "indirect connection" architecture. This is a problem for 
pair-wise methods to analyse these kinds of connectivity. A discus­
sion of the work is presented in Section 5, which summarises the 
results and highlights the advantages of the method. 

Appendix A presents the formulas for the calculation of the 
estimates of Cox coefficients. Appendix B presents the parameter 
values for the ELIF generator. Finally, in Appendix C. the flexibil-
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ity of the probabilistic model is shown and the parameters of the 
probabilistic model can be adjusted using an opcimizacion proce­
dure such that these parameter values can be subsequently used 
Co generate spike train similar to the "integrate and fire" neuron 
model, 

2. SCatisticJl technique to analyse functional connectivity 
(Cox method) 

In this section we revise the Cox method [Cox, 1972; Borisyuk 
et al.. 1985) which provides statistical estimates (and their confi­
dence intervals) for the strength of influence from one spike train 
to another. In fact, we lest the hypothesis that the influence from 
one spike train to another is zero and in case if this hypothesis is 
rejected we use the value of the estimate as a measure of influence. 
This technique is based on the assumption of the renewal process 
and modulated renewal process. Considering the renewal process 
we assume thai inter-spike intervals (ISIs) are independent with 
the probability density function Jl*), l(}[x) is the non-exponential 
density funaion then the process is called the renewal process. 
In fact, [he assumption of the renewal processes is broadly used 
in neuroscience. Another approach to specification of the renewal 
process comes from survival analysis where spike rate density or 
rate of death (or failure) per time unit (hazard function) can be 
interpreted in terms of the density funaion flx). The hazard func­
tion is defined as the spike rate at time t conditional on survival 
time (without death) until time (or later 

Pr(£ ^ X < l + Atif <X) ^ fit) 
At " 1 - F ( 0 ' wit) = lim 

where X is inter-spike interval. Rt) is the cumulative probability 
function of ISl. 

The modulated renewal process allows introducing of depen­
dencies (influences) between spike trains. Let us suppose that spike 
generation in spike train A depends on spikes of spike train B and 
the ha2ard function of process A is a product of two multipliers: 
one is the own hazard of process A without influence from B and 
another multiplier describes influence from spike train B. Thus, the 
hazard function at the moment r is: 

ip{t)^V>f,{U^{t))emtfZB{()]. (1) 

where (OA( ) î  the hazard function of the renewal process A without 
influence from the point process B. lJ^[t) is the backward recurrence 
time of the process Aat the moment I,ZB(I] is the influence function 
determining how the process B influences the process A. and 3 is 
the unknown parameter (Cox coeffirient) describing the strength 
of the mfluence from process B to A. Therefore, given the influence 
funaion /BC). the goal is to estimate the parameter /), If 0 - 0 then 
there is no influence from spike train B to A. To test the hypothe­
sis Ho:(^^0] we use statistical technique based on a conditional 
maximum likelihood principle (Cox, 1972). Application of ihe Cox 
method to analyse influences between two or three spike trains 
is described in (Borisyuk el al.. 1985). Here we present a general­
isation of Che Cox method for simultaneous analysing of arbitrary 
number(n) of spike trains and demonstrate how this technique can 
be applied to study the functional connectivity of neural circuits. 

The Cox method is applied to analyse a set of n simultaneously 
recorded spike trains. One spike train is selected to be considered 
as a targei spike train and all other (n - 1) spike trains are con­
sidered to be the reference spike trains. The Cox method allows 
analysing of all n spike trains and estimating the (n -1 ) dimen­
sional vector p of regression coefficients under the assumption 
f 1). where ZB(I) is ( n - 1) dimensional veaor-function of influences 
from reference spike trains to the targei and ^ZB(() is the dot prod­
uct. Application of the Cox method provides both the esCimaCes 
of unknown parameter (Cox coefficients)^], fij fi^-^ and the 

corresponding confidence intervals of these estimates (|Hi|. ub,\. 
i -1 .2 . ...[n- l ) j . where lb, and ub, are lower and upper bound­
aries respectively of the confidence interval for ^,. The hypothesis 
HJ, : /), = 0 is accepted if the corresponding confidence interval 
contains zero (Oef/b,. ub,\) otherwise the hypothesis is rejected 
and Che estimate ft is considered asa measure of influence strength 
from the fth reference spike train to Ihe target. To study the func­
tional connectivity we apply this method consequently (n times) 
selecting the target and estimating the influence strengths from 
reference spike trains. The equations that are used to estimate the 
vector of regression coefficients and their confidence intervals are 
given in Append u( A. 

2.1. The mfluence function 

It is important for successful application of the Cox method to 
choose an appropriate influence function which takes into account 
some characteristic properties of neuronal interactions. We have 
studied [both analyticafly and numerically) different candidates 
and find thai the alpha function which is used in neuroscience 
CO describe synapCic connectivity between neurons (Cerstner and 
fGsiler, 2002] is an appropriate description for modulation of the 
hazard function (see formula (1)). In fact, we find that the best 
influence function should describe the dynamics of postsynaptic 
potential: the influence function increases when spike arrives to 
the postsynaptic neuron and the probability of spike generation 
by postsynaptic neuron increases; after that the influence function 
decays to zero. Thus, the influence function is: 

ZBU) = Sm 
( T s - T r ) 

(e-'/'> -e- ' / ' r ) m 
where t , and r, are the characteristic times of decay and rise 
of postsynaptic potential respectively. Parameter gm provides the 
normalization that the maximum of the influence function is one. 

Asimplified version of the influence function corresponding to 
the case rs = T, is given by the following formula: 

C3) 

In formulas (2) and (3) we assume that the presynaptic neu­
ron (spike train B) has generated an aaian potential at time zero 
and this spike arrives Co the target neuron (spike train A) with­
out any delay. Now we re-write formulas (2) and (3) taking into 
account times of spiking at Che reference process B, We suppose 
the influence function depends on the backward recurrence lime 
of the process B which we denote as UB(t)and substitute this vari­
able as the argument to formula (2), It means that the influence 
described by formula (2) starts increasing from the last spike in B 
beforetime t. To take into account Che Cime delay of spike propaga­
tion, the argument in formula (2) should be shifted by the time lag 
zl. Thus the influencefunction is defined by Che following formula: 

Zg(t ) = gi" [ g - " " " '*''''> - e - - ' ^ " - -* ' ' ' ' ^ 
(.Ts-T,) m 

where UB(f) is the backward recurrence time of the process B: d 
is a time lag corresponding to delay of spike propagation from B 
to the targei A. Similar Co (3), a simplified version of ihe influence 
liinction with Cime lag zi is given by the following formula: 

ZB(t) = -UBlt-A)e'-"^f'-'^^/" (5) 

In formulas (4) and (5) we define the influence function taking 
intoaccounlonly the last spike in B before the time ( t - d) . In some 
cases it is fruitful to consider accumulation of postsynaptic poten­
tial in time interval T considering a history of spiking in B over the 
time interval (r - T. i).This type of the influence function is useful if 
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t -r t-A t 
Ififluence function 

Target spike train 

Reference spike train 

F i t 1- Centralised influmcc function which accumulaies influences from several 
ip ikKofchererErence spike I n i n in the history inrerval ( i - r. n w i ' h propagarion 
delay ^ . 

decay time ofthe postsynaptic potential is relatively small in com­
parison with the mean interspike interval of the process B. Thus, a 
generalised influence function is: 

i - - j = i 
*"> ( e - i ^ " - " ' ' ' ' • - e '4 " - ' * l / ' ' ) 

1^1 (Ts-Zr) 
(61 

here k is an index which denotes the highest order of the backward 
recurrence time in the history interval (the first order corresponds 
to a spike which is the most close to the moment ( r - z l ) in back­
ward time, the second order relates to the previous spike in the 
reward time, etc.). Fig. 1 shows the generalised influence function 
over the accumulation time 7". thus. U^{t) < T and U g ^ ' d > V". A 
simplified version of the generalised influence function is given by 
the following formula: 

(7) ZB(1) = ̂ J ^ i ^U(,[t - djexp (l - l ( 4 ( t - d)) 

In case of multiple reference spike trains B"(B|. B̂  Bj,). the 
influence function should be defined independently for each refer­
ence spike train and the hazard of the target spike train A is 

<f{t)^ip^lU^W)exp{fi,ZB,{t) + p2ZB,{t)+ -i-P,ZB,it)]. (8) 

where tpf,( ] is the hazard function of the renewal process A with­
out Influence from the reference processes B. U,v(t) is the backward 
recurrence time of the process A at the moment t, ZB,1() is the 
influence function determining how the process B, influences the 
process A. and/), is the unknown parameter describing the strength 
ofthe influence from the process B| to A ( i -1 ,2 k). 

3. Functjoiul connectivity of mult iple spihetrdins 

In this section we use the Cox method to identify ftinctionai 
connectivity of simulated multiple spike trains. For simulations we 
use the Enhanced Leaky Integrate and Fire model [Borisyuk, 2002) 
with a given scheme of coupling. Simulating a small neural cir­
cuit of five EUFelements with prescribed connectivity we generate 
five spike trains and use the Cox method to identify the functional 
connectivity. We show that the method is effective and allows tind-
ingall connections and identifying their relative strengths. The Cox 
method is multivariate and enables to analyse all simultaneously 
recorded 5pike trains at ones, A relatively large circuit of twenty 
EUF eiements is used to generate twenty spike trains. Application 
ofthe Cox method to analyse twenty spike trains At ones can iden-
tiiy all functional connections: therefore, these results show that 
the Cox method is fruitful for study of functional conneaivity of 
multiple spike trains. 

3.1. £n/iancedleokyintegrateond^remodel/orduragmeralion 

We consider a neural network of enhanced leaky integrate and 
fire elements (Perkel. 1976: Borisyuk, 2002). A discrete-time ver-

TiMel 
Connection strengtiis, time delays of ^ i k e propagation and d e n y times o F p o i t ^ -
lupt ic porennal i t u ra re used for gcneranng five spikf irains. 

Connection st ivnglh [ iv} Tiniedelavlil) Decay time 

W, . I - ID .7SB 
W, 1-11.081 
W, 3 - 8 5 7 3 
W, .^-^35A 
W]_i-6,901 

J . l - I J 
.a«-io 
. f l f l - lO 
^M-10 
^ 1 1 - 6 

2,09 
1.63 
4 £ 6 
4 3 5 
4.35 

sion of the model neuron is used with the time increment equal 
to 1 ms. The state of each neuron at the moment ( is charac­
terised by a threshold and the total potential which is the sum of 
postsynaptic potentials and the noise. If the value ofthe total poten­
tial has reached the threshold, the neuron generates a spike. The 
spike propagates to other neurons with a time delay. The diagram 
of connection should be defined as well as connection strengths, 
time delays, and time decays of postsynaptic potentials. When the 
spike reaches another neuron, the postsynaptic potential jumps 
up or down depending on whether the spike is from an excita­
tory or intilbi to ry neuron, respectively,The value ofthe connection 
strength controls the jump height,The postsynaptic pot enlialexpo-
nentially decays to the resting potential if there are no incoming 
spikes. After spike generation, the neuron is unable to generate 
a spike during an absolute refractory period. When this period 
expires, the threshold gets the highest value and then exponen­
tially decays to the asymptotic threshold value. This decay is used 
to model a relative refractory period. To model a sporitaneous back­
ground activity, the random noise is added to the membrane poten­
tial. The amplitude of the noise exponentially decays with time and 
a normally distributed random variable with zero mean and a fixed 
variance is added to the noise at each time step. The noise is inde­
pendent random process for each element. If the amplitude of noise 
is large enough, then the element can be spontaneously active even 
without influences from other neurons. The formal description of 
the enhanced integrate-and-fire element and examples of param­
eter values are given in paper [Borisyuk. 2002] and a short descrip­
tion of parameters ofthe EUF model is provided in Appendix B. 

32. Analysis of functional connectivity of five spike trains 

We generate the five spike trains using the connection architec­
ture showm in Fig. 2A. The values of connection strength, time delay 
of spike propagation and time of decay of postsynaptic potential 
aregiveninTablel . ln this paper we do not consider self-coupling 
and therefore, we do not analyse self-influences. Fig. 2B shows the 
result of EUF model simulation. Le. the raster plot of spiking activity 
of these five neurons in lime interval of20s. These spike trains are 
considered as a data set for analysing the functional connectivity. 
It is important to note that for analysing the functional connectiv­
ity we use only spike trains and we suppose that the scheme of 
connections is unknown. Also we assume that values of neuronal 
parameters and parameters charaaerising connections (connec­
tion strength, delay ofspike propagation and timeofdecay of PSP] 
are also unknown. After completion the analysis, we compare the 

Tal>le2 
Statistics of tire 151 o t the neural c i r m r i o r i i v e ^ k e r r a i n . 

Spike lra[n 

1 
2 
3 
4 
S 

Number of 
spikes 

2S1 
245 
244 
261 
246 

Mean 

7D7 
S l . l 
814 
763 
SI.4 

MinirDum 

17 
18 
13 
10 
15 

Maximum 

267 
271 
315 
235 
326 

Sramtard 
deviation 

43,6 
4 7 3 
473 
46.7 
50 7 



MS. Muiud. H, flDrisyut/JoumoJ ofNeumsdence UeOioiis ig6(20ll)20l--2I9 205 

20,000 

• C E 
2 0 0 4 0 0 0 2 0 0 4 0 0 0 2 0 0 4 0 0 0 2 O 0 4 0 0 Q 2 0 0 4 0 0 

Urns (ms) 

ng-Z. (A) Connection scheme of the five spike train. There are Rve non zeroconnecrionswhicharerfiowntiy arrows. (B) Raster plot of five spike trains gcneiated (btthe 
neural circuit tA) of the duration 20,0ODm5.(C)1Sl luslogramsorihegenerared ftve sp]lie trams. 

result of statistical analysis with parameter values which have been 
used forspike train generation. Fig. ZCshows the histogram of inter-
spike intervals for each spike train and Table 2 provides the number 
of spikes, the mean ISl and the standard deviation of ISI for each 
spike train. 

To apply the Cox meihod. one spike train should be selected as 
a target and other four are considered as the reference trains. Also, 
the influence functions should be specified to describe the influence 
from the reference spike train to the target. Here we assume that all 
influences are identical and the influence is specified by formula (4). 
This function includes three parameters (r,, Tr. ^] and their values 
should be defined for each reference spike train. 

Characteristic times of rise and decay of the postsynaptic poten­
tial (PSP) are usually known from experimental recordings [e.g. 
they can be estimated from intra-cellular recordings). There are 
theoretical attempts to estimate characteristic decay of F^P from 
the histogram of inter-spike intervals (see e.g.Tuckwell and Richter, 
1978: Lansky et al., 2006: Mullowney and Iyengar. 2008)^. The 
approach is based on consideration of a simple integrate and fire 
model with white noise for spike generation. Using some statisti­
cal technique (e.g. maximum likelihood], it is possible to estimate 
parameters of the model from the histogram of ISIs, including the 
time of decay of PSP, An approximation of recorded spike train by 
the integrate and fire model has a limited use due to over simplicity 
ofthis model and difficulties of numerical procedure. 

In case ofgenerated data, the values of PSPdecay time are known 
(see column three in Table 1]: however, we assume that these val­
ues are unknown and do not use them for analysis of connectivity. 
Instead, we estimate these values from the histogram of ISIs using 
technique from Tuckweil and Richter (1978) which shows that the 
PSP decay times are about 10ms. Thus, we select i j - lOms and 
Tr - 0,1 ms. It means that the PSP rises very fast and decays relatively 
slow. We have studied how the result of analysing the functional 
connectivity depends on chosen values of PSP charanerisiic times 
and found that the Cox method has low sensitivity to selected val­
ues of these parameters. Other words, there is no requirement to 

' All these over simplifietl mod eis consider imrrKdute jump of potential (i,-0) 
and decays with characteiisiic lime i , . 

choose these times accurately. In fact these charaaeristic times 
can be varied in a broad range and the restilts of analysing will be 
similar. Therefore, in this analysis we do not adjust characteristic 
times of postsynaptic potential for each neuron but use the same 
values of PSP characteristic times for (rs = 10 ms and r, = 0.1 ms)for 
all reference spike trains. 

Also, the time lag J corresponding to the delay of spike prop­
agation should be specified. To do this we consider a pair of spike 
trains: the taiEel and the reference spike train and we analyse inter­
dependences oftwo spike trains. A traditional approach is to apply 
the cross-correlation function which provides both a statistical esti­
mate of dependency and a corresponding lime lag. 

The CCF is widely used in neuroscience to analyse dependen­
cies and influences between pairs of simultaneously recorded spike 
trains. To measure the association between two spike trains A (tar­
get) and B(referenee)over the time T the counting function nAB(u} 
iscalculated.ThefunctionfiABlulcountsandaccumulates the num­
ber of spikes of spike train A falling in a small interval of length h 
(bin) which is attached to a spike in B (u-0) or shifted from a ref­
erence spike in B by u (left or right). A shift to right side means 
that with a high enough probability a spike in the reference trains 
causes a spike in the target spike train; therefore there is an influ­
ence from reference (B) to the target (A) spike train. This counting 
function is an estimate of the cross-product density p/^. To test 
the independence of two spike trains Brillinger (1976c) considers 
the estimate pusiM = \/PAB{")/PAPB- where PABI") = nAB{li)/2/iT, 
PA = IA/T and ps = "B/T and normalises the counting funaion 
nAfl[u) accordingly. Here n/,. "E denote the number of spikes in A 
and B respectively. For a large sample size the random variables 
pfsM ^re independent and the distribution of each of them is the 
normal with the mean m = y/pxBW/PApa and the standard devi­
ation S = l/(2\/2/irpAPB). Therefore, in case of two independent 
spike trains the mean of p^(u} equals to one [because in inde­
pendent case PABC"] = Pf.WpB{u)). To test the hypothesis Ho that 
twospike trains are independent, the boundaries of the confidence 
interval with the significance level u are plotted by two horizon­
tal lines at levels 1 ± iQ^/] y/lhTp^. where Q^ is a critical value 
of normal distribution corresponding to the significance level a. If 
Ha is correa then ail values of the cross-correlation function cor-
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responding to different bins fail inside the confidence interval and 
the estimated value of CCF iPAfl('J)) i^ ^^^- If some value of CCF 
exceeds the upper tioundary of the confidence interval then the 
hypothesis Ha is rejected and we conclude that two spike trains 
arenotindependeni-The highest value of CCF exceeding the upper 
boundary of the confidence interval can be considered as a mea­
sure of influence strength from one spike train to another and the 
corresponding time shift can be considered as a time delay in spike 
propagation (Stuart et al.. 2005). 

Rg. 3 shows CCFs of live spike trains. The highest peak outside 
the confidence interval is interpreted as an indicator of Influence 
and the corresponding time shift of CCF is considered as a time lag 
corresponding to delay of spike propagation. Time lags are sum­
marised in the Table 3 and these values are used for analysing 
the functional connectivity. For example, if the first spike train is 
selected as a target, then the first row of theTable 3 provides param­
eter values of time lags which are parameters of the respective 
influence functions: i l2 = 2. i3j = 2, ^ 4 " 12. .d j -O 

Remark: It is common that there are multiple peaks of CCF out­
side the confidence interval. They reflect a complex strunure of 
interactive point processes. Here we analyse the excitatory connec­
tions only, therefore the drops of CCF below the lower boundary of 
significance interval are not considered. 

Thus the general procedure of analysing the functional connec­
tivity is: [ 1) select a target spike train and consider all others as the 
reference spike trains: [2jroreach reference spike train specify the 
influence function using the values of three parameters: (3) apply 
the Cox method and calculate the estimates of Cox coefficients and 
their corresponding confidence intervals (with a prescribed confi­
dence level}. 

Appendix A provides formulas [A.1) and (A.2)_for calculation of 
estimates ofCox coefficients 3 = (/I], ft. •. ^ )p—is the num­
ber of reference spike trains as well as formulas [A.3} for calculation 
of confidence interval for each Cox coefficient. 

Functional connections can be derived from these estimates and 
their confidence intervals. If the confidence interval contains zero, 
then we conclude that the corresponding Cox coefficient is not dis­
tinguishable from zero: therefore the functional connection from 
the reference spike train to the target is absent. If the confidence 
interval does not include zero, we conclude that there is a signifi­
cant influence from the reference spike train to target and the value 
of the estimate characterises the strength of this fiinctional con­
nection. To define a complete diagram of functional connectivity 
we repeat the calculation of estimates and confidence intervals for 
each target spike train and define all functional connections incom­
ing to the target. Thus, in case of n spike tliis procedure should be 
repeated n times. 

Table 4 summarises the result of analysing spike trains by the 
Cox method. Each row of the table shows the Cox coefficients 
characterising the influence strength to the target spike trains. For 
example, the first row of Table 4 corresponds to the case that the 
first spike train is considered as a target and this row shows the 
estimates of Cox coefficients characterising influences to the tar­

get spike train (#1) from the reference spike trains [#2 to #5): 
fti =0.5. ft I =0 .2 , ^4, = 1.6. ft, =0.09, Also the correspond­
ing confidence intervals [the confidence level here is 0.95) are 
shown. These intervals are used to test the hypothesis that the 
Cox coefficient is zero: ifthe confidence interval includes zero tJien 
this hypothesis should be accepted and we conclude that there are 
no influence from reference spike train to the target (i.e. influence 
strength is zero). In the first row there is only one Cox coefficient 
that significantly differs from zero (shown in bold) which char­
acterises the influence from spike train #4 to spike train #1. This 
non-zero influence strength is interpreted as strength of the func­
tional connection from spike train #4 to spike train # 1 , All other Cox 
coefficients at the first row are not distinguishable from zero and 
the corresponding functional connections to the target spike train 
#1 are absent This procedure of estimation of Cox coefficients is 
repeatedforthetargetspiketrain#2and the result is shown in row 
Z, etc Thus, considering Table 4 we conclude that there are five Cox 
coefficients that significantly differ from zero: therefore there are 
five functional connections between spike trains. These functional 
connections are shown by circles in Fig. 4B and a radius of the cir­
cle is proportional to a relative strength of influence: a small radius 
corresponds to a relatively weak functional connection. Diagonal is 
shown by filled squares. 

Comparison of the matrix of functional connectivity (Fig. 4B) 
with the matrix of conncaions [Fig. 4A)^ which has been used for 
simulation of spike trains reveals a good correspondence between 
these two schemes of connections. Moreover, relative connection 
strengths have been correctly identified: circles with smaller radius 
correspond to weaker connections (see connection strengttis in 
Table 1). 

To emphasise how importance of this result, we note that 
the diagram of connectivity in Fig. 2A contains direct connec­
tions shown by arrows (e.g. from spike train #4 to spike train #3) 
and some "spurious" connections: connection due to a "common 
source"" and connection due to "indirect coupling". For example, 
there is no direct connection between spike trains #1 and #2: how­
ever, spike train #4 is a common source which delivers spikes to 
both spike trains [#1 and #2). Another example of spurious connec­
tion is ' indirea coupling": there is no direct connection between 
spike trains #1 and #3. however, there is an indirect influence 
(coupling) from spike train #1 to spike train #3 via spike train #4. 

Remarkably, the Cox method ignores all "spurious" connections 
and correctly finds the direct connections which have been used 
for data generation. Thus, it is shown that the Cox method can dis­
tinguish between "direct connection" and the connectivity due to a 
"common source" (or similar, to distinguish "direct "and "indirect" 
connections). 

This problem is difficult for pair-wise methods. For example, 
the pair-wise CCF for spike trains #1 and #2 is shown in Fig. 3 
(first row and second column). There is the significant peak of CCF 
corresponding to time lag of 2 ms [see Table 3) which can be erro­
neously interpreted as a connection from spike train #2 to spike 
train #1 with time lag of 2 ms. Similar, a spurious connection from 
#1 to #3 is correctly ignored by the Cox method but erroneously 
identified by the pair-wise method which shows a significant peak 
corresponding to 21 ms time lag (see the CCF in Fig 3, third row and 
first column and the time lag value in Table 3). This advantage of 
the Cox method is due to a possibility to analyse afl simultaneously 
recordedspike trains at once. Other advantages of the Cox method 
in comparison with CCF will be considered in the Section 4-

' in Tact. [EiLS matrix is equivalent to the connection diagram in Rg. 2A. 
^ A common source is dneunjnil iatsimultaneaiLslymtxluldlesl3ie(inng patterns 

of two or mote other neurons. For enample. in Fig. 2A t l ieneuion #4 is a common 
source which nu idu la ies f inngpanenu of neurons Wl andVZ. 
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3.3. Analysis ojfuncaonal connecctvity of twenty spike trains 

In Ihi5 section we analyse a relatively large set of twenty spike 
trains which are generated by the ELIF model with twenty elements 
and with forty two connections. A diagram of conneaions is shown 
in Fig. 5A. Parameter values of ELIF model are similar to the param­
eter values which have been used in the previous example of five 
spike trains, A simulation has been run in time interval oFSOsand 
Fig. 5C shows an initial part of the raster plot of twenty spike trains 
generated by the model (from 0 to 20 s), Fig. 5B shows an example 
of the four ISI histograms ofspike trains #1 to #4, 

The procedure for analysing the Functional connectivity is the 
same as above. The target spike train is selected and other nine­
teen spike trains are considered as reference trains. The influence 
funaion is given by the formula (4) and characteristic times are 
the same as in case of five spike trains because spike trains have 
similar statistical characteristics of 151s—we select r^^lOms and 

rr = 0.] ms. To select a proper time lag for the influence function 
we calculate the pair-wise CCF between the reference spike train 
and the target spike train and identify the highest signihcant peak. 
Thecorrespondinglimeshift of theCCFisusedas thevalueof time 
lag A. If there are no significant peaks of CCF then i l 'O . Thus, tlie 
influence function is defined and using the Cox method we can cal­
culate the estimates ^i- ft fitq of Cox coefficients and thejr 
confidence intervals. Testing the hypothesis that iheCox coefficient 
is not distinguishable from zero, we identily "zero" Cox coefficients 
which are interpreted as absence of functional connection. All "non­
zero" coefficients define funaional connections and the value of 
estimate is considered as connection strength. 

From statistical point of view, the repetitive application of the 
Cox method means thai we carry out M=380 independent statis­
tical tests. In case of a large value of M. the probability of error 
is artificially inflated. Therefore, the significance level should be 
adjusted with taken into account the number of repetitions M. It is 

T.iblr4 
ResulE of analysis of five spike trains by ihe Cux method. The estimates i3f Cax coefTicients ^nd correspond!tig conHdena inltrvais are shown. Cox coefRcienis which 
signihcantlvdirFet from zero {[.c. the contideace interval does not incLude zerojarein bold, 
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a common practice to employ a Bonferroni statistical adjustment to 
counteract the effea of multiple tests. Thus the significance level 
has been correaed: olM. In the case of 20 spike trains we have 
used « '0 ,05 and M=380 and the corrected significance level was 
0-00013. 

To Simplify a comparison of the result of data analysis with a 
connection scheme used for data generation we show both con­
nection schemes in matrix format. Fig. 6A shows connections of a 
neural network of twenty ELIF elements used for data generation 
{the same scheme is shown in Fig. Sfl, in a graph format). Fig. 6B 
shows a diagram of functional connections in matrix format which 
has been identified by the Cox method. A matrix of functional con-
neaivity in Fig. 6B results from twenty repetitive applications of 
the Cox method. The first row of the matrix corresponds to the 
case when the first spike train is selected to be a target: the sec­
ond row corresponds to the case when the second spike train is 
the target, etc. A circle indicates that there is a signilicanl influence 
(functional connection) to the target spike train and the radius of 
the circle shows the relative strength of the influence. Compari­
son of connectivity matrix in Fig 6A with matrix in Fig. 6B shows 
that the Cox method correctly identifies all forty two direct con-
neaions between spike trains. The connenivity matrix is derived 
from the repetitive testing of hypothesis that there are no depen­
dencies between the target and reference spike trains using the Cox 
method, in the hypothesis testing, two null hypotheses of indepen­
dence are incorrectly rejected. These two false positive connections 
are shown by green circles (Fig. 6B) and these erroneous connec­
tions are not present at Ihe circuit for the spike train generation. 

Fig. 6C shows the matrix of functional connectivity which has 
been constructed by using the pair-wise CCF technique. Compar­
ison this matrix with the matrix of connections which have been 
used for data generation shows that all forty two null hypotheses 
of independency are correctly rejected. It means that all forty two 
non-zero connections have been correctly identified. However, in 
addition, fifteen null hypotheses of independency are incorrectly 
rejected. Thus, there are fifteen type I errors (false positives) and 
corresponding non-zeroerroneous connections areshown by green 
circles (Fig.6C). A radius of circles corresponding to these erroneous 
non-zero connections is relatively large, therefore, a strength of 
erroneous influence isalso relatively large^.This comparison shows 
that the Cox methotJ has some advantages over CCF technique. 

4. The Cox method versus cross-correlation function 

In this section we compare the Cox method vflth a traditional 
technique based on the cross-correlation function and show advan­
tages of the Cox method especially in cases which are difficuli for 
analyses. The CCF is a pair-wise method, therefore in this section we 
mainly analyse a connection of two Spike trains. The main assump­
tion of the Cox method is that the target process is the modulated 
renewal process with the hazard funaion described by formula (1). 
A probabilistic model has been developed to generate the MRP. It 
is expected that for this data the estimate y8 of the Cox coefficient 
equals to the influence strength (1 in formula (1). Of course, in a 
general case of data generation using the EUF model, we do not 
expect that the target spike train is MRP. However, we demon­
strate that the Cox method can be successfully applied to analyse 
functional connectivity and the estimate ^ monotonically increases 
with increase of connection strength in generated data. Also, in this 
section we study connectivity of three spike trains generated by 
EUF model with "common source" connections. This connection 
scheme is very difficult for analysing by pair-wise methods and in 

* The BonFerroni contctio 
CtT method. 

s qipKed to test Ehe bypa^itils of indEpendrncy for 

particular by CCF. We show that the Cox method which can analyse 
three spike trains at once can be successfully applied to identify a 
functional conneaivity. In a similar way we study another set of 
three spike trains with "indirea" connections. 

4.1. Description of the probabilistic model 

The probabilistic model generates two spike trains Aand B. Spike 
train B is a renewal process with the gamma-distribution yix: a. b) 
of interspike intervals, where parameters a and b are the shape and 
the scale parameters respectively. Spike train B influences spike 
train A and spikes of B modulate the probahility of spike genera­
tion in the process A which is the modulated renewal process with 
the hazard defined by formula (1 ).The hazard function of A without 
the influence from B depends on the backward recurrence time of 
the process A. This assumption corresponds to a standard consid­
eration of neuronal spiking (Daley and Vere-jones. 2003; Truccolo 
et al.. 2005). For example, after firing a spike, the process is less 
likely to Rre again immediately afterward. Also, we suppose that 
the backward recurrence times have the Weibull distribution W(x: 
c. d) (see Cox. 1972), where parameters c and d are Ihe shape and 
the scale respectively. In fart, the types of the distribution of ISl 
of process B and the distribution of backward recurrence times of 
A can vary. Our choice of the gamma distribution and the Weibull 
distribution is motivated by the fact that both families include the 
exponential distribution which can be seen in many neuroscience 
data. 

To generate spike trains, the influence strength fi should be 
selected. The influence function describing an impact of the spike 
train B to the spike train A is given by formula(51 with the character­
istic time Ti and the time lag 4, Thus, the hazard of the modulated 
renewal process A is completely defined and we use this function 
togeneratespikesof A using a smaU rime step and calculating the 
probability of spike at discrete times t^. 

The probabilistic model includes five parameters and we would 
like to adjust them in such a way that the ISl distribution of the 
MRP is similar to the ISl distribution of the spike train which is 
generated by the ELIF model. In Appendix C we briefly describe 
the cost funrtion which enables us to find an optimal set of five 
patameters of the probabilistic model. 

4.2. Anofysiso/rwo spite trains 

In this section we consider two spike trains (A and B) which 
are generated by the probabilistic model. The probabUistic model 
generates a pair of spike trains A (target) and B (reference) with 
only one connertion from B to A and the connertion strength is 3BA-
We use both the Cox method and CCF to estimate the connection 
strength. 

The influence function of the Cox method is given by formula 
(5) with characteristic times Ts = Tr^ 5 ms and zero time lag (d = 0). 
The estimate ^BA of 'he Cox coefficient is calculated as well as the 
confidence interval. Also, the CCF has been calculated and the value 
of highest peak outside of the confidence interval PBA is considered 
as an estimate of the connection strength. Of course, if there are 
no peaks outside of the upper bound of the confidence interval, 
the connection strength is considered to be zero and PBA = 0. We 
demonstrate some advantages of the Cox method both in case of 
short spike trains and incaseof a weak coupling. 

ModeroTe and high strength of influence: Varying the strength of 
influence ^BA iî  3 range from moderate to high, we generate eight 
pairs ofspike trains and for each pair we analyse connectivity. The 
average number of spikes in the reference spike train B is about 
400and target spike train A has a larger number of spikes. The blue 
line in Fig. 7A shows the estimated Cox coefficient ^BA (with corre­
sponding confidence interval which is shown by black vertical bar) 
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versus the strength of influence fi^. This plol shows that the esti­
mated values are close to the values which have been used for data 
generation. The magenta line shows the independency measure of 
CCF ^ v e r s u s the strength of influence ^BA- It is clear from Fig. 7 A 
that the CCF also allows to identity this connection: however, the 
plol of CCF is not monotonically changing and fails to indicate the 
iricrease of influence. 

Short spike nain: To test sensitivity of the Cox method in a case 
of short spike trains we use the same pairs of spike trains as in 
the previous example but for the analysis we cut the epoch time 
and consider only a part where the independent spike train has 
about 70 spikes, thus a time epoch is about six times shorter than 
in the previous example. Fig 7B shows the estimate of Cox coef­
ficient ^Bfl versus the strength of influence (i^ for ihe moderate 
and high strength of influence (shown by the blue line with the 
black vertical bars of confidence intervals). This hne shows that the 
estimated values are similar to the strengths which have been used 
for data generation with the only one exception: for p&f,' 0-5 the 
confidence interval contains zero and therefore, the Cox coefficient 
is not distinguishable from zero. 

The magenta line in Fig. 7B shows that the CCF fails to identily 
functional conneaion for the moderate influences /JBA -(0.5.1). For 
the higher influences ^B* = [1.5. 2. 2.5. 3. 3.5. 4) the CCF measure 
is nearly constant and fails to indicate the increase of influence. 
Therefore, the Cox method has some advantage in a case of short 
spike trains. 

Weak myiuenee; To test an efficiency of methods and to identify 
weak connection strength we use the same probabilistic model to 
generate another eight pairs of spike trains with weak influence: 
^BA -(0.1.0.2.0.3.0.4,0.5,0.6.0.7.0.8). In this case the time epoch 
should be long enough [about 1400 spikes in the reference spii(e 
train B) to allow a distinguishing of weak influence. Fig. 7C shows 
that both methods demonstrate a good result and Identily the con­
nection. The Cox coefficient increases with the connection strength 
increase, but the CCF measure is not monotonically increasing. 

Sensiiiwiy lo the length of spike train: Here we study how a sen­
sitivity of methods depends on a length of spike trains under a 
constant value of the influence strength. The conclusion is that for 
shorter trains, the Cox method identifies the connection but the 
CCFfails. The strength of influence ^BA° 1-0 is relatively small. We 
have fixed the value of influence and generated eight pairs of spike 
trains with the different number of spikes in the reference spike 
train B: n-50,60, . 120. Fig. 7D shows that the estimated Cox 
coefficient is almost constant (^BA = ' ) and does not depend on 
the length of spike train. The CCF measure { ^ ) shows the con­
nection for the larger spike trains (N - 90.100.110,120J but fails to 

identily a strength of influence for the shorter lengths of reference 
spike trains (n = 50.60, 70.80). 

4.3. Analysts of three spike trains; common source and indirect 
connection 

Here we show that the Cox method is very effective to analyse 
connections which are not direct such as "common source" circuit 
(Fig. 8A) and "indirect connection" circuit [Fig. lOA). Usually it is 
very difficult to analyse these types of connection using pair-wise 
CCF technique. The Cox method is multivariate and can analyse 
three spike trains at ones and it makes this method more sensitive 
than pair-wise CCF. For example, this advantage enables the Cox 
method to distinguish between "direct" connection and connection 
due to a "common source" in case of a moderate influence form the 
common source. 

Common source: Three spike trains [ {#1. #2. #3)) are generated 
using EUF with the same parameters like in previous examples and 
a "CDrnmon source" connections (Fig. 8A). The "common source-
circuit includes two connections Irom spike train #1 to spike trains 
#2 and #3. Connection strengths are 12.6 and 10.6; delays of spike 
propagation are 11 ms 14 ms. respectively, 

Weanalysethesethreespike trains by the Cox method with the 
influence function given by formula (4), charaaeristic times are 
r^ - IOmsand Tr-O.lms. To prescribe the time lags we calculate 
the CCF function for ail pairs of spike trains (Fig, 9): i i |2 = l l ms. 
A^i-lAmi. d i j =3ms, and all other time lags are zero. We apply 
the Cox method three times (each of spike trains is selected to be a 
target spike trains). 

Suppose that the target spike train is #k, ( fc -1^3) . The esti­
mates 0^. ^ ; i X ' = 1.2. 3;!;= 1,2.3.1 # j , t ^ k.j ^ k) of two 
Cox coefltcients have been calculated using fonnulas(A.l ] and (A.2) 
as well as a confidence region on plane (ft^, /Jji,) using formulas 
(A.4). The confidence region (Q-^O.OS) has an elliptic shape and the 
centre of the confidence region is located at point (^,7,. ^ j j ) . 

We test the hypothesis that a pair of Cox coefficients [ f t t , ^jt) 
e(iuais[o?ero(i.e. both component of the pairare zero). We accept 
the hypothesis [i.e. the data does not contradict to the hypothesis) 
if the origin is inside of the confidence region and conclude that 
both connections are absent [i.e. connection strength is zero). If the 
hypothesis is rejected then we test the hypothesis that one Cox 
coefficient equals to zero. This hypothesis is tested separately for 
each coefficient. We consider two projections of the elhptical con­
fidence region to the coordinate axis: ((^ii,) and (^,t). If projection to 
the axis (/),») contains zero then the hypothesis is accepted and we 
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Fig. 7. Estfmaie of Cox coefficient and CCT measure for two spike trains, ECTImairt Cox coefficients are shown by Mack circles and (he confidence intetval of t l ie estimates 
ate shown by black vertical lines. Estimatedmeasuresof independency using CCF ate shown by black cross sign. (A) Moderate and st iong influence. Eight pairs o f spike trains 
are generated using the probabilistic model taking the strength of influence in range from 0,5 to 4; A * " i O - 5 . 1 . 1 - 5 , 2 . 2.5. 3. 3.5,'1). The average number of spikfs in the 
reference spike tram B is about 400. Estimated Cox coefficients ^a^ identify accurately all these strength of influences [blue line wi th circle markers and veaical black furs 
for confiderMie intervals) and show monotonic increasing, "The highest peaka Pw of the CCF (independency measure) are shown by the magenta line [wi th cross markers) 
and Ihey also can identify functional connectivity but do nol show monoronic mcifase, [Bl Short spike train. A shun version of eight pain of !;pikP trains described in [A) are 
considered The average number of spikes in the reference spike Itain Bis about 70. The cslimaled Cox c o e f f i c i e n t s ^ identify accuraiely all these strengths of in f luence/ in 
except of one ( ^m-0 .5 ] and show monotonic increase. Ttie independency measure of CCF [ ^ 1 show connection for large strength bul they fail to identify connection for 
Pst,-{03.1). Also these values do not show monotonic increase. [C) Weak influence. Eight pairs of spike trains are generated taking weak influence A M - ( 0 . 1 . O i .O J , 0.4.0,5. 
D.B, D.7.0,B). The number of spikes in the reference spike tram B is about 1400 Estimated Cos cDcfncients[((Mlidentify accurately all these strength of induentef ^8^)30(1 
show mDnotonic increasing. Independency measures of CCF ( ^ , 1 identily functional connectivity though i heydono i indicate an increase of influence. (Dl length of spike 
train. Eighl pair of spike trains of a difTerenl length are generated keeping the same connection strength ^ a , - I.The length FI of the reference spike train B increases: n -50 , 
60, . 120, Esnmatcd Cox coefficients (f la,) are almost constant for all lengths but independency measures of CCF j/Js,) fail to identify strength of influence for shorter 
lengths of reference spike trains [n -50 ,60 ,70 ,80) . 

conclude that the connection is absent [i,c. the connection strength 
is zero), otherwise the hypothesis is rejeaed and a centre of the 
interval ( f t t ) is considered as strength of connecEion, Similar, if a 
projection to another axis [^ji ] contains zero then the hypothesis 
is accepieil and we conclude that the connection is absent, other­
wise the hypothesis is rejected and a centre of the interval (3,j() is 
considered as strength of connection. 

Fig. 8B shows three confidence regions. A region on the left side 
corresponds to the target spike train # 1 : region in the middle cor-
responds to target spike train #2. region in right side corresponds 
to target spike train #3. It is shown in Fig, 8B that the region on the 
left side contains zero, therefore both connections to spike train #1 
are absent. This result is shown in Fig. 8C by two dashed arrows 
pointing to #1. These dashed arrows mean an absence of both con­
nections. 

The region in the middle does not contain the origin and it means 
thai the hypothesis that both Cox coefficients are zero should be 

rejected. The centre ofthe confidence region is shown by the cross 
and its coordinates are the estimates { ^ i ^ . ^s?)- ^ ^ projection 
to the vertical axis /f^j contains zero, therefore, we conclude that 
hypothsis is accepted and connection from #3 to #2 is absent. The 
projection to the horizontal axis fin does not contain zero, there­
fore, we conclude that the hypothesis is rejected and the estimate 
^ i ; is strength of connection from #1 to #2. This result is shown in 
Fig. 8C by two arrows pointing to the #2: the dashed arrow means 
absence of connection and the solid lines means presence of con­
nection from #1 to #2 and thevalue of connection strength is 2.6. 

The region in right side can be interpreted in a similar way. The 
resuh is shown in Fig. 8C by two arrows pointing to #3: the dashed 
arrow means the absence of connection #2 to #3 and the solid 
arrow means the presence of connection from #1 to #3 and ihe 
value ofconnection strength is 1.7 

The resuh of analysing is in a good agreement with the archi­
tecture of connections which has been used to generate these data 
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(compare Fig. 8A with Fig. 8C]. For example, for data generation the 
higher connection strength has been selected for connection from 
#1 to #2 and the estimated connection strength from #1 lo #2 is 
also higher than estimated connection strength from #1 to #3. 

Thus, the result in Fig. 8C indicates that there are two sig­
nificant influences only (shown by solid lines, all others are 
shown by the dashed lines): from spike train #1 to spike 
train #2 and from spike train #1 to spike train #3 and the 
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(comimn sounx} is shown in Fig. 8A. 



MS.M<auiS,KBonsya!i/JiiunialofSeunaeKniTMe!hods IS6l20llJ20l-2t9 as 

influence strengths are shown with their confidence intervals 
(0-0,051. 

Fig. 9 shows the result of analysing of thesame three spike trains 
by the pair-wise CCF. Each row of Che hgure shows two CCF corre­
sponding to the selected target spike train - spike train #1 is the 
target for the first row. spike train #2 is the target for the second 
row, etc. The CCF analysis reveals three connections: from spike 
train #1 to spike train #2 [second row, first column); from spike 
train #1 to spike train #3 (third row. first column); from spike train 
#2 to spike train #3 (third row, second column). First two of these 
connections correspond to the diagram of connectivity (Fig, 8A) 
but the third one is erroneous and this connection appears due the 
common source to spike trains #2 and #3. Thus, the Cox method is 
able to distinguish the common source from the direct connections 
but the CCF fails. 

Indiren connection: Simiiar to the previous example, we gener­
ate a set of three spike trains (i #1. #3. #3 [) using ELIF model with 
the same parameters as in the previousexamples and indirect con­
nections (Fig- 10A}. The "indirect connection" circuit includes two 
direct influences: fromspikecrain#ltospikeCrain#2 With the time 
lag n ms and from spike train #2 to spike train #3 with a lime lag 
12 ms. The connection strengths are 11,2 and 9.1, respeaively. 

To analyse functional connectivity by the Cox method with the 
influence function given by formuU (4), we specif the characteris­
tic limes are ri = lOms and rr^O.i ms. To specity a time lag we 
calculate the CCF function for all pairs of spike trains (Fig. 11 J: 
di2 = llms, A2l = ^2ms. d , 3 ' 2 3 ms, and all other lags are zero. 
We apply the Cox method three times (each of spike trains is 
selected to be a target spike trains). 

Suppose that the target spike (rain is #k. [k- 1,2,3). The esti­
mates (J!,,,, fi,i,}{>= 1,2. 3: J = 1,2. 3: lc = l ,2 ,3 . i> j . i i f c , J^ fe ) 
of two CoK coefficients have been calculated using formulas (A-1) 
and (A.2) as well as a confidence region on plane (/i,t, ^jt) using for­
mulas (A.4). The confidence region (a-0.05) has an elliptic shape 
and the centre of the confidence region is located at point (ftif, 3,t). 

Fig. lOB shows itiree confidence regions. The region on the left 
side corresponds to the target spike train #1: region in the middle 
- target spike train #2, region in right side - target spike train #3, 
The region on left side contains zero, therefore both connections 
to spike train #1 are absent This result is shown in Fig. IOC: two 
dashed arrows pointing to #1 mean the absence of both connec­
tions. 

The region in the middle does not contain the origin and it means 
that the hypothesis that both Cox coefficients are zero should be 
rejected. The centre of the confidence region is shown by the cross 
and its coordinates are the estimates (^12, (hi)- The projection 
to the vertical axis /(j^ contains zero, therefore, we conclude that 
hypothsis is accepted and connection from #3 to #2 is absent. The 
projection to the horizontal axis Pu does not contain zero, there­
fore, we conclude that the hypothesis is rejected and the estimate 
3i3 is strength of connection from #1 to #2. This result is shovm 
in Fig. IOC by two arrows pointing to the #2: the dashed arrow 
means absence of connection and the solid lines means presence 
of connection from #1 to #2 and the value of connection strength 
is 2.3. 

The region in right side can be interpreted in a similar way. The 
result is shown in Fig. lOCbytwo arrows pointing to #3: the dashed 
arrow means the absence of connection #1 to #3 and the solid 
arrow means the presence of connection from #2 to #3 and the 
value of conneaion strength is 1.5 

Aresultofanalysisisinagoodagreemenl with the architecture 
of connections which has been used to generate these data [com­
pare Fig. lOA with C), For example, for data generation the higher 
conneaion strength has been selected for connection from #1 to 
#2 and the estimated connection strength from #1 to #2 is also 
higher than estimated connection strength from #2 to #3. 

TTius, the result in Fig. IOC indicates that there are two signifi­
cant influences only [shown by solid lines, all others are shown by 
the dashed lines): from spike train #1 to spike train #2 and From 
spike train #2 to spike train #3 and the influence strengths are 
shown with their confidence intervals (a - 0.05). 

Fig. 1 ] shows the result of analysing of the same three spike 
trains by the pair-wise CCF, Each row of the figure shows two CCF 
corresponding to the selected target spike train - spike train #1 
is the target for the first row, spike train #2 is the target for the 
second row, etc. The CCF analysis reveals three connections: from 
spike train #1 to spike train #2 [second row, first column); from 
spike train #2 to spike train #3 (third row, second column); from 
spike train #1 to spike train #3 (third row, first column). First two 
of these connections correspond to the diagram of connectivity 
(Fig. lOA) but the third one ii spurious [from #1 to #3) and this 
conneaion appearsduethe-indirect'conneclion from trains #1 to 
train #3. Thus, the Cox method is able to distinguish the "indirea" 
conneaion from the direct connections but the CCF fails. 

4.4. How fo find a time lag of spike propagation by pair-wise COK 
method 

In this seaion we show that a time lag of spike propagation can 
be found by analysing a pair of spike trains with the Cox method. 
We suggest that there is a pair of simultaneous spike trains and 
we would like to study conneaion from spike train B (reference) 
to another spike train A (target). We generate a pair of spike trains 
by EUF model with Che same parameters as above and conneaion 
from 8 to A, the conneaion strength is 18.04. time delay of spike 
propagation is t l ms. Of course, we suppose that all parameters 
which have been used for data generation are unknown and their 
values cannot be used when we analyse connections. 

Let us suppose that two spikes of the reference spike train B 
appear at times t̂  and i^. We assume that there is a time delay i5o of 
spike propagation from the reference spike train to Che target spike 
train. It means that if there is a spike in train B at time moment t^ 
then the probability of spike ai train A at time moment r̂  = c^-t-So 
is very high. The influence functionZBd) is described by formula (4) 
requires prescribing of a time lag A corresponding to the delay of 
spike propagation from the reference to target spike train. The time 
delay So is unknown, therefore we will repeat the calculation of the 
Cox coefficient for ditTerent values of time lag A. Fig. 12A shows 
estimates 3BA versus time lag d . The increment oftimelagis 1 ms 
and Che corresponding confidence intervals are shown by vertical 
bars. The estimate B̂A increases with increase of d and reaches its 
highest value at d - l O m s but for J = l l ms this coefficient drops 
down Co a negative value [Fig. 12A). We calculate the Cox coefficient 
for values of the lime lag in the interval 110.95, 11.03] [ms) with 
an increment of 0.01 ms. The result is shown in Fig. )2B, The Cox 
coefficient drops down from a high positive value to a negative 
value in a small interval 110.99.111 (ms). 

We conclude that a lime delay of spike propagation is consid­
ered to be 11 ms (5o = " 1 and an estimate of the Cox coefficient 
^ = 2.2. To justi^ this interpretation of the daia analysis, let us 
assume that achosen time lagis smaller than the Cimedelay of spike 
propagation: As < So- According to formula (4), the backward recur­
rence time is calculated at the moment [(» - As) and this backward 
recurrence time is smaller than the time delay of spike propaga­
tion: UB[tA- ils)"^^ofherefore, the value of the influence funaion 
depends on the backward recurrence time ZeiUeit/i - As)], which 
is shown by thecircle in Fig. 13.Thisvalue is less than the maximum 
of the influence funaion and if the time lag ^ s increases, then the 
influence function also increases and tends co the maximum of the 
influence function if the time lag tends to So. A described calculation 
of the backward recurrence time can be applied in a small vicinity 
of each spike of the train B under the main assumption that the time 
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delay of spike propagation is ^ . This consistency in calculation of 
the backward recurrence time is important for a reliable numerical 
procedure for calculation of estimate of the Cox coefficient. 

Now we assume that a time lag -*( of the influence function Is 
larger than the time delay of spike propagation -*l>io(see Fig. 13) 
and the calculation of the backward recurrence time will be based 
on the spike at time I^. which is a previous spike according Co the 
spike at moment t | (see Fig, 13). TTius. for the time lag ^l>So the 
backward recurrence time can getan arbitrary value,The backward 
recurrence lime is calculated for each spike of train B. therefore, the 
estimate of the Cox coefficient is calculated using arbitrary (ran­
dom) values of Che influence function. Thus, the estimate will be 
very different from Che correct value and it might be zero or a 
negative number. 

S. Discussion 

We have presented here a statistical technique (Cox. 1972) 
for analysing dependencies of point processes for application to 
neuroscience data. We find that the Cox method is an efficient 
tool to study functional connectiviCy. Comparison with the cross-
correlation technique which is traditionally used in neuroscience 
shows significant advantages of the Cox methiad. 

The Cox method is based on mathematical ideas of the mod­
ulated renewal process developed by Cox (1972). This approach 
provides a useful mathematical tool to study dependencies and 
mutual influences of point processes. The main advantage is that 
the Cox method can analyse all available simultaneously recorded 
spike trains at once. Another important advantage of the Cox 
method is that this method isbinless. Also, the estimates of the Cox 
coefficients indicate a relative strength of influence from the refer­
ence to the target spike train. The Cox method enables us to select 
the influence function which takes into account the specificity of 
neural conneaions. We have found that the best candidate for the 
influence function reflects the dynamics of postsynaptic potential. 

Recent progress in development of statistical methods for 
analysing multiple spike trains includes both techniques based on 
pair-wise spike coincidence analysis (e.g, Pipa et al,, 2003; Stuart 
et al„ 2005) and approaches which consider all (or several) spike 
trains at once (e.g. Staudeet al,, 2010a). For example, a procedure 
of using some appropriate surrogate data looks like a promising 
improvement of pair-wise correlation based method (see. Louis 
el al., 2010a,b], This method of surrogate data has been success­
fully applied to analyse data of multi-electrode recordings from the 
visualcortexofacat (Berger el al,. 2007, 2010) and, in particular, 
to decide on participation of a neuron in synchronous population 
aaivity. 

There are several recent techniques which can analyse multiple 
spike trains at once. For example, the method based on the esti­
mation of higher order correlations has been suggested in papers 
Marlignon el al. (1995, 2000), This technique is aimed to esti­
mate a huge amount of parameters anil, therefore, requires very 
long recordings and can be applied to a relatively small number of 
spike trains (about ten spike trains). This approach has been fur­
ther developed in Staude et al. (2010a) where a cumulant-based 
inference of higher-order correlations (CuBlC) method has been 
presented. This method estimates the low-order cumulants and 
is able to decide whether the high-order correlations are needed. 
Thus, both a direct calculation of higher-order correlations and a 
requirement of a large sample size might be avoided. In Staude 
el al. (2010b) a modified version of the CuBlC method has been 
reported. This version is based on a statistical model which includes 
the n on-stationary compound Poisson process. 

Another technique which is well known in neuroscience and has 
been applied for analysing multiple spike trains is the generalised 
linear model (GLM), Comparison of MRP and CLM assumptions 
shows that they are similar: both methods assume that the prob-
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ability of spike generation at time I in the target train (under a 
given set of reference spike trains) depends on the intensity of 
the target train (without influences) modulated by a term which 
describes influences. To describe influences, the CLM based meth­
ods consider a number of time windows preceding time t and tfiere 
is a prescribed parameter which indicates the strength of influence 
corresponding to this window [Okacan et al.. 2005; Truccolo et al., 
2005; Paninski et al.. 2007). Thus, statistical procedures of CLM 
based methods count the number of spikes in reference spike trains 
falling into the window (bin) and use this information to calculate 
the strength of influence corresponding to the window. Therefore, 
the number of parameters equals to the number of windows and 
in some cases this number might be very large and it causes an 
over-fitting of data (Stevenson et al.. 2008), 

It is worth to apply all three methods (the Cox method, the 
higher order correlation technique and the CLM) to analyse the 
same data (both generated and experimental) and compare the 
results. 

The Cox method has been applied to analyse functional con­
nectivity of multiple spike trains generated by the etvhanced leaky 
integrate and fire model (Borisyuk. 2002). To generate spike trains 
we prescribe the architecture of connections between EUF ele­
ments. However, to analyse the generate data we suppose thai 
connections are unknown. A diagram of functional connections is 
derived as a result of data analysis. We compare this diagram of 
identified functional connections with connections of EUF model 
which have been used for data generation. Two examples have been 
considered.Theresult of analysing the five spike trains shows that 
theCox method accurately identifies all functional conneaions.The 
result of analysing a large neural circuit of twenty spike trains also 
accurately identifies all forty two connections but also finds two 
erroneous connections which are relatively weak. 

Comparison with the cross-correlation hmction shows that the 
Cox method has advantages over the CCF technique. In particular, 
the Cox TTsethod is more accurate in difficult situations such as a 
weak strength or short spike trains. One important advantage of 
the Cox method Is chat this method allows to analyse ail simul­
taneously recorded spike trains. To demonstrate this advantage 
we apply the Cox method to analyse three spike trains coupled 
according to "common source' scheme and show that couplings 
can be correctly identified, but the pair-wise CCF fails to distinguish 
between the direct connection and the connection due to a com­
mon source. A similar example of three spike trains with "indireo 

connection" also demonstrates an advantage of the Cox method 
over the CCF. 

For comparison with CCF we use a probabilistic model to gen­
erate data which satisfy with the assumption of the modulated 
renewal process. In this case the estimated Cox coefficient equals 
theprescribedstrengthof influence for data generatioa A study of 
the probabilistic MRP model shows that this model can be fitted 
to a wide range of spike trains either generated by the integrate-
and-fire model or experimentally recorded. In general the case we 
do not know whether the analysed spike trains satisfy with the 
assumption of MRP. However, our multiple tests show that the Cox 
method is robust and can be successfully used to find a functional 
connectivity for a wide range of point pnx:esses. In particular, we 
applied the Cox method for analysing cormections in many cases of 
spike trains generated by the ELIF model. This nonlinear model is 
based on consideration of a threshold mechanism of spike gener­
ation and the postulates of this model are different from the MRP 
approach. Nevertheless, these tests show that the Cox method can 
be successfully applied to analyse data which are generated by the 
EUF model. 

Also, we have applied the Cox method to analyse functional 
connectivity of experimental recordings. Of course, in this case we 
cannot be sure that the result is correct However, we can use some 
implicit tests to increase our confidence of the method. For exam­
ple, we use the following methodology for testing the robustness of 
thestatisticalestimates.Theepochof recording is divided into two 
equal subintervals of time (left and right) and for each subinterval 
we apply the Cox method to analyse the functional connectivity of 
multiple spike trains. Thus, we have three sers of estimated coeffi­
cients: for the left interval, for the right interval, and for the whole 
epoch. If all three sets are identical or similar, then it means that the 
result is robust and the functional connections are the same for all 
three time intervals. A detailed report on the application of Che Cox 
method to analyse experimental recordings Is under preparation. 

We have applied the Cox method to study Che funcCional con­
nectivity of many data sets of both generated and experimentally 
recorded, small size and large size (up to 100 spike trains), and 
we found that the Cox method is efficient allows to identify the 
funaional connectivity, and has some advantages in comparison 
with the method based on thecross-correlation function. Thus, we 
conclude that the Cox method can be successfully used to anal­
yse funaional connectivity of both generated and experimental 
da t i 
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Appendix A. 

A. 1. Derivation of formulas for the Cox method 

A description of the method follows the paper by Cox (1972). To 
describe dependencies and influences among(p * 1) spike trains we 
select a target spike train A. other p spike trains are called reference 
spike trains and they are denoted by BKBi.Bj Bp). The goal is 
to estimate the vector of unknown parameten /i'ip^. fij Pp) 
which describe the strengths of influences from reference trains to 
the target. Thus fi„ represents the strength of influence from the 
spike train Bra to the target A (m-1.2... ..p). The main assumption 
is thai the point process A is the modulated renewal process with 
the hazard funaion: 

c.ro^ (0 = p(U«(t))exp { ^ ^ / - " Z a ^ f o } . 

where CACO is the hazard ofthe modulated renewal process A. V^AI) 
is the hazard llinction of the renewal process A without modula­
tion (i.e. without influence from another point processes). 1)̂ (1) 
is the backward recurrence time of the process A al the moment 
r, ZB^{1) is the influence function determining how the process 
B„, influence the process A. and /i„, is the parameter describing 
the influence strength from the spike train Bm to the target A To 
estimate the parameters ; j - ( ^ ] , 02 0p) we use the method of 
conditional likelihood which eliminates the nuisance function ff,{-] 
(Cox. 1972). 

Let us suppose that the spike train A contains n interspike 
intervals K\. xj *"• For simplicity we assume that all intervals 
X], X2 *r; are of different length. If there are several identi­
cal intervals we use a randomization procedure and add a small 
normally distributed random number to the interval length. We 
arrange intervals in order of increasing size X(ij<>t(2i*. • •**(n(' 
For i>j. let X(ij=*j; and X(j)=X(. We define Zg^_ to be the value of 
Zt,^[I){m = ^.2 p) where time I is calculated in the following 
way: the interval KJ is allocated insideof the interval Xj and the left 
eridsofbothintervalscoincide, time I corresponds to the right end 
of the interval*,. Respectively,Zg^ii is the value of Zfl„(t) at the right 
end ofthe interval;((,. 

We build up likelihood for the data conditionally on the magni­
tudes ofthe intervals, by considering contributions in order starting 
with the smallest interval Thus the contribution from the first 
interval is 

Conditionally on the first interval, the contribution from the 
second interval is 

and so on. 

The log likelihood is 

Now the first derivatives ofthe log likelihood is 

i)ĵ ra Z ^ , . i ^'• 

:l'n = 1.2 p) 

The estimate for fi a obtained by setting the first derivatives at 
zero. 

The second derivatives can be obtained by 

.i'L 
hf.^D. Z Ei'^'-^-^dX,,^-^) 

E:-,«P(IX=,«-.O 

E:,^--"''(EL,'^-^'-)E:/-.."P(E:./^-^-^) 
[E:.^-p(r^./^'u)]' 

[r,! = l-2 Pi 

^T, 

Let U(,/i) = [UL/iipm] _, is the score vector and l{fi) = 

[-il̂ I./î 0^^*/̂ s] is the observed information matrix. 
Now to obtain maximum likelihood estimate fi^ we have to 

find a numerical solution of the equation U (/I) = 0. We use the 
Newton-Raphson iterative method starting from the initial guess 
/ ( |0 , | r n r m i i l 3 f n r i r p r j r i n n ? 1^-(f-°''. Formula for iterations is: 

. -1 

The iterations converge to the estimates: 

3<,^3J=(3i.ft fh) 

(A.]) 

[A,2) 

To obtain the confidence interval for fim. we use the fact that 
itL/Ji/Jm has asymptotically normal distribution N(0.1{fimi) where 
l{Pm) is the mth diagonal element of ((/)). The confidence interval 
with the confidence level 7 is 

tf- - , / ' [^•nlK(l yV2'Pm +Jl \djnjK(\-Y)/2 (A.3) 

whereK{i .^jpistheupper(l -)/)/2quantileof normal distribution. 
We accept the hypothesis that spike tram Bm:(ni = 1,2 p) 
does not influence A if the confidence interval includes zero. 

To obtain the 2D confidence region foTft, and fis. we use the fact 
that (J^(I,5)"'U has x^ distribution with two degrees of freedom. 
Here U = {ilL/Sfi,, HL/'dPs) and the matrix Î^ is 

/rr = 

ill. 

The confidence region on the plane (^r. ^s) with the confidence 
level y is defined by the following equation: 

{A.4) 

http://www.cannen.org.uk
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where xh.y 2) •* *^^ "PPer (1 - y) quaniile of chi-square distribu­
tion with two degree; of freedom. We accept the hypothesis that 
Coxcoef[idents(/)r, ftl = 0 if theconfidence region inctudeszero. 

Appendix B. 

B.I. Parameter values for spike train generation by enhanced 
leaky integrate and fire model 

An ELIF model can be simulated using software from the fol­
lowing web-site: http://www.tech.plymouih.acuk/infovi5. To run 
the simulation, the parameters of ELIF neurons and their coupling 
should be specified. 

Parameters of EUF neuron: 
(a)Maxlmum value of the threshold, (b) Threshold decay rate, 

(c) Asymptotic threshold value, (d) Amplitude of the noise [i.e. the 
standard deviation of the normally distributed random variable], 
(e) Noise decay rate, (f) Initial value of after spike hyperpolarisation, 
(g) Soma's membrane potential decay rate, (h) External input, (i) 
Absolute refractory period, and (j) Type of the neuron (0 - non-
pacemaker. 1 - pacemaker]. 

Connection parameters describe synapticcoupling between ele­
ments: 

(a) List of the numbers of those neurons which send their con­
nections to the current neuroa (b] Connection strengths for these 
connections (positive for excitatory connection and negative for 
inhibitory), [c] Decay rates of postsynaptic potential for each con­
nection respectively and (d) Time lag of spitce propagation for each 
incoming connection (ms). 

Below we show some examples of parameter values which have 
been used in simulations. 

Neural parameters: 
# ol neun>n a b e d e f g h t j 
1 46,12 2.97 15.i7 4.60 a.99 -28.94 20.76 0.73 6 0 
2 43.07 2J7 14.33 5.38 9.91 -28.31 19.53 0.26 4 0 

Connectionparameters: 
Neuron 

2 

Thenumbcfsof 
presynaptic 
neuroiT^ 
coupled w i fh 
current n f uron 

1 5 

Appendix C. 

CannechDn 
strength for 
these incaming 
CDnnecdans 

123711.99 

Detay 
ritt 

3.1B 
3.35 

Time I j g l m s i 
oCsplkp 
propagation 
rrom pre to 
pci5f-5yTUptic 
neuron 
129 

Cf. Friiingthe probflbilisiic mode)wifh the ELif model 

Probabilistic model includes several parameters. Here we 
describe how parameter values have been selected. We start from 
the EUF model which generates two spike trains (Ai and B|) with 
connection from B, to Ai. An optimization procedure is used to find 
the parameters of the probabilistic model which provides the best 
fit to the spike trains generated by the ELIF model. In optimization 
procedure we use a cost function which depends on the difference 
of the histogram of IS! of the probabilistic model and the ELIFmodeL 
The minimum value of this cost function shows the minimum dif­
ference of the histogram of iSi of (he probabilistic model and the 
EUF model and suggests that both models generate neariy the same 
shape of ISI distribution. 

First, we generate two spike trains using the enhanced leaky 
integrate and (ire model with directed coupling from one neuron 
to another. The independent spike train B| simulates spikes gen­
erated by a neuron under some constant stimulation. This spike 

train influence the spike train A| emulating the synaptic connec­
tion from Bi to Aj . Thus, we consider these two spike trains as the 
given data and would like to adjust parameten of the probabilistic 
model in such a way that this model wi l l be able to generate spike 
trains which are similar lo the given ones. To find the best values 
of parameters of the probabilistic model we use an optimization 
procedure and the cost function is calculated in the following way. 
Lei select some parameter values of the probabilistic model (ft a, 
b,c,d). where/(is the strength ofinfluence from one spike train to 
another, (a,b) are the shape and scale parameters of the gamma dis­
tribution and(c,d)are the shape and scale parameten of the Weibuli 
distribution. Using these parameter values we generate the inde­
pendent renewal process B with the gamma distributed IS 14 and 
another spike train A which is the modulated renewal process. The 
cost function Qtakes into account a difference between the ISi dis­
tributions of the EUFgenerated spike train A] and the MRP denoted 
by A: 

Q-EliW'-'^)' 
hereh^' andh^* are the frequency of appearance of ISl in the bin 

(of the histogram for A, and A respectively and k is the number of 
bins. This bin number is arbitrary and we usek-S. 

The oplimizalion procedure provides the optimal parameter 
values corresponding to the best fitting and the histograms are 
shown in Fig. 14. Fig 14A shows the ISI histogram for the ELIF gen­
erated data and Fig. 14B shows the ISi histogram for the MRP data 
generated by the probabilistic model with the optima! values of 
parameters. These histograms are similar and the corresponding 
valoeof the cost ftinciion is small enough: Q is 4.9964 » 10"*, 

In the cost function we use the histogram of iSl which consider 
the shapeoflSl distribution.This approach can be improved in such 
a way that the cost function includes both the histogram of ISI and 
the second order histogram of IS! (histogramof pairs of adjoin inter­
vals) to reflect both the shape of ISI distribution and allocation of 
IS! in time. Of course, further improvement along this line leads to 
the cost function which includes both the histogram of ISI and the 
auto-correlation function. For simplicity we use the histogram of 
IS! in the cost funaion. 
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