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spike trains
Abstract

Analysis of functional connectivity of simultaneously recorded multiple spike trains is
one of the major issues in the neuroscience. The progress of the statistical methods to
the analysis of functional connectivity of multiple spike trains is relatively slow. In this
thesis two statistical techniques are presented to the analysis of functional connectivity
of multiple spike trains. The first method is known as the modified correlation grid
(MCGQG). This method is based on the calculation of cross-correlation function of all
possible pair-wise spike trains. The second technique is known as the Cox method. This
method is based on the modulated renewal process (MRP). The original paper on the
application of the Cox method (Borisyuk et al., 1985) to neuroscience data was used to
analyse only pairs and triplets of spike trains. This method is further developed in this

thesis to support simultaneously recorded of any possible set of multiple spike trains.

A probabilistic model is developed to test the Cox method. This probabilistic model is
based on the MRP. Due to the common probabilistic basis of the probabilistic model
and the Cox method, the probabilistic model is a convenient technique to test the Cox
method. A new technique based on a pair-wise analysis of Cox method known as the
Cox metric is presented to find the groups of coupled spike trains. Another new
technique known as motif analysis is introduced which is useful in identifying
interconnections among the spike trains. This technique is based on the triplet-wise
analysis of the Cox method.

All these methods are applied to several sets of spike trains generated by the Enhanced
Leaky and Integrate Fire (ELIF) model. The results suggest that these methods are
successful for analysing functional connectivity of simultaneously recorded multiple
spike trains. These methods are also applied to an experimental data recorded from cat’s
visual cortex. The connection matrix derived from the experimental data by the Cox

method is further applied to the graph theoretical methods.
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Chapter 1

Introduction

The brain consists of billions of cells of two types — gha cells and neurons. The neurons
are considered as the main units dealing with information processing. One way that
information is transmitted between neurons is through changes in their electrical activity
known as action potential or spike. Typically action potentials or spikes have duration
of 1-2 milliseconds. A chain of action potenttals emitted by a single neuron is called a

spike train.

Usually, generation of action potential happens as a response to the incoming signal
either from other neurons or external input. Thus, it is important to study both activity
of a single neuron and a group of interactive neurons recorded simultaneously. The
main mechanism of neural interaction is callea synaptic transmission. Synapse is a
special part of the neuron which provides a possibility to transmit electrical pulse from
one neuron to another. Although single unit activity is irregular and complex enough, a
small system of interconnected neurons can exhibit complex behaviour and
information-processing capabilities not present in a single neuron. The understanding of

networks of coupled neurons is one of the major issues in the neuroscience.

For decades a common experimental method in neuroscience was based on the activity
of a single neuron. It was especially useful for studies of the effects of sensory inputs. A
substantial part of recent research in neuroscience involves the study of the activity of
neurons to behaviour and cogﬁition. Such studies require the simultaneous recording of
many neurons. Recent advances in multi electrode neural recording systems have made

it possible to record activity from a large number of neurons simultaneously.



Chapter 1 Introduction

One of the important problems of the simultaneously recorded spike trains is the study
of the functional connectivity. The term functional connectivity is used to identify
statistical dependencies and influences between spike trains. Despite the developments
in recording technology, the progress in the methods to study functional connectivity
has been rather slow. Most of the existing techniques that are used to identify functional
connectivity are based on pair-wise analysis. These pair-wise techniques are usually
focused on a pair of spike trains but they fail to consider all possible influences from
other simultaneously recorded spike trains. For this reason, these pair-wise estimates of
the functional connectivity sometimes can lead to inaccuracies. Therefore, new
techniques are required which can capture all possible influences from other

simultaneously recorded spike trains and can estimate accurate functional connectivity.

1.1 Objective of the study

This section provides a brief summary of the objectives of the study. The questions
addressed to infer functional connectivity are important in computational neuroscience
and they need the appropnate statistical techniques to answer them. There are some
recent developments of statistical techniques that are used to answer the questions
related to functional connectivity of multiple spike trains. Although there are a number
of statistical techniques used for the analysis of functional connectivity of multiple
spike frains, a great deal of work is still necessary in this area in order to provide
researchers with appropriate tools for the analysis of multiple spike train data. The
objective of this study is to develop new statistical techniques for analysing multiple
spike trains which can provide some insights on the understanding of complex neural

activity and neural interactions.
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1.2 Tour of the thesis
This section provides an overview of the structure and the contents of the thesis. The

thesis contains eight chapters.
Chapter 1 is an introduction where the objectives are formulated.

Chapter 2 is devoted to the review of literature and the papers relevant to study of
functional connectivity of spike trains are discussed. The techniques that are used to
infer functional connectivity of spike trains are reviewed. Studies of the graph

theoretical methods that are used to analyse a connectivity pattern are also discussed.

Chapter 3 presents a new statistical method known as modified correlation grid (MCG)
to analyse functional connectivity of multiple spike trains. This MCG method is related
to the correlation grid (Stuart et al.; 2005). The MCG method is able to distinguish the
direct connections from the spurious (common source and indirect) connections and
thus reveals the functional connectivity of multiple spike trains. This method is based
on the calculation of cross-correlation function of all possible pair-wise spike trains. A
clustering algorithm is applied to the significant peak and corresponding time shift to
distinguish the connections. Application of this method is shown for two sets of spike
trains generated by the Enhanced Leaky Integrate and Fire (ELIF) mode! (Borisyuk,
2002). The description, dynamics and parameters of the ELIF model are presented in

appendix A.

Chapter 4 describes a probabilistic model for generation of dependent spike train. This
probabilistic model is based on the theory of modulated renewal process (MRP). To
generate a dependent spike train from an influence of independent spike train, an
influence function is described which is used in neuroscience to describe synaptic

connectivity between neurons. To assess how the generated dependent spike train agrees

3
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with the theoretical probability distribution two ‘goodness of fit’ tests are used. An
optimization procedure is described by which the parameters of the probabilistic model
can be adjusted in such a way that these parameter values can be used to generate spike
trains similar to the ‘integrate and fire’ neuron model. This probabilistic model is used

to test the Cox method.

Chapter 5 presents a statistical method known as the Cox method to analyse functional
connectivity of multiple spike trains. This technique is based on the theory of modulated
renewal processes (MRP) and is the generalization of the Cox method developed by
Borisyuk et al. (1985). Application of this method is shown for several sets of spike
trains generated by the ELIF model. A comparison of the Cox method with the cross-
comrelation function (CCF) is presented using pairs of spike trains generated by the
probabilistic model. Due to the common probabilistic basis of the probabilistic model
and the Cox method, the probabilistic model is a convenient technique to test the Cox
method. The analysis of a set of three spike trains is used to demonstrate that the Cox
method can find a scheme of connections in a case of ‘common source’ connection
architectures. Similarly, the method is successful when it is used to analyse sets of three
spike trains with ‘indirect connection’ architecture. A new technique based on the pair-
“wise analysis of the Cox-method known as the Cox metric is demonstrated to find the
groups of coupled spike trains. An application of the Cox metric is shown for a set of
twenty spike trains generated by the ELIF model. Another new technique known as
motif analysis is introduced which is useful in identifying interconnections among the
spike trains. This technique is based on the triplet-wise analysis of the Cox method. An
application of this technique is demonstrated by a set of twenty spike trains generated

by the ELIF model.
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Chapter 6 presents the application of the MCG method and the Cox method to a set of
experimental data recorded from the cat’s visual cortex (Nikolic, 2007; Schneider et al,,
2006). The experimental conditions include six different stimuli corresponding to
different orientation of the stimulation grid. For each stimulus, functional connectivity
of 29 spike trains are analysed by the MCG method and by the Cox method. The
connections that are common to the MCG method and the Cox method are presented for
each stimulus. Also the connections that are common to all stimuli identified separately
by the MCG method and the Cox method are shown. The Cox metric is applied to the
29 spike trains to identify the groups of similar spike trains for each stimulus. Similarly,
to identify the interconnection among the 29 spike trains the motif analysis is conducted
for each stimulus. In this chapter, the results of analysing functional connectivity of
stimulus [ are presented. The results of analysing functional connectivity of another 5

stimuli are presented in appendix B.

Chapter 7 describes some graph theoretical methods (Rubinov and Sporns, 2010) that
are used for the comprehensive analysis of the connectivity derived from statistical
analysis of multiple spike trains. These graph theoretical methods are applied to the
connectivity matrix of each stimulus identified by the Cox method. A statistical model
known as P1 model (Holland and Leinhardt, 1981) which is used to identify the
attractive and influential people in the social science network, is also applied to the
connectivity matrix. Application of this model to the connectivity matrix is useful to
identify the influential and attractive spike trains. In this chapter, the results of the graph
theoretical methods of stimulus 1 are presented. The results of graph theoretical

methods of another 5 stimuli are presented in appendix C.

Chapter 8 draws contribution and conclusion regarding the techniques proposed to
analyse functional connectivity and their applications to the experimental data.

5
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Review of spike train analysis

In this chapter a review of studies related to the interaction between stimulus and spike
train is discussed. In addition to these studies, methods of analysing functional
connectivity of simultaneously recorded multiple spike trains are discussed. Studies of

the analysis of functional connectivity by graph theoretical methods are also discussed.

2.1 Introduction

The brain receives, processes, and transmits information about a particular stimulus
through stereotyped electrical discharges called action potentials or spikes. The signals
from the stimulus are transformed into sequences of these spikes at an early stage of
processing within the central nervous system. Spike trains are the starting point for
virtually all of the processing performed by the brain (Kandel, 2000; Dayan and Abbott,
2001). Characterizing the relationship between the stimulus and the spike trains is an
important issue in neuroscience to understand how the brain works in response to the
stimulus. Many studies have been done to understand the relationship between stimulus
and spike trains (Espinosa and Gerstein, 1988; Gochin et al., 1990, 1991; Eggermont,
1991; Lindsey et al., 1992¢; Vaadia et al., 1995; Wilson and McNaughton, 1994;
Skaggs and McNaughton, 1996; Li et al., 1999; Shannon et al., 2000; Louije and Wilson,

2001).

Besides the relationship between stimulus and spike trains, it is also important to study
the functional connectivity between spike trains in response to a particular stimulus.
This is a challenging problem in neuroscience which needs statistical methods to

analyse multiple spike trains (Brown et al., 2004). To study the functional connectivity
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of the spike trains it is obligatory to observe the spiking activity of multiple single

neurons recorded simultaneously.

Recent advances in multi electrode (micro electrode) neural recording systems have
made it possible to record spiking activity from a large number of neurons
simultaneously (Boven et al., 2006). Despite the pioneering work by Thomas et al.
(1972), Wise et al. (1970), and Gross (1979), a remarkable step forward in Multi
Electrode Array (MEA) applications has been achieved only over the last ten years.
With the advent of affordable computing power (Boven et al., 2006) and commercial
MEA hardware and software (Potter, 2001), multi electrode recording technology is
now common in neuroscience study. This technology has been applied to record from
the hippocampus (Wilson and McNaughton, 1993; Harris et al.,, 2003), retina and
primary visual cortex (Pillow et al., 2008; Jermakowicz et al, 2009), cortical
sensorimotor areas in behaving nonhuman primates (Hatsopoulos et al., 1998; Nicolelis
et al., 2003; Riehle et al., 1997), and humans (Hochberg et al., 2006; Truccolo et al.,

2008a, 2008b; Truccolo et al., 2010).

The detection and identification of neural spiking activity from multi electrode
technolqu is an important problem that is a prerequisite for studying multiple spike
trains (Lewicki, 1998). There are three stages between the multi éiecﬁt;de recoi'ding and
the identification of spikes: (i) detection of spikes, (ii) determination of the number of
neurons being recorded and (iii) assignation to the neurons that produced the spikes
(Brown et al., 2004). These three steps together are termed as spike sorting. There are
many algorithms for spike sorting (Fee et al., 1996; Lewicki, 1998; Harris et al., 2000;
Quiroga et al., 2004; Shahid and Smith, 2008; Shahid et al., 2010). Different algorithms

produce different results dve to non-stationary background noise, electrode drift and
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proper spike alignment. The decision about which one is appropriate depends on the

requirements of the experiment (Lewicki, 1998).

2.2 Spike train analysis

After assigning the spike train to the corresponding neuron, the next step is to analyse
the functional connectivity of these spike trains. The analysis of functional connectivity
can be divided into two groups, namely: (i) pair-wise spike train analysis and (ii)

multiple spike train analysis,

2.2.1 Pair-wise spike train analysis

In neuroscience, the Cross-Correlation Function (CCF) is a widely used measure of
functional connectivity between spike trains (Perkel et al., 1967). CCF has been applied
to many neural systems to make powerful inferences about functional connectivity, This
statistical technique is used for testing the independence of two spike trains using the
theory of stochastic point processes. This technique is also applied to assess oscillation,
propagation delay, effective connection strength, synchronization, and spatiotemporal
structure of a network (Konig et al., 1995; Brown et al., 2004). In order to make
statistically significant judgements of the CCF, Brillinger (1976¢) introduced a
nommalization technique of the CCF with the confidence interval. Peaks exceeding the

confidence interval of the CCF are considered as significant.

Although the CCF has been widely used in neuroscience study over the last few decades
this technique has several limitations. This technique assumes that the two spike trains
are stationary which can be hard to justify in many cases (Brown et al., 2004). The use
of CCF also assumes that spike trains are sufficiently large in sample size (Aertsen and
Gerstein, 1985). The result of cross-correlation function is inaccurate if the sample size

of the recorded spike trains is small (Shao and Tsau, 1996). The reason for the
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inaccuracy is that the confidence interval is too wide to find the significant connection.
Peaks in the CCF usually indicate the interaction of spike timing between neurons but
there are two biological plausible ways that can draw peaks similar to the CCF and

interpreting the interaction between spike trains may be a problem (Brody, 1999).

A related measure of functional interaction between spike trains is the cross intensity
function (Cox and Lewis, 1972; Brillinger, 1976b, 1992). This function estimates the
spike rate of one neuron at different lags relative to the spiking activity of a second
neuron. There are other methods to characterize the relationship between spike trains.
These include product densities, cumulant densities, cumulant spectra, methods of
moments {Bartlett, 1966; Brillinger, 1975a, 1975b) and coherence (Brillinger, 1976a,
1992). These techniques are.usually applied to characterize the dependencies between
pairs of neurons at a time, ignoring possible effects from other neurons (Okatan et al.,

2005), which lead to erroneous functional connectivity in many cases.

Since behaviour provides a key window into neural responses, it is of great interest to
know how relationships between neurons vary as a function of stimuli or external events.
A statistical display joint peri-stimulus-time histogram (JPSTH) (Gerstein and Perkel,
1969), which reflects the dynamics of the correlation, is used for this analysis. This
technique is a logical exteﬁsiém of the peri-stirhulus-timc histogram (PSTH). it is a two-
dimensional histogram of the joint occurrence of the pairs of spike trains. The main
diagonal of the JPSTH displays the observed rate at which both neurons fire
simultaneously. A modification of the JPSTH, the normalized JPSTH (Aertsen et al.,
1989) is also used. The JPSTH has been used to investigate relationships between

neurons (Vadia et al., 1988; Eggermont, 1994).

Like the CCF, the JPSTH has some drawbacks. The major drawback is applying the

statistical calculation on nonstationary data. However, recent advances in the JPSTH
10
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have identified some promising approaches to mitigating the nonstationarity problem.
Another problem is the difficulty in interpretation of small quantities of data. Like CCF,
this technique also applies to characterizing the dependencies between pairs of spike

trains at a time, ignoring possible effects from other spike trains.

Besides the CCF and JPSTH, there are some techniques which are used to find the
interaction of two spike trains such as partial correlation analysis (Eichler et al., 2003)
and partial cross-correlation matrices (PCCM) (Stark et al., 2006). As with the CCF,
these methods requires stationary spike trains and sufficiently large number of spikes in

the spike train.

Pair-wise correlation methods discussed above measure the statistical association of a
single spike train to each member of the ensemble separately but for simultaneously
recorded spike trains one should be able to make inference about the collective
properties of all spike trains. Gravitational clustering is one approach to an efficient
search for evidence for interactions among simuitaneously recorded spike trains.
Although the representation is still fundamentally pair-wise, it allows evaluation of all

observed spike trains at the same time. This method can be used for nonstationary data.

Gravitational clustering is a direct visualization method for examination of dynamic
interactions ameng a group of simultaneously recorded neurons. In the gravitational
clustering algorithm (Gerstein & Aertsen, 1985; Gerstein et al, 1985), the activity of
neurons is mapped into motions of particles in Euclidean space of the appropriate
dimension. The forces exerted on particles by others are due to ‘charges’ that represent
interactions between the corresponding neurons. The particles are allowed to move
about until they begin to cluster as a result of the charges and the resulting aggregation
of the particles into smaller subgroups then presumably represents the functionally

related, or cooperative, subgroups that are sought. Baker and Gerstein (2000) presented
11
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several modifications to the gravitational clustering approach to improve its sensitivity

in detecting neural synchronization.

An implementation of the original Gravity Transform algorithm is presented by Stuart
et al. (2002) along with simulation results. The gravitational clustering approach has
been successfully applied to a range of experimental data (Aertsen et al., 1987, 1991;
Gochin et al, 1990; Lindsey et al, 1989, 1992a, 1992b, 1997, Lindsey 2001;
Maldonado and Gerstein 1996; Gerstein et al., 1998; Arata et al., 2000; Martin 2001;
Morris et al., 2003). Lindsey and Gerstein (2006) presented a new three dimensional

display method that allows possible relationships between the observed spike trains.

Spike train similanty or dissimilarity measures are important tools in quantifying the
relationship between pairs of spike trains. The use of distance between pairs of spike
trains known as spike train metric can be used to find similarity or dissimilarity among
pairs of spike trains. If the distance between a pair of spike trains is small enough, one
can assume that the pairs of spike trains are identical. Several measures of spike train
similarity based on distance have been proposed for the analysis of spike trains. Among
these measures Victor and Purpura (1996, 1997) introduced a distance measure based
on a cost functio.n. This function evaluates the cost needed to transform one spike train
into the other, using certain elementary steps. They define the distance between two
spike trains in terms of the minimum cost of transforming one spike train into the other
by using three basic operations: spike insertion, spike deletion and spike movement. In
their work they proposed several spike train distances: spike time distances, spike
interval distances and spike count distances. Spike time distances are further extended
to multineuronal data by Aronov et al. (2003). There are a number of applications of
spike time distances on the electrosensory system (Kreiman et al., 2000), vision
(Mechler et al., 1998; Keat et al., 2001; Reich et al,, 2001; Reinagel and Reid, 2002;

12
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Grewe et al., 2003; Samonds et al., 2003; Samonds and Bonds, 2004; Chichilnisky and
Rieke, 2005), the auditory system (Machens et al., 2001), chemical senses (MacLeod et

al., 1998; Di Lorenzo and Victor 2003), and the motor system (Vaknin et al., 2005).

Another metric proposed by van Rossum (2001), measures the Euclidean distance
between the two spike trains after convolution of the spikes with an exponential
function. A generalization of van Rossum (2001) measures to multiple spike trains is
proposed by Houghton and Sen (2008). Schreiber et al. (2003) proposed a spike train
metric which is derived from the correlation-based measure. Kreuz et al. (2007)
proposed a spike train metric which i1s based on the inter-spike intervals (ISI) of the
spike train, Paiva et al. (2009) compare different spike metric measures for the analysis
of spike trains. The results reveal that no single measure performs the best or

consistently throughout for spike train analysis.

2.2.2 Multiple spike train analysis

There are several methods in the literature for multiple spike train analysis. One of the
methods is the unitary event analysis (Grun et al., 2002a). This method is designed to
detect coincident spike patterns between two or more simultaneously recorded spike
trains and to assess the significance of the patterns. The statistical significance of a
pattern is evaluated by comparing the number of occurrences to the number expected on
the basis of the firing rates of the spike trains. Proper formulation of the null hypothesis
and the derivation of the corresponding count distribution are important steps in this
method. This method allows one to analyse correlations not only between pairs of spike
trains but also between multiple spike trains, by considering the various spike patterns
across the spike trains. In addition, this method allows one to extract the dynamics of
correlation between the spike trains by performing the analysis in a time-resolved

manncr.

13
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Its application has provided important insights into principles of inforrnation processing
in the cortex in a number of studies: in the visual (Maldonado et al. 2008), the prefrontal
(Grun et al. 2002b), and the motor cortex (Richle et al. 1997, 2000; Grammont and
Riehle 1999, 2003; Kilavik et al. 2009). The technique for the detection of unitary
events is based on the assumption that the firing rates of the neurons are stationary
within the analysis time window. An adjustment for the nonstationary firing rate is also
proposed (Grun et al., 2002b). Like nonstationarity of firing rate, experimental data may
also exhibit nonstationarity across trials. For this case a nonparametric method was
presented (Grun et al., 2003) for the analysis of unitary events in case of experimental

data.

Another method based on the estimation of higher order correlations has been suggested
by Martignon et al. (1995; 2000) for the analysis of multiple spike trains. This technique
is aimed at estimating a huge amount of parameters and, therefore, requires very long
recordings and can be applied to a relatively small number of spike trains (about ten
spike trains). This approach has been further developed in Staude et al. (2010a) where a
Cumulant-Based Inference of higher-order Correlations (CuBIC) method has been
presented. This method estimates the low order cumulants and is able to decide whether
' the high order correlations are needed. Thus, both a direct calculation of higher—order
correlations and a requirement of a large sample size might be avoided. Staude et al.
(2010b) reported a modified version of the CuBIC method, this version is based on a

statistical model which includes the non-stationary compound Poisson process.

Study of functional connectivity using Maximum Likelihood (ML) is a useful method
for the analysis of multiple spike trains. This method estimates the probability of a spike
occuiring as a result of multiple influences from other spike trains. Using the ML
function, the algorithm calculates the regression parameters, which characterise the

14
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strength of the influences. Brillinger (1988) and Chornoboy et al. (1988) presented such
a method where functional relationships between neurons can be detected and modelled.
The method proposed by Chornoboy et al. (1988) is based on a point process model
which involves stochastic intensities and an additive rate function. This method is
suitable for the investigation of the presence or absence of functional relationships
between neurons. Although they restrict their analysis to spike train data, the method
can be generalized to include external covariates such as sensory stimuli or motor
behaviour other than spike trains. A review of maximum likelihood methods and their

validity is presented by Pillow (2007).

There are several models that are used to characterize the functional relationship
between external variables and neura! spike trains. The simplest model is the linear—
nonlinear Poisson (LNP) model (Simoncelli et al., 2004). The LNP neuron model
consists of a linear filter, a static nonlinear transfer function and a Poisson spike
generating mechanism. To determine the neural response to a given stimulus, the
stimulus is first convolved with the linear filter. Subsequently, the filter output is
converted into an instantaneous firing rate via a static nonlinear transfer function, and
finally spikes are generated from an inhomogeneous Poisson-process according to this
firing rate. This model has a number of desirable features, including conceptual

simplicity and computational tractability.

More recent work has focused on extending the simple LNP model to include spike-
history effects, such as refractoriness, burstiness or adaptation. The extension of the
LNP model is known as the generalized linear model (GLM) (Paninski, 2004; Paninski
et al., 2007; Truccolo et al., 2005; Okatan et al., 2005; Pillow 2007; Stevenson et al.,
2008; Pillow et al., 2008). The GLM generalizes the LNP model to incorporate
feedback from the spiking process, allowing the model to account for history-dependent
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properties of neural spike trains. In this model each cell’s input is described by a set of
linear filters: a stimulus filter or spatio-temporal receptive field, a post-spike filter that
captures dependencies on spike-train history (for example, refractoriness, burstiness and
adaptation), and a set of coupling filters that capture dependencies on the recent spiking
of other cells. For each neuron the summed filter responses are exponentiated to obtain

an instantaneous spike rate.

Several vaniations and extensions of the basic GLM have been used to characterize the
interaction between stimulus and spike trains (Stevenson et al., 2008). Truccolo et al.
(2005) proposed a point process-GLM to relate a neuron’s spiking probability to three
typical covariates: the neuron’s own spiking history, concurrent ensemble activity, and
extrinsic covariates such as stimuli or behavior. This parametric model uses the
conditional intensity function to define a neuron’s spiking probability in terms of the
covariates. The discrete time likelihood function for point processes is used to carry out
model fitting and model analysis of multivariate single unit activity data simultaneously

recorded from the motor cortex of a monkey.

Okatan et al. (2005) introduced a GLM to estimate the functional connectivity of
stochastic neura_l networks based on a discrete time version of the approach developed
by Chomoboy et al. (1988). ThlS model is Iapp;lied to the analyéis of simﬁlta_nedusly |
recorded spike trains of a population of rat hippocampal place cells. Kulkarni and
Paninski (2007) developed a multivariate point-process model in which the firing rates
of the neurons depend on ﬂw experimentally controlled stimulus history, the spiking
history of the observed neurons, and the common input from an unobserved population
of neurons. Czanner et al. (2008) presented a state-space generalized linear model (SS-
GLM) to formulate a point process representation of between-trial and within-trial
neural spiking dynamics for analysis of multiple trial neural responses. They illustrate
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their model using simulated hippocampal spiking activity and actual neural spiking |
activity of six hippocampal neurons recorded in a macaque monkey. Eldawlatly et al.
(2009) introduced an approach for identifying functionally interdependent neurons that
does not consider the interval length over which the functional relationship exists. This
approach is specifically tailored to large-scale ensemble recordings obtained across
multiple cortical areas where identifying the dynamics of neural circuits is highly
desirable. A number of recent studies (Pillow, 2007; Pillow et al., 2008; Paninski et al.,
2007) use the GLM to investigate the influence of sensory stimuli to spiking activity of

neural population.

There are some limitations of the GLM approach. For example, the result of analysis
depends on the window (bin) size. The window is used to find estimates of parameters
describing influences to the spike train (Eldawlatly et al., 2009) and these estimates vary
with the bin size. Also, GLM might contain many parameters resulting in the
optimization problem (finding the maximum of likelihood) having a non-unique
solution (Stevenson et al., 2008; Chornoboy et al., 1988). A standard approach to
resolve this difficulty is to incorporate a prior knowledge about the nature of the
inference. There are different methods to deal with this problem: regularization
techniques, Bayesian approach, calculation of the maximum a posteriori (MAP)
estimate, etc. (Paninski, 2004; Rigat et al., 2006, Gerwinn et al., 2007; Stevenson et al.,

2009).

A number of alternative methods have been developed for modelling multi-neuron spike
train data and inferring functional connectivity. Utikal (1997) proposed a stochastic
model based on counting process intensities in order to analyse the firing times of an
ensemble of neurons. The counting process intensity for a neuron is used to characterize
the probability of a spike given the neuron’s backward recurrence time as well as the
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backward recurrence times of some or all of the other neurons in the ensemble. Another
method of measuring associations among simultaneously recorded neural spike trains is
the combinatorial method (Lee and Wilson, 2002, 2004). This method explores a
particular sequential firing pattern based on the relative firing order. It is useful in
applications such as memory of a sequence of experienced events, a sequence of actions
in an overall movement, or sequential recruitment of different brain areas during a task.
This method is applied to quantify memory traces of sequential experience in the rodent

hippocampus during subsequent slow wave sleep (SWS) (Lee and Wilson 2002).

Stuart et al. (2005) presented a visualization technique called correlation grid to analyse
synchronous firings of simultaneously recorded multipfe spike trains. The fundamental
idea of this technique is to arrange spike trains into clusters that are functionally
connected and display them in a symmetrical grid. A measure of distance, based on
normalized CCF of two spike trains is used to perform the cluster analysis. Nykamp
(2007) presented an approach to distinguish between causal connection and common
input connection among neurons in a network. This approach is based on modelling the
relationship between the activity of neurons, their history dependence and measurable

external variables such as stimulus.

2.3 Connectivity study using graph theory

Graph theory is a branch of mathematics that originated with Leonhard Euler’s famous
1736 treatment of the Konigsberg bridge problem. Today, its applications are extremely
broad, ranging from urban planning and traffic control to epidemiology, financial
planning, internet search engines, and the analysis of complex biological systems from
ecological to molecular scales (Barabasi and Oltvai, 2004). Graph theory has been
applied to study the brain connectivity over the past ten years as well as other biological

networks, e.g. cellular metabolism, gene regulation, or ecology (Sporns, 2007, Bullmore
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and Spoms, 2009). Graph theory is applied to anatomical, functional and effective brain
connectivity by a connection matrix or adjacency matrix. This connection matrix is used
to identify different graph theoretical measures such as degree, motif, clustering
coefficient, path length and centrality measure as well as others (Reijneveld et al., 2007,

Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).

The term anatomical connectivity refers to the set of physical or structural connections
linking neuronal elements. Functional connectivity captures deviations from statistical
independence between neuronal elements (Friston et al., 1993; Friston, 1994). The basis
of all functional connectivity is time series data from neural recordings. These data may
be extracted from functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), magnetoencephalography (MEG) or multielectrode
array (MEA). Functional connectivity can be estimated in a variety of ways, for
example through computing CCF, mutual information or spectral coherence (Spomns,
2007). Most of the brain connectivity studies to date have been based on measures of
functional connectivity (Bullmore and Spoms, 2009). Effective connectivity describes
the network of causal effects between necural elements (Friston, 1994, Buchel and
Friston, 2000). Various techniques for extracting effective connectivity have been
pursued such as structural causal modelling, dynamic causal modelling and Granger

causality (Bullmore and Sporns, 2009).

Watts and Strogatz (1998) studied the anatomical connectivity of the nervous system of
C. elegans. Two graph theory measures such as path length and the clustering
coefficient were studied in this study. Sporns and Zwi (2004) studied data sets of
macaque visual and cat cortex. They computed scaled values of path length, clustering
coefficient and cycles. Some of the same data studied in Watts and Strogatz (1998) and
Sporns and Zwi (2004) were re-investigated for the presence of motifs by Spoms and
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Kotter (2004). Kaiser and Hilgetag (2004) studied the edge vulnerability of macaque
and cat cortex, protein-protein interaction networks, and transport networks. The
average shortest path length was used as a measure of network integrity and four

different measures were used to identify critical connections in the network.

The first attempt to apply graph theoretical concepts to fMRI was a methodological
paper by Dodel et al. (2002). In this methodological study, graph theory was used as a
new approach to identify functional clusters of activated brain areas during a task.
Starting with blood oxygen level dependent (BOLD) time series of brain activity a
matrix of correlations between the time series was computed. Eguiluz et al. (2005) and
Chialvo (2004) were the first to study clustering coefficients, path length and degree
distributions in relation to fMRI data. They studied fMRI in 7 subjects during three
different finger tapping tasks and derived matrices of correlation coefficients from the
BOLD time series. In the study (Salvador et al., 2005a), fMRI measures were recorded
in 12 healthy subjects and a matrix of partial correlations was obtained from the BOLD
time series. The clustering coefficient and path length were studied using graph theory.
Similar graph theory methods were studied by Salvador et al. (2005b) where the
connection matrix was obtained by the partial coherence and normalized mutual
" information measure. Extensive graph theory methods were performed.by Achard et al. .
(2006) on the data obtained from Salvador et al. (2005b). Here, wa§elet analysis was
used to study connectivity patterns. The global and local efficiency measures were
applied in an fMRI study in 15 healthy young and 11 healthy old subjects (Achard and

Bullmore, 2007). The connection matrix was based upon wavelet correlation analysis.

Data derived from fMRI experiments are very suitable for graph analysis because of
their high spatial resolution, In contrast, spatial resolution 1s more problematic with
EEG and MEG techniques. However, these techniques do measure directly the electro
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magnetic field related to neuronal activity, and have a much higher temporal resolution.
The first application of graph theory to MEG was published in 2004 (Stam, 2004). In
this experiment correlations between the time series of the 126 artefact-free channels
were analysed with synchronization likelihood (SL), a non-linear measure of statistical
interdependencies (Stam and van Dijk, 2002; Montez et al., 2006). Clustering
coefficient and path length were analysed in this study. Graph theoretical properties of
MEG recordings in healthy subjects were studied more extensively by Bassett et al.
(2006). The authors applied graph theory techniques such as clustering coefficient, path
length and betweenness centrality to MEG recordings in 22 healthy subjects. In this
study wavelet analysis was used to obtain correlation matrices. Bartolomei et al. (2006)
applied clustering coefficient and path length to MEG resting state recordings in a group

of 17 patients with brain tumours and 15 healthy controls.

The first application of graph theory to EEG was published in 2007 (Stam et al., 2007).
Here a group of 15 Alzheimer patients was compared to a non-demented control group
of 13 subjects. EEG recorded from 21 channels were analysed with the SL. The authors
computed the clustering coefficient and path length from the connection matrix. In two
related studies Micheloyannis et al. (2006a, 2006b) applied graph theory to 28 channel
EEG recorded during a 2-back working memory test. In both studies EEG filtered in
different frequency bands was analysed with SL. There are several studies that applied
clustering coefficient and path length to the data obtained from EEG recordings
(Posthuma et al., 2005; Wu et al., 2006; Ferri et al., 2007; Ponten et al., 2007 and Smit

et al., 2008).
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2.4 Importance of this research

In this Chapter several techniques for amalysing the functional connectivity from
simultaneously recorded multiple spike trains have been reviewed. Although these
methods are used for studying experimental data and demonstrate some important
results, all these methods have a number of limitations which should be taken into
account. For example, the majonity of the existing methods of analysing functional
connectivity require stationarity of spike trains. This assumption may not be met for
data simulated by a large neural network and is even less likely to be met for
experimental data. A second limitation is that some methods require long spike trains.
These two limitations contradict each other: the longer spike trains are, the less likely it
is that they will be stationary. Yet another common limitation is that the majority of
methods require a small time window (bin) for data analysis. Of course, the result of
analysis depends on the bin size. The widely used CCF method is a bin based method
and is applied under the assumption of stationary spike trains. Similarly, recently
introduced GLM techniques that are used for identifying functional connectivity from
experimental data are bin based methods, also GLM as a rule requires long spike train
data. Therefore, development of new statistical techniques for analysing multiple spike
trains and deriving the functional connectivity is a very actual and important p_roblem.
This problem is timely because MEA are now available for experiments in neuroscience

and this tool enables researchers to simultaneously record multiple spike trains.

In this thesis a new statistical method is developed to overcome the limitations of the
existing spike train analysis methods. This statistical method is based on the
mathematical idea of the Modulated Renewal Process (MRP) and is very useful for
identifying functional connectivity in generated and experimental data. Functional

connectivity identified by this statistical method is a useful tool for the graph theoretical
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brain connectivity analysis, while currently graph theoretical brain connectivity analysis
is bascdlon the pair-wise correlation methods. In this thesis, another useful method for
identification of functional connectivity developed by Stuart et al. (2005) is modified in
such a way that this modified method enables researchers to distinguish the direct

connections from spurious connections using an automatic algorithm.
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Chapter 3

Statistical techniques to improve the analysis of
functional connections based on pair-wise cross-

correlation function

Although the CCF is widely used in neuroscience to analyze multiple spike trains, it is a
difficult problem to identify functional connectivity using a pair-wise method which
only considers a pair of spike trains at a time and does not take into account influences
from other spike trains. Analyzing pairs of spike trains and finding a statistically
significant influence from one spike train to another, it is difficult to distinguish this
influence. This influence may occur as a result of direct connection between this pair,
due to a common source to both spike trains or due to an intermediate spike train. In this
chapter a statistical method is developed for classification of significant influences into
three groups: ‘direct connection’, ‘connection due to a common source’ and ‘indirect
connection’. It is shown that this method is efficient and significantly improves a result

of study of functional connectivity by a pair-wise method.

3.1 Introduction

Identifying functional connectivity between spike trains is important for understanding
how the brain works. In neuroscience a common widely used measure of functional
connectivity between spike trains is the cross-correlation function (Perkel et al., 1967).
A significant peak in a cross-correlation function can be interpreted as a functional
connection between spike trains (Aertsen et al., 1989) and the corresponding time of the
peak can be interpreted as a time shift in spike propagation (Nikolic, 2007). A peak in a

cross-correlation function indicates that there is a high probability to find a spike in one
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spike train due to spike in another spike train with some time shift. This significant peak
in the cross-correlation function indicates that the null hypothesis on independence of
two spike trains is not supported by data and should be rejected. Consequently there is
an influence from one spike train to another. Interpretation of this influence in terms of
functional connectivity is not an easy problem because this influence can be considered
as a direct connection between two spike trains or this influence can be considered as a
result of some common source to both spike trains. Another possibility is to interpret the

influence as an indirect connection, i.e. connection via some intermediate spike train.

A ‘direct connection’ is a connection where one spike train modulates the firing pattern
of another spike train directly. An ‘indirect connection’ is a spurious connection due to
connectivity via an intermediate spike train. A ‘common source’ is a spurious
connection due to an influence from the common source to both spike trains in a pair.
Analyzing functional connectivity of a large number of spike trains using cross-
correlation function, it is difficult to distinguish the direct connection, indirect
connection and common source (Dahlhaus et al., 1997; Eichler et al., 2003; Makarov et
al., 2005; Nykamp, 2005; Stivenson et al., 2008; Park et al., 2008; Nedungadi et al.,
2009). The Correlation Grid (Stuart et al., 2005) is a method which is used for
investigating the functional connectivity of a large number of spike trains using cross-
correlation function. Correlation grid has been successfully used for study of functional
connectivity, however, the correlation grid cannot automatically distinguish direct and
spurtous (both indirect and common source) connections. The aim of this chapter is to
present a method for analyzing functional connectivity of a large number of spike trains
using cross-correlation function which can differentiate direct connections from
spurious (indirect and common source) connections by an automatic algorithm. This

method is called the modified correlation grid (MCG).
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3.2 Cross-correlation function (CCF)

The cross-correlation function works on a pair of spike trains A and B, one spike train is
considered as the target spike train (4) and another one is considered as the reference
spike train (B). A correlation window consists of (2 * 1 + 1) bins of small time length 4
is considered. For each spike of the reference spike train B, this correlation window is
set in such a way that a centre of the middle bin of the correlation window coincides
with this spike of the reference spike train and there are u bins on the left and there are u
bins on the right (Fig. 3.1). The counting function ngg(v) counts and accumulates the
number of spikes of the target spike train 4 falling in the correlation window for the
spikes of the reference spike train B. The counting function n,5(v) is calculated over

the experiment time 7.

[+1] 0 |+2]+2] 0
2 -1 0 +1 42

Correlation window

Target train | AN i

— D S o e D A S e we

Reference train | | | |

I Reference spike n+1
Reference spike n

Figure 3.1: Counting procedure of the target spikes that fall within the correlation
window for the reference spike.

To test the independence of two spike trains Brillinger (1976¢) considers the estimate

Pan(V) = Pas(v)/Pabs, Where Pag(v) = nsp(v)/2hT, P = ny/T and pg = ng/T
and normmalises the counting function n,g(v) accordingly. Here, n,, ng denote the

number of spikes in the spike trains A and B, respectively. For a large sample size the
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random variables P,5(v) are independent and the distribution of each of them is the

normal with the mean m= Jm and the standard deviation
s=1/ (Zm. Therefore, in the case of two independent spike trains the mean
of p4p(v) equals to one (because in independent case Psp(v) = H4Pg). To test the
null hypothesis H, that two spike trains are independent, the boundaries of the

confidence interval at the significance level a are plotted by two horizontal lines at

levels 1 + Q&./ (Zm , where QZ. is a critical value of the normal distribution
corresponding to the significance level a. If Hy is correct then all values of the CCF
corresponding to different bins fall inside the confidence interval and the estimated
value of the CCF (P,5(v)) is zero. If some value of the CCF exceeds the upper
boundary of the confidence interval, then the null hypothesis H; is rejected and it is
concluded that the two spike trains are not independent. The highest value of the CCF
exceeding the upper boundary of the confidence interval can be considered as a measure
of influence strength from spike train A4 to spike train B and the corresponding time can
be considered as a time shift (A) in spike propagation (Stuart et al., 2005) (Fig. 3.2).

4,
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Figure 3.2: An example of a cross-correlation function with confidence interval,
significant peak and time shift.
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3.3 Classification of functional connection

The interpretation of the CCF results is a difficult task. If the CCF shows that there are
no significant peaks, then it can be considered that there is no connection between two
spike trains. However, if there is a significant peak of the CCF then there is an influence
from one spike train to another. This influence can be interpreted either as a direct

coupling or as a spurious connection.

The two measurements from the CCF that can be used for distinguishing direct and
spurious connections are the highest significant peak (p) (Aertsen et al., 1989) and the
corresponding time shift (A) (Nikolic, 2007). The following examples show different

connection types and corresponding values of p and A,

(a)

Figure 3.3: Schematic diagram of (a) Direct connection where neuron A4 is directly
connected to neuron B. (b) Indirect connection where neuron A4 is connected to neuron
C through neuron B. (¢) Common source where neuron A is connected to both neuron B
and C.

1. Direct connection. Fig. 3.3(a) shows an example of a direct connection from
neuron A to neuron B with delay of spike propagation of 11 milliseconds. Two
spike trains corresponding to this connectivity have been generated using the
Enhanced Leaky Integrate and Fire model (Borisyuk, 2002) with moderate

connection strength. Fig. 3.4(a) shows the CCF for generated spike trains 4 and

B. The value of significant peak of the CCF is 4.51 and the corresponding time
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shift is 11 milliseconds. Note, there is a good correspondence between a time
delay of spike propagation in ELIF model and a time shift of CCF.

2. Indirect connection. An example of connection diagram with indirect
connection is shown in Fig. 3.3(b). A time delay of spike propagation from a
neuron A to neuron B is 11 milliseconds and a time delay of spike propagation
from neuron B to neuron C is 12 milliseconds. Three spike trains corresponding
to this connection diagram have been generated using the ELIF model with
moderate connection strengths. Fig. 3.4(b) shows the result of analyzing spike
trains 4 and C by the CCF. A height of the significant peak is 1.7 (note, this
value is lower than the significant peak of direct connection in previous case)
and a corresponding time shift of the CCF is 23 milliseconds (note, this time is
longer in comparison with time shift in previous case of direct connection).
Thus, a relatively low value of the significant peak and a relatively long time
shift compared to direct connections are important characteristics of the ‘indirect
connection’,

3. Connection due to a common source. Fig. 3.3(c) shows a ‘common source’
connectivity diagram of 3 neurons. Neuron 4 influences both neurons 8 and C
with _delay_ of spike propagation of 11 and 14 milliseconds, respectively. Three
spike trains corresponding to this connection diagram have been generated using
the ELIF model with moderate connection strengths. Fig. 3.4(c) shows the CCF
for spike trains B and C where a value of significant peak is 1.93 (note, this
value is lower than a significant peak in case of direct connection) and a time

shift is 3 milliseconds (note this value of time shift is relatively small).

These examples provide an important guidance how p and A can be used to justify the
result of the CCF analysis corresponding to the direct or spurious connection. The direct

connection is characterized by a high value of the significant peak and a relatively short
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time shift. “Indirect connection” is characterized by a relatively low value of the
significant peak and a relatively long time shift in comparison with direct connection.
*Common source connection® can be characterized by a relatively low significant peak
near zero time shift and both the significant peak and time shift are lower comparison
with direct connection. Thus, to derive a diagram of functional connections from the
pair-wise CCF analysis, the spurious connections should be ignored and the only direct

connections should be included to the diagram.
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Figure 3.4: Examples of cross-correlation for the three types of connection. (a) Direct
connection. (b) Indirect connection and (¢) Common source.

All these considerations are relevant to the case of generated data and, of course, they
may not completely correct in case of experimental data. Nevertheless, these simple
examples provide a useful guidance how to distinguish between direct and spurious

connections when deriving the diagram of connectivity from the pair-wise CCF
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analysis. Further in this chapter, examples of 10, 15 and 20 generated spike trains with
different connection diagrams and distributed parameters are considered and shown that
simple ideas which have been described here are useful for deriving a functional

connectivity (i.e. connection diagram) from the result of pair-wise CCF analysis.

3.4 Correlation Grid

The fundamental idea of Correlation Grid (Stuart et al., 2005) is to arrange spike trains
into clusters of functionally connected spike trains using a measure of similarity. This
similarity measure is based on a distance between two spike trains. The distance is
calculated using the value of highest significant peak of the cross-correlation function.
For multiple spike trains, all pair-wise cross-correlation functions are calculated with a
specified bin and correlation window. The main significant peaks are calculated and the
results of these cross-correlations are displayed in a matrix format. In the matrix, the
magnitudes of the main significant peaks are encoded from white, representing a non-
significant peak, to black, representing the largest peak (Fig. 3.5). The rows and
columns of the matrix are reordered using a clustering algorithm. A difference between
maximum of the main peaks and main peak in the corresponding cross-correlation is
considered for clustering the spike trains. After applying the clustering algorithm the

most similar spike trains cluster together and show functional connectivity.
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Figure 3.5: An example of a correlation grid to find functional connectivity of multiple
spike trains.

Fig. 3.5 shows the functional connectivity of ten spike trains using Correlation Grid
method. The functional connectivity obtained by this method is displayed in a
symmetrical way. For example, in Fig. 3.5 there is a functional connection between
spike trains #1 and #6 and both the cells (1,6) and (6,1) are encoded with black meaning
that there is a strong influence between these spike trains and the connection is direct.
Similarly, there is a functional connection between spike trains #2 and #9 and the grey
color means there is a connection (not strong) between them. It is not easy to identify
whether the connection between spike trains #2 and #9 is direct, indirect or due to a
common source. To identify this connection the Correlation Grid requires additional in-
depth analysis. To overcome this limitation a new statistical method based on the
significant peak and time shift of the CCF is developed. This method enables
researchers to distinguish the direct connections from spurious (common source and

indirect) connections using an automatic algorithm.
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3.5 Modified Correlation Grid (MCG)

The steps involved in modified correlation grid method are described below:

3.5.1 Calculation of CCF

Let us consider n simultaneously recorded spike trains and k = (n® —n)/2 is the
number of the CCF which have been calculated. To test the hypothesis of independence
of two spike trains, k& independent tests are run for the n spike trains. In statistics a
multiple comparison problem occurs when a set of simultaneous statistical tests is
considered. This problem occurs when all the tests are considered as a family and set the
significance level a for the family. For this reason the errors of incorrectly rejecting the
null hypothesis are more likely to occur. Several statistical techniques have been
developed to prevent this problem. Bonferroni correction is a method that can be used to
address the problem. The correction is based on the idea that for testing a set of
dependent or independent hypotheses, the significance level a should be adjusted
according to the number of tests being performed. So if the significance level for a set

of k simultaneous tests is considered to be a, the significance level for each individual

tests will be a/k.

Applying Bonferroni correction to the & pair-wise CCFs, the upper and lower
boundaries of the confidence interval are calculated for each pair-wise CCF. Any peak
that exceeds the upper boundary of the confidence interval is considered as significant.
Significant peaks can be found on both positive and negative side of the CCF. Here,
significant peak on the positive side of the CCF is considered as a measure of
dependence from one spike train to another. For several significant peaks, the highest
significant peak is considered as the measure of influence strength. All the highest

significant peaks p;; (i,j = 1,2,----- ,n), i #j and the corresponding time shifts
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pij of the pair-wise CCF supports the null hypothesis (spike trains are independent).
Therefore there is no connection from spike train i to spike train j and so p;; is not

distinguishable from zero. These non significant peaks are not included in the analysis.

3.5.2 Outlier detection

In multiple spike trains there may exist some very strong synaptic connections between
neurons. Cross-correlation functions for these neurons show very big significant peaks
and they can be considered as outliers. These very big significant peaks are considered
outliers because they deviate markedly from the other significant peaks. These outlier
connections are considered as direct connections and are not used for the algorithm to

distinguish the direct connections from the indirect connections and common source.

In statistics there are two kinds of outlier detection methods, tests of discordancy and
outlier labeling methods. Most tests of discordancy need test statistics for hypothesis
testing and the tests are usually based on an assumption of some distribution. Some tests
of discordancy are for a single outlier and others for multiple outliers. Selection of these
tests mainly depends on the numbers and type of target outliers, and type of data
distribution (Acuna and Rodriguez, 2004). Though the tests of discordancy are powerful
for investigating the outliers, most distributions of real-world data may be unknown or
may not follow specific distributions. Another limitation is that the tests of discordancy
are susceptible to masking or swamping problems (Acuna and Rodriguez, 2004).
Masking problem can occur when few outliers are specified in the test though there are
in fact more outliers. These additional outliers may influence the value of the test
statistic enough so that no points are declared as outliers. Swamping problem can occur
when many outliers are specified in the test though there are in fact few outliers and all

the points are declared as outliers.
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On the other hand, most outlier labeling methods generate an interval or criterion for
outlier detection instead of hypothesis testing, and any observation beyond the interval
or criterion is considered as an outlier. There are two reasons for using an outlier
labeling method. One is to find possible outliers as a screening device before
conducting a test of discordancy. The other is to find the outliers away from the
majority of the data regardless of the distribution. When it is difficult to identify the
distribution of the data or transform it into a proper distribution, labeling methods can

be used to detect outliers (Seo, 2006).

Among several outlier labeling methods, the commonly used method is the Z-score. The
Z-score is defined as

Xi—X

7=
! sd

where X;~N(u,0?), and X and sd are the sample mean and sample standard deviation

of data. The basic idea of this rule is that if X" follows normal distribution with mean u

and variance o2, then Z follows standard normal distribution with mean 0 and variance
1. The Z-scores that exceed 3 in absolute value are generally considered as outliers.
According to Shiffler (1988), a maximum Z-score is dependent on sample size, and it is
computed as (n— 1)/vn. Since no Z-score exceeds 3 in a sample size less than or
equal to 10, the Z-score method is not very good for outlier labeling, particularly in
small data sets (Iglewicz and Hoaglin, 1993). Another limitation of this rule is that the
standard deviation can be inflated by a few or even a single observation having an

outlier value. Thus it can cause a masking problem.

Two estimators are used in the Z-Score, the sample mean and sample standard
deviation. These estimators can be affected by a few outlier values or by even a single

outlier value. To avoid this problem, another outlier labelling method known as
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modified Z-score can be used. In the modified Z-score the median and the median of the
absolute deviation of the median (MAD) are employed instead of the mean and standard
deviation of the sample, respectively (Iglewicz and Hoaglin, 1993):

MAD = median{|x; — X|}
where ¥ is the sample median. The modified Z-Score (M;) is computed as

_ 0.6745(x; — X)
5= MAD

where E(MAD) = 0.67450 for large data. Iglewicz and Hoaglin (1993) suggested that
observations are labeled outliers when |[M;| > 3.5. Applying modified Z-score to the
significant peaks p;; obtained from pair-wise cross-correlation function enables to
detect the outliers. In this study, only upper outliers are investigated to indicate that
these outliers have very strong connections and can be considered as direct connections.

For this reason significant peaks are labelled outliers when M; > 3.5.

3.5.3 Cluster analysis

All the non outlier significant peaks p;; and the corresponding time shifts A;; are used
for the classification of functional connections. For a set of significant peaks p;; that do
not have outliers with corresponding shifts A;;, the typical scatter plot can be observed
as in Fig. 3.6. From the Fig. 3.4, it can be assumed that the direct connections can be
identified with high significant peak and moderate time shift, common source can be
identified with low significant peak and short time shift, and indirect connections can be
identified with low significant peak and large time shift. To achieve this classification

from the set of significant peaks p;; and time shifts A;; a clustering algorithm is used.
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Figure 3.6: An example of a typical scatter plot of a set of significant peaks p;; and the
time shifts A;; where the classification of direct connection, indirect connection and
common source are indicated by circles.

A cluster analysis is used for finding clusters of similar objects within a data set. A
cluster analysis begins by calculating distances among objects in the data set. For a data
set having two or more variables the distances are greatly affected by differences in
scale of measurement of the objects. It is a good practice to transform the variables so
that they have the similar scales. At the first step, each object represents its own cluster.
Clustering begins by finding the two clusters that are most similar, based on the
distance, and merging them into a single cluster. The characteristics of this new cluster
are based on a combination of all the objects in that cluster. This procedure combining
two clusters and merging their characteristics is repeated until all the objects have been

joined into a single large cluster.

A variety of measures can be used to calculate the distance. For data that show linear
relationships, the Euclidean distance is a useful measure. A variety of linkage methods

can be used to determine in what order clusters may join. The nearest neighbor or single
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linkage method is based on the elements that are most similar. The farthest neighbour or
complete linkage method is based on the elements that are most dissimilar. Both of
these are based on outliers of distributions, which may not be desirable. The average

emphasizes the central tendency of clusters and is less sensitive to outliers.

To apply cluster analysis to the set of significant peaks p;; and time shifts A;;, both
measurements are normalized so that the values of significant peaks and time shifts are
in the range between 0 and 1. The normalization is done so that the values of significant
peaks and time shifts have the similar scale. A clustering algorithm is applied to these
normalized significant peaks and time shifts. In the clustering algorithm the distance
between pairs of observations is calculated using the Euclidean distance and the average
linkage is used for calculating the distance between two clusters. The average linkage is
used due to its less sensitivity to outliers. This clustering algorithm creates three
clusters; the cluster of direct connections, the cluster of common source and the cluster

of indirect connections.

3.5.4 Classification of significant connections

The outlier connections and the cluster of direct connections are considered as direct
connections and displayed in the resulting n-by-n matrix of functional connectivity. In
the matrix of functional connectivity rows of the matrix indicate the target spike train
and columns of the matrix indicate the reference spike train. In Fig. 3.7, a circle in the
cell (i,)) indicates that there is direct connection from spike train j to spike train i. The
radius of the circle shows the normalized strength of connection of the pair of spike
trains which is the proportional to the height of the significant peak in a pair-wise CCF.
Fig. 3.7 shows an example of a matrix of direct functional connectivity for a data set of
10 spike trains generated by the ELIF (Borisyuk, 2002) model. The description,

dynamics and parameters of the ELIF model are given in appendix A.
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Figure 3.7: (a) Connection scheme of the ten spike trains. (b) An example of a direct
functional connectivity matrix of these ten spike trains.

Neuron parameter Mean S.D.
Maximum value of the threshold 4489 0.45
Threshold decay rate 2.96 0.43
Asymptotic threshold value 14.84 0.65
Amplitude of the noise 4.89 0.41
Noise decay rate 10.00 0.03
Initial value of after spike hyperpolarisation -28.89 0.43
Soma’s membrane potential decay rate 19.76 1.13
External input -0.05 0.43
Absolute refractory period 5.6 2.7
Connection parameter

Connection strength 12.18 1.56
Decay rate of postsynaptic potential 4.12 0.47
Time lag of spike propagation 14.8 2.78

Table 3.1: Parameter values of the ELIF model to generate ten spike trains.
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The parameter values of the ELIF model for the generation of ten spike trains is given in
Table 3.1. From the functional connectivity matrix ten direct functional connections can

be observed.

All the significant connections in the common source cluster are further investigated to
identify whether these connections are due to common source or not. Two spike trains {
and j are taken from the common source cluster and the aim is to identify the
connection from spike train i to spike train j. Keeping spike trains { and j fixed all
groups of three spike trains (i,j, k), k = 1,2,---,n are detected that have the diagram of
connection in Fig. 3.3(c). The triplet time shifts (A;;, Ayi, Ax;) of these groups are
calculated from the CCF. Time shifts (Ay;, Ay;) indicate the delay of direct connections
from spike train k to spike train { and j, respectively and time shift A;; indicates the
delay of connection from spike train i to spike train j. The connection from spike train i
to spike train j is considered as a common source connection if the time shifts of these
spike trains meet the following formula:

A= |Ag; — ﬂkjl (3.1)
This procedure is repeated for all significant connections in the common source cluster

to identify their connections.

Similarly, all the significant connections in the indirect cluster are further investigated
to identify whether these connections are indirect or not. Two spike trains [ and j are
taken from the indirect cluster and the aim is to identify the connection from spike train
i to spike train j. Keeping spike trains i and j fixed all groups of three spike trains
(i,j,k),k =1,2,---,n are detected that have the diagram of connection in Fig. 3.3(b).

The triplet time shifts (4;;, A, Agj) of these groups are calculated from the CCF.

jl

Time shifts (A, Ay;) indicate the delay of direct connections from spike train i to
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spike train k and from spike train k to spike train j, respectively. Time shift 4;;
indicates the delay of connection from spike train i to spike train j. The connection from
spike train i to spike train j is considered as an indirect connection if the time shifts of
these spike trains meet the following formula:

Aij= Ay + Ay (3.2)
This procedure is repeated for all significant connections in the indirect cluster to

identify their connections.

To consider the prescribed tolerance (€) in time shifts (ms), common source and
indirect connections of formula (3.1) and (3.2) can be written as:

|Aki — Agj| — € < A< |Aki — Ayj| + € (3.3)
and

Ajp +Byj— € S A< Ay +0yj+ € (3.4)
The common source and indirect connections obtained from (3.3) and (3.4) are
displayed at the n-by-n connectivity matrix in a similar way to direct connection but by

different colors.

3.6 Analysis of functional connectivity of fifteen spike trains

The Modified correlation grid method is applied to a simulated fifteen spike trains to
identify functional connectivity. The Enhanced Leaky Integrate and Fire (ELIF) model
(Borisyuk, 2002) is used for simulations with a given scheme of connections. The
parameter values of the ELIF model for the generation of fifteen spike trains is given in
Table 3.2. Fifteen spike trains are generated for a period of 30,000 milliseconds using
the connection architecture shown in Fig. 3.8(a) with the connection strengths shown in
Fig. 3.8(b) in matrix format. The connection from spike train #5 to spike train #13 has

the maximum strength.
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Figure 3.8: (a) Connection scheme of fifteen spike trains. There are sixteen non zero
connections which are shown by arrows. (b) Connection strengths of the sixteen non
zero connections in the matrix format.

" Neuron parameter Mean S.D.
Maximum value of the threshold 44 82 0.73
Threshold decay rate 2.98 0.38
Asymptotic threshold value 14.24 0.92
Amplitude of the noise 5.13 0.42
Noise decay rate 10.00 0.03
Initial value of after spike hyperpolarisation -28.98 0.40
Soma's membrane potential decay rate 19.65 0.85
External input 0.01 0.35

tn
I~
p—
o

Absolute refractory period

Connection parameter

Connection strength 14.38 7.31
Decay rate of postsynaptic potential 2.95 0.75
Time lag of spike propagation 12.5 1.15

Table 3.2: Parameter values of the ELIF model to generate fifteen spike trains.
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Figure 3.9: Raster plot of fifteen spike trains generated for the connection scheme given
in Fig. 3.8 over the duration 30,000 milliseconds.

Fig. 3.9 shows the raster plot of spiking activity of these fifteen spike trains. These
spike trains are considered as a data set for analysing the functional connectivity. For
analysing the functional connectivity only spike trains are used and assume that the
scheme of connections as well as parameter values of neurons and connections are
unknown. In this analysis the self coupling is not considered for finding functional

connectivity of the fifteen spike trains.

3.6.1 Calculation of CCF

For these fifteen spike trains a total of (152 —15)/2 = 105 pair-wise CCF are
calculated with a bin size of 1 ms and a correlation window of 100 ms. To test the
independence of the pair-wise spike trains the level of significance a = 0.05 is
considered with the Bonferroni correction. A connection is considered significant if a
peak of the cross-correlation function exceeds the upper boundary of the confidence

interval. A total of 25 significant connections are found for fifteen spike trains (Table

3.3).
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Reference | Target | Peak Time Reference | Target | Peak | Time
spike spike shift spike spike shift
train train train train

1 6 437 13 10 kS 1.74 25
1 8 4.57 15 10 9 3.46 13
1 12 3.05 11 11 2 2,57 13
2 3 3.50 12 12 Y 1.69 23
2 11 1.64 27 12 6 1.90 2
2 14 3.26 14 12 8 1.92 -
3 11 2.73 12 14 11 2.98 13
3 14 3.23 12 14 15 173 40
5 13 6.52 12 15 2 2.71 12
6 8 2.44 2 15 3 3.57 14 |
7 4 1.72 23 15 11 3.73 11
7 9 3.57 11 15 14 2.14 26
_ |
9 B 3.27 12

Table 3.3: Significant connections of the fifteen spike trains with peak and time shift.
Connections are indicated from reference spike train to the target spike train.

Table 3.3 shows the significant connections of the fifteen spike trains with
corresponding peaks and time shifts. The peaks of the significant connections range
from 1.64 to 6.52 and the time shifts range from 2 ms to 40 ms. These significant
connections are also shown in a matrix format where the connections are indicated by a
cell filled by a circle (Fig. 3.10(a)). The direction of the significant connection in the
matrix format is considered from reference spike train to target spike train. For example,
spike train #1 has significant connections to spike trains #6, #8, and #12 (first column of

the matrix in Fig. 3.10(a)).
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Figure 3.10: (a) Significant connections obtained from pair-wise CCF analysis. A total
of 25 significant connections are obtained from the fifteen spike trains. (b) Scatter plot
of these 25 significant connections showing the significant peak with corresponding
time shift. The error connections are shown in blue and green circles.

3.6.2 Outlier detection and cluster analysis

The clustering algorithm is applied to the 25 significant connections for distinguishing
direct connections from the indirect connections and common source. Before starting
clustering algorithm the modified Z-score is used for searching very strong connections
which are considered as outlier connections. Here one outlier is identified from spike
train #5 to spike train #13. The peak of this connection is 6.52 and time shift is 12 ms.
This outlier connection is considered as a direct connection. A scatter plot of 25

significant connections with the outlier is shown in Fig. 3.10(b).
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Reference | Target | Peak | Time Ciuster | Reference Target | Peak | Time | Cluster
spike spike shift spike spike shift
train train train train
1 6 437 13 Direct 10 4 1.74 | 25 Indirect
1 8 4.57 15 Direct 10 9 3.46 13 Direct
1 12 3.05 11 Direct 11 2 2.57 13 Direct
2 3 3.50 12 Direct 12 4 169 1 23 Indirect
2 11 1.64 27 Indirect 12 6 1.90 2 Common
2 14 3.26 14 Direct 12 8 1.92 4 Common
3 11 2.73 12 Direct 14 11 2.98 13 Direct
3 14 3.23 12 Direct 14 15 1.73 | 40 Indirect
6 8 2.44 2 Common 15 2 271 12 Direct
7 * 1.72 23 Indirect 15 3 3.57 14 Direct
7 9 3.57 11 Direct 15 11 373 11 Direct
9 4 3.27 12 Direct 15 14 2.14 | 26 Indirect

Table 3.4: Classification of 24 significant connections of fifteen spike train.

All the remaining 24 significant peaks and corresponding time shifts are normalized

(between 0 and 1) and the clustering algorithm is applied to these normalized values. In

the clustering algorithm the distance between pairs of observations is calculated using

the Euclidean distance and the average linkage is used for calculating distance between

clusters. Clustering algorithm classifies all the significant connections according to their

significant peaks and time shifts. The tree of a dendrogram is cut in such a way that it

creates three clusters. A dendrogram of the three clusters is shown in Fig. 3.11 by three

different colours. Investigation from dendrogram reveals that the connections of the red

colour have high significant peaks and moderate time shifts and are considered as direct

connections (Table 3.4). The connections of the blue colour have low significant peaks
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and short time shifts and are considered as common source connections. The
connections of the green colour have low significant peaks and long time shifts and are
considered as indirect connections.

: i
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Figure 3.11: Dendrogram of 24 significant connections. Three clusters are indicated by

different colours with the connection labels. Red colour indicates direct connection,
blue colour indicates common source and green colour indicates indirect connection.

3.6.3 Classification of connection

To investigate the connections obtained from common source cluster, all the groups of
three spike trains are detected that have the diagram of connection in Fig. 3.3(c) and
also include the connections: from spike train #6 to spike train #8, spike train #12 to
spike train #6 and spike train #12 to spike train #8 (Table 3.4). Investigation from
Fig. 3.12(a) reveals that the groups of three spike trains are (#1, #8, #6), (#1, #6, #12),
and (#1, #8, #12). In the group (#1, #8, #6), spike train #1 influences both spike train #8
and #6 with corresponding time shifts 15 ms and 13 ms. The connection from spike
train #8 to spike train #6 i1s a common source (Eq. 3.1) where spike train #1 connects
both spike trains #6 and #8 and the time shift for this connection is 2 ms which is short.
The connection from spike train #12 to spike train #6 is a common source where spike

train #1 influences both these spike train with corresponding time shifts 11 ms and 13
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ms, respectively. Spike train #1 also influences both spike trains #8 and #12 with
corresponding time shifts 15 ms and 11 ms. Thus the connection from spike train #12 to

spike train #8 is a common source and the time shift for this connection is 4 ms.
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Figure 3.12: (a) Common source connections obtained from the common source cluster

in Table 3.4. (b) Indirect connections obtained from the cluster of indirect connections
in Table 3.4.
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Figure 3.13: (a) Direct connection similar to the connection scheme shown in Fig.
3.8(b). Radius of the circle shows the strength of connection and is proportional to the
strength of connection in Fig. 3.8(b). (b) Common source and indirect connections.
Blue circle shows a common source connection and red circle shows an indirect
connection. Radius of the circle shows the strength of connection and the connections
are small relative to the direct connection.

Like common source cluster, all connections obtained from indirect cluster are

investigated using a group of three spike trains that have the diagram of connection in

Fig. 3.3(b) and also include the connections: from spike train #2 to spike trains #11,
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spike train #7, #10 and#12 to spike train #4, spike train #14 to spike train #15 and spike
train #15 to spike train #14 (Table 3.4). Investigation from Fig. 3.12(b) reveals that the
group of three spike trains are (#2, #3, #11), (#4, #7, #9), (#4, #9, #10) and (#3, #14,
#15). In the group (#2, #3, #11), spike train #2 influences spike train #3 with time shift
12 ms and spike train #3 influences spike train #11 with time shift 12 ms. The
connection from spike train #2 to spike train #11 is an indirect connection (Eq. 3.2)
where spike train #3 is an intermediate spike train. The time shift for the connection
from spike train #2 to spike train #11 is 27 ms which is long. Connection from spike
train #7 to spike train #4 and connection from spike train #10 to spike train #4 are
indirect. For both these connections spike train #9 acts as an intermediate spike train.
Similarly, connection from spike train #15 to spike train #14 is indirect. For this
connection spike train #3 acts as an intermediate spike train. More importantly, all these

three indirect connections have long time shifts: 23 ms, 25 ms and 26 ms, respectively.

Two connections (spike train #12 to spike train #4 and spike train #14 to spike train
#15) of the indirect cluster reveal that in fact these connections are not indirect.
Investigation from Fig. 3.12(b) shows that keeping fixed spike train #4 and #12, there is
no spike train in the group which can make the diagram of connection like in Fig. 3.3
(b). Again, to identify the connection from spike train #14 to spike train #15, a group of
three spike trains (#3, #14 and #15) is found but the diagram of connection is not the

same as Fig. 3.3 (b).

Classifying all the significant connections into direct, indirect and common connections,
the functional connectivity of the fifteen spike trains is displayed by two square
matrices (Fig. 3.13). One matrix shows the functional connectivity of the direct
connections (Fig. 3.13(a)) which reveals the correct connectivity of the diagram used to
generate the fifteen spike trains (Fig. 3.8(a)) with corresponding connection strengths
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(Fig. 3.8(b)). The other matrix (Fig. 3.13(b)) shows the connections which are not
present in the connectivity diagram but are due to common source or indirect coupling.
The radius of the circle shows the strength of the connections. More importantly, the
common source and indirect connections have small radius compared to the direct
connections indicates that they are spurious connections. The red circle shows the

indirect connections and the blue circle shows the common source.

3.7 Analysis of functional connectivity of twenty spike trains

In section 3.6 it is shown that in case of very big connections the MCG method is useful
for identifying functional connectivity. In this section it is demonstrated that this
method is useful for identifying functional connectivity in case of medium strength of
connections. Here it is also shown that this method is useful for identifying functional
connectivity of a large set of spike trains with large number of connections. A set of
twenty spike trains are generated for a period of 30000 milliseconds using the
connection architecture shown in Fig. 3.14(a) with the connection strengths shown in
Fig. 3.14(b) in matrix format. The parameter values of the ELIF model for the
generation of twenty spike trains is given in Table 3.5. The connection from spike train
#5 to spike train #7 and spike train #16 to spike train #17 have the same maximum
strengths which is 14.92; all other connections have medium strength of connection
which range from 10.40 to 14.23. Fig. 3.15 shows the raster plot of spiking activity of

these twenty spike trains.
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Figure 3.14: (a) Connection scheme of twenty spike trains. There are twenty five non
zero connections which are shown by arrows. (b) Connection strengths of the twenty
five non zero connections in the matrix format.
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Neuron parameter Mean S.D.
Maximum value of the threshold 44 .80 1.09
Threshold decay rate 2.89 0.36
Asymptotic threshold value 14.15 0.96
Amplitude of the noise 5.07 0.35
Noise decay rate 10.01 0.02
Initial value of after spike hyperpolarisation -28.86 0.35
Soma’s membrane potential decay rate 20.35 0.60
External input -0.05 0.38
Absolute refractory period 6.35 2.08
Connection parameter

Connection strength 12.65 1.25
Decay rate of postsynaptic potential 2.83 0.99
Time lag of spike propagation 12.04 1.13

Table 3.5: Parameter values of the ELIF model to generate twenty spike trains.
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Figure 3.15: Raster plot of twenty spike trains generated for the connection scheme
given in Fig. 3.14 over the duration 30,000 milliseconds.

3.7.1 Calculation of CCF

For these twenty spike trains a total of (20% — 20)/2 = 190 pair-wise CCF are
calculated with a bin size of 1 ms and a correlation window of 100 ms. To test the
independence of the pair-wise spike trains the level of significance a = 0.05 is
considered with the Bonferroni correction. A total of 34 significant connections are
found for the twenty spike trains (Fig. 3.16(a)). In the Fig. 3.16(a) significant
connections are shown by a circle and the direction of connection is considered from the
reference spike train to the target spike train. Scatter plot of all significant connections
is shown in Fig. 3.16(b). This scatter plot shows the significant peaks with

corresponding time shifts of the 34 significant connections. The peaks of the significant

connections range from 1.70 to 4.81 and the time shifts range from 2 ms to 26 ms.

33



Chapter 3 Modified Correlation Grid Method

Bligdeesvansvnw-
||
-
peak
w B
oo
Bogs

Target spike train

1 |
o] ;
ul -r‘L o "
’iﬂgzilil'fl.nxﬂ”“"ﬂ‘ﬂ’ .. i n * ;hﬁﬂ ‘ ‘ ‘ T =
(@) (b)

Figure 3.16: (a) Significant connections obtained from pair-wise cross-correlation
analysis. (b) Scatter plot of these 34 significant connections showing the significant
peak with corresponding time shift.

3.7.2 Outlier detection and cluster analysis

Before starting clustering algorithm the modified Z-score is used for searching very
strong connections which are considered as outlier connections. Here no outlier is
identified from the 34 significant connections. A Clustering algorithm is applied for
classifying the 34 significant connections in three clusters according to their significant
peaks and time shifts. Fig. 3.17 shows the result of clustering analysis of all significant
connections. The cluster of common source is shown in Fig. 3.17(a). In this cluster there
are 4 significant connections which are: spike train #1 to spike train #7, spike train #8 to
spike train #15, spike train #9 to spike train #15 and spike train #14 to spike train #7.
All these significant connections have low significant peaks and short time shifts (Fig.
3.17(d)). Fig. 3.17(b) shows the cluster of direct connections. A total of 25 connections
are considered as direct connections. These connections have high significant peaks and
moderate time shifts (Fig. 3.17(d)). Fig. 3.17(c) shows the cluster of indirect
connections. This cluster includes 5 significant connections which are: spike train #1 to

spike trains #8 and #10, spike train #5 to spike train #3, spike train #8 to spike train #10
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and spike train #20 to spike train #3. All these connections have low significant peaks

and long time shifts (Fig. 3.17(d)).
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Figure 3.17: Cluster analysis of all significant peaks and time shifts. (a) Cluster of
common source. (b) Cluster of direct connections (¢) Cluster of indirect connections.
(d) Scatter plot of the significant peaks and time shifts. The scatter plot shows that low
significant peaks and short time shifts constitute the cluster of common source. High
significant peaks and moderate time shifts constitute the cluster of direct connections
and low significant peaks and long time shifts constitute the indirect connections.

3.7.3 Classification of connection

To investigate the connections obtained from common source cluster (Fig. 3.17(a)) all
the groups of three spike trains are detected that have the diagram of connection in
Fig. 3.3(c) and include the connections: spike train #1 to spike train #7, spike train #8 to
spike train #13, spike train #9 to spike train #15 and spike train #14 to spike train #7.
Investigation from Fig. 3.18(a) reveals that the groups of three spike trains are (#1, #5,
#7), (#8, #135, #18), (#9, #15, #18) and (#7, #14, #20). In the group (#1, #5, #7), spike
train #5 influences both spike train #1 and #7 with corresponding time shifts 10 ms and

14 ms. The connection from spike train #1 to spike train #7 is a common source
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connection (Eq. 3.1) where spike train #5 connects both spike trains #1 and #7 and the
time shift for this connection is 4 ms. The connection from spike train #8 to spike train
#15 is a common source connection where spike train #18 influences both these spike
trains with corresponding time shifts 11 ms and 14 ms, respectively. Spike train #18
also influences spike trains #9 and #15 with corresponding time shifts 12 ms and 14 ms.
Thus, the connection from spike train #9 to spike train #15 is a common source. Spike
train #20 influences both spike trains #14 and spike train #7 with time shifts 12 ms and
14 ms, respectively. Therefore, the connection from spike train #14 to spike train #7 is
considered common source connection. More importantly, all these three common

source connections have short time shifts 3 ms, 2 ms and 2 ms, respectively.

Like common source cluster, all connections obtained from indirect cluster (Fig.
3.17(c)) are investigated using the group of three spike trains that have the diagram of
connection in Fig. 3.3(b) and include the connections: spike train #1 to spike trains #8
and #10, spike train #5 to spike train #3, spike train #8 to spike train #10 and spike train
#20 to spike train #3. Investigation from Fig.3.18(b) reveals that the groups of three
spike trains are (#1, #8, #18), (#1, #9, #10), (45, #7, #3), (£8, #9, #10) and (#20, #7, #3).
In the group (#1, #8, #18), spike train #1 influences spike train #18 with time shift 12
ms and spike train #18 influences spike train #8 with time shift 11 ms. The connection
from spike train #1 to spike train #8 is an indirect connection (Eq. 3.2) where spike train
#18 is an intermediate spike train. The time shift for the connection from spike train #1
to spike train #8 is 23 ms, which is long. Connection from spike train #1 to spike train
#10 and connection from spike train #18 to spike train #10 are indirect. For both these
connections spike train #9 acts as an intermediate spike train. Similarly, connection
from spike train #5 to spike train #3 and connection from spike train #20 to spike train

#3 are indirect. For both these connections spike train #7 acts as an intermediate spike
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train. More importantly, all these four indirect connections have long time shifts 25 ms,

25 ms, and 26 ms and 26 ms respectively.
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Figure 3.18: (a) Common source connections obtained from the cluster of common
source (Fig. 3.17(a)). (b) Indirect connections obtained from the cluster of indirect
connections (Fig. 3.17(c)).
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Figure 3.19: (a) Direct connections which are exactly the same as at the connection
scheme shown in Fig. 3.14(b). Radius of the circle shows the strength of connection
estimated from CCF and is proportional to the strength of connection in Fig. 3.14(b). (b)
Common source and indirect connections. Blue circle shows a common source
connection and red circle shows an indirect connection. Radius of the circle shows the
strength of connection and the connections are small relative to the direct connection.

Classification of all the significant connections into direct, indirect and common source
connections, the functional connectivity of the twenty spike trains are displayed into

two square matrices (Fig. 3.19). One matrix shows the functional connectivity of the
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direct connections (Fig. 3.19(a)) which reveals the correct connectivity of the diagram
used to generate the twenty spike trains (Fig. 3.14(a)) with corresponding connection
strengths (Fig. 3.14(b)). The radii of the circles (Fig. 3.19(a)) show the estimated
strength of connections which are very similar to the radii of the circles in the diagram
of connections (Fig. 3.14(a)). The other matrix (Fig. 3.19(b)) shows the connections
which are not present in the connectivity diagram but are due to common source or
indirect coupling. The radius of the circle shows the estimated strength of the
connections. More importantly, the common source and indirect connections have small
radius compare to the direct connections means that they are spurious connections. The
red circle shows the indirect connections and the blue circle shows the common source

connection.
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Chapter 4

A generator of multiple spike trains based on the

Modulated Renewal Process

In this chapter, a new probabilistic model for the generation of dependent spike train is
described. The dependency is based upon the Modulated Renewal Process. In order to
define realistic parameter values (i.e. in a range corresponding to the experimental data)
the probabilistic model is fitted to the Enhanced Leaky Integrate and Fire Model. The
probabilistic model based on realistic parameter values is of interest as it can be used to
generate spike trains with prescribed stochastic properties. In particular, the emphasis of
this research is on the use of this probability model for the generation of spike trains to

test the Cox method.

4.1 Introduction

Experimental recordings can be considered to be a series of points in time (a spike
train), where each point marks the moment of spike generation. In mathematics the
series of points in time is called a point process (Eden, 2008). In neuroscience, the most
popular representation of a spike train is based on a Poisson process (Eden, 2008).
However, the more general case requires the consideration of the renewal process. In
order to introduce dependencies between spike trains, a Modulated Renewal Process
(MRP) is introduced (Cox, 1972). In this chapter a probabilistic model based on a MRP
for spike train generation is developed. In a MRP, the generation of a spike train is
based on the influences it receives from other spike trains in the neural circuit. This
probabilistic model is relatively straightforward and it generates spikes similar to

biophysically-based integrate-and-fire models.
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4.2 Point process

A point process is a set of discrete events that occur in continuous time. There are three
useful ways to describe a point process: (2) as a sequence of times at which an event
occurs, (b) as a sequence of time elapsed between events occurring, (¢) as a counting
process. Let us assume that §;,5;,+- - are random variables describing the event times
of a point process. The identification of a process in terms of when it occurred is the
event S; =5,,5, =Sz, for some collection of times 0 <5, <55 < +eveee
(Fig. 4.1(a)). Let us assume that X;, X5, are random variables describing the
interevent times of a point process. Interevent times of a point process can be calculated
by evaluating the difference between subsequent event times. Mathematically, X, = S;
and X; = S; — S;_;. The identification of a process as a point process in terms of
interevent times is represented in Fig. 4.1(b). Assume that N(t) is the counting process
which is defined as the total number of events that have occurred up to and including
time t. The identification of a process as a point process in terms of counting process is
represented in Fig. 4.1(c). Assume that N(t,), N(t,) are the total number of events that
have occurred up to and including times t;, t, respectively assuming that the start time
t =0 and N(t,,t,) is the total number of events observed in an interval (t,,t;). The
counting process N(ty,t;) is calculated as N(t,) — N(t,;) and this is called the

increment of the point process between times ¢, and ¢,.

The Poisson process 1s a simple structure of any point process. It is defined as a point
process where the occurrences of events are random, independent and have uniform
probability. Furthermore, a Poisson process is a stationary point process and the number
of events that occur in any time interval depends only on the length of the time interval
but not on the specific time. A Poisson process is also a memoryless process where

interevent times of the process have an exponential distribution. A renewal process is a
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particular type of point process where the occurrences of events are random and also
depend on the last event. A renewal process is a generalization of the Poisson process

which supports a variety of interevent distributions.

Event Times:

s
e

v

b

hY S, S,

Interevent Times:

<X —X,——X, >

(b)

v
L

Counting Process:

(c)
Figure 4.1: Multiple specifications for point process data. (a) Point process in terms of

event occurrence. (b) Point process in terms of interevent occurrence and (¢) Point
process in terms of counting process.

4.3 Influence function

An influence function describes the effect of an incoming spike from a pre-synaptic
neuron B on the membrane potential of the post synaptic neuron 4. To study neuronal
interactions, it is important to choose an appropriate influence function which accurately
describes the dynamics of the post-synaptic potential: this influence function increases
when a spike arrives at the post-synaptic neuron and the probability of spike generation
by the post-synaptic neuron increases; after that the influence function decays to zero.
Among different influence functions, it is found that the best influence function can be
approximated by the alpha function which is used in neuroscience to describe synaptic

connectivity between neurons (Gerstner and Kistler, 2002).
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Thus. the influence function can be defined as:

t t
Zs(t) = 2m (e“ﬁ—e‘ﬁ), £>0 (4.1)

(ts-17)
where Zg(t) 1s the influence function from pre synaptic neuron B to the post synaptic
neuron A, where 7, and 7, are the characteristic times of decay and rise of post-synaptic
potential, respectively. Parameter g,, provides the normalization so that the maximum

influence function equals one and is defined by:

where
_ log(z,/1,)
meo1_ 17
T, Ts

A simplified version of the influence function, corresponding to the case 1, = 1,, is

given by the following formula:

Zg(t) =— et/ t>0. (4.2)

e W W ™ B % % = & ®»
S ()
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Figure 4.2: Influence function. (a) The influence function of (4.1) with rise time of post
synaptic potential 7, = 0.1 ms for different decay times 7, = (5 ms, 10 ms, 15 ms,
20 ms). At rise time 7,, = 0.1 ms the peak value of the influence function is 1 and then
it decays to zero. (b) The influence function of (4.2) for different decay time 7, =
(5ms, 10 ms, 15ms, 20 ms). At time t = 0, the value of influence function is zero.
The influence function has peaks at time t = 7, which is 1 and then decays to zero for
large values of t.
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The influence function of (4.1) for different values of decay time
s = (5ms, 10 ms, 15ms, 20 ms) with a fixed value of rise time 7, =0.1
milliseconds is shown in Fig. 4.2(a). This influence function increases to one in a very
short time (0.1 milliseconds) and then decays to zero. For a small decay time 7, the
influence function decays rapidly to zero and for a large decay time 7, the influence
function takes subsequently large to return back to zero. Fig. 4.2(b) shows the influence
function of (4.2) for different values of decay time 73 = (5ms, 10 ms, 15 ms,
20 ms) where 7, = 1. This influence function reaches its peak value (which equals one
at time ) and then returns back to zero. Like (4.1) this influence function takes a long

time to fall back to zero when 1 is large.

14 I4 Iy
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Figure 4.3: [llustration of the backward recurrence time of post-synaptic neuron B. The
backward recurrence time is calculated using the difference between the spike time in
neuron A and the last spike time in neuron B. Assuming that the spike times in neuron A
are t;,t7 and t; and the spike times in neuron B are tg,t3 and t3, the backward
recurrence time for neuron B at time t; is the time form ¢} to the time t3 and is denoted
by Ug( t}). Similarly the backward recurrence times for the neuron B at times t2 and t3
are calculated and denoted by Ug( t3) and Ug( t3). respectively.

In influence functions (4.1-4.2) it is assumed that the pre synaptic neuron B has
generated a spike at time zero and that this spike arrives to the post synaptic neuron 4
without any time delay. The functions (4.1) and (4.2) can be rewritten to incorporate the

spiking at the pre synaptic neuron B. It is assumed that the influence function depends
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on the backward recurrence time of the pre synaptic neuron B, which is denoted as
Ug(t) (Fig. 4.3) and can be substituted for this variable as the argument to the function

(4.1).

This means that the influence described by function (4.1) starts increasing when the last
spike occurs in neuron B before time 7. To account for the time delay in spike
propagation, the argument in formula (4.1) should be shifted by the time lag A. Thus,

the influence function is defined by the following formula:

Gm _Up(e-4) _ug(t-4)
Zgt)=———(e = —e T |, (t—=A)>0 (4.3)
(rs —1y)

Note that Ug(t) is the backward recurrence time of B; A is a time lag corresponding to
delay of spike propagation from neuron B to neuron 4. Similarly to (4.2), a simplified

version of the influence function with time lag A is given by the following formula:
Ug(t-4)

Zp(t) =—Ug(t—A)e' = , (t=4)>0 (4.4)

L-A 1, ,-A 1,
|| |

Neuron A ] Neuron A

Z,(0 ;///,}»Inﬂuenc:efunction Z,(0) | - -~
: ‘ -///-w nfluence function

Neuron B ‘ Neuron B

’B fB
\ﬁ___.._l
U,t,-4) U,(t,—-A)
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Figure 4.4: Influence function accounting for the time delay A of spike propagation.
The square indicates the value of influence function when a spike t, in neuron A4 is
shifted by the time delay A. (a) Influence function by formula (4.3) (b) Influence
function by formula (4.4).
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Both the influence functions (4.3) and (4.4) are shown in Fig. 4.4 with their

corresponding values shown.

In the formulas (4.3-4.4), the influence function is defined by solely taking the last spike
in neuron B before the time (t — A). In some cases it is productive to consider
accumulation of the post-synaptic potential in time interval 7, considering a history of
spiking in B over the time interval (t — T, t). This type of the influence function is
useful when the decay time of the post-synaptic potential is relatively small in
comparison to the mean interspike interval of neuron B. Thus, a generalized influence
function is defined as:
A A

K
ZB(E) = Z%(e s — e Tr ), (t—A)>0 (4.5)
el T

here k& is an index which denotes the highest order of the backward recurrence time in

the history interval (the first order corresponds to a spike which is the most close to the
moment (t — A) in backward time, the second order relates to the previous spike in the
reward time etc.). Fig. 4.5 shows the generalized influence function over the
accumulation time 7, thus, US(¢) < T and UF*'(t) > T. A simplified version of the
generalised influence function, corresponding to the case 73 = 7,, is given by the
following formula:

l.o"f (e=4)

3§ i i
Zg(t) = j;jt—su;(:—me] s, (t—A4)>0 (4.6)
t-T t-A t
/ Influence function

4 Neuron A
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e
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Figure 4.5: Generalized influence function which accumulates influence from previous
spikes of neuron B in the time interval (t — T, t) with propagation delay A.
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4.4 The probabilistic model

One of the simplest, most commonly used classes of neural spiking models is the
Poisson process (Tuckwell, 1988; Rieke et al., 1997; Gabbiani and Koch, 1998; Reich et
al., 1998). In the Poisson spiking model, the probability distribution of spiking at any
point in time is independent of previous spiking activity. Due to this independent
spiking structure, the Poisson spiking model cannot be used to accurately model many
neural systems (Gabbiani and Koch, 1998; Shadlen and Newsome, 1998). Therefore, it
is essential that new models of spiking activity that also incorporate the effect of
previous spike events of a neuron are developed. The simplest type of spiking model
which depends on previous spike events is a renewal process model. A renewal process
model is specified by a distribution function for the inter-spike intervals (ISI). This
model includes gamma, lognormal and inverse Gaussian (Rodieck et al., 1962;
Tuckwell, 1988; Gabbiani and Koch, 1998) and generalized inverse Gaussian (Iyengar
and Liao, 1997) probability distributions. The gamma distribution is a common basis for
renewal models (Bishop et al., 1964; Nakahama et al., 1968; Correia and Landolt, 1977,
Gabbiani and Koch, 1998; Eden, 2008) that is defined by two values, a scale and a
shape parameter. If the shape parameter is equal to one, then the gamma distribution
simplifies to an exponential distribution. If the shape parameter is less than one, then the
density drops faster than an exponential distribution. This is useful for describing point
processes that fire in rapid bursts. If the shape parameter is greater than one, then the
gamma density function starts from zero, rises to a maximum at some positive value and
then falls back to zero. This is useful when describing the refractory nature of point
processes, that is the property that after firing a spike, the process is less likely to fire
again immediately afterward. In the next section, a probabilistic model is developed
which generates two spike trains, one is the reference spike train based on renewal

process and the other is the target spike train based on the modulated renewal process
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(Cox, 1972). The target spike train is generated based upon its backward recurrence
time, the backward recurrence time of the reference spike train and the strength of

influence from the reference spike train.

4.4.1 Modulated renewal process

Let us consider a renewal process where X, X,, -« are independent and identically
distributed inter-spike intervals (ISI) with a probability density function f(x). Another
approach to the specification of renewal process comes from hazard function. The
hazard function or age dependent death rate is defined as the event rate at time ¢

conditional on survival until time ¢ or later:

- 1 Prt <X <t+At|t <X)

o) = fir, At -

This hazard function can be calculated in terms of the probability density function of the
ISI's:

f(®)

TP D (4.7)

o(t) =

where F(t) is the cumulative distribution function of ISI.

A spike train A is said to be generated by a modulated renewal process if the hazard
function of the spike train A can be represented at the moment t as:

@(t) = @a(Ua(1)) exp{BZz (1)}, (4.8)
where @,4(.) is the hazard function of the spike train 4 without influence from the other
spike train B, Uy(t) is the backward recurrence time of the spike train 4 at the moment
t, Zg(t) is the influence function determining how spike train B influences spike train A4,
and f is the unknown regression coefficient describing the strength of the influence
from spike train B to spike train 4. The modulated renewal process supports the
introduction of interaction between the spike trains considering the strength of influence

B and the influence function Zg(t). The hazard function is a history dependent rate
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function which completely characterizes the stochastic structure of a point process
(Daley and Vere-Jones, 2003). Therefore, in order to model the neural spike train in

terms of a point process, a hazard function (Truccolo et al., 2005) must be defined.

In the case of multiple reference spike trains B = (B, By, - ,By), the influence
function should be defined independently for each reference spike train. The hazard of

the target spike train 4 is

o(t) = @4 (UA(t)) ex‘p[ﬁlzsl(t) i ﬁ?zﬂ'z (&) 4+ 6&23,((0}- (4.9)
where @4(.) is the hazard function of the spike train 4 without influence from the
reference spike trains B = (B, By, -+ , By), Uy(t) is the backward recurrence time of
the spike train 4 at the moment t, Zg (t) is the influence function determining how the
spike train B; influences the spike train A4, and f; is the parameter describing the

strength of the influence from the spike train B; to 4 (i=1,2,....,k).

4.4.2 Model description

The probabilistic model presented in this research generates two spike trains, one is the
target (4) and the other one is the reference (B). The reference spike train B is a renewal
process and spikes of B modulate the probability of spike generation in the target spike
train A. This target spike train A is the modulated renewal process with the hazard
defined by (4.8). The reference spike train B is generated with gamma-distribution
y(x; a,b) of inter-spike intervals (ISI) where a and b are the shape and the scale
parameters respectively. The cumulative sum of these inter-spike intervals gives the
spike times of the reference spike train B over the spike train generation time [0,T]. The
spike train generation time is divided into n small sub intervals of length At = T /n, and
t, =kAt, k=12 ,n. For each time ¢,, the backward recurrence times of the
target spike train 4 and reference spike train B are calculated. It is assumed that the

hazard function of the backward recurrence times of the target spike train A4 is
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distributed as Weibull W (x; ¢, d) (Cox, 1972), where ¢ and d are the scale and the shape
parameters respectively. In fact, the type of the ISI distribution of spike train B and the
distribution of backward recurrence times of spike train 4 can vary. The choice of the
gamma distribution and the Weibull distribution was motivated by the fact that both
distributions include the exponential distribution which has been observed in
experimental neuroscience data. Now the hazard of the backward recurrence time of the
target spike train A4 is calculated using (4.7). The influence function defined by (4.3), or
(4.4), is specified with specific values of the characteristic times 7., 7., time lag A and
the backward recurrence time of the reference spike train B. Considering all these
values, the hazard of the target spike train is calculated using (4.8), with a specified
strength of influence f from the reference spike train B to the target spike train 4. If this
hazard is greater than a randomly chosen number which has the uniform distribution in
the range [0,1]. then a spike is generated in the target spike train 4. Repetition of the
procedure for each time t, over the entire spike train generation time results in the
generation of the target spike train 4 which is a modulated renewal process and the

probability distribution of ISI of this spike train is represented by a Weibull distribution.

The same procedure can be used to generate the target spike train 4 under the influence
of multiple independent reference spike trains B = (By, By, ==+ - ,By). All the reference
spike trains B = (By, By, -+ ,By) are generated with the gamma distribution of ISI
with different scale and shape parameters. The cumulative sum of the inter-spike
intervals give the spike times of the reference spike trains over the spike train generation
time [0,T]. For each time t, the hazard of the backward recurrence times of the target
spike train is calculated using the Weibull distribution. The influence of each reference

spike train B; with { = 1,2, - , k to the target spike train A4 is calculated by (4.3) or
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i =12, ,k and a time lag A; with { = 1,2, , k. The hazard of the target spike
train is calculated using (4.8) with a specified vector of influence strength g =
(B1.B2,**+++, By) from the reference spike trains B = (By,B,, - ,By) to the target
spike train A. If this hazard is greater than a randomly chosen number which has the
uniform distribution in the range [0,1], then a spike is generated in the target spike train
A. Repetition of the procedure for each time t; over the entire spike train generation

time results in the generation of the target spike train A4.

The algorithm for generating spike train 4 based on the influence of spike train B over

the generation time 7 is given below:

(1) Generate ISI of the spike train B using gamma y(x; a, b) distribution.

(i1) Find spike time of B using cumulative sum of ISI over the time 7.

(ii1)  Divide the spike generation time 7 into n small sub intervals of length
At =T /n.

(iv) Setthetimet, = k.At,k=1,2--- M.

(v)  Compute the hazard of the backward recurrence time of spike train 4
using (4.7) with Weibull W (x; ¢, d) distribution.

(vi)  Compute the influence function Zz using (4.3) or (4.4) with specified
values of 7, 7, and A.

(vii)  Set the strength of influence £.

(viii) Compute the hazard of the spike train A4 using (4.8).

(ix)  Pick a random number using uniform distribution over [0.1].

(x) [f the hazard in (viii) is greater than the random number in (ix) then a
spike is generated in neuron A.

(xi) Goto (iv).
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4.5 Goodness of fit

An essential component of the statistical analysis is the assessment of the goodness of
fit, i.e. the evaluation of how well the observed data is described by the given
probability distribution. Measures of goodness of fit typically summarize the
discrepancy between the distribution of observed values and the values expected under
the model in question. Two goodness of fit measures are considered, the Q-Q plot and
K-S test. These are used to observe how well ISI's of the generated spike trains are

described by the probability distribution used in the model.

4.5.1 Q-Q plot (Quantile-Quantile plot)

A Q-Q plot is a graphical display invented by Wilk and Gnanadesikan (1968) to
compare an observed dataset with a particular probability distribution. A Q-Q plot is a
plot of the quantiles of the observed dataset against the quantiles of the probability
distribution. The plotting positions of the quantiles are computed by the following

formula

pi = , i=12,,n (4.10)

where 7 is the total number of observations in the data. To compare the dataset to the
theoretical probability distribution, the empirical quantiles of the data i.e. the order
statistics of the data are plotted on the vertical axis (y-axis) and the corresponding
quantiles from the assumed probability distribution are plotted on the horizontal axis (x-
axis). The quantiles of the assumed probability distribution are computed based on the
plotting positions associated with the empirical quantiles of the data. A 45-degree
reference line is also plotted. If the dataset and the assumed probability distribution are
similar, the points in the Q-Q plot will fall approximately along the reference line. The
greater the departure from the reference line, the greater the evidence that the data and

the assumed probability distributions are not similar.
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45.2 K-S test (Kolmogorov-Smirnov test)

The Kolmogorov-Smirnov test is concerned with the degree of agreement between the
distribution of a set of observed data and a specified theoretical probability distribution.
The Kolmogorov-Smimmov test is based on the empirical distribution function S(x) and

a specified theoretical distribution function F(x). Given N ordered data points

X5, Xg,v0n e , Xy, the empirical distribution function is defined as
n(i)
S(x;) = =

where n (i) is the number of points less than X; and the X; are ordered from the smallest
to the largest value. This is a step function that increases by 1/N at the value of each
ordered data point. Under the null hypothesis, that the set of observed data follow the
theoretical distribution, it is expected that every value X;, S(x;) should be fairly close to
F(x;). That is when the null hypothesis H, is true, it is expected that the differences
between S(x;) and F(x;) will be small. The Kolmogorov-Smimov test focuses on the
largest deviation and the test statistic is defined as
D = max|F(x;)) —S(x;)| i=1.2,---,N
The null hypothesis is rejected if the test statistic D is greater than the critical value

obtained from the table of Kolmogorov-Smimov test.

4.6 Fitting with ELIF model

The probabilistic model is easy to understand, requires few parameters and can be used
for generating spike trains similar to those produced by the enhanced leaky integrate
and fire neuron (ELIF) model (Borisyuk, 2002). In this section, an optimization
procedure is discussed which can be used to find the parameters of the probabilistic
model in such a way that the spike train generated by the probabilistic model using
these optimal parameter values provides the best fit to the spike train generated by the

ELIF model. In this optimization procedure, a cost function is used which depends on
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the difference between the histogram of ISI of the probabilistic model and the ELIF
model. The minimum value of this cost function shows the minimum difference of the
histogram of ISI of the probabilistic model and the ELIF model. The minimum value of
the cost function suggests that both models generate almost the same shape for ISI

distribution.

Two spike trains (47 and BI) are generated using the enhanced leaky integrate and fire
model (ELIF) with directed coupling from B/ to A4/. It is assumed that spike train 47 is
given and the aim is to adjust the parameters of the probabilistic model in such a way
that the probabilistic model will be able to generate spike train 4 which is similar to the
given spike train A7 with directed coupling from B to 4. The probabilistic model for the
generation of two spike trains requires five parameters (B, a, b, c¢,d). Here [ is the
strength of the influence from spike train B to spike train 4, (a, b) are the shape and
scale parameters of the gamma distribution which is used to generate the ISI, of the
spike train B and (c,d) are the scale and shape parameters of the Weibull distribution
which is used to find the hazard of the backward recurrence time of spike train 4. To
start the optimization procedure some initial parameter values of the probabilistic model
(Bo. @y, by, co,dp) are selected. Using these parameter values two spike trains 4 and B
are generated by the probabilistic model. The cost function Q accounts for the
difference between the ISI distributions of the spike train 4/ generated by the ELIF

model and the spike train 4 generated by the probabilistic model:

2
Q =X, (rf* — h) (4.11)
where hf‘ and h# are the frequency of appearance of ISI in the bin i of the histogram
for A1 and A respectively and & is the number of bins. The optimal parameter values are

obtained for the minimum value of the cost function. Thus, generation of spike train 4
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using these optimal parameter values gives the best fit to the spike train 4/ generated by

ELIF model.

4.7 Generation of two spike trains by the probabilistic model

In this section an example of the generation of two spike trains is given. Two spike
trains, the target (4) and the reference (B) are generated using the probabilistic model.
The spike train generation time T is 2000 milliseconds and the time interval [0 T] is
divided into n (n = 200,000) small sub-intervals of length At =T/n(=.01). A
gamma-distributed set of inter-spike intervals (ISI) of the reference spike train B are
generated with the shape parameter @ = 5 and the scale parameter b = 3. The reference
spike train B is obtained using the cumulative sum of these ISI's over the interval [0, T].
The generation of spikes in the target spike train 4 depends on the strength of influence
from the reference spike train B to the target spike train A4, the influence function from
spike train B to spike train 4 and the hazard function of the target spike train 4 without
influence. For the generation of spike train A, the strength of influence is considered as
p = 1, the influence function is determined by the formula (4.4) with 7, = 5, A= 0 and
the hazard function of spike train 4 without influence from B, which depends on the
backward recurrence time of the target spike train A, is calculated by formula (4.7). For
each time t, where t;, = kA where k = 1,2----+- , ., the backward recurrence times of
the reference spike train B and target spike train A4 are calculated. The influence function
of spike train B to spike train 4 is calculated using the backward recurrence time of the
reference spike train B. A Weibull distribution with the scale parameter ¢ = 15 and the
shape parameter d = 5 is considered for the backward recurrence time of the target
spike train 4 and the hazard function is calculated for the backward recurrence time.
Based on all these values, the hazard of the target spike train A4 is calculated using the

formula (4.8). If this hazard is greater than a randomly chosen number which has the
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uniform distribution in the range [0,1], then it is concluded that a spike is generated in

the target spike train 4.
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Figure 4.6: (a) Raster plot of the target spike train 4 (red) and the reference spike train
B (blue). (b) ISI histogram of the target spike train 4 superimposed with the fitted
Weibull probability density (¢) ISI histogram of the reference spike train B
superimposed with the fitted gamma probability density.

The raster plot of the target spike train 4 and reference spike train B is shown in Fig.
4.6(a). There are 165 spikes in the target spike train and 133 spikes in the reference
spike train. The coefficient of variation of the target spike train 4 is 0.2412 and the
reference spike train B is 0.4475. Thus, spike train A4 is more regular than the spike train
B. Fig 4.6(b) shows the interspike interval histogram of the spike train 4. A fitted
Weibull probability density is superimposed on the interspike interval of 4. The Weibull

model under predicts the short ISIs (<12 ms) and predicts accurately for long ISIs (>12

ms). A fitted gamma probability density is superimposed on the interspike interval
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histogram of the reference spike train B (Fig. 4.6(b)). The gamma model also
underpredicts the short ISIs (<9 ms), the moderate ISIs (between 12 ms and 18 ms) and
the long ISIs (>23 ms) but overpredicts the ISIs between 9ms and 11 ms and the ISIs
between 19 ms and 22 ms. Fig. 4.6(b) and Fig. 4.6(c) show that there is agreement
between the ISI of the generated spike trains and the theoretical probability distribution.
To assess how much the probability distribution of ISI of the generated spike trains
agrees with the theoretical probability distribution the Q-Q and K-S goodness of fit tests

are performed.
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Figure 4.7: (a) Q-Q plot of the ISI of target spike train A4 fitted with the Weibull
probability distribution. The red line shows the 45-degree reference line and the blue
cross represents points of the empirical and Weibull quantile. (b) K-S plot of the ISI of
target spike train A4 fitted with the Weibull probability distribution. The red line shows
the cumulative distribution function of the fitted Weibull distribution function and the
blue line shows the empirical cumulative distribution function of the interspike interval.
The Q-Q plot for the ISI of target spike train 4 is shown in Fig. 4.7(a). The empirical
quantiles of the ISI i.e. the order statistics of the ISI are plotted on the vertical axis. The
plotting positions of the fitted Weibull quantiles are calculated using the formula (4.10).
The Weibull quantiles are computed at the plotting position and are plotted on the

horizontal axis. These plotting points are depicted by a blue cross. A 45-degree

reference line (red) is shown to aid the comparison of points. All of the plotted points
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are very close to the reference line indicating that there is a good agreement between the

probability distribution of ISI of the spike train 4 and the Weibull distribution.

Another goodness of fit test, that is K-S test, is used for evaluating the agreement
between the probability distribution of ISI of spike train 4 and the Weibull probability
distribution. The K-S plot of the ISI is shown in Fig. 4.7(b). The empirical distribution
function of the ISI (blue) and the theoretical Weibull distribution function (red) are very
similar depicting an accurate estimation of the distribution. The maximum distance of
the empirical distribution function and the Weibull distribution function is 0.0355 for
which the null hypothesis is accepted at 0.05 significance level. Thus, it can be deducted
that the probability distribution of the ISI of spike train A4 follows the Weibull

probability distribution.
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Figure 4.8: (a) Q-Q plot of the ISI of reference spike train B fitted with a gamma
probability distribution. The red line shows the 45-degree reference line and the blue
cross represents point of the empirical and gamma quantile. (b) K-S plot of the ISI of
reference spike train B fitted with the gamma probability distribution. The red line
shows the cumulative distribution function of the fitted gamma distribution function and
the blue line shows the empirical cumulative distribution function of the interspike
interval.

A random generator of gamma distribution was used (‘gamrnd’ is the routine for

generating gamma distribution in Matlab). It i1s anticipated that further testing will

reinforce initial conclusion, that the model is accurate that it generates biologically
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realistic data. The Q-Q plot for the ISI of target spike train B is shown in Fig. 4.8(a).
The empirical quantiles of the ISI i.e. the order statistics of the ISI are plotted on the
vertical axis. The gamma quantiles are plotted on the horizontal axis. These plotting
points are very close to the 45-degree reference line and indicate that there is an
agreement between the probability distribution of ISI of the spike train B and the
gamma distribution. The K-S plot of the ISI is shown in Fig. 4.8(b). The empirical
distribution function of the ISI (blue) and the theoretical gamma distribution function
(red) are very similar. The maximum distance of the empirical distribution function and
the gamma distribution function is 0.0408 for which the null hypothesis is accepted at
0.05 significance level. Thus, the probability distribution of ISI of spike train B follows

the gamma probability distribution accurately.

4.8 Fitting probabilistic model with ELIF model for two spike trains

In this section an example is demonstrated for the best fitting of the spike trains
generated by the ELIF model and the probabilistic model. This fitting derives a set of
parameters which enable the generation of spikes which are physiologically realistic.
Two spike trains, the target 4 and the reference B are generated using the ELIF model
(Borisyuk, 2002) using a connection from spike train B to spike train 4. The connection
strength is 12.86 and the time delay of spike propagation is 12 milliseconds. Spike
trains A and B are generated for a period of 20,000 milliseconds. It is assumed that the
spike train A4 is given and that the aim is to adjust the parameters of the probabilistic
model in such a way that this model will be able to generate spike train 4/ which is
similar to the given spike train 4. To generate the spike train A/ from a connection of
the spike train B/ the optimization procedure is initialized using parameter values of the
probabilistic model. For the optimization procedure, the initial value of the strength of

influence f from B/ to A/ is considered to be equal to 1. Estimation of the parameters
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of ISI of spike train B using the gamma distribution gives the initial value of the
parameters (a, b) of gamma distribution which are (3.3191, 23.5735). Estimation of the
parameters of the ISI of spike train 4 using Weibull distribution gives the initial value
of the parameters (c,d) of Weibull distribution which are (94.5186, 1.9060). Thus the
optimization procedure begins with the initial value
(B,a,b,c,d) = (1,3.31,23.57,94.51,1.90). The cost function Q is calculated using
(4.11) which takes account for the sum of the squared difference in the frequency
corresponding to each bin of ISI of the spike train 4 and the ISI of spike train 4/. The
number of bins for the optimization procedure is taken as 10 and the minimum value of
the cost function Q is 5.8808x10™. For this cost function, the optimal parameter values

are obtained as (f,a,b,c,d) = (1.02,3.23,21.19,97.43,1.96).
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Figure 4.9: (a) Raster plot of the spike train A4 (red) generated by ELIF model and the
spike train 4/ (blue) generated by probabilistic model for the period of 20,000 ms. (b)
ISI histogram of the spike train 4 generated by the ELIF model (¢) ISI histogram of the
spike train 4/ generated by probabilistic model.
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Now using the optimal parameter values spike trains 4/ and B/ are generated for a
period of 20,000 ms with 75 = 5, time lag A= 12. Fig. 4.9(a) shows the raster plot of
the spike train 4 generated by ELIF model and spike train 4/ generated by probabilistic
model. The number of spikes in spike train 4 is 240 and the number of spikes in spike
train 4/ is 269. The coefficients of variation of these spike trains are very similar which
are 0.5621 and 0.5004 respectively. Fig. 4.9(b) shows the ISI histogram for the ELIF
generated spike train 4 and Fig. 4.9(c) shows the ISI histogram for the spike train 4/

generated by the probabilistic model and these histograms are very similar.
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Figure 4.10: K-S plot of the ISI of spike train A/ generated by the probabilistic model
for different strength of influence . The red line shows the cumulative distribution
function of the fitted Weibull probability distribution and the blue line shows the
empirical cumulative distribution function of the interspike interval.

It is assumed that, even in the case of influence from spike train, the probability

distribution of the ISIs of 4/ can be approximated by the Weibull distribution. To assess

how well the ISI of the generated spike train 4/ agrees with the Weibull probability
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distribution, the K-S goodness of fit test is used. Spike train 4/ is generated using
different strengths of influence f = (1.0254, 2, 3, 4) whilst keeping all other parameter
values set to their optimal value. The K-S plot of the IS] of spike train 47 is shown in
Fig. 4.10 for each strength of influence 8. The empirical distribution function of the ISI
(blue) and the theoretical Weibull distribution function (red) show a good agreement for
all strengths of influence. The maximum distances of the empirical distribution function
and the Weibull distribution function for different strength of influences f =
(1.0254,2,3,4) are 0.0536, 0.0234, 0.0446 and 0.0558, respectively. For all the
strength of influences the null hypothesis is accepted at 0.05 significance level. That is

the ISI of spike train 47 follows the Weibull distribution.
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Statistical technique for the analysis of functional

connections of multiple spike trains

A new statistical technique is presented for analyzing functional connectivity of
simultaneously recorded multiple spike trains. This method is based on the theory of
Modulated Renewal Process (MRP) and it estimates a vector of influence strengths
from multiple spike trains (called reference trains) to the selected (target) spike train.
Selecting another target spike train and repeating the calculation of the influence
strengths from the reference spike trains enables researchers to find all functional
connections among multiple spike trains. Application of the Cox method to multiple
sets of data generated by the ELIF model (Borisyuk, 2002) with a prescribed
architecture of connections suggest that this method is highly successful for analyzing

functional connectivity of simultaneously recorded multiple spike trains.

5.1 Introduction

Development of Multi-Electrode Arrays (MEA) enables researchers to record multiple
spike trains simultaneously from associated neurons. Simultaneously recorded multiple
spike trains are used to study how groups of neurons process information and how they
interact with each other. Developing a new statistical method for analyzing multiple
spike trains and, in particular, estimating the functional connectivity between spike
trains, is a challenging problem that has resulted in substantial research (Brown et al.,

2004; Reed and Kaas, 2010).




Chapter 5 Cox Method

The standard approach for analyzing functional connectivity is based on the calculation
of the CCF (Perkel et al., 1967). Though the CCF is widely used in neuroscience study,
this technique has several limitations. This technique assumes that the spike trains are
stationary. It also assumes that the number of spikes should be large enough to ensure
reliable estimation. This technique is usually applied to characterize the dependencies
between pairs of spike trains at a time, ignoring possible effects from other spike trains

which can lead to inaccurate results in many cases (Okatan et al., 2005).

In this chapter, a new statistical technique called the Cox method (Cox 1972; Borisyuk
et al., 1985) based on MRP is developed for analyzing functional connectivity of
simultaneously recorded multiple spike trains. The MRP is considered in terms of spike
generation under multiple influences from other spike trains and estimates of the
strength of each influence using the Cox method, which itself is based on the
conditional likelihood method (Cox, 1972). The MRP model describes the hazard
function of spike appearance at the MRP and it includes a modulation which is the
exponential of the linear combination of influence functions. In fact, this model is
similar to the regression model and the set of influence strengths is similar to the
regression coefficients. The definition of the influence function is based on some
neurobiological details of spike generation and propagation. This influence function
reflects the dynamics of postsynaptic potential under bombardment by spikes from other

neurons.

The Cox method (Borisyuk et al., 1985) was developed for analyzing pairs and triplets
of spike trains. Here it is further developed to support simultaneous consideration of any
possible set of multiple spike trains. The corresponding formulas for the calculation of
estimates of the influence strengths and their confidence intervals have been derived.
Thus, this new development of the Cox method enables researchers to simultaneously
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analyze any number (n) of spike trains. In comparison to existing techniques, the Cox
method has the following advantages: it does not require the specification of a bin
(binless method); it is applicable in situations where sample sizes are small; it is
sufficiently sensitive such that it estimates weak influences; it supports the simultaneous
analysis of multiple spike trains and provides statistical estimates of influence strengths
and their confidence interval (to test the null hypothesis that the influence is zero); it is
able to identify a correct connectivity scheme in difficult cases of ‘common source’ or

‘indirect’ connectivity.

5.2 The Cox method

Cox (1972) considered a point process in which the hazard function of a renewal
process is expressed by a factor depending on quantities. The quantities are thought to
influence the probability of occurrence and each quantity 1s combined with an unknown
regression coefficient. The unknown regression coefficients depict the strength of
influence of the probability of occurrence. Cox suggested a statistical method to
estimate these unknown regression coefficients using a conditional maximum likelihood
principle. Application of the Cox method to analyze influences between two and three
spike trains is described by Borisyuk et al. (1985). In this section a generalization of the
Cox method for simultaneous analysis of arbitrary number (n) of spike ftrains is

developed.

The Cox method is based on the MRP and the MRP allows introduction of
dependencies (influences) between spike trains. It is assumed that for two spike trains 4
and B, spike generation in spike train 4 depends on spikes of spike train B and the
hazard function of spike train A is a product of two multipliers: one is the own hazard of
spike train 4 without influence from B and another multiplier describes influence from

spike train B. Thus, the hazard function at the moment ¢ is:
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@(t) = @a(Ua()) exp{BZ5 (1)}, (5.1)
where @,4(.) is the hazard function of the spike train 4 without influence from the spike
train B, U,(t) is the backward recurrence time of the spike train 4 at the moment ¢,
Zg(t) is the influence function determining how the spike train B influences the spike
train A4, and £ is the unknown parameter (Cox coefficient) describing the strength of the
influence from spike train B to 4. Therefore, given the influence function Zgz(t), the
goal is to estimate the parameter . If 8 = 0 then there is no influence from spike train
B to 4. To test the null hypothesis Hy: {f = 0} the statistical technique based on

conditional maximum likelihood (Cox, 1972) is used.

The Cox method is applied to analyze a set of n simultaneously recorded spike trains.
One spike train is selected to be considered as a target spike train and all other (n — 1)
spike trains are considered to be the reference spike trains. The Cox method allows
analyzing of all n spike trains and estimating the (n — 1) dimensional vector 8 of
regression coefficients under the assumption (5.1), where Zg(t) is (n — 1) dimensional
vector-function of influences from reference spike trains to the target and BZg(t) is the
dot product. Application of the Cox method provides both the estimates of unknown
parameter (Cox coefficients) (El, By, e ,ﬁn_l) and the corresponding confidence
intervals of these estimates {[ lb; ,ub;], i =1,2,...(n— 1)}, where lb; and ub; are
lower and upper boundaries respectively of the confidence interval for B;. The null
hypothesis Hj: B; = 0 is accepted if the corresponding confidence interval contains
zero (0 € [Ib;, ub;]) otherwise the null hypothesis is rejected and the estimate f; is
considered as a measure of influence strength from the ith reference spike train to the
target. To study the complete diagram of functional connectivity this method is applied
consequently (n times) selecting the target and estimating the influence strengths from

reference spike trains.
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5.2.1 Derivation of the formula

A derivation of the formula of the Cox method follows the paper by Cox (1972). The
derivation of the formula for two and three spike trains was done by Borisyuk et al.
(1985). In this section the derivation of the formula of the Cox method is done for (p+1)
spike trains. To describe dependencies and influences among (p+1) spike trains a spike
train is selected as a target spike train denoted by A, other p spike trains are selected as
reference spike trains and they are denoted by B = (By, By, =++ . By). The goal is to
estimate the vector of unknown parameters f = (3,5, , Bp) which describe the
strengths of influences from reference spike trains B = (B, By, - ,Bp) to the target
spike train A. Thus B,, (m = 1,2,------, p) represents the strength of influence from the
reference spike train B, (m = 1,2, ,p) to the target 4. The main assumption is

that the target spike train 4 is the MRP with the hazard function:

p
Ca() = pa(Ua®)exp] ) ﬁmzsm(r)]. (52)

where C4(t) is the hazard of the MRP A4, @4(.) is the hazard function of the renewal

process A4 without modulation (i.e. without influence from another spike trains), U, (t) is
the backward recurrence time of the renewal process 4 at the moment t, Zg (t)
(m=12,--"- ,p) 1s the influence function determining how the reference spike train
B, (m=1,2,---- ,p) influences the renewal process A, and f3,, is the parameter
describing the influence strength from spike train B, (m = 1,2,---+--, p) to the target 4.
To estimate the parameters 8 = (By, B2, . Bp) the method of conditional likelihood
is used which eliminates the nuisance function @4(.) (Cox, 1972). The influence
function Zg_ (t) is defined by:

_ Ugp(t-8) U (t-8)

ng(t) = (T!’L_mr—)-(e Ts —e Tr ), (t—A)>0 (5.3)




Chapter 5 Cox Method

where 7 and 7, are the characteristic times of decay and rise of postsynaptic potential
respectively. Parameter g,, provides the normalization that the maximum of the

influence function is one and is defined by:

Ts — Ty
9m = Tt i
e =—e W
where
IOQ(TS/Tr)
be=—7T 1 -
Ty T

Ug,, (t) is the backward recurrence time of spike train B, and A is the time lag
corresponding to delay of spike propagation from B,, to A. A simplified version of the

influence function corresponding to the case 7, = 7, is given by the following formula:

1 41— UBm(C—.ﬁ)
Zg (t) = = Ug, (t — A)e s, (t-4)>0 (5.4)
5
It is assumed that spike train A contains n interspike intervals x;,x,, ... ...., x,. For
simplicity all intervals x4, x5, ... ...., X, are considered as of different length. If there are

several identical intervals a randomization procedure is used and a small normally
distributed random number to the interval length is added. The intervals are arranged in
order of increasing size X(;) < X(z) < -+ < X(ny. For i > j, assume that x(;) = x; and
X(jy = X. Now Zg . is defined to be the value of Zp (t) (m =1.2,----,p) where

time t is calculated in the following way: the interval x; is allocated inside of the
interval x; and the left ends of both intervals coincide, time t corresponds to the right
end of the interval x;. Respectively, Zp  is the value of Zg_ (t) at the right end of the

interval x.

The likelihood is constructed for the data conditionally on the magnitudes of the
intervals, by considering contributions in order starting with the smallest interval. Thus

the contribution from the first interval is:
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exp (Efn= 1 ﬁmzﬂmu)
?2 1 exp (Efn= 1 ﬁmzﬂmh ) -

Conditionally on the first interval, the contribution from the second interval is

exp(zfnzl ﬁmzﬂmzz)
EF=2 exp (221:1 ﬁngmlz)

and so on.

The likelihood has the form

exp(zfrz:: ﬁszmEE)
tiexp(Zhey BnZs,,)

=1

The log likelihood is defined as

L(ﬁv By »ﬁp) = Y= an:l BmZs,,, — X1 foQ{Z?:i exP(szlﬁmZBmu)] .

Now the first derivative of the log likelihood is

aL ZF! lZsm“ exp(Zm 1Bm an) (m=1,2,+,p)
aﬁm 5: o exP(zm 1ﬁmzﬂmu) ‘ o ’

The estimate for f3,, is obtained by setting the first derivative to zero.

The second derivative can be obtained by

Z [Zl =i Zﬂr“ EXP(Z =1 ﬁ‘m Zamii) ZBSH E?=i exp(z‘ﬁl:l ﬁm ZBmH)]

@ﬁrﬂﬁs (57, exp(X2,es B Za, )]

+ i [Z}Li ZB,-H exp(zﬁl-—.l Bm Zan) E?:j ZBgu exp(zfn=1 ﬁm ZBmI.l)] .
[Z?zi exp(zﬁml Bm ZBmﬁ)]z

_ Z [}:}Li Z5,1, Z5,,%D (Zm=1 Bm Z5,y,) Tt €XP(Zme s B zgm,[)]
[E?:i exp (Eﬂ'l=1 ﬁm zBmh)]z

- [)::;l- Zg . €D X0y Bii Za, ) Ty Zn . exp(X0. i BinZn. )] ,
[E?:;‘ exp(zgw 1 ﬁm Zﬂmti)]z

il
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- Z ?Zi Zﬂru Zﬂsnexp(zzl=l Em ZBmIt)
gt 1 2?=i exp(zf."lzl Bm ZBmu)

+ —E?=i ZBrIt' exp(z:;t=1 ﬁm ZBmI:') Z?:i ZBsu exp(zr;i:l Bm ng“.) .

i=1l [ ?:iexp(zfnn Bm Zﬂmu)]z

Let U(B) = ||

. ] is the Fisher

be the score vector and I(fB) = [— 557
TP pxp

px1

information matrix.

Now to obtain maximum likelihood estimate ﬁ’q a numerical solution of the equation
U(B) = 0 should be obtained. The Newton-Raphson iterative method starting from the

initial guess (% is used. Formula for iterations is:

B, = Bos+ [1(Bi=r)] U(Bs-a), 4 =12,-..0. (5.5)

The iterations converge to the estimates:

-~ -

Ba 2B B=(BrB2 . Bp) -

To obtain the confidence interval for f3,,, it is assumed thal has asymptotically

normal distribution N(0, / (Bm)) where I(B,,) is the m" diagonal element of /(). The

confidence interval with the confidence level y is obtained by the following equation:
[ﬁm ~1/1(Bn)Kicy + Bt/ f(ﬁm)Kl_;z] (5.6)

where K(;_,y/; is the upper (1—y)/2 quantile of normal distribution. The null
hypothesis that spike train B, ; (m = 1,2,--- -+ ,p) does not influence 4 is accepted if

the confidence interval includes zero.

To obtain the confidence region for B, and f;, it is assumed that U7 (I,;) " *U has x?

distribution with two degrees of freedom. The use of y? distribution to obtain
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confidence region is a natural choice in statistics. Here U = (%,%) and the matrix
-
9L %L
. | "9 BB
= a2L gL [

0BoB, P2
The confidence region on the plane (8, ,fs) with the confidence level y is defined by

the following equation:

o -~ ' A & e U -
(ﬁr = Br:ﬁs = ﬁs) [Irs(ﬁrv Es)] (ﬁr = ﬁrvﬁs - Bs) = X(zz—y,z) (5-7)
where ;((21_},,2) is the upper (1 — y) quantile of chi-square distribution with two degrees

of freedom. The null hypothesis that Cox coefficients (f,,8;) = 0 is accepted if the

confidence region includes zero.

5.2.2 Parameters of the influence function (z,, 7, and A)

To apply the Cox method to multiple spike trains, one spike train should be selected as a
target and other spike trains are considered as the reference spike trains. The influence
functions should be specified to describe the influence from the reference spike trains to
the target. In this section it is assumed that all influences are identical and the influence
function is specified by (5.3). This function includes three parameters (75, 7,,A) and

their values should be defined for each reference spike train.

In the case of generated data the characteristic times of rise (7)) and decay (z;) of the
postsynaptic potential (PSP) are usually known but they are difficult to determine from
experimental data and should be assumed (Lansky and Ditlevsen, 2008). How the result
of analyzing the functional connectivity depends on chosen values of PSP characteristic
times was studied and it was found that the Cox method has low sensitivity to the

selected values of these parameters. In other words, there is no requirement to choose
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these times accurately. In fact, these characteristic times can be varied over a broad

range and the results of the analysis will be similar.

To specify the time lag A corresponding to the delay of spike propagation, the
traditional CCF is used which provides both the statistical estimate of dependency and
the corresponding time lag A. To do this a pair of spike trains, the target and the
reference spike train, are considered. The highest value of the CCF exceeding the upper
boundary of the confidence interval can be considered as a measure of influence
strength from the reference spike train to the target spike train, and the corresponding
time shift can be considered the time lag A in spike propagation (Stuart et al., 2005). If
there are no values of the CCF exceeding the upper boundary of the confidence interval,
both the influence strength and the corresponding time lag A are considered zero. For
example a pair of spike trains, A (target) and B (reference), are generated with a
connection from B to 4 by the ELIF model (Borisyuk, 2002). The connection strength
from B to A is considered 18.04 with a time delay A= 11 ms of spike propagation. The
CCF of this pair of spike trains is shown in Fig. 5.1(c) which indicates the influence

strength is 4.673 and the corresponding time shift is 11 ms.

The time lag A of spike propagation can also be found by analyzing a pair of spike
trains with the Cox method. The same spike trains 4 and B in the above example are
considered and the aim is to find the time delay of spike propagation using the Cox
method. It is assumed that two spikes of the reference spike train B appear at times tj
and t3 and there is a time delay 8, of spike propagation from the reference spike train B
to the target spike train 4. This indicates that if there is a spike in train B at time
moment t5 then the probability of spike at train 4 at time moment t, = t} + &, is very
high. The time delay &, is unknown, therefore the estimation of the Cox coefficient for

different values of time lag A is repeated. Fig. 5.1(a) shows estimates Bga versus time
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lag A. The increment of time lag is 1 ms and the corresponding confidence intervals are
shown by vertical bars. The estimate Bga increases with increase of A and reaches its
highest value at A= 10 ms but for A= 11 ms this coefficient drops down to a negative
value (Fig. 5.1(a)). The estimation of the Cox coefficient for values of the time lag in
the interval [10.95, 11.03] (ms) with an increment of 0.01 ms. is shown in Fig. 5.1(b).
The Cox coefficient drops down from a high positive value to a negative value in a

small interval [10.99, 11] (ms).
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Figure 5.1: Pair-wise analysis of Cox method and the CCF for the analysis of influence
strength from spike train B to spike train 4. (a) Cox coefficient 85, with different time

delays. (b) Cox coefficient g, in the interval 10.95 ms to 11.03 ms with a small step of
time delays. (¢) The CCF for the analysis of influence strength from spike train B to A.

Thus the conclusion is that a time delay of spike propagation is considered to be 11 ms

(6o =11) and an estimate of the Cox coefficient Bz, =2.1. To justify this

interpretation of the data analysis, it is assumed that a chosen time lag is smaller than
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the time delay of spike propagation: A< §,. According to formula (5.3), the backward
recurrence time is calculated at the moment (t; — As) and this backward recurrence
time is smaller than the time delay of spike propagation: Ug(t, — As) < &§,. Therefore,
the value of the influence function depends on the backward recurrence time
Zg(Ug(tq — Ag)), which is shown by the circle in Fig. 5.2. This value is less than the
maximum of the influence function and if the time lag Ag increases, then the influence
function also increases and tends to the maximum of the influence function if the time
lag tends to §,. A described calculation of the backward recurrence time can be applied
in a small vicinity of each spike of the train B under the main assumption that the time
delay of spike propagation is §,. This consistency in calculation of the backward
recurrence time is important for a reliable numerical procedure for calculation of

estimate of the Cox coefficient.
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Figure 5.2: Ilustration for the calculation of influence function.
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Now it is assumed that a time lag A, of the influence function is larger than the time
delay of spike propagation A;> §, (Fig. 5.2) and the calculation of the backward
recurrence time is based on the spike at time t}, which is a previous spike according to
the spike at moment t3 (Fig. 5.2). Thus, for the time lag A;> §, the backward
recurrence time can get an arbitrary value. The backward recurrence time is calculated
for each spike of train B, therefore, the estimate of the Cox coefficient is calculated
using arbitrary (random) values of the influence function. Thus, the estimate will be
very different from the correct value and it might be zero or a negative number. The
time lag A obtained by the CCF and pair-wise Cox method is same. In this chapter the
lag A is calculated by the CCF method for analyzing functional connectivity of multiple

spike trains.

5.3 Analysis of functional connectivity by the Cox method

The Cox method is used for the analysis of functional connectivity of two spike trains,
three spike trains and the general case of p spike trains. The choice of analysis depends
on the nature of the experiment and the desire of the experimenter. In this section the
Cox method procedure for the analysis of functional connectivity based on two spike

trains, three spike trains and the general case of p spike trains are discussed.

5.3.1 Analysis of two spike trains

To identify the functional connectivity of two spike trains, one spike train is considered
as the target spike train and another one is considered as the reference spike train.
Assume that spike train A4 is the target spike train and spike train B is the reference spike
train. The Cox method is used to identify the influence strength from reference spike
train B to the target spike train 4. The hazard function (5.2) of the target spike train A4

with p = 1 can be represented as:
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Ca(t) = 9a(Ua(®) )exp{BZs(t)}.
The influence function Zgz(t) from B to A is determined by (5.3) with the specified
values of 7, 7, and A. The values 7,7, are assumed and time lag A is obtained from
pair-wise CCF. The Cox coefficient f is estimated using (5.5) and the corresponding
confidence interval is calculated using (5.6). The null hypothesis that the reference spike
train B does not influence the target spike train 4 is tested using the confidence interval.
If the confidence interval contains zero, then it is concluded that the corresponding Cox
coefficient is not distinguishable from zero; therefore the functional connection from the
reference spike train B to the target spike train 4 is absent. If the confidence interval
does not include zero, it is concluded that there is a significant influence from the
reference spike train B to target spike train 4 and the value of the estimate characterizes

the strength of this functional connection.

5.3.2 Analysis of three spike trains

To identify the functional connectivity of three spike trains, one spike train is
considered as the target spike train and the two other spike trains are considered as the
reference spike trains. Assume that three spike trains, 4, B and C are used to identify the
functional connectivity between them. To understand the procedure of analysing three
spike trains, assume that spike train 4 is the target spike train, and that B and C are the
reference spike trains. The Cox method is used to identify the influence strength from
the reference spike trains B and C to the target spike train 4. The hazard function (5.2)
of the target spike train 4 with p = 2 can be represented as:

Ca(t) = @a(Ua(t))exp{BpZp(t) + BcZc(1)).

The influence function Zg(t) from B to A4 and Z.(t) from C to 4 are determined by
(5.3) with the specified values of 74, 7, and A. In this chapter it is assumed that for both
influence functions Zg(t) and Z.(t) the values of 7, and 7, are the same, in fact the
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values can be different for Zz(t) and Z(t). The parameter time lag A is obtained by the
CCF method for Zg(t) and Z-(t). The Cox coefficients 5 and S are estimated using
(5.5) and the corresponding confidence intervals are calculated using (5.6). The
confidence region for the coefficients Sz and B, is calculated using (5.7). The
confidence region has an elliptical shape and the centre of the confidence region is
located at the point (Bg,Bc). The null hypothesis that the pair of Cox coefficients
([133, 5’;;) is equal to zero (i.e. both components of the pair are zero) is tested and the nuil
hypothesis is accepted (i.e. the data does not contradict the null hypothesis) if the origin
is inside the confidence region, concluding that both connections are absent (i.e.
connection strength is zero). If the null hypothesis is rejected then the null hypothesis
that one Cox coefficient is equal to zero is tested. This null hypothesis is tested
separately for each coefficient. Two projections of the elliptical confidence region to the
coordinate axis (Bg) and (B.) are considered. If projection to the axis (fz) contains
zero then the null hypothesis is accepted and it is concluded that the connection is
absent (i.e. the connection strength is zero), otherwise the null hypothesis is rejected and
a centre of the interval (5‘3) is considered as strength of connection. Similarly, if a
projection to another axis () contains zero then the null hypothesis is accepted and it
is concluded that the connection is absent, otherwise the null hypothesis is rejected and
a centre of the interval (Bc) is considered as strength of connection. To identify the
complete diagram of functional connectivity of spike trains 4, B and C, the above
procedure is repeated considering B is a target spike train and 4 and C are reference
spike trains, and that C is a target spike train and 4 and B are reference spike trains.
Thus, to identify the functional connectivity of three spike trains using the Cox method,
six simultaneous statistical tests are done. For this reason a Bonferroni correction is

applied to the significance level a and the corrected significance level is considered as

a=(1-y)/6.
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5.3.3 Analysis of the general case of p spike trains

Besides the analysis of two spike trains and three spike trains, functional connectivity of
p spike trains are analysed considering the effects of all spike trains at once. In this
method one spike train is considered as a target spike train and the remaining p — 1
spike trains are considered as reference spike trains. For the analysis of functional
connectivity of p spike trains, assume that A, is the target spike train and 4,,--- - VA
are the reference spike trains. The Cox method is used to identify the influence strength
from the reference spike trains A,,-:---+, A, to the target spike train A;. The hazard

function (5.2) of the target spike train A; with p = p — 1 can be represented as:

Ca(t) = @a, (Un,(©)) exp{B1,Za, () + Ba,Zay(8) + -+ B, Za, (D)}

specified values of 7, 7, and A. Here it is assumed that the values of 7, and t, are same
for all influence functions and A is calculated from the CCF method. The Cox
coefficients fB4,i = 2,3,--++,p are estimated using (5.5) and the corresponding
confidence intervals are calculated using (5.6). The null hypothesis that the reference
spike train A;,i = 2,3, -+ -+, p does not influence the target spike train A, is tested using
the confidence interval. If the confidence interval contains zero, then it is concluded that
the corresponding Cox coefficient is not distinguishable from zero, therefore the
functional connection from the reference spike train A;,i = 2,3, -+ ,p to the target A,
is absent. If the confidence interval does not include zero, it is concluded that there is a
significant influence from the reference spike train A;,i = 2,3, - ,D to the target A,
and the values of the estimates characterize the strengths of this functional connections.
To identify the complete diagram of functional connectivity of spike trains
Ay, Ay, -+, Ap, the above procedure is repeated considering A, is target and spike

trains A,, Az -+ , A, are reference; A is target and spike trains A,, A, Ay -+~ -+ ,Ap are
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reference and so on. Thus, for p spike trains this procedure should be repeated p times
and for this repetitive application of Cox method the Bonferroni correction is applied to

the significance level a and the corrected significance level is considered as a =
A-v/pe-1).

5.4 Simultaneous analysis of p spike trains gives better result than
pairs and triplets

In this section using an example it is shown that how the best result of functional
connectivity can be obtained by the Cox method for multiple spike trains. A small
neural circuit of four spike trains is generated using the ELIF model (Borisyuk, 2002)
with a given scheme of coupling. Functional connectivity of four generated spike trains

are analyzed using pairs, triplets and all four spike trains at once.
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Figure 5.3: (a) Connection scheme of the four spike train. There are three non zero
connections which are shown by arrows. (b) Raster plot of four generated spike trains of
the duration 20,000 ms. (c) ISI histograms of the generated four spike trains.

The four spike trains are generated using the connection architecture shown in Fig.

5.3(a). The values of connection strength, time delay of spike propagation and time of
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decay of postsynaptic potential are given in Table 5.1. The values of the neuron
parameters of the ELIF model are given in Table 5.2. Fig. 5.3(b) shows the result of

ELIF model generation, i.e. the raster plot of spiking activity of these four spike trains

in time interval of 20 seconds.

Connection strength (w) Time delay (A) Decay time (75)
Wiz = 18.047 A,=11 2.86
wy,3 = 17.281 A3= 10 3.08
w,4 = 15.764 Ay=9 3.42

Table 5.1: Connection strengths, time delays of spike propagation, and decay times of

postsynaptic potential that are used for generating four spike trains.

Neuron parameter Mean S.D.
Maximum value of the threshold 4487 0.74
Threshold decay rate 3.02 0.22
Asymptotic threshold value 15.20 1.42
Amplitude of the noise 5.03 0.26
Noise decay rate 9.99 0.02
Initial value of after spike hyperpolarisation -28.77 0.19
Soma’s membrane potential decay rate 19.73 0.50
External input -0.25 0.48
Absolute refractory period 525 1.50

Table 5.2: Neuron parameters of the ELIF model of four spike trains.

These spike trains are considered as a data set for analyzing the functional connectivity.
It is important to note that for analyzing the functional connectivity only spike trains are

used and it is assumed that the scheme of connections is unknown. It is also assumed
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that values of neuronal parameters and parameters characterizing connections
(connection strength, delay of spike propagation and time of decay of PSP) are
unknown. After completing the analysis the results are compared with the parameter
values that were used for spike train generation. Fig. 5.3(c) shows the histogram of

inter-spike intervals (ISIs) for each spike train.

5.4.1 Pair-wise analysis

To apply pair-wise analysis of the Cox method to the four spike trains a total of twelve
possible pairs of spike trains are analyzed, taking one spike train as target and one other
spike train as reference. All the influence functions are considered identical and
specified by (5.3). In this case the values of PSP decay time are known (Table 5.1);
however, it is assumed that these values are unknown. For the analysis of functional
connectivity the characteristic times of rise and decay are assumed as 7, = 0.1 ms and
7, = 10 ms. The other parameter, time lag A is specified by the pair-wise CCF method
which is given in Fig. 5.4. For the pair-wise CCF, 6 simultaneous tests are conducted to
find the independence of the pairs of spike trains. For these 6 simultaneous tests the
Bonferroni correction is applied to the significance level @ and the adjusted significance
level is considered as a/6. In Fig. 5.4 the boundaries of the confidence interval of the
pair-wise CCF is calculated using the Bonferroni correction and is considered as

.05/6 = .0083.

The highest peak outside the confidence interval is interpreted as an indicator of
influence and the corresponding time shift of the CCF is considered as a time lag A
corresponding to delay of spike propagation. Time lags A are summarized in the Table
5.3 and these values are used for analyzing the functional connectivity of pairs of spike

trains. For example, if the second spike train is selected as a target, then the second row
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and first column of the Table 5.3 provides a parameter value of time lag A from spike

train #1 to spike train #2 and this value is: A;,= 11.
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Figure 5.4: Cross correlation function of the four spike trains.

Reference 1 2 3 4
spike train
Target
spike train
1 0 0 0 0
2 11| 0 1 0
3 10| O 0 0
4 20 | 9 0 0

Table 5.3: Time lags obtained from Fig. 5.4. These time lags are used to get the
functional connectivity of four spike trains.
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Reference 1 2 3 4
spike
train
Target
spike train
1 0 0.318 -0.029 -0.264
(-0.520, 1.157) | (-1.117, 1.058) | (-1.098, 0.568)
2 2.678 0 0.715 0.453
(2.154, 3.203) (-0.020, 1.451) | (-0.264, 1.172)
3 3.232 -0.304 0 -0.597
(2.691, 3.773) | (-1.268, 0.659) (-1.543, 0.349)
- 0.967 2.494 0.225 0

(0.357,1.577) | (2.030,2.959) | (-0.482,0.932)

Table 5.4: Results of pair-wise analysis of four spike trains. The estimates of Cox
coefficients and corresponding confidence intervals are shown. Cox coefficients which
significantly differ from zero (i.e. the confidence interval does not include zero) are in

bold.

Now using the parameter values 7, = 0.1 ms and 7, = 10 ms and time lags obtained
from Table 5.3, the parameters are estimated using (5.5) with the corresponding
confidence interval from (5.6). Applying Bonferroni correction to the significance level
a = 0.05 changes the significance level to a = 0.05/4(4 — 1) = .0042. Functional

connections can be derived from these estimates and their confidence intervals.

Table 5.4 summarizes the result of analyzing four spike trains with the pair-wise
analysis. Each row of the table shows the Cox coefficients that characterize the
influence strength from the reference spike trains to the target spike trains. The first row
of Table 5.3 corresponds to the case that the first spike train is considered as a target and
this row shows the estimates of Cox coefficients characterizing influences to the target
spike train (#1) from the reference spike trains (#2 to #4): f,; = 0.318, fi3; = —0.029,

fs; = —0.264 with the corresponding confidence intervals. In the first row all the

confidence intervals include zero, therefore functional connection from spike trains #2,
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#3 and #4 to the spike train #1 are concluded to be absent. In the second row there is
only one Cox coefficient that significantly differs from zero (shown in bold) which
characterizes the influence from spike train #1 to spike train #2. This non-zero influence
strength is interpreted as strength of the functional connection from spike train #1 to
spike train #2 and the strength of influence is f,, = 2.7. All other Cox coefficients at
the second row are not distinguishable from zero and the corresponding functional
connections to the target spike train #2 are concluded to be absent. Similar to the second
row there is only one Cox coefficient in the third row that significantly differs from zero
(shown in bold) which characterizes the influence from spike train #1 to spike train #3.
This non-zero influence strength is interpreted as strength of the functional connection
from spike train #1 to spike train #3 and the strength of influence is 8,3 = 3.2. All other
Cox coefficients at the third row are not distinguishable from zero and the
corresponding functional connections to the target spike train #3 are concluded to be
absent. In the fourth row there are two Cox coefficients that significantly differ from
zero (shown in bold) which characterize the influence from spike train #1 to spike train
#4 and from spike train #2 to spike train #4. These non-zero influence strengths are
interpreted as strength of the functional connection from spike train #1 to spike train #4
and from spike train #2 to spike train #4. The strength of influences of these functional
connections are f;, = 1 and f,, = 2.5, respectively. All other Cox coefficients at the
fourth row are not distinguishable from zero and the corresponding functional
connections to the target spike train #4 are concluded to be absent. Thus, considering
Table 5.4 it is concluded that there are four Cox coefficients that significantly differ
from zero; therefore there are four functional connections of the four spike trains. These
functional connections are shown by circles in Fig. 5.5(b) and the radius of the circle is
proportional to the relative strength of influence: a small radius corresponds to a

relatively weak functional connection. The diagonal is shown by filled squares.

104




Chapter 5 Cox Method

Target spike train

1 2 3 4 1 2 3 4
Reference spiks train Rederence spike train

(a) (b)

Figure 5.5: (a) Connection scheme of four spike trains in matrix format (the same as
the scheme shown in Fig. 5.3(a) in graph format). (b) A diagram of functional
connections of four spike trains obtained by the pair-wise analysis.

Comparison of the matrix of functional connectivity (Fig. 5.5(b)) with the matrix of
connections (Fig. 5.5(a)) used for simulating the spike trains reveals a good
correspondence between these two schemes of connections except one connection. The
diagram of connectivity in Fig. 5.3(a) contains three direct connections which are
shown by arrows; from spike train #1 to spike train #2, from spike train #1 to spike train
#3, and from spike train #2 to spike train #4. In Fig 5.3(a) there are some “spurious”
connections which are not direct: a connection due to a “common source” and a
connection due to “indirect coupling”™. There is no direct connection between spike
trains #2 and #3; however, spike train #1 is a common source, delivering spikes to both
spike trains (#2 and #3). Similarly, there is no direct connection between spike trains #1
and #4, however, there is an indirect influence (coupling) from spike train #1 to spike
train #4 via spike train #2. Distinguishing the direct connections and these spurious
connections is difficult using pair-wise analysis. For instance the connection from spike
train #1 to spike train #4 is in fact an indirect connection but incorrectly identified by

the pair-wise analysis (green circle in Fig. 5.5(b)).
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5.4.2 Triplet analysis

Triplet analysis of the Cox method for the four spike trains considers all possible groups
of three spike trains. A total of 4 groups of three spike trains are obtained (Fig. 5.6). All
four groups of three spike trains are analyzed to find functional connectivity by the
triplet analysis. All the influence functions are considered identical and specified by
(5.3) with parameters 7, = 10 ms and 7,, = 0.1 ms. The time lags A are obtained using

the CCF method (Fig.5.4 and Table 5.3).

1 1
2 3 zx =.4

(a) (b)

3 ®: @ 4

(c) (d)

Figure 5.6: All possible groups of three spike trains for the four spike trains.
Connection schemes obtained from Fig. 5.3(a). (a) For spike trains #1, #2 and #3. (b)
For spike trains #1, #2 and #4. (¢) For spike trains #1, #3 and #4. (d) For spike trains #2,
#3 and #4.

5.4.2.1 Analysis of spike trains {#1, #2, #3}

To apply triplet analysis to the first group consisting of spike trains {#1, #2 and #3}
(Fig. 5.6(a)), spike train #1 is considered as a target spike train and influences from
reference spike trains #2 and #3 to this target are estimated using (5.5) with confidence
intervals using (5.6). A confidence region is also calculated using (5.7) which has an

elliptical shape. Similarly, spike train #2 is considered as a target spike train and

influences from reference spike trains #1 and #3 to this target are estimated with
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confidence intervals and confidence regions. Finally, spike train #3 is considered as a
target spike train and influences from reference spike trains #1 and #2 to this target are
estimated with confidence intervals and confidence regions. The Bonferroni correction
is applied to the significance level a and the corrected significance level is considered

as a =.05/6 = .0083.

Fig. 5.7 shows the functional connections of this group of spike trains with three
confidence regions (Fig. 5.7(b)). The region on the left side corresponds to the target
spike train #1; the region in the middle corresponds to the target spike train #2, and the
region on the right side corresponds to the target spike train #3. It is shown in Fig.
5.7(b) that the region on the left side contains zero, therefore both connections to spike
train #1 are concluded to be absent. This result is shown in Fig. 5.7(c) by two dashed
arrows pointing to spike train #1. These dashed arrows indicate an absence of both

connections from spike train #2 and #3 to spike train #1.

The region in the middle does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (8,5 , ffs;) . The projection to the vertical axis
B3, contains zero, therefore it is concluded that the null hypothesis should be accepted
and the connection from spike train #3 to #2 is concluded to be absent. The projection to
the horizontal axis f;, does not contain zero, therefore it is concluded that the null
hypothesis should be rejected and the estimate f3,, is the strength of the connection from
spike train #1 to #2. This result is shown in Fig. 5.7(c) by two arrows pointing to the
spike train #2: the dashed arrow indicates the absence of a connection from spike train
#3 to #2, the solid arrow indicates the presence of a connection from spike train #1 to

#2, and the value of the connection strength is 8;, = 2.8.
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Figure 5.7: (a) Connection scheme of the spike trains #1, #2 and #3. (b) Confidence
regions of the estimated Cox coefficients in three cases: influences to spike train #1
(left), influences to spike train #2 (middle), influences to spike train #3 (right). (c)
Estimated coefficients of the Cox method with confidence intervals. Significant
connections are indicated by solid arrows.

The region on the right side can be interpreted in a similar way. The result is shown in
Fig. 5.7(c) by two arrows pointing to spike train #3: the dashed arrow indicates the
absence of a connection from spike train #2 to #3, the solid arrow indicates the presence
of a connection from spike train #1 to #3, and the value of the connection strength is
B3 = 3.3. The results of the analysis are in good agreement with the connection
scheme shown in Fig. 5.7(a). The results in Fig. 5.7(c) indicate that there are two
significant influences (shown by solid arrows, all others are shown by the dashed

arrows): from spike train #1 to spike train #2 and from spike train #1 to spike train #3,

the influence strengths are shown with their confidence intervals.
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5.4.2.2 Analysis of spike trains {#1, #2, #4}

The second group consisting of spike trains {#1, #2 and #4} (Fig. 5.6(b)) are analyzed
by the Cox method and the functional connections of this group of spike trains are
shown in Fig. 5.8 with three confidence regions (Fig. 5.8(b)). The region on the left side
corresponds to the target spike train #1; the region in the middle corresponds to the
target spike train #2, and the region on the right side corresponds to the target spike
train #4. It is shown in Fig. 5.8(b) that the region on the left side contains zero, therefore
both connections to spike train #1 are concluded to be absent. This result is shown in
Fig. 5.8(c) by two dashed arrows pointing to spike train #1. These dashed arrows

indicate an absence of both connections.
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Figure 5.8: (a) Connection scheme of the spike trains #1, #2 and #4. (b) Confidence
regions of the estimated Cox coefficients in three cases: influences to spike train #1
(left), influences to spike train #2 (middle), influences to spike train #4 (right). (¢)
Estimated coefficients of the Cox method with confidence intervals. Significant
connections are indicated by solid arrows.
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The region in the middle does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (5 , ffs2) . The projection to the vertical axis
B4> contains zero, therefore it is concluded that the null hypothesis should be accepted
and the connection from spike train #4 to #2 is absent. The projection to the horizontal

axis [5;, does not contain zero, therefore it is concluded that the null hypothesis should

be rejected and the estimate f,, is the strength of the connection from spike train #1 to

#2. This result is shown in Fig. 5.8(c) by two arrows pointing to the spike train #2: the
dashed arrow indicates the absence of a connection from spike train #4 to #2, the solid
arrow indicates the presence of a connection from spike train #1 to #2, and the value of

the connection strength is f,; = 2.8.

The region on the right side can be interpreted in a similar way. The result is shown in
Fig. 5.8(c) by two arrows pointing to spike train #4: the dashed arrow indicates the
absence of a connection from spike train #1 to #4, and the solid arrow indicates the
presence of a connection from spike train #2 to #4, and the value of connection strength
is B,4 = 2.4. The results of the analysis are in good agreement with the connection
scheme shown in Fig. 5.8(a). The results in Fig. 5.8(c) indicate that there are two
significant influences (shown by solid arrows, all others are shown by the dashed
arrows): from spike train #1 to spike train #2, from spike train #2 to spike train #4, and

the influence strengths are shown with their confidence intervals.

5.4.2.3 Analysis of spike trains {#1, #3, #4}

The third group consisting of spike trains {#1, #3 and #4} (Fig. 5.6(c)) are analyzed by
the Cox method and the functional connections of this group of spike trains are shown
in Fig. 5.9 with three confidence regions (Fig. 5.9(b)). The region on the left side

corresponds to the target spike train #1; the region in the middle corresponds to the
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target spike train #3, and the region on the right side corresponds to the target spike
train #4. It is shown in Fig. 5.9(b) that the region on the left side contains zero, therefore
both connections to spike train #1 are concluded to be absent. This result is shown in
Fig. 5.9(c) by two dashed arrows pointing to spike train #1. These dashed arrows

indicate an absence of both connections.

-

B, = 02(-0508)

=-06(-1403
(a) ﬁu ( )

()

05 =

1 S “
N\ 05 \
05 I 8 o [\ | \
,' |+
By of / - N B.. 05 [ + ‘ B0 - l\_ J
{ - | i ' /

05| H X d a5 -

- M SN 45 )
-1 45 0 05 1 0 1 2 3 < 05 0 05 1 15§
2 B B

(b)

Figure 5.9: (a) Connection scheme of the spike trains #1, #3 and #4. (b) Confidence
regions of the estimated Cox coefficients in three cases: influences to spike train #1
(left), influences to spike train #3 (middle), influences to spike train #4 (right). (c)
Estimated coefficients of the Cox method with confidence intervals. Significant
connections are indicated by solid arrows.

The region in the middle does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (f;3 , B43) - The projection to the vertical axis
P43 contains zero, therefore it is concluded that the null hypothesis should be accepted

and the connection from spike train #4 to #3 is absent. The projection to the horizontal

axis f;3 does not contain zero, therefore it is concluded that the null hypothesis should
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be rejected and the estimate f,5 is the strength of the connection from spike train #1 to
#3. This result is shown in Fig. 5.9(c) by two arrows pointing to the spike train #3: the
dashed arrow indicates the absence of a connection from spike train #4 to #3, the solid
arrow indicates the presence of a connection from spike train #1 to #3, and the value of
connection strength is B;; = 3.2. The region on the right side can be interpreted in a
similar way. The result is shown in Fig. 5.9(c) by two arrows pointing to spike train #4:
the dashed arrow indicates the absence of a connection from spike train #3 to #4, the
solid arrow indicates the presence of a connection from spike train #1 to #4, and the

value of the connection strength is ;4 = 1.

The result of analyzing functional connectivity is not in good agreement with the
connection scheme shown in Fig. 5.9(a). The reason is that out of four spike trains, only
three spike trains are analyzed at a time without considering the effect of the other spike
train. In the connection scheme there is no connection from spike train #1 to spike train
#4, however, triplet analysis shows this spurious connection. The result in Fig. 5.9(c)
indicates that there are two significant influences (shown by solid arrows, all others are
shown by the dashed arrows): from spike train #1 to spike train #3, from spike train #1

to spike train #4, and the influence strengths are shown with their confidence intervals.

5.4.2.4 Analysis of spike trains {#2, #3, #4}

The fourth group consisting of spike trains {#2, #3 and #4} (Fig. 5.6(d)) are analyzed by
the Cox method. Functional connections of this group of spike trains are shown in Fig.
5.10 with three confidence regions (Fig. 5.10(b)). The region on the left side
corresponds to the target spike train #2; the region in the middle corresponds to the
target spike train #3, and the region on the right side corresponds to target spike train

#4.
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Figure 5.10: (a) Connection scheme of the spike trains #2, #3 and #4. (b) Confidence
regions of the estimated Cox coefficients in three cases: influences to spike train #2
(left), influences to spike train #3 (middle), influences to spike train #4 (right). (c)
Estimated coefficients of the Cox method with confidence intervals. Significant
connections are indicated by solid arrows.

The region on the left side does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (S, , Bs2) . The projection to the vertical axis
P42 contains zero, therefore it is concluded that the null hypothesis should be accepted
and the connection from spike train #4 to #2 is absent. The projection to the horizontal

axis ff3, does not contain zero, therefore it is concluded that the null hypothesis should
be rejected and the estimate 35, is the strength of the connection from spike train #3 to
#2. This result is shown in Fig. 5.10(c) by two arrows pointing to the spike train #2: the
dashed arrow indicates absence of a connection from spike train #4 to #2, the solid
arrows indicate the presence of a connection from spike train #3 to #2, and the value of
the connection strength is 83, = 0.7. The region on the right side can be interpreted in a
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similar way. The result is shown in Fig. 5.10(c) by two arrows pointing to spike train
#4: the dashed arrow indicates the absence of a connection from spike train #3 to #4, the
solid arrow indicates the presence of a connection from spike train #2 to #4, and the
value of connection strength is 8,5, = 2.5. It is shown in Fig. 5.10(b) that the region in
the middle contains zero, therefore both connections to spike train #3 are concluded to
be absent. This result is shown in Fig. 5.10(c) by two dashed arrows pointing to spike

train #3. These dashed arrows indicate an absence of both connections.

The result of analyzing functional connectivity is not in good agreement with the
connection scheme shown in Fig. 5.10(a). The reason is that out of four spike trains,
only three spike trains are analyzed at a time without considering the effect of the other
spike train. In the connection scheme there is no connection from spike train 3 to spike
train 2, however triplet analysis shows this spurious connection. The result in Fig.
5.10(c) indicates that there are two significant influences (shown by solid arrows, all
others are shown by the dashed arrows): from spike train #3 to spike train #2, from
spike train #2 to spike train #4, and the influence strengths are shown with their

confidence intervals.

As with pair-wise analysis, triplet analysis of Cox method identifies spurious
connections from the four spike trains. Analyzing the first two groups of three spike
trains {#1, #2, #3}, {#1, #2, #4} (Fig. 5.6(a)-5.6(b)) reveals the correct connectivity
pattern but analysis of the other two groups of three spike trains {#1, #3, #4}, {#2, #3,
#4} (Fig. 5.6(c)-5.6(d)) reveals two spurious connections which are from spike train #1
to spike train #4 and spike train #3 to spike train #2. The reason for finding these
spurious connections is that, in triplet analysis, effects of all four spike trains are not

considered for identifying functional connectivity as with pair-wise analysis.
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5.4.3 Analysis considering all four spike trains
To identify the functional connectivity of the four spike trains by the Cox method,
effects of all four spike trains are considered in finding influence strengths from the

reference spike trains to the target spike train.

Reference 1 2 3 4
spike train
Target
spike train
1 0 0.338 -0.014 -0.287
(-0.496, 1.174) | (-1.098, 1.070) | (-1.121, 0.546)
2 2.790 0 -0.326 0.564
(2.264, 3.316) (-1.053,0.400) | (-0.145,1.274)
3 3.275 -0.818 0 -0.488
(2.738, 3.812) | (-1.775,0.138) (-1.435,0.457)
4 0.307 2.440 0.228 0
(-0.292, (1.975, 2.905) | (-0.495, 0.952)
0.907)

Table 5.5: Result of analysis of four spike trains by the Cox method considering the
effects of all four spike trains. The estimates of Cox coefficients and corresponding
confidence intervals are shown. Cox coefficients which significantly differ from zero
(i.e. the confidence interval does not include zero) are in bold.

To apply the Cox method one spike train is considered as a target spike train and the
other three spike trains are considered as reference spike trains. The influence functions
are considered identical for all reference spike trains and are specified by the formula
(5.3). The characteristic times are considered as 7, = 10 ms and 7,, = 0.1 ms and the
time lags A are obtained from the CCF method (Fig.5.4 and Table 5.3). First, spike train
#1 is considered as the target and influences from reference spike trains #2, #3 and #4 to
this target are estimated using (5.5) with confidence intervals using (5.6). Second, spike

train #2 is considered as the target and influences from reference spike trains #1, #3 and

#4 to this target are estimated with confidence intervals. Third, spike train #3 is
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considered as the target and influences from reference spike trains #1, #2 and #4 to this
target are estimated with confidence intervals and fourth, spike train #4 is considered as
the target spike train and influences from reference spike trains #1, #2 and #3 to this
target are estimated with confidence intervals. The Bonferroni correction is applied to
the significance level @ and the corrected significance level is considered as a =

0.05/4(4 — 1) = .0042.

Table 5.5 summarizes the result of analyzing four spike trains by the Cox method
considering all spike trains. Each row of the table shows the Cox coefficients
characterizing the influence strength to the target spike trains. The first row of Table 5.5
corresponds to the case that the first spike train is considered as a target and this row
shows the estimates of Cox coefficients characterizing influences to the target spike
train (#1) from the reference spike trains (#2 to #4): B, = 0.338, f3, = —0.014,
Bs1 = —0.287 with the corresponding confidence intervals. On the first row all the
confidence intervals include zero, therefore functional connection from spike trains #2,

#3 and #4 to the spike train #1 are concluded to be absent.

On the second row there is only one Cox coefficient that significantly differs from zero
(shown in bold) which characterizes the influence from spike train #1 to spike train #2.
This non-zero influence strength is interpreted as strength of the functional connection
from spike train #1 to spike train #2 which is #;; = 2.8. All other Cox coefficients on
the second row are not distinguishable from zero and the corresponding functional
connections to the target spike train #2 are concluded to be absent. On the third row
there is only one Cox coefficient that significantly differs from zero. This non-zero
influence strength is interpreted as strength of the functional connection from spike train
#1 to spike train #3 which is ;3 = 3.3. All other Cox coefficients on the third row are

not distinguishable from zero and the corresponding functional connections to the target
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spike train #3 are concluded to be absent. On the fourth row there is only one Cox
coefficient that significantly differs from zero. This non-zero influence strength is
interpreted as strength of the functional connection from spike train #2 to spike train #4
which is 8,4 = 2.5. All other Cox coefficients on the fourth row are not distinguishable
from zero and the corresponding functional connections to the target spike train #4 are
concluded to be absent. Thus, considering Table 5.5, it is concluded that there are three
Cox coefficients that significantly differ from zero; therefore there are three functional
connections of four spike trains. These functional connections are shown by circles in
Fig. 5.11(b) and a radius of the circle is proportional to the relative strength of
influence: a small radius corresponds to a relatively weak functional connection. The

diagonal is shown by filled squares.

1 2 3 4 1 2 3 4
Reference spike train Refersnce spike train

(a) (b)

Figure 5.11: (a) Connection scheme of four spike trains in matrix format (the same as
the scheme shown in Fig. 5.3(a) in graph format). (b) A diagram of functional
connections of four spike trains obtained by the Cox method considering all spike trains
at once.

Target spike train

A comparison of the matrix of functional connectivity (Fig. 5.11(b)) with the matrix of
connections (Fig. 5.11(a)), which has been used for simulation of spike trains, reveals a
good correspondence between these two schemes of connections. Moreover, relative

connection strengths have been correctly identified: circles with smaller radius
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correspond to weaker connections (Table 5.1). The Cox method, considering the effects
of all spike train at a time, ignores all ‘spurious’ connections and correctly finds the
direct connections which have been used for data generation. For example, there is no
direct connection between spike trains #1 and #4; however there is an indirect
connection from spike train #1 to spike train #4 via spike train #2. This connection is
identified by pair-wise analysis and triplet analysis of the Cox method but is not
identified by the Cox method considering all four spike trains at once. Thus, it is shown
that the Cox method can distinguish between ‘direct connection’ and the connectivity
due to a ‘common source’ (or similarly, to distinguish ‘direct” and ‘indirect’

connections) if all spike trains are included in the analysis.

From this section using the analysis of four spike trains, it can be assumed that to
identify the correct functional connectivity of multiple (p) spike trains, all spike trains
(p) should be analyzed at once. Though there are limitations of the pair-wise and triplet-
wise analysis, these methods are useful in certain conditions. For example, the similarity
and dissimilarity measures are useful in order to identify the relationship among pairs of
spike trains (Paiva et al., 2009). A traditional similarity or dissimilarity measure
depends on the CCF method which is bin based. The use of pair-wise analysis to
identify the relationship among the pairs of spike trains is useful and it shows a good
result which is discussed in section 5.8. Motif analysis (Milo et al., 2002; Sporns and
Kotter, 2004) is a useful technique to identify the patterns of interconnections among
the spike trains. A motif is a connected graph consisting of a certain number of vertices
(neurons) with different patterns of edges. A motif with three vertices with different
patterns of edges is useful in finding the patterns of interconnections among the spike
trains. To find these patterns, the triplet analysis of Cox method is a useful technique

which is discussed in section 5.9.
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5.5 Analysis of functional connectivity of five spike trains

In this section an application of Cox method considering the effects of all spike trains at
once is demonstrated for the identification of functional connectivity. A small neural
circuit of five spike trains is considered, generated using the connection architecture
shown in Fig. 5.12(a). The values of connection strength, time delay of spike
propagation and time of decay of postsynaptic potential are given in Table 5.6. The
values of the neuron parameters of the ELIF model are given in Table 5.7.
Fig. 5.12(b) shows the raster plot of spiking activity of these five spike trains over a
time interval of 20 seconds and the histogram of inter-spike intervals (ISIs) for each

spike train are shown in Fig. 5.12(c).
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Figure 5.12: (a) Connection scheme of the five spike train. There are five non zero
connections which are shown by arrows. (b) Raster plot of five spike trains generated
for the neural circuit (a) of the duration 20,000 ms. (¢) ISI histograms of the generated
five spike trains.
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Connection strength (w) | Time delay (A) | Decay time (75)
wys,; = 10.786 Agy=12 2.09
w2 = 11.081 A= 10 1.63
W,.3 = 8973 A43=10 4,66
WiLe = 7.354 A= 10 4.35
W35 = 6.901 Azs=6 4.35

Table 5.6: Connection strengths, time delays of spike propagation and decay times of
postsynaptic potential that are used for generating five spike trains.

Neuron parameter Mean S.D.
Maximum value of the threshold 45.00 0.68
Threshold decay rate 2.87 0.21
Asymptotic threshold value 14.83 1.07
Amplitude of the noise 4.99 0.25
Noise decay rate 9.97 0.04
Initial value of after spike hyperpolarisation -28.87 0.17
Soma’s membrane potential decay rate 20.00 0.00
External input 0.10 0.46
Absolute refractory period 5.20 2.38

Table 5.7: Neuron parameters of the ELIF model of five spike trains.
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Figure 5.13: Cross correlation function of the neural circuit of five spike trains.

Reference | 1 [ 2 [ 3] 4 [ 5
spike train
Target
spike train
1 0 2 2 |12 0
2 0 0 9 110 0
3 211 O 0 |10 O
4 10| O 0 0 | 41
5 0 0 6 0 0

Table 5.8: Time lags obtained from Fig. 5.13. These time lags are used to get the full
functional connectivity of neural circuit of five spike train.
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To apply the Cox method to this neural circuit of five spike trains, all the influence
functions are considered identical and specified by formula (5.3) with the characteristic
times 7, = 10 ms and 7, = 0.1 ms. The time lags A are obtained from the CCF method
(Fig. 5.13). The highest peak outside the confidence interval is interpreted as an
indicator of influence and the corresponding time shift of the CCF is considered as a
time lag corresponding to delay of spike propagation. Time lags are summarized in the

Table 5.8 and these values are used for analyzing the functional connectivity.

Functional connections of these five spike trains can be derived by estimating the
parameters of the Cox method with their confidence intervals using (5.5) and (5.6),
taking one spike train as the target and finding the influence from the other four spike
trains to this target. To define a complete diagram of functional connectivity the
procedure is repeated for each target spike train, each time estimating the parameters of
the Cox method and confidence intervals to the target. Thus, for these five spike trains

this procedure should be repeated five times.

Table 5.9 summarizes the result of analyzing spike trains by the Cox method. Each row
of the table shows the Cox coefficients characterizing the influence strength to the target
spike trains. The first row of Table 5.9 corresponds to the case that the first spike train is
considered as a target and this row shows the estimates of Cox coefficients
characterizing influences to the target spike train (#1) from the reference spike trains
(#2 to #5): By =0.5, P31 =02, fu; =1.6, Ps; =0.09. Also the corresponding
confidence intervals (the confidence level here is 0.95) are shown. These intervals are
used to test the null hypothesis that the Cox coefficient is zero: if the confidence interval
includes zero then the null hypothesis should be accepted and it is concluded that there
is no influence from the reference spike train to the target (i.e. influence strength is

zero). On the first row there is only one Cox coefficient that significantly differs from
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zero (shown in bold) which characterizes the influence from spike train #4 to spike train
#1. This non-zero influence strength is interpreted as strength of the functional
connection from spike train #4 to spike train #1 and the strength is f8,; = 1.6. All other
Cox coefficients on the first row are not distinguishable from zero and the
corresponding functional connections to the target spike train #1 are absent. This
procedure of estimation of Cox coefficients is repeated for the target spike train #2 and

the result is shown in row 2, etc.

Reference 1 2 3 4 5
spike train
Target
spike train
1 0 0.5 0.2 1.6 0.09

(-0.09,1.1) | (-0.4,09) | (1.1,2.1) | (-0.6,0.8)

2 -0.2 0 0.4 1.9 0.3
(-1.0,0.4) (-0.1,1.1) | (1.4,2.4) | (-0.3,1.0)
3 0.5 -0.3 0 1.1 -0.2
(-0.06, 1.2) | (-1.0,0.4) 05,17y | (-1.1,0:5)
4 1.2 -0.1 0.1 0 -0.2
0.7, 1.8) | (-0.9,0.6) | (-0.5,0.8) (-1.0, 0.5)
5 -0.1 -0.2 1.2 0.003 0

(-0.8,0.6) | (-1.1,0.5) | (0.7,1.8) | (-0.7,0.7)

Table 5.9: Result of analysis of five spike trains by the Cox method. The estimates of
Cox coefficients and corresponding confidence intervals are shown. Cox coefficients
which significantly differ from zero (i.e. the confidence interval does not include zero)
are in bold.
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Thus, considering Table 5.9 it is concluded that there are five Cox coefficients that
significantly differ from zero; therefore there are five functional connections between
spike trains, these are: fy; = 1.6, B4, = 1.9, fly3 = 1.1, B14 = 1.2, fl3s = 1.2. These
functional connections are shown by circles in Fig. 5.14(b) and the radius of the circle is
proportional to the relative strength of influence: a small radius corresponds to a

relatively weak functional connection. The diagonal is shown by filled squares.
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Figure 5.14: (a) Connection scheme of five spike trains in matrix format (the same as
the scheme shown in Fig. 5.12(a) in graph format). (b) A diagram of functional
connections of five spike trains obtained by the Cox method.

Comparison of the matrix of functional connectivity (Fig. 5.14(b)) with the matrix of
connections (Fig. 5.14(a)), which has been used for simulation of spike trains, reveals a
good correspondence between these two schemes of connections. Moreover, relative
connection strengths have been correctly identified: circles with smaller radius

correspond to weaker connections (Table 5.6).

To emphasize the importance of this result, it is noted that the diagram of connectivity
in Fig. 5.12(a) contains direct connections shown by arrows (e.g. from spike train #4 to
spike train #3) and some ‘spurious’ connections: i.e., connections due to a ‘common

source’ and connections due to ‘indirect coupling’. For example, there is no direct
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connection between spike trains #1 and #2; however, spike train #4 is a common source
which delivers spikes to both spike trains (#1 and #2). Again, there is no direct
connection between spike trains #1 and #3, however, there is an indirect influence
(coupling) from spike train #1 to spike train #3 via spike train #4. Thus, from this
example it is shown that the Cox method can distinguish between ‘direct connection’
and the connectivity due to a ‘common source’ (or similarly, to distinguish ‘direct’ and

‘indirect’ connections).

5.6 Analysis of functional connectivity of twenty spike trains
In this section a relatively large set of twenty spike trains is analyzed which are
generated by the ELIF model with twenty elements and with forty two connections. A

diagram of connections is shown in Fig. 5.15(a).
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Figure 5.15: (a) Connection scheme of the twenty spike trains. There are forty two non
zero connections which are shown by arrows. (b) ISI histograms of the first four
generated spike trains. (¢) Raster plot of twenty spike trains generated for the neural
circuit. This raster plot shows a portion of time (20,000 ms) of the duration 50,000 ms.
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Parameter values of the ELIF model are similar to the parameter values which have
been used in the previous example of five spike trains. Parameter values of the ELIF

model are given in Table 5.10. A simulation has been run over a time interval of 50

seconds and Fig. 5.15(c) shows an initial part of the raster plot of twenty spike trains
generated by the model (from zero to twenty seconds). Fig. 5.15(b) shows an example

of the four ISI histograms of spike trains #1 to #4.

Neuron parameter Mean S.D.
Maximum value of the threshold 45.12 0.97
Threshold decay rate 3.02 0.30
Asymptotic threshold value 14.47 1.02
Amplitude of the noise 5.06 0.35
Noise decay rate 10.01 0.03
Initial value of after spike hyperpolarisation -29.10 0.41
Soma’s membrane potential decay rate 20.03 0.78
External input 0.009 0.40
Absolute refractory period 4.75 1.51
Connection parameter

Connection strength 10.44 1.85
Decay rate of postsynaptic potential 2.96 0.78
Time lag of spike propagation 10.14 2.26

l

Table 5.10: Parameter values of the ELIF model to generate twenty spike trains.

The procedure for analyzing the functional connectivity is the same as with the neural
circuit of five spike trains. The target spike train is selected and the other nineteen spike

trains are considered as reference spike trains. All the influence functions are considered
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identical and specified by the formula (5.3). The characteristic times are the same as in
the case of five spike trains 7, = 10 ms and 7, = 0.1 ms. To select a proper time lag
for the influence function the pair-wise CCF between the reference spike train and the
target spike train is calculated and the highest significant peak is identified. The
corresponding time shift of the CCF is used as the value of time lag A. Thus, the
influence function is defined and the estimates (B;, B, ..., f10) of Cox coefficients and

their confidence intervals are calculated.

To simplify, the result of data analysis i1s compared with the connection scheme used for
data generation, both the connection schemes in matrix format are shown in Fig. 5.16.
Fig. 5.16(a) shows connections of a neural circuit of twenty ELIF elements used for
data generation (the same scheme is shown in Fig. 5.15(a) in a graph format).
Fig 5.16(b) shows a diagram of functional connections in matrix format which have
been identified by the Cox method. The results from twenty repetitive applications of
the Cox method give a matrix of functional connectivity in Fig. 5.16(b). The first row of
the matrix corresponds to the case when the first spike train is selected to be a target; the
second row corresponds to the case when the second spike train is the target, etc. A
circle indicates that there is a significant influence (functional connection) to the target
spike train and the radius of the circle shows the relative strength of the influence.
Comparison of the connectivity matrix in Fig. 5.16(a) with the matrix in Fig. 5.16(b)
shows that the Cox method correctly identifies all forty two direct connections between
spike trains. The connectivity matrix is derived from the repetitive testing of the null
hypothesis that there are no dependencies between the target and reference spike trains,
using the Cox method. In the hypothesis testing, two null hypotheses of independence

are incorrectly rejected. These two false positive connections are shown by green circles
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(Fig. 5.16(b)) and these erroneous connections are not present in the circuit of the spike

train generation.
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Figure 5.16: (a) Connection scheme of the neural circuit of twenty spike trains in
matrix format (the same as a scheme of connections in a graph format in Fig. 5.15(a)).
(b) Functional connections identified by the Cox method. (¢) Functional connections
obtained by the CCF method.

Fig. 5.16(c) shows the matrix of functional connectivity which has been constructed by
using the pair-wise CCF technique. Comparison of this matrix with the matrix of
connections which have been used for data generation shows that all forty two null

hypotheses of independency are correctly rejected. It means that all forty two non-zero

connections have been correctly identified. However, in addition, fifteen null

128




Chapter 5 Cox Method

hypotheses of independency are incorrectly rejected. Thus, there are fifteen type I errors
(false positives) and the corresponding non-zero erroneous connections are shown by
green circles (Fig. 5.16(c)). The radius of circles corresponding to these erroneous non-
zero connections is relatively large; therefore, strength of erroneous influence is also
relatively large. From this example it can be shown that the Cox method has some

advantages over the CCF technique.

5.7 Cox method versus CCF

In this section the Cox method is compared with a traditional technique based on the
CCF and the advantages of the Cox method are shown, especially in cases which are
difficult for analysis. The CCF is a pair-wise method and therefore in this section it is
mainly the connection of two spike trains that are analyzed. The main assumption of the
Cox method is that the target process is the MRP with the hazard function described by
formula (5.1). A probabilistic model has been developed to generate the MRP which is
discussed in chapter 4. It is expected that for this data the estimate § of the Cox
coefficient equals the influence strength £ in formula (5.1). Of course, in the general
case of data generation using the ELIF model, it is not expected that the target spike
train is a MRP, However, in this section it is demonstrated that the Cox method can be
successfully applied to analyse functional connectivity and that the estimate f
monotonically increases with increase of connection strength in generated data. Also, in
this section connectivity of three spike trains generated by the ELIF model with
‘common source’ connections is studied. This connection scheme is very difficult for
analysing by pair-wise methods and in particular by the CCF. It is shown that for the
neural circuit of three spike trains, the Cox method can analyse three spike trains at once
to identify functional connectivity. In a similar way another set of three spike trains with

‘indirect’ connections, is studied.
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5.7.1 Analysis of two spike trains

In this section two spike trains, 4 (target) and B (reference), are generated using the
probabilistic model discussed in chapter 4 with a connection from B to 4 denoted by
Bga- The reference spike train B is generated with a gamma-distribution y(5,3) of inter
spike intervals. The influence function from reference spike train B to target spike train
A is specified by (5.4) with characteristic times 7o = 7, = 5 and time lag A= 0. The
backward recurrence time of spike train A4 is calculated using a Weibull distribution
W (15,5). Using these values the target spike train 4 can be generated with the formula
(5.1). After generating the target spike train 4 and the reference spike train B, the Cox

method and the CCF method are used for estimating the connection strength Sz,4.

To apply the Cox method, the influence function is specified by (5.4) with characteristic
times 7, = 7, = 5 ms and zero time lag (A= 0). The Cox coefficient fp, is estimated
using (5.5) and the confidence interval using (5.6). Also, the CCF has been calculated
and the value of the highest peak outside of the confidence interval pg, is considered as
an estimate of the connection strength. Of course, if there are no peaks outside of the
upper bound of the confidence interval, the connection strength is considered to be zero
and pg, = 0. In this section some advantages of the Cox method, both in the case of

short spike trains and in the case of a weak coupling, are demonstrated.
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Figure 5.17: Estimate of the Cox coefficient and CCF measure for two spike trains.
Estimated Cox coefficients are shown by black circles and the confidence interval of the
estimates are shown by black vertical lines. Estimated measures of independency using
CCF are shown by black cross sign. (a) Moderate and strong influence. Eight pairs of
spike trains are generated using the probabilistic model taking the strength of influence
from the range from 0.5 to 4: 854 = (0.5,1,1.5,2,25, 3, 3.5, 4). The average number of
spikes in the reference spike train B is about 400. Estimated Cox coefficients Sz,
identify accurately all the strengths of influences (blue line with circle markers and
vertical black bars for confidence intervals) and are monotically increasing. The highest
peaks pgus of the CCF (independency measure) are shown by the magenta line (with
cross markers), they also can identify functional connectivity but do not demonstrate a
monotonic increase. (b) Short spike train. A short version of eight pairs of spike trains
described in (A) are considered. The average number of spikes in the reference spike
train B is about 70. The estimated Cox coefficients f, identify accurately all the
strengths of influences Sz, except for one (fg4 = 0.5) and demonstrate a monotonic
increase. The independency measure of CCF (pg,4) show connection for large strength
but they fail to identify connection for fSgs = (0.5,1). Also these values do not
demonstrate a monotonic increase. (¢) Weak influence. Eight pairs of spike trains are
generated with weak influences fp4 = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). The number
of spikes in the reference spike train B is about 1400. Estimated Cox coefficients (Bsa)
identify accurately all these strengths of influences (fz4) and are monotonically
increasing. Independency measures of CCF (pp,) identify functional connectivity
though they do not indicate an increase of influence. (d) Length of spike train. Eight
pairs of spike trains of a different length are generated keeping the same connection
strength fBg4 = 1. The length n of the reference spike train B increases: n =
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50,60, ------,120. Estimated Cox coefficients (85,) are almost constant for all lengths

but independency measures of CCF (pg,) fail to identify strengths of influences for
shorter lengths of reference spike trains (n= 50, 60, 70, 80).

Moderate and high strengths of influence. Varying the strength of influence g, in a

range from moderate to high, eight pairs of spike trains are generated and for each pair
connectivity is analyzed. The average number of spikes in the reference spike train B is
about 400 and the target spike train 4 has a larger number of spikes. The blue line in
Fig. 5.17(a) shows the estimated Cox coefficient B, (with its corresponding confidence
interval which is shown by a black vertical bar) versus the strength of influence fg,.
This plot shows that the estimated values are close to the values which have been used
for data generation. The magenta line shows the independency measure of the
CCF(pgys) versus the strength of influence Bg,. It is clear from Fig. 5.17(a) that the
CCF also identifies this connection, however, the plot of the CCF(pg,) is not

monotonically changing and fails to indicate the increase of influence.

Short spike trains. To test sensitivity of the Cox method in the case of short spike trains

the same pairs of spike trains are used as in the previous example with the epoch time
shortened and considering only a part where the independent spike train has about 70
spikes. Thus a time epoch is about six times shorter than in the previous example.
Fig. 5.17(b) shows the estimate of Cox coefficient fg, versus the strength of
influence fz,4 for the moderate and high strengths of influence (shown by the blue line
with the black vertical bars of confidence intervals). This line shows that the estimated
values are similar to the strengths which have been used for data generation with only
one exception: for fgz4 = 0.5 the confidence interval contains zero and therefore the
Cox coefficient is not distinguishable from zero. The magenta line in Fig. 5.17(b) shows
that the CCF fails to identify functional connections for the moderate influences fg4 =

(0.5,1). For the higher influences Bz, = (1.5,2,2.5,3,3.5,4) the CCF measure is
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nearly constant and fails to indicate the increase of influence. Therefore, the Cox

method has some advantages in the case of short spike trains.

Weak influence. To test the efficiency of methods and to identify weak connection

strength the same probabilistic model is used for generating another eight pairs of spike
trains with weak influence: Bz, = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8). In this case the
time epoch should be long enough (about 1400 spikes in the reference spike train B) to
allow distinguishing of weak influence connections. Fig. 5.17(c) shows that both
methods demonstrate good results and identify the connection. The Cox coefficient
increases with the connection strength increase but the CCF measure is not

monotonically increasing.

Sensitivity to the length of spike trains. How sensitivity of the methods depends on the

length of spike trains, under a constant value of the influence strength, is studied. The
conclusion is that for shorter spike trains the Cox method identifies the connection but
the CCF method fails. The strength of influence Bz, = 1.0 is relatively small. The value
of influence strength is fixed and eight pairs of spike trains are generated with different
numbers of spikes in the reference spike train B: n = 50,60, - ,120. Fig. 5.17(d)
shows that the estimated Cox coefficient is almost constant (85, = 1) and does not
depend on the length of spike train. The CCF measure (pg4) identifies the connection
for the larger spike trains (n= 90, 100, 110, 120) but fails to identify a strength of

influence for the shorter lengths of reference spike trains (n= 50, 60, 70, 80).

5.7.2  Analysis of three spike trains

Here it is shown that the Cox method is very effective in analyzing connections which
are not direct such as ‘common source’ circuits (Fig. 5.18(a)) and ‘indirect connection’

circuits (Fig. 5.20(a)). Usually it is very difficult to analyze these types of connections
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using the pair-wise CCF technique. The Cox method is multivariate and can analyze
three spike trains at once, making this method more sensitive than pair-wise CCF. For
example, this advantage enables the Cox method to distinguish between ‘direct’
connections and connections due to a “‘common source’ in case of a moderate influence

from the common source.

5.7.2.1 Common source connection

Three spike trains ({#1, #2, #3}) are generated using ELIF with the parameters given in
Table 5.11 and with a ‘common source’ connection (Fig. 5.18(a)). The ‘common
source’ circuit includes two connections from spike train #1 to spike trains #2 and #3.
Connection strengths are 12.6 and 10.6; delays of spike propagation are 11 ms and 14

ms, respectively.

Neuron parameter Mean S.D.
Maximum value of the threshold 44.70 0.36
Threshold decay rate 2.83 0.46
Asymptotic threshold value 14.40 0.47
Amplitude of the noise 4.59 0.49
Noise decay rate 10.01 0.02
Initial value of after spike hyperpolarisation -28.68 0.68
Soma’s membrane potential decay rate 19.85 0.48
External input 0.16 0.23
Absolute refractory period 7.00 1.73

Table 5.11: Neuron parameters of the ELIF model of two spike trains with common
source connection.
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These three spike trains are analyzed by the Cox method with the influence function
given by formula (5.3), characteristic times are 7, = 10 ms and 7, = 0.1 ms. To
prescribe the time lags the CCF function is calculated for all pairs of spike trains
(Fig. 5.19): A= 11ms, A,3= 14ms, A,3= 3ms, and all other time lags are zero. It is
assumed that the target spike train is #k, (k = 1,2,3). The estimates (Bik,ﬁjk) (i =
1,23;,)=123;k=123, i #j,i#k,j+ k) of two Cox coefficients have been
calculated using formulas (5.5) and (5.6) as well as a confidence region on the plane
(ﬁm.ﬁjk) using formula (5.7). The confidence region (@ = 0.05) has an elliptic shape

and the centre of the confidence region is located at point (Bix, Bjx)-

B, =02(-0104)
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Figure 5.18: (a) Connection scheme of three spike trains which have common source.
Spike train #1 influences both spike train #2 and spike train #3 with time delays 11 ms
and 14 ms, respectively. (b) Confidence regions of the estimated Cox coefficients in
three cases: influences to spike train #1 (left), influences to spike train #2 (middle),
influences to spike train #3 (right). (¢) Estimated coefficients of the Cox method with
confidence intervals. Significant connections are indicated by solid arrows.
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Fig. 5.18(b) shows three confidence regions. The region on the left side corresponds to
the target spike train #1; the region in the middle corresponds to target spike train #2,
the region on the right side corresponds to target spike train #3. It is shown in Fig.
5.18(b) that the region on the left side contains zero, therefore it is concluded that both
connections to spike train #1 are absent. This result is shown in Fig. 5.18(c) by two
dashed arrows pointing to #1. These dashed arrows indicate an absence of both

connections.

The region in the middle does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (3,5 , f3,) . The projection to the vertical axis
B3, contains zero, therefore, it is concluded that the null hypothesis should be accepted
and that the connection from #3 to #2 is absent. The projection to the horizontal axis £,
does not contain zero, therefore, it is concluded that the null hypothesis should be
rejected and the estimate f3,, is the strength of the connection from #1 to #2. This result
is shown in Fig. 5.18(c) by two arrows pointing to #2: the dashed arrow indicates the
absence of a connection from #3 to #2 and the solid arrow indicates presence of a
connection from #1 to #2 and the value of connection strength is f;, = 2.6. The region
on the right side can be interpreted in a similar way. The result is shown in Fig. 5.18(c)
by two arrows pointing to #3: the dashed arrow indicates the absence of a connection
from #2 to #3 and the solid arrow indicates the presence of a connection from #1 to #3

and the value of the connection strength is ;5 = 1.7.

The results of analysis are in good agreement with the architecture of connections which
were used to generate the data (compare Fig 5.18(a) with Fig. 5.18(c)). For example, for

data generation, a higher connection strength was selected for connection from #1 to #2
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and the estimated connection strength from #1 to #2 is also higher than the estimated

connection strength from #1 to #3.

Thus, the result in Fig. 5.18(c) indicates that there are two significant influences only
(shown by solid arrows, all others are shown by the dashed arrows): from spike train #1
to spike train #2, from spike train #1 to spike train #3, and the influence strengths are

shown with their confidence intervals (a = 0.05).
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Figure 5.19: Pair-wise cross correlation functions of three spike trains. Each CCF is
shown for selected pairs of spike trains (called target and reference). Diagram of
connections (common source) is shown in Fig. 5.18(a).

Fig. 5.19 illustrates the result analyzing of the same three spike trains by the pair-wise
CCF method. Each row of the figure shows two CCF corresponding to the selected
target spike train — spike train #1 is the target for the first row, spike train #2 is the

target for the second row, etc. The CCF analysis reveals three connections: from spike
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train #1 to spike train #2 (second row, first column), from spike train #1 to spike train
#3 (third row, first column), and from spike train #2 to spike train #3 (third row, second
column). The first two of these connections correspond well to the diagram of
connectivity (Fig. 5.18(a)) but the third one is erroneous and this connection appears to
be due to the common source to spike trains #2 and #3. Thus, the Cox method is able to

distinguish the common source trom the direct connections but the CCF method fails.

5.7.2.2 Indirect connection

Similar to the previous example, a set of three spike trains ({#1, #2, #3}) are generated
using the ELIF model with the parameters given in Table 5.12 and with indirect
connections (Fig. 5.20(a)). The ‘“indirect connection’ circuit includes two direct
influences: from spike train #1 to spike train #2 with the time lag 11 ms, and from spike
train #2 to spike train #3 with the time lag 12 ms. The connection strengths are 11.2 and

9.1, respectively.

Neuron parameter Mean S.D.
Maximum value of the threshold 45.20 0.74
Threshold decay rate 2.93 0.51
Asymptotic threshold value 15.20 1.06
Amplitude of the noise 4.67 0.50
Noise decay rate 10.00 0.009
Initial value of after spike hyperpolarisation -28.92 0.64
Soma’s membrane potential decay rate 19.56 0.78
External input 0.08 0.33
Absolute refractory period 6.00 3.46

Table 5.12: Neuron parameters of the ELIF model of two spike trains with indirect
connection.
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To analyse functional connectivity by the Cox method with the influence function given
by formula (5.3), the characteristic times are specified as 7, =10ms and 71, =
0.1ms. To specify a time lag the CCF is calculated for all pairs of spike trains
(Fig. 5.21): A= 11ms, Ay3= 12ms, A;3= 23 ms, and all other lags are zero. It is
assumed that the target spike train is #k, (k = 1,2,3). The estimates (Bik, 3jk) (i=
1,23;j=123;k=123,i #j,i#k,j # k) of two Cox coefficients have been
calculated using formulas (5.5) and (5.6) as well as a confidence region on the plane
(Bik,ﬁjk) using formula (5.7). The confidence region (a = 0.05) has an elliptic shape

and the centre of the confidence region is located at point (ﬁik, g jk).
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Figure 5.20: (a) ‘Indirect connection” scheme of three spike trains. Spike train #1
influences spike train #2, which influences spike train #3, with time delays 11 ms and
12 ms, respectively. (b) Confidence regions of the estimated Cox coefficients in three
cases: influences to spike train #1 (left), influences to spike train #2 (middle), influences
to spike train #3 (right). (c¢) Estimated coefficients of the Cox method with confidence
intervals. Significant connections are indicated by solid arrows.
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Fig. 5.20(b) shows three confidence regions. The region on the left side corresponds to
the target spike train #1; the region in the middle — target spike train #2, the region on
right side — target spike train #3. The region on the left side contains zero, therefore both
connections to spike train #1 are concluded to be absent. This result is shown in Fig.

5.20(c): two dashed arrows pointing to #1 indicates the absence of both connections.

The region in the middle does not contain the origin and this indicates that the null
hypothesis should be rejected. The centre of the confidence region is shown by the blue
cross and its coordinates are the estimates (5, , B32) . The projection to the vertical axis
35, contains zero, therefore, it is concluded that the null hypothesis should be accepted
and the connection from #3 to #2 is absent. The projection to the horizontal axis ;>
does not contain zero, therefore, it is concluded that the null hypothesis should be
rejected and the estimate f;, is the strength of connection from #1 to #2. This result is
shown in Fig. 5.20(c) by two arrows pointing to the #2: the dashed arrow indicates the

absence of a connection from #3 to #2, the solid arrow indicates the presence of a

connection from #1 to #2, and the value of the connection strength is 8,5 = 2.3.

The region on the right side can be interpreted in a similar way. The result is shown in
Fig. 5.20(c) by two arrows pointing to #3: the dashed arrow indicates the absence of a
connection from #1 to #3, the solid arrow indicates the presence of a connection from

#2 to #3, and the value of the connection strength is $,; = 1.5.
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Figure 5.21: Pair-wise cross correlation functions of three spike trains. Each CCF is
shown for selected pair of spike trains (called target and reference). Diagram of
connections (indirect connection) is shown in Fig. 5.20(a).

The results of analysis are in good agreement with the architecture of connections which
were used to generate the data (compare Fig 5.20(a) with Fig. 5.20(c)). For example, for
data generation, a higher connection strength was selected for connection from #1 to #2
and the estimated connection strength from #1 to #2 is also higher than the estimated

connection strength from #2 to #3.

Thus, the result in Fig. 5.20(c) indicates that there are two significant influences only
(shown by solid arrows, all others are shown by the dashed arrows): from spike train #1
to spike train #2, from spike train #2 to spike train #3, and the influence strengths are

shown with their confidence intervals (@ = 0.05).
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Fig. 5.21 illustrates the result of analyzing the same three spike trains by the pair-wise
CCF method. Each row of the figure shows two CCF corresponding to the selected
target spike train — spike train #1 is the target for the first row, spike train #2 is the
target for the second row, etc. The CCF analysis reveals three connections: from spike
train #1 to spike train #2 (second row, first column), from spike train #2 to spike train
#3 (third row, second column), and from spike train #1 to spike train #3 (third row, first
column). The first two of these connections correspond well to the diagram of
connectivity (Fig. 5.20(a)) but the third one is spurious (from #1 to #3) and this
connection appears to be due to the “indirect” connection from trains #1 to train #3.
Thus, the Cox method is able to distinguish the ‘indirect’ connection from the direct

connections but the CCF method fails.

5.8 Cox metric

Spike train similarity or dissimilarity measures are important tools to quantify the
relationship among pairs of spike trains (Paiva et al., 2009). Such measures are essential
for classification, clustering, or other forms of spike train analysis. By using a distance
measure it is possible to identify the similarity or dissimilarity of the pair of spike trains.
If the distance between two spike trains is small enough then it can be assumed that
these spike trains are “identical’. A traditional measure of similarity between two spike
trains is based on the calculation of the pair-wise cross-correlation function (CCF)
(Perkel et al., 1967). It is a bin based method which requires stationarity and a
sufficiently large length of spike trains. There are several binless spike train similarity
measures (Victor and Purpura, 1997; van Rossum, 2001; Schreiber et al, 2003; Hunter
and Milton, 2003; Kurtz et al, 2007; and Houghton, 2009). In this section a new binless
spike train metric is proposed which is based on the pair-wise analysis of the Cox

method and hence the name Cox metric. The Cox metric is used to identify the groups
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of similar spike trains, between multiple spike trains, with a clustering algorithm. This
is a mathematical metric which has the following properties:

1. d(SPT,,SPTg) = 0 (non-negativity)

2. d(SPT4,SPT,) =0

3. d(SPT,,SPTg) = d(SPTg,SPT,) (symmetry)

4. d(SPT4,SPT;) < d(SPT,, SPTg) + d(SPTg, SPT.) (triangle inequality)

where SPT,, SPTg are pairs of spike trains.

The Cox metric is based on the pair-wise estimate of the Cox coefficient (f;;) from i th
spike train to j th spike train (i = 1,2,----,p, j = 1,2, - , 0, L # J), where p is the
total number of spike trains. Estimation of the pair-wise Cox coefficient (f;;) and the
confidence interval are described in section 5.3.1 and an example is given in section 5.4
for four generated spike trains. If the confidence interval contains zero, then it is
concluded that the corresponding Cox coefficient is not distinguishable from zero and
the influence from spike train i to spike train j is absent. If the confidence interval does
not include zero, it is concluded that there is a significant influence from spike train i to

spike train j and the value of the estimate characterizes the strength of this influence.

In fact, the Cox coefficient (f;;) from i th spike train to j th spike train can also be
estimated considering all spike trains at once instead of pair-wise analysis. The analysis
based on all spike trains at once identifies better functional connections than the pair-
wise analysis which is demonstrated in section 5.4. Analysis based on all spike trains at
once takes very long computation time. For example, analysing 30 spike trains at a time
each have 1000 spikes (average) needs 16 minutes in FORTRAN on a PC computer
with 2.8 dual core processor. On the other hand, the pair-wise analysis is faster than the

analysis based on all spike trains at once. For example, the same 30 spike trains needs
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only 26 seconds in FORTRAN. More importantly, the Cox metric based on pair-wise

analysis and all spike trains at once produces similar result.

To formulate the Cox metric, it is assumed that Cox coefficient from spike train i to
spike train j (B;;) is the same as the Cox coefficient from spike train j to spike train
(Bji): 1.e., they are symmetric. To get the symmetric Cox coefficient, the maximum
value of (f;;) and (f8;;) is taken as a measure of functional connectivity between spike
trains { and j. Thus, a symmetric matrix of functional connectivity is obtained from p
spike trains. This matrix is considered as a matrix of similarities between p spike trains.
Thus, the pair of spike trains whose Cox coefficient has the largest value in the
similarity matrix is considered to be the most similar pair of spike trains. The distance
between two points i and j in the clustering algorithm is considered as a difference
between the maximum Cox coefficient in the similarity matrix and the Cox coefficient
between spike trains i and j. Thus, a metric (distance) between spike train i and spike

train j is calculated:
Dij = “}E}Xﬁu — max({ B, Bji), Lj=12,- P LFEj (5.8)

In combination with a clustering algorithm this metric is used for finding functional
connectivity and identifying the groups of interacting neurons. In the clustering

algorithm the average linkage is used for calculating a distance between clusters.

5.8.1 Application to twenty spike trains

To apply the Cox metric to generated data, a set of twenty spike trains is generated with
the ELIF model. The connection diagram includes forty nine connections and the
connections are coupled into five groups. A diagram of connections is shown in
Fig. 5.22. Parameter values of the ELIF model are given in Table 5.13. A simulation has

been run over the time interval of 50 seconds.
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10

11 19

Figure 5.22: Connection scheme of the twenty spike train. There are forty nine non zero
connections which are shown by arrows. These forty nine connections are coupled in
five groups.

In order to apply the Cox metric to the twenty spike trains the pair-wise analysis of the
twenty spike trains is conducted. A total of 380 possible pairs of spike trains are
analyzed by the pair-wise Cox method taking one spike train as a target (j) and the
other spike train as a reference (i). All the influence functions are considered to be
identical and specified by (5.3) with the parameters 7,, = 0.1 ms and 7, = 10 ms.
Another parameter, time lag A of the influence function, is specified by the pair-wise
CCF method. Now using the parameter values 7,, = 0.1 ms and 1, = 10 ms, and time
lags A obtained from CCF, the parameters of pair-wise analysis of the Cox method are
estimated using (5.5) with the corresponding confidence interval by (5.6). Fig. 5.23(a)
shows the connection of the twenty spike trains used for data generation (the same
scheme is shown in Fig. 5.22 in a graph format). Fig 5.23(b) shows a diagram of

functional connections in matrix format which has been identified by the pair-wise Cox
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method. A circle indicates that there is a significant influence (functional connection)
from the reference spike train (i) to the target spike train (j) and the radius of the circle
shows the relative strength of the influence. Comparison of the connectivity matrix in
Fig. 5.23(a) with the matrix in Fig. 5.23(b) shows that the pair-wise analysis of the Cox
method correctly identifies all forty nine direct connections. This result is accurate

enough, however, there are eight erroneous connections shown by small red circles.

Neuron parameter Mean S.D.
Maximum value of the threshold 4493 1.17
Threshold decay rate 2.92 0.46
Asymptotic threshold value 14.47 1.08
Amplitude of the noise 4.94 0.38
Noise decay rate 10.02 0.03
Initial value of after spike hyperpolarisation -28.84 0.42
Soma’s membrane potential decay rate 20.15 0.76
External input -0.03 0.38
Absolute refractory period 5.20 1.60
Connection parameter

Connection strength 12.35 79§
Decay rate of postsynaptic potential 2.80 0.73
Time lag of spike propagation 11.73 1.33

Table 5.13: Parameter values of the ELIF model to generate twenty spike trains.

The Cox metric is also applied to the connectivity matrix obtained by the Cox method
considering all spike train at once. Using the same parameter values of the pair-wise

analysis, the parameters of the Cox coefficient and their confidence intervals are
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estimated considering all spike trains at once. Fig 5.23(c) shows a diagram of functional
connections in matrix format which has been identified by the Cox method considering
all spike trains at once. Comparison of the connectivity matrix in Fig. 5.23(a) with the
matrix in Fig. 5.23(c) shows that the Cox method considering all spike trains at once
correctly identifies all forty nine direct connections with only three erroneous

connections shown by the small red circles.

In the Cox metric it is assumed that the Cox coefficients (f;;) and (f};) are symmetric,
for example, in Fig. 5.23(b) there is a connection from spike train #12 to spike train #1
but there is no connection from spike train #1 to spike train #12. In the Cox metric it is
also assumed that there is a connection from spike train #1 to spike train #12 with the
same strength as from spike train #12 to spike train #1. Again, in the connection matrix
there is a connection from spike train #1 to spike train #10 and from spike train #10 to
spike train #1, but the connection strength from spike train #1 to spike train #10 is
stronger than the connection strength from spike train #10 to spike train #1. In the Cox
metric it is assumed that both connections are the same and the connection strength is
considered to be the maximum of these two connection strengths, which in this case is
from spike train #1 to spike train #10. After having the symmetric matrix of functional
connections the Cox metric is obtained by (5.8). A clustering algorithm is applied to the
Cox metric which enables the identification of the groups of similar spike trains in the
set of twenty spike trains. The result of the clustering algorithm applied on the Cox

metric is presented in Fig. 5.24.
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Figure 5.23: (a) Connection scheme of twenty spike trains in matrix format (the same
as the scheme shown in Fig. 5.22 in graph format). (b) A diagram of functional
connections of twenty spike trains obtained by the pair-wise analysis of Cox method. (¢)
A diagram of functional connections of twenty spike trains obtained by the Cox method
considering all spike trains at once.

148



Chapter 5 Cox Method

Referemce spike train Refereace spiite traim
8186 1 13161 7T LINI917T20 4 § 9 153 1411 53 14111 71219192 6 8 I3 1617204 5 9 15
o]
® |

.

sjee
ool 0

0]

| | |
| | | | D00

(a) (b)

Target spike train
ERiwRewnalNGablv~abrveage
L]
ole
°
Target spike train
GewalB o olEmengERu~Ryw

Figure 5.24: Groups of similar spike trains revealed by the Cox metric of twenty spike
trains shown in Fig. 5.22. (a) Cox meftric using pair-wise analysis. (b) Cox metric
considering all spike trains at once.

In Fig. 5.24(a) the grey circles show the connections revealed by the pair-wise analysis
of Cox method. The black circles are not identified by pair-wise analysis of the Cox
method but are shown in the matrix to keep symmetry. Similarly, in Fig. 5.24(b) the
grey circles show the connections revealed by the Cox method considering all spike
trains at once. The black circles are not identified by the Cox method considering all
spike trains at once but are shown in the matrix to keep symmetry. From Fig. 5.24, it is
observed that Cox metric based on pair-wise analysis and considering all spike trains at
once correctly identifies all the five coupled groups of spike trains. The ordering of the
groups of similar spike trains in Fig. 5.24 is different because of clustering. In Fig.
5.24(a) there are some connections which do not exist in Fig. 5.24(b). For example,
there is a connection from spike train #6 to spike train #16 in Fig. 5.24(a), but this
connection does not exist in Fig. 5.24(b). Investigation from the diagram (Fig. 5.22) that
is used for the generation of the spike trains shows that there is no connection from
spike train #6 to #16. This indicates that Cox method based on all spike trains at once

seems to give better functional connectivity than the pair-wise analysis of Cox method.
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Though there are differences to identify functional connectivity, these two methods
enable to identify groups of coupled spike trains which are similar. Thus the Cox metric
is useful for ordering and visualising of spike train couplings, as well as for finding the

groups of mutually coupled spike trains.

5.9 Motif analysis using Cox method

Patterns of interconnections among multiple spike trains are important to understand
their relationships. A pattern of interconnections is usually meant as a connected m-
vertex graph which is a subgraph of a larger graph. To find these patterns of
interconnections a motif analysis is used (Milo et al., 2002; Sporns and Kotter, 2004). A
motif is a connected subgraph of m vertices occurring in a directed graph at a number
significantly higher than in randomized versions of the graph. That is, in graphs with the
same number of vertices, edges and degree distribution as the original one, but where

the edges are distributed at random.

A directed graph is a configuration whose figures are ordered pairs of points. In this
context, the content of a figure is one or zero in respective accordance with the
existence or non-existence of a directed line from the first member of the figure to its
second member. Hence the figure counting series is 1 + x. Let d,,(x) is the counting
polynomial for directed graphs with m vertices. The counting polynomials d,,(x) for
m = 1to 5 is provided by Harary and Palmer (1973):

d,(x)=1

d,(x) =1+ x + x?

d;(x) =1+ x+4x% + 4x3 + 4x* + x5 + x°

dy(x) =1+ x+5x* + 13x3 + 27x* + 38x° + 48x® + 38x7 + 27x® + 13x% + 5x1°

+x1t 4 x12
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ds(x) = 1+ x + 5x? + 16x3 + 61x* + 154x° + 379x°% + 707x” + 1155x®
+1490x° + 1670x° + 1490x* + 1155x*2 + 707x3 + 379x'*

+154x° + 61x16 + 16x!7 + 5x18 4 x12 4 x20

Using the counting polynomial d,,,(x) the numbers of directed graphs for m = 2 and 3
vertices are shown in Fig. 5.25(a) and Fig. 5.26(a). To obtain the number of motifs from
the directed graph, all vertices must have either outdegree or indegree of at least one.
Thus the number of motifs for m = 2 and 3 vertices are 2 and 13 which are identified
from Fig. 5.25(a) and Fig. 5.26(a). The motif ID for m = 2 and 3 vertices are shown in
Fig. 5.25(b) and Fig. 5.26(b). For m = 4 and 5 the corresponding numbers of directed
graphs are 218 and 9608; and the motif ID’s are 199 and 9,364 (Harary and Palmer
1973). In this section motifs of size m = 3 are considered. There are some connected
motifs that form a strongly connected graph. For m = 3, motifs with ID =7, 9, 10, 12,
and 13 are connected motifs. In a connected motif all vertices can be reached from all

other vertices.

=} < 2 —e O« >0
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Figure 5.25: (a) The 3 directed graph of 2 vertices (b) The 2 motif ID of 2 vertices.
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Figure 5.26: (a) The 16 directed graph of 3 vertices (b) The 13 motif ID of 3 vertices.
For multiple spike trains the diagram of functional connectivity is identified by the Cox
method considering all spike trains at once. From this diagram of connectivity a
structural motif count can be obtained by counting the number of distinct motif ID.

Given the structural motif count for distinct motif ID, the bar diagram of structural
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motif count is obtained. The diagram of functional connectivity can also be obtained
using the triplet analysis of Cox method. For multiple spike trains all possible triplets
are analysed and a diagram of functional connectivity can be identified. An example of
triple analysis of Cox method is demonstrated in section 5.4.2. Structural motif can also
be identified by the diagram of connectivity obtained from triplet analysis. The
advantage of triplet analysis is that it requires less computational time than the analysis
of all spike trains at once. The motif obtained from the triplet analysis is also very

similar to the motif obtained from the analysis of all spike trains at once.

,3
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/. o
(a) 1 (b)

Figure 5.27: (a) Diagram of functional connectivity of four spike trains identified by
the Cox method considering all spike trains at once. (b) Structural motif identified from
the diagram of connectivity in (a). Numbers represent motif ID.
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To understand the motif analysis a small set of four spike trains is considered, which
was used in section 5.4. The diagram of functional connectivity of these four spike
trains, obtained by the Cox method considering all spike trains at once, is given in Fig.
5.27(a). The diagram of functional connectivity of all possible triplets, obtained by the
triplet-wise analysis of Cox method, is given in Fig. 5.28(a). From the diagram of
connectivity (Fig. 5.27(a)), two possible structural motifs are identified (Fig. 5.27(b)).
Similarly, from the diagram of connectivity (Fig. 5.28(a)), four possible structural

motifs are identified (Fig. 5.28(b)).
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Figure 5.28: (a) Diagram of functional connectivity of all triplets identified by the
triplet-wise analysis of Cox method. (b) Structural motif identified from the diagram of
connectivity in (a). Number represents motif ID.

To search the significant structural motifs from the diagram of functional connectivity, a
large number of randomized diagrams (#=100 or 1000) are generated keeping the same
number of vertices and edges as the original diagram but distributing the edges at

random. In order to quantify the significance of a given motif ID i, its Z-score can be

computed (Boccaletti et al., 2006). If nﬁrea” is the number of times that a motif ID i

(rand)

: S and O_(rand]

appears in the real diagram of functional connectivity, < n ; are the

average and standard deviation of the motif ID i obtained from the randomized
diagrams, then its Z-score can be computed as

(real) (rand)
P e e 5.9)
[ (rand) ( ’
Ji

A structural motif is considered to be significant if the Z-score of this motif is higher

than 2 (Sporns et al., 2007).

5.9.1 Application to twenty spike trains

To identify the patterns of interconnections using structural motifs, a set of twenty spike
trains is considered. The connection scheme of these twenty spike trains is given in
Fig.5.15(a). The diagram of functional connectivity of these twenty spike trains is given

in Fig. 5.29(a) which is obtained by the Cox method considering all spike trains at once.
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This diagram of functional connectivity is similar to the Fig. 5.16(b) which is in matrix
form. Fig. 5.30(a) shows the structural motif count of size m = 3 found within the
diagram of connectivity in Fig. 5.29(a). To identify the significant structural motif, 1000
randomized diagrams are generated, with the same number of twenty vertices, forty four
edges and degree distribution as the original one, but the edges are distributed at
random. The structural motif count of size m = 3 found within the randomized
diagrams is shown in Fig. 5.30(b). The motif ID 6, 9 and 12 appear more than the
randomized diagrams, where as all other motif ID’s appear less than the randomized
diagrams. The Z-score is calculated using (5.9) and the result shows that motif ID 6
(Zg > 2.15, p < 0.04), motif ID 9 (Zg > 14, p < 0.0001) and motif ID 12 (Z;;, >
3.70, p < 0.0001) are significant. An example of the significant patterns of
interconnections (motif ID 9) that appears more than the randomized diagram is shown

in the Fig. 5.29(b) with blue arrows.

o 9 ¥ 3
¥ & ,L ~ & N 4
€ M (AN -
o« 9 i
® | RN 4
» ¢ &
» g € g
(=)

Figure 5.29: (a) Diagram of functional connectivity of the twenty spike trains by the
Cox method obtained from the neural circuit of twenty spike train in section 5.6
(Fig. 515(a)). (b) Significant structural motifs from this diagram of functional
connectivity. Here only motif ID 9 is shown by blue arrows for illustration.
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Figure 5.30: (a) Structural motif count of size m = 3 for the diagram of connectivity of

twenty spike trains. Significant motif ID’s are displayed as green. (b) Structural motif
count of sizem = 3 for the randomized diagrams.
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Figure 5.31: Structural motif count of all possible triplets of the twenty spike trains.

Structural motifs of the twenty spike trains can also be identified by applying the triplet
analysis of the Cox method to the all possible triplets. For the set of twenty spike trains
a total of 1140 groups of triplets are analysed. Diagram of connectivity of each triplet is
used to identify the structural motif. A structural motif count for different motif ID’s is
shown in Fig. 5.31. Out of 1140 triplets, 103 triplets have different structural motif ID’s.
Among these 103 triplets, 22 triplets have structural motif ID’s 1 and 2, which are the
highest among the motif ID’s. There are no triplets which have structural motif ID’s 7,

8, 10, 11, 12 and 13. There are a very low proportion of connected motifs (10.68%) in
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the triplets which indicates that the connection from every spike train to every other
spike trains in the triplet is very low. More importantly, the structural motif count in

Fig. 5.30(a) is mostly similar to that in the Fig. 5.31.




Chapter 6

Application of the methods to the experimental
data

In previous chapters, the MCG method and the Cox method for studying the functional
connectivity have been described and tested thoroughly using simulated spike trains. In
this chapter these two methods are applied to analyse experimentally recorded multiple
spike trains and derive a functional connectivity. These recordings from the cat’s visual
cortex (Nikolic, 2007; Schneider et al., 2006) have been kindly provided for analysing
by Dr. Danko Nikolic (Max Planck Institute for Brain Research, Frankfurt, Germany).
Also, the Cox method has been used to identify groups of similar spike trains (Cox
metric) and reveal the patterns of interconnections among spike trains (motif analysis).

The connections obtained by the MCG method and the Cox method are analysed.

6.1 Methods for data acquisition

6.1.1 Preparation

The cat was initially anesthetized with ketamine, and the anaesthesia was maintained
with a mixture of 70% N,O and 30% O, supplemented with halothane (0.4-0.6%). The
animal was paralysed with pancuronium bromide (Pancuronium, Organon, 0.15 mg kg™
h™"). All the experiments were conducted according to the guidelines of the Society for
Neuroscience and German law for the protection of animals, approved by the local

government’s ethical committee and overseen by a veterinarian.

6.1.2 Recording
Multi-unit activity (MUA) was recorded from a region of area 17 corresponding to the

central part of the visual field by using a SI-based multielectrode probe (16 channels per
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electrode) supplied by the Centre for Neural Communication Technology at the
University of Michigan (Michigan probes) with inter-contact distance 200 ym (0.3-0.5
MQ impedance at 1000 Hz). Signals were filtered between 500 and 3.5 kHz for
extracting multi-unit activity (MUA), digitized with 32 kHz sampling frequency and
stored in computer memory. All analyses were made on the basis of discrete spike
events detected by a threshold that was set to a value of about two times the noise level.
The probe was inserted in the cortex approximately perpendicular to the surface and
allowed simultaneous recording from neurons at different cortical depths and along an
axis tangential to the cortical surface. Fourteen MUA signals showed good responses to
visual stimuli, orientation selectivity and overlapping receptive fields (RF). This
resulted in a cluster of overlapping RFs that were stimulated simultaneously by a single

visual stimulus.

6.1.2 Visual stimulation

Stimuli were presented binocularly on a 21 inch computer screen (HITACHI
CMB813ET) with 100 Hz refresh rate. To obtain binocular fusion the optical axes of the
two eyes were first determined by mapping the borders of the respective RFs and then
aligned on the computer screen with adjustable prisms placed in front of one eye. The
software for visual stimulation was a commercially available stimulation tool,
ActiveSTIM (http:// www.ActiveSTIM.com). The stimuli consisted either of one white
bar moving over a black background or consisted of two bars moving in different
directions (60" difference). The bars always appeared at about 3" eccentricity of the
centre of the cluster of RFs and moved with a speed of 1'/s such that they completely
covered the cluster of RFs. In the stimuli with two bars, the bars crossed their paths at
the centre of the RF cluster. At each trial the stimulus was presented in total for S s, but

only
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2 s with strongest rate response were used for the analysis. In the six stimulation
conditions the bars moved in the following directions (1) 30" and 3307; (2) 07; (3) 150°
and 2107; (4) 1807; (5) 30" and 1507; (6) 210" and 330", Each stimulation condition was

presented 20 times, different conditions being presented in a randomized order.

6.2 Data description

To identify the functional connectivity of multiple spike trains, the MCG method and
the Cox method are applied to a set of experimental data recorded from cat’s visual
cortex (Nikolic, 2007; Schneider et al., 2006). The experimental condition includes
application of six different stimuli (different orientations of the moving grid). Each
stimulus is repeated 20 times resulting in 120 applications of all stimuli. The order of
stimuli presentations is random. Thus for 120 stimuli the spiking activity of 32 channels
is recorded. From each channel one spike train is selected — the one with a medium
firing rate. This spike train is used to prepare six spike trains corresponding to six
stimuli. The twenty time intervals (each of six seconds duration), where the stimulus 1
is presented, have been selected to represent a total interval (120 seconds) of the
application of stimulus 1. All spikes from this interval are considered continuously
despite the gaps between the intervals of stimulus 1 representation. There are 32
channels in the experiment which results in 32 spike trains for this stimulus. The same
operation has been repeated for stimulus 2: all subintervals of six seconds
corresponding to application of stimulus 2 have been selected, considered continuously
and all spikes have been taken for analysis of the functional connectivity. The same
selection is done for each channel and 32 spike trains have been constructed for
stimulus 2. Repeating this operation for other stimuli, six sets of 32 simultaneous spike

trains have been constructed. Each set corresponds to application of one stimulus. For
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each stimulus, 32 spike trains are analysed to identify functional connectivity by the

MCG method and the Cox method.

6.3 Analysis of functional connectivity
For each stimulus the analysis of functional connectivity includes the following 4
procedures:

1. MCG method

2. Cox method

3. Cox metric

4. Motif analysis
Analysis of functional connectivity by the MCG method is based on the calculation of
CCF which is discussed in chapter 3. This technique is able to differentiate direct
connections from spurious connections (common source and indirect connections). In
this chapter only direct connections are considered for analysing functional
connectivity. Analysis of functional connectivity by the Cox method is based on the
modulated renewal process and the procedure is discussed in chapter 5. This method
considers the simultaneous effect of all spike trains and identifies only direct functional
connectivity. Result of functional connectivity obtained by this method is analysed and

compared to the result of functional connectivity obtained by the MCG method.
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Figure 6.1: Functional connectivity of the 29 spike trains of stimulus 5 identified by the
Cox method. (a) In the small interval [60000 ms, 66000 ms]. (b) In the small interval
[66000 ms, 72000 ms].

A simple study using the Cox method shows that this method is useful for the
application to experimental data. Two small intervals of stimulus 5, each of duration of
6 seconds ([60000 ms, 66000 ms] and [66000 ms, 72000 ms]) are chosen to identify the
functional connectivity of the spike trains. For this study, three outlier spike trains (#4,
#5 and #29) are not considered. These three spike trains have higher spiking rates than
those of other spike trains. Functional connectivity of the 29 spike trains is identified by
the Cox method. The functional connectivity of these two small intervals identified by
the Cox method is shown in Fig. 6.1. In the Fig. 6.1, the functional connections are
shown by circles and the direction of the connections is considered from reference spike
train to target spike train. The radius of the circle shows the relative strength of
influence. A big radius corresponds to a strong functional connection, whereas a small
radius corresponds to a weak functional connection. The functional connections of the
29 spike trains in the two small intervals show a good agreement. In the interval [60000
ms, 66000 ms], 34 functional connections are identified by the Cox method. Similarly,

24 functional connections are identified by the Cox method in the interval [66000 ms,
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72000 ms]. Investigation from these diagrams reveals that there are 18 connections
which are common to both intervals. As these two diagrams of functional connectivity
show a good agreement in the small time interval, it can be said that Cox method is
useful for analysis of this experimental data. On the other hand MCG method is not
applied to these small intervals, because the number of spikes is too small for the

application.

The Cox method is further applied to identify the groups of similar spike trains by
clustering algorithm. To identify the groups of similar spike trains, Cox metric is
applied which is discussed in section 5.8. Another application of the Cox method is the
motif analysis which is based on the analysis of triplet spike trains at once and is
described in section 5.9. Motif analysis is useful in obtaining the patterns of

interconnections among the spike trains.

6.4 Analysis of functional connectivity of stimulus 1

The raster plot of 32 spike trains is shown in Fig. 6.2. Raster plot reveals that three
spike trains (#4, #5 and #29) have high spiking rates compared to all other spike trains.
Therefore, these three spike trains are considered to be outliers and they are excluded
from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these
29 spike trains are high over time interval [78000 ms, 95000 ms]. These 29 spike trains
are analysed to identify functional connectivity keeping the original numeration of the

spike trains.
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Figure 6.2: Raster plot of 32 spike trains of stimulus 1. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysing functional connectivity.
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6.4.1 MCG method

For the 29 spike trains a total of (292 — 29)/2 = 406 pair-wise CCF are calculated
with a bin size of 1 ms and a correlation window of 100 ms. To test the independence of
two spike trains the significance level @ = 0.05 is used with the Bonferroni correction.
A connection is considered to be significant if a peak of the CCF exceeds the upper
boundary of the ‘confidence interval’. A total of 100 significant connections are found
for 29 spike trains. These significant connections are shown in a matrix format in
Fig. 6.3(a) where the connections are indicated by circles. The direction of connection is
considered from the reference spike train to the target spike train. For example, spike
train #10 has a connection to spike train #28. Among the 29 spike trains, spike train #28
has 14 outgoing connections to other spike trains which is the highest among 29 spike

trains and similar 15 incoming connections from other spike trains.
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Figure 6.3: (a) Significant connections obtained from pair-wise CCF analysis of the 29
spike trains of stimulus 1. (b) Direct connections obtained from the significant
connections in (a) after the clustering algorithm. The radius of the circle indicates the
relative strength of the connections.

A clustering algorithm is applied to the 100 significant connections for distinguishing
direct connections from spurious ones (i.e., indirect connections and common source).
Here only direct connections are considered to identify functional connectivity. After
clustering, the 85 connections are identified as direct connections (Fig. 6.3(b)). The
strengths of direct connections are normalized between 0 and 1 according to their
significant peaks. These strengths are shown by circles in Fig. 6.3(b). Big radius
indicates strong functional connection and small radius indicates weak functional
connection. Among 85 connections 10 connections have strong strength compared to
others. These connections are: (#7, #8), (#8, #7)., (#8, #12), (#9, #15), (#12, #8), (#16,
#9), (#19, #20), (#20, #19), (#30, #32) and (#32, #30). All other connections have
medium strength. Spike train #28 has 12 outgoing connections and 12 incoming
connections, which are the highest among 29 spike trains. There are 31 pairs of
connections where both spike trains have functional connectivity to each other. For
example the pair (#7, #8); where there is a connection from spike train #7 to spike train

#8 and vice versa.
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6.4.2 Cox method

To analyse functional connectivity of the 29 spike trains, one spike train is considered
as the target spike train and other 28 spike trains are considered as the reference spike
trains. The influence function (and its parameters) which determines how the reference
spike train influences the target spike train should be specified. Here it is assumed that
all the influence functions are identical. The inter spike interval (ISI) histogram of three
spike trains, spike train #1, #6 and #18 are given in Fig. 6.4. These histograms have
high count for the short ISI and the ISI count decreases with increase of the ISI length.
That suggests that the influence function should be specified by the formula (5.3). The
parameters of the influence function (5.3) are 7, = 0.1ms, 7, = 10 ms. Another
parameter, the time lag A is specified from pair-wise CCF analysis. Thus, the influence
functions are defined and the Cox coefficients and the corresponding confidence
intervals are calculated using formulas (5.5) and (5.6). This procedure is repeated 29
times to obtain the full functional connectivity of the 29 spike trains. The confidence

intervals are calculated using the significance level @ = 0.05 with Bonferroni correction.

The 71 connections, identified by the Cox method, are shown by circles in
Fig. 6.5(a). The radius of the circle indicates the strength of functional connection. The
direction of functional connection is from the reference spike train to the target spike
train. Among the 71 connections, the 9 connections have stronger strength compared to
others. These connections are: (#8, #9), (#16, #9), (#20, #19), (#24, #19), (#24, #23),
(#25, #1), (#26, #25), (#28, #27) and (#32, #30). 8 connections have a small strength
compared to others. These connections are: (#2, #14), (#7, #28), (#10, #28), (#14, #28),
(#15, #3), (#15, #28), (#27, #28) and (#28, #2). All other connections have a medium

strength. Spike train #8 has 6 outgoing connections and spike train #28 has 6 incoming
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connections, which are the highest among 29 spike trains. There are 16 pairs of

connections where both spike trains have functional connectivity to each other.
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Figure 6.4: Inter spike interval histogram of the spike trains #1, #6 and #18 of stimulus
1.

Functional connectivity obtained by the MCG method and the Cox method show a good
agreement between them (Fig. 6.5(b)). There are 43 connections which are common in
both techniques. Among the common connections spike train #8 has 6 outgoing
connections to other spike trains and spike trains #3, #15 and #28 have 4 incoming
connections which are the highest among the 29 spike trains. There are 9 pairs of
connections where both spike trains have functional connectivity to each other. These
pairs of connections are: (#3, #7), (#3, #15), (#8, #12), (#8, #15), (#19, #20), (#23, #24),

(#27, #28) and (#30, #32).
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Figure 6.5: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 1. Radius of the circle indicates the relative strength of connection.
(b) Connections that are identified both by the MCG method and the Cox method.

6.4.3 Cox metric

To apply the Cox metric to the 29 spike trains a total of 812 possible pairs of spike
trains are analysed by pair-wise Cox method where one spike train is taken as the target
and the other spike train as the reference. All the influence functions are considered
identical and specified by (5.3) with the parameters 7, = 0.1 ms and 7, = 10 ms.
Another parameter of the influence function, the time lag A is obtained by the pair-wise
CCF analysis. Using the parameter values, the influence functions are determined and
the Cox coefficients are estimated using (5.5) with the corresponding confidence
interval by (5.6). The Cox metric is applied to the significant connections to reveal the
groups of similar spike trains. The result of the Cox metric is shown in Fig. 6.6(a) where
the grey circles indicate the significant connections obtained by the pair-wise analysis of
the Cox method. The black circles indicate symmetric of the grey circles but not
identified by the pair-wise analysis of the Cox method. Similarly, the Cox metric is
applied to the functional connections identified by the Cox method considering all spike

trains at once. This functional connection is shown in Fig. 6.5(a) and the result of the
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Cox metric is shown in Fig. 6.6(b). In the figure the grey circles indicate the significant
connections obtained by the Cox method considering all spike trains at once. The black
circles indicate symmetric of the grey circles but not identified by the Cox method

considering all spike trains at once.

From Fig. 6.6(a) four groups of similar spike trains are identified. The first group
consists of 4 spike trains, these are: spike trains #30, #32, #31 and #21. In this group,
the connection from spike train #30 to #32 and spike train #32 to #30 have the highest
strength among other connections. The second group consists of 3 spike trains, these are:
spike trains #22, #25 and #26. The third group consists of 9 spike trains; these are: spike
trains #2, #10, #14, #19, #20, #23, #24, #27 and #28. In this group, five connections
(#19, #20), (#20, #19), (#23, #24), (#24, #23) and (#28, #27) have big strength
compared to others. Spike train #19 has 6 outgoing connections to spike trains #14, #20,
#23, #24, #27 and #28, and 5 incoming connections from spike trains #14, #20, #23,
#24 and #28. As this spike train has the highest outgoing connections, this spike train
can be considered as the most influential spike train of this group. The forth group
consists of 8 spike trains, these are: spike trains #16, #3, #7, #15, #8, #9, #12 and #11.
In this group there are 3 big strengths of connections: (#16, #9), (#8, #9) and (#12, #9).
Spike train #8 has 6 outgoing connections to spike trains #3, #7, #15, #9, #11 and #12
and can be considered as the most influential spike train of this group. Spike trains #13,

#18, #6 and #17 do not follow any group.
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Figure 6.6: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 1. (a) Cox metric using pair-wise analysis. (b) Cox metric considering
all spike trains at once.

Similarly, from Fig. 6.6(b) four groups of similar spike trains are identified. The first
group consists of 5 spike trains, these are: spike trains #30, #32, #31, #18 and #21. In
this group, the connection from spike train #30 to #32 and spike train #32 to #30 have
the highest strength among other connections. The second group consists of 4 spike
trains, these are: spike trains #1, #25, #26 and #22. The third group consists of 10 spike
trains; these are: spike trains #2, #14, #19, #20, #23, #24, #27, #28, #6 and #10. In this
group, four connections (#19, #20), (#20, #19), (#27, #28) and (#28, #27) have big
strength compare to others. Spike train #20 and #28 have 5 outgoing connections to
other spike trains of this group. As these spike trains have the highest outgoing
connections, these spike trains can be considered as the most influential spike trains for
this group. The forth group consists of 8§ spike trains, these are: spike trains #3, #7, #15,
#11, #8, #9, #12 and #16. In this group there are 2 big strength of connections: (#8, #9)
and (#16, #9). Spike train #8 has 6 outgoing connections to other spike trains and can be
considered as the most influential spike train of this group. Spike trains #13 and #17 do

not follow any group.
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Investigation from Fig. 6.6(a)-(b) reveal that the Cox metric identified by the pair-wise
analysis and considering all spike trains at once show a good agreement. For example,
the first group of both figures consists the same four spike trains (#30, #32, #31 and #21)
except one (#18) in Fig. 6.6(b). Similarly, the other three groups of Fig. 6.6(a) and Fig.
6.6(b) consist same spike trains except a few. From this analysis it can be said that
application of the Cox metric to this experimental data using pair-wise analysis and

analysis of all spike trains at once enables to create similar result.

6.4.4 Motif analysis

To find the patterns of interconnections among the 29 spike trains, a structural motif
analysis is conducted using triplet-wise analysis of Cox method. For 29 spike trains, a
total of 3654 triplets are analysed. All the influence functions are considered identical
and specified by (5.3) with the parameters 7, = 0.1 ms and 74, = 10 ms. Another
parameter of the influence function, the time lag A is obtained by the pair-wise CCF
analysis. Using the parameter values, the influence functions are determined and the
Cox coefficients are estimated using (5.5) with corresponding confidence interval using
(5.6). Functional connectivity of each triplet spike trains is used to identify the structural
motif. The structural motif count is obtained by analysing all 3654 triplets of spike

trains which is shown in Fig. 6.7.

Out of 3654 triplets, 753 triplets have different structural motif ID's. Among the 753
triplets, 160 triplets have motif ID 2 which is the highest among other motif ID’s. Only
6 triplets have motif ID 7 which is the lowest. Motif ID’s 1, 3, 4 and 6 have similar
number of triplets and motif ID’s 8, 9, 10, 11 and 12 have similar number of triplets. A
total of 96 triplets have connected motifs (connected motifs are motif ID 7, 9, 10, 12

and 13). On the other hand, 657 triplets have unconnected motifs. Thus, there are low
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proportions of connected motifs (14.61%) in the groups of triplet spike trains which

indicate that connection from every spike train to every other spike trains is very low.
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Figure 6.7: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus
L.

The same procedure is applied to the other five stimuli to analyse functional
connectivity of the spike trains. The results of analysing the five stimuli are presented in

Appendix B.

6.5 Summary of functional connectivity of all stimuli

In this chapter functional connectivity of 29 spike trains are analysed for six different
stimuli. To analyse the functional connectivity the MCG method and the Cox method
are used. In stimulus 1, 85 direct connections are identified by the MCG method (Fig.
6.3(b)). Investigation from this diagram reveals that spike train #8 and #28 have the
highest outgoing connections to other spike trains. That means these spike trains are the
most influential spike trains. Application of the Cox method to this stimulus reveals 71
connections (Fig. 6.5(a)). Investigation from this diagram of functional connectivity

reveals that similar to MCG method, spike trains #8 and #28 have the highest outgoing
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connections. Importantly, spike train #8 has 7 out going connections to spike trains #3,
#7,#9, #11, #12 #15 and #28 which are the same in both the MCG method and the Cox
method. Also, spike train #28 has 4 outgoing connections to spike trains #19, #20, #23
and #26 are same in both the MCG method and the Cox method. From the analysis, it
can be concluded that spike trains #8 and #28 are the most influential spike trains in

stimulus 1.

Application of MCG method to stimulus 2 reveals 129 direct connections (Fig. A.2(b)).
From this diagram it is observed that spike trains #28 and #32 have the highest outgoing
connections and can be considered as the most influential spike trains. These two spike
trains are also the most influential spike trains identified by the Cox method. The
diagram of functional connectivity identified by the Cox method revels 62 connections
(Fig. A.4(a)). Spike trains #28 and #32 have the highest 8 outgoing connections to other
spike trains. Like stimulus 1, spike train #28 has 7 outgoing connections to spike trains
#2, #23, #24, #25, #26, #27 and #32 which are same in both the MCG method and the
Cox method. Also, all the outgoing connections from spike train #32 to spike trains #19,
#20, #24, #25, #26, #27, #30 and #31 are same in both the MCG method and the Cox

method.

In stimulus 3, a small number of 16 direct connections are identified by the MCG
method (Fig. A.8(b)). Here spike train #8 has only 3 outgoing connections and can be
considered as the most influential spike trains. A different result is obtained from the
diagram of functional connectivity identified by the Cox method (Fig. A.10(a)) where
95 connections are identified. Investigation reveals that similar to stimuli 1 and 2, spike
train #32 has the highest outgoing connections. This spike train can be considered as the

most influential spike train.
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Diagram of functional connectivity identified by the MCG method reveals that there are
51 direct connections in stimulus 4 (Fig. A.14(b)). Investigation shows that spike train
#32 has the highest outgoing connections and can be considered as the most influential
spike train. The similar result is identified by the Cox method. The diagram of
functional connectivity (Fig. A.16(a)) shows that there are 71 connections and spike
train #32 has the highest outgoing connections. Investigation shows that spike train #32
has 4 outgoing connections to spike trains #20, #25, #27 and #30 which are the same in

both the MCG method and the Cox method.

Like stimulus 3, in stimulus 5 a different result is obtained from the diagram of
functional connectivity identified by the MCG method (Fig. A.20(b)) and by the Cox
method (Fig. A.22(a)). Only 49 connections are identified by the MCG method where
spike train #23 has the highest outgoing connections. This spike train can be considered
as the most influential spike train. On the other hand, 116 connections are identified by
the Cox method. Here, spike train #28 has the highest outgoing connections and can be

considered as the most influential spike train.

In stimulus 6, the diagram of functional connectivity identified by the MCG method
reveals that there are 154 direct connections (Fig. A.26(b)). Investigation shows that
spike train #32 has the highest outgoing connections and can be considered as the most
influential spike train. The similar result is identified by the Cox method. The diagram
of functional connectivity (Fig. A.28(a)) shows that there are 76 connections and spike
train #32 has the highest outgoing connections. Investigation shows that spike train #32
has 8 outgoing connections to spike trains #9, #19, #23, #25, #27, #28, #30 and #31

which are same in the MCG method and the Cox method.

From this analysis it can be concluded that spike trains #28 and #32 are the most

influential spike trains among the 29 spike trains, also the most of the information are
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transmitted through these spike trains. Though the results of identification of most
influential spike train are different in stimuli 3 and 5 by the MCG method and the Cox
method, the results are same for other stimuli. Thus, there is a good agreement of these

two methods.

The Cox metric is applied to identify the groups of similar spike trains. Importantly, for
all stimuli the Cox metric based on pair-wise analysis and the analysis considering all
spike trains at once show similar results. Investigation from the Cox metric based on the
pair-wise analysis reveal that there are some groups of spike trains which are same in
different stimuli. In stimulus 1, the forth group (Fig. 6.6(a)) consists of 9 spike trains
(#1, #3, #7, #8, #9, #11, #12, #15 and #16). This group of spike trains is very similar to
the first group of stimulus 2 (Fig. A.5(a)) and the second group of stimulus 3 (Fig.
A.11(a)). In stimulus 2, the first group consists of 10 spike trains (#3, #6, #7, #8, #9,
#11, #12, 14, #15 and #16) where 8 spike trains are same to fourth group of stimulus 1.
In stimulus 3, the second group consists of 7 spike trains (#1, #3, #7, #9, #11, #15 and
#16) where all the spike trains are same to fourth group of stimulus 1. Similarly, in
stimulus 2, the third group consists of 11 spike trains (#19, #20, #23, #24, #25, #26, #27,
#28, #30, #31 and #32) which is very similar to the first group of stimulus 3 and the
third group of stimulus 6 (Fig. A.29(a)). In stimulus 3, the first group consists of 12
spike trains (#14, #19, #20, #21, #23, #24, #25, #26, #27, #28, #30 and #32) where 10
spike trains are same to third group of stimulus 2. In stimulus 6, the second group
consists of 13 spike trains (#18, #19, #20, #21, #23, #24, #25, #26, #27, #28, #30, #31
and #32) where 11 spike trains are same to third group of stimulus 2 and 10 spike trains
are same to first group of stimulus 3. Fourth group of stimulus 5 (Fig. A.23(a)) consists

spike train #13 and #16 which is exactly same to the fourth group of stimulus 6.
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Figure 6.8: Structural motif count of all 6 stimuli.

Patterns of interconnections among the 29 spike trains are identified by the structural
motif analysis, Structural motif analysis for all stimuli shows similar results. Among all
stimuli, stimulus 5 has the highest structural motif count for all motif ID’s except motif
ID 3. Structural motif count (Fig. 6.8) shows that motif ID’s 2 and 6 have the highest
structural motif count whereas motif ID 7 has the lowest structural motif count for all
stimuli. Motif ID 1, 3 and 4 have the similar structural motif count for all stimuli.
Structural motif count for connected motifs (motif ID 7, 9, 10, 12 and 13) are less than
that for the unconnected motif which indicates that the spike trains are weakly

connected to each other for all stimuli.

Functional connectivity of all stimuli obtained by the MCG method and the Cox method
shows a good agreement. Among the stimuli, stimulus 6 has the highest number of
connections which are common to the MCG method and the Cox method (Fig. 6.9).
That is these connections exist both in the MCG method and the Cox method. In this
stimulus, 76 connections are identified by the Cox method and 154 connections are

identified by the MCG method which is the highest among all stimuli. There are 57
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connections which are common to the both methods. On the other hand, stimulus 3 has
the lowest connections which are common to both the methods. In this stimulus, 95
connections are identified by the Cox method and only 16 connections are identified by
the MCG method. A total of 14 connections are identified which are common to both
methods. Stimuli 4 and 5 have the same number of 31 connections identified by the

both methods.
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| N Cox method
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Figure 6.9: Total number of connections identified by the Cox method and the MCG
method with the number of connections common to these methods.

In stimulus 4, 71 connections are identified by the Cox method where as 51 connections
are identified by the MCG method. In stimulus 5, the highest number of 116
connections is identified by the Cox method; where as 49 connections are identified by
the MCG method which is similar to the stimulus 4. In stimulus 1, 71 connections are
identified by the Cox method whereas 85 connections are identified by the MCG
method. There are 43 connections which are common to the MCG method and the Cox
method. Similar to stimulus 1, 49 connections are identified in stimulus 2 which are
common to both methods. Here 62 connections are identified by the Cox method and a

large number of 129 connections are identified by the MCG method.
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Although there is a good agreement between the MCG method and the Cox method,
there are some differences between them. The reason is that, the MCG method is based
on the pair-wise CCF and the Cox method is based on the analysis of all spike trains at
once. The MCG method takes short computation time and can be used as a screening
method to derive functional connectivity. Among the six stimuli, stimulus 3 shows the
highest difference between these two methods. On the other hand, stimulus [ and 4

show low differences between these two methods.
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Figure 6.10: (a) Common connections identified by the MCG method for all 6 stimuli,

(b) Common connections identified by the Cox method for all 6 stimuli. (¢) Common
connections identified both by the Cox method and the MCG method for all 6 stimuli.
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Fig. 6.10 shows the common connections identified by the Cox method and the MCG
method for all stimuli. Total 6 common connections are identified by the MCG method
for all stimuli (Fig. 6.10(a)). These connections are: (#7, #8), (#8, #7), (#19, #20), (#20,
#19), (#30, #32) and (#32, #30). Investigation of these connections from each stimulus
shows that these connections have strong strength. There are 10 common connections
identified by the Cox method for all stimuli (Fig. 6.10(b)). These connections are: (#7,
#15), (#8, #7), (19, #20), (#20, #19), (#26, #25), (#28, #27), (30, #32), (#31, #32), (32,
#30) and (#32, #31). Like the MCG method, investigation of these connections shows
that the connections have strong strength. There are 5 connections identified both by the
Cox method and the MCG method which are common to all stimuli (Fig. 6.10(c)).

These connections are: (#8, #7), (#19, #20), (#20, #19), (#30, #32) and (#32, #30).
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Chapter 7

Methods of graph theory for analysing the
connectivity

This chapter presents different graph theory methods that are useful for the
comprehensive analysis of connectivity of multiple spike trains. The connectivity matrix
is calculated from the experimental data of cat’s visual cortex (Nikolic, 2007; Schneider
et al., 2006) by the Cox method. The graph theory methods are then applied to analyse
the matrix of connections. This experimental data are organized in six sets of spike
trains. Therefore, the statistical technique provides six graphs. To analyse the structure
of a graph and to compare the graphs, some measures from the graph theory are

calculated.

7.1 Introduction

Due to the recent advances in neuroscience and neuroinformatics, an increasing number
of neuronal connectivity datasets in the brain areas are available for analysis. The
availability of such data sets requires the development of appropriate computational
tools for their comprehensive analysis (Kotter, 2001). That is the connection density of
the spike trains, the average number of steps required to pass information from one
spike train to another, the attractive and influential spike trains, the degree of the spike
trains to make cluster with other spike trains, spike trains which pass the most of the
information to other spike trains and the significant patterns of interconnections of the
spike trains. The methods discussed in chapter 3 and 5 are used to derive functional
connectivity of multiple spike trains. In addition to this functional connectivity, it is

necessary to study the comprehensive analysis of the connectivity. One way for such a
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comprehensive analysis is provided by graph theory, a branch of mathematics which has
many applications in diverse fields such as physics, communication science, genetics,

linguistics and sociology (Sporns, 2002).

The graph theory methods are based on the connection matrix. In neuroscience this
connection matrix can be derived from the analysis of simultaneously recorded multiple
spike trains. Most of the connection matrices are derived by the pair-wise analysis of
spike trains using cross-correlation. This technique produces symmetrical connection
matrix and undirected graph (Bullmore and Sporns, 2009) while functional connectivity
of spike trains are characterized as directed graphs (Hilgetag et al., 2002). The Cox
method described in chapter 5 can be used for deriving the asymmetrical connection
matrix and the directed graph. The distinction between undirected and directed graphs is
especially important as different graph measures are computed slightly differently for

these two major classes of graphs.

There are several graph theory methods (Rubinov and Spomns, 2010) that are of special
relevance to the comprehensive analysis of connectivity. In this chapter, some of them
are discussed for the directed graph such as: graph density, nodes degree, characteristic
path length, efficiency of a graph, clustering coefficient and betweenness centrality.
Motif analysis is another useful graph method which is discussed in section 5.9.
Another important method of graph theory is the P1 model (Holland and Leinhardt,
1981), which is used in social science network to find the influential and attractive
people in the network. Application of P1 model to the neuroscience is useful in finding
the influential and attractive neurons in the brain regions. All these graph methods are
applied to the connection matrices obtained by the Cox method from the experimental

datasets discussed in chapter 6.
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7.2 Graph theory methods

A graph is a mathematical representation of a system that is composed of interconnected
elements, comprising a set of nodes and edges. Nodes represent the fundamental
elements of the system, such as neurons in the brain region and edges represent
connections between pairs of nodes. Edges can be undirected or directed from origin to
destination. Here directed edges are considered and all the graph theory methods are
discussed for the directed graph. In graph theoretical terms, a directed graph G, is
composed of n nodes and / edges, with / ranging from 0 (null graph) to n? —n
(complete or fully connected graph excluding self connections). The graph’s adjacency
matrix (connection matrix), A(G), is composed of binary entries a;; (Fig. 7.1(b)), with
a;; = 1 indicating the presence of connection from node i to node j, and a;; =0
indicating the absence of connection from node i to node j. The diagonal elements of

adjacency matrix a;; are considered as zero and a;; does not necessarily equal to a;.

7.2.1 Density

The density k4., of an adjacency matrix A(G) is the number of all its non-zero entries,
divided by the maximal possible number of connections. The density ranges from 0 to
1, 0 indicates null graph and 1 indicates fully connected graph. In the neural network the
highest levels of connection density are found at the level of cortical areas and the
pathways interconnecting them. Matrices of connection pathways linking cortical areas

tend to have kgen~ 0.2 — 0.4 (Sporns, 2002).

183




Chapter 7 Graph Theory Methods

Reference splke train

(d)

Figure 7.1: (a) Directed graph composed of 9 nodes and 18 directed edges. The graph
has 72 (92 — 9) possible connections among the nodes. The density of this directed
graph is 18/72 =0.25. (b) Adjacency matrix represents the presence (black square) and
absence (white square) of the connections between the nodes. Main diagonals are
indicated in grey and self-connections are excluded. (¢) Indegree of node #8 (orange
circle). This node has 4 indegree, from nodes #1, #9, #5 and #7 (green circles). (d)
Outdegree of node #8 (orange circle). This node has 3 outdegree, to nodes #1, #3 and #6
(green circles).

7.2.2 Degree
The adjacency matrix allows the derivation of one of the most fundamental graph
measures, the degree. In directed graph the indegree and outdegree corresponds to the

number of incoming and outgoing edges, respectively (Fig. 7.1(c-d)). A node with high
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indegree is influenced by many other nodes, while a node with high outdegree has many
potential functional targets. The indegree and outdegree of a node i can be calculated as

k:'in = Z aji

JEN

out _

JEN
where N is the set of all nodes in the network.

7.2.3 Characteristic path length

Nodes can be linked directly by single edges or indirectly by sequences of intermediate
nodes and edges. Ordered sequences of unique edges and intermediate nodes are called
paths (Fig 7.2). If a finite path between two nodes exists, then one node can be reached
by traversing a sequence of edges starting at the other node. In directed graph, the
length of a path is equal to the number of edges it contains. Paths of various lengths
record possible ways by which signals can travel indirectly between two nodes. Longer
paths are likely to have less of an effect than shorter paths. Most analyses focus on
shortest possible paths (distances) between nodes since these paths are likely to be most
effective for inter node communication. The directed distance from node i to node j,

(dij) is the length (number of edges) of a shortest path (possible one of several) from

node i to node j.

The distance between two nodes is often of particular interest. The structure of the
adjacency and distance matrices (Fig. 7.3(b)) together describe the pattern of

communication within the nodes of the graph.
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(b)

Figure 7.2: Calculation of path from node #1 to node #4 (orange circles). (a) Path from
#1 to #4 of length 3, denoted by {#1, #9, #3, #4} nodes of green circle, containing the
directed edges (blue) (#1, #9), (#9, #3) and (#3, #4). An alternative path of the same
length 3 is denoted by {#1, #8, #3, #4} nodes of green circle. (b) Path from #1 to #4 of
length 4, denoted by {#1, #9, #8, #3, #4} nodes of green circle, containing the directed
edges (blue) (#1, #9), (#9, #8), (#8, #3) and (#3, #4). An alternative path of the same
length 4 is denoted by {#1, #9, #2, #3, #4} nodes of green circle. The shortest possible
path length from node #1 to #4 is 3, hence the distance from node #1 to node #4 is 3.

One of the most commonly used measures in the brain network is the characteristic path
length. This is computed as the global average of the graph’s distance matrix (Watts and
Strogatz, 1998). The characteristic path length is calculated as

- lz 2 jeN,jeidij
n

" n—1
IeN
The characteristic path length is a global characteristic; it indicates how well integrated

a graph is, and how easy it is to transport information to other entities in the network.
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Generally, shorter paths are thought to be more effective in passing information. Thus
the average path length for a network can provide an indication of its capacity for global

information exchange.

7.2.4 Efficiency

A related to characteristic path length and often more robust method, the global
efficiency (Latora and Marchiori, 2001), is computed as the average of the inverse of
the distance matrix. A fully connected graph has maximal global efficiency since all
distances are equal to one (all pairs of nodes are linked by an edge); while a fully
disconnected graph has minimal global efficiency since all distance between nodes are
infinite. A high efficiency indicates that pairs of nodes, on average, have short
communication distances and can be reached in a few steps. The efficiency of a graph
should be compared to the efficiency of a random network keeping the same indegree

and outdegree of the nodes. The global efficiency is calculated as

=%
1 ZE}'EN,;’i[(dU’)
E=-
n 4 n—1
IEN

7.2.5 Clustering coefficient

A clustering coefficient is a measure of degree to which nodes in a graph tend to cluster
together. It is one of the most elementary measures of local segregation of the network
(Watts and strogatz, 1998). There are two versions of this measure, the local and the
global clustering. The local clustering coefficient of an individual node measures the
density of connections between the node’s neighbours. Neighbours are those nodes that
are connected, either through an incoming or outgoing connection, to the node
(Fig. 7.3(a)). Densely interconnected neighbours form a cluster around the node, while
sparsely interconnected neighbours do not. Clustering of a node is high if the node’s

neighbour’s are also neighbour’s of each other. The average of the clustering
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coefficients for each individual node is the clustering coefficient of the graph known as

global clustering coefficient.

3 4 8 &
Target spika train

(a) (b)

Figure 7.3: (a) Clustering coefficient of node #9 (orange circle). This node’s
neighbours are #1, #2, #3 and #8 (green circle), which maintain 6 connections (blue
edges) among them out of 12 possible (4% — 4). Thus the clustering coefficient of this
node is 6/12=0.5. (b) Distance matrix of the 9 node, indicates the shortest path from
node i (1,2---,9) to node (1,2---,9) i # j. Pairwise distances are integers ranging from
1 to a maximum of 5.

The clustering coefficient C; of a node i with indegree k™ and outdegree k“* is usually

calculated as (Fagiolo, 2007)

1
Q‘Z j.heN (aij + aj:’)(aih = ah:‘)(ajh = an;‘)

h=zjh=i,j#i

C; = : :
) (k?ut + kllﬂ)(k:)ut + k:ﬂ == 1) e szm a”aj"

The clustering coefficient C; ranges between 0 and 1. Usually C; is averaged over all

vertices to obtain a mean C of the graph

1
CZ—ZC,
n

ieN
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7.2.6 Betweenness centrality

Centrality measures of a graph determine the relative importance of a node within the
graph. Measures of centrality are based on the notion of the shortest paths. Betweenness
centrality of a node is a useful measure to know how much information passes through
certain nodes of the graph. A node with high betweenness centrality can control
information flow because it is at the intersection of many shortest paths. The
betweenness centrality of an individual node is defined as the fraction of all shortest
paths in the network that pass through the node. The betweenness centrality of a node i
is calculated as (Freeman, 1978)

b= n—1)(n~2) 2 Prj

h,JeEN
h=j.h=i,j=i

where pj,; is the number of shortest paths between h and j, and pj (i) is the number of

shortest paths between h and j that pass through i.

7.2.7 The P1 model

The P1 model (Holland and Leinhardt, 1981) of a graph determines the relationships
between nodes of the graph. For any pair of nodes in a graph, there are three possible
relationships between them: no ties (no edges in either direction between the nodes), an
asymmetric tie (an edge between the two nodes going in one direction for the other but
not both), or a mutual tie (two edges between the nodes, one going in one direction an
the other going in the opposite direction). These relationships are known as dyadic
relationships and is denoted by

Dy = (Aij,Ap), i #j

where A is the adjacency matrix.

189




Chapter 7 Graph Theory Methods

A mutual relationship between node i and node j exists when i = j and j = i in the
dyad which is denoted by i « j. A mutual relationship is obvious when both the (i, j)
and (j, ) cells are unity; that is A;; = 1 and A;; = 1, so that the dyad D;; = (1,1). The
asymmetric dyad can occur in two ways, either i = j or j = i, but not both.
Specifically, D;; = (1,0) or D;; = (0,1). In null dyad the (i,j) and (j, i) symmetrically
placed off-diagonal cells of 4 are both 0; that is, A;; = Aj; = 0, implying that D;; =
(0,0). Thus the three possible dyadic relationships can be represented as

(0,0)

D;; = {(1,0) or (0,1)

(1,1)
A dyad with measurements on a directional relation consists of two nodes, i and j, and
the possible ties between these two nodes. The ties between the nodes are viewed from
the perspective of either node i or node j. From the perspective of i the relational
variable A;; records the possible ‘choice’ of j by i, while the relational variable A4j;
records the possible ‘choice’ received by i from j. From the perspective of node j the

relational variable A;; records the possible choice of node i by node j, while the

relational variable A;; records the possible choice received by node j from node i.

For a pair of nodes the ties in the dyad for both nodes is represented in a 2 X 2 array.
There are two variables of this array. The first variable is indexed with an k, which can
be either 0 or 1, codes the value of the tie sent by the row node i to the column node j.
The second variable, also with just two levels is indexed with an [, codes the value of
the tie sent by the column node j to the row node i. So, the ties for each and every dyad
can be presented in one of these 2 X 2 arrays. The new indices k and [ equal to either 0

or 1, depending on the state of the dyad.
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Considering all dyads and the single dichotomous relation, there will be g X gbinary
matrix for g nodes. If each entry is replaced with the appropriate 2 X 2 table, a new
contingency table is obtained of size g X g X 2 X 2. The first two dimensions of this
table are indexed by the nodes. The size of the third and fourth dimensions is 2, are

coded k,l =0 or 1.
The g X g X 2 X 2 matrix is denoted by Y, and its entries are defined as follows:

Y;jxe = 1if the dyad D;; takes on the values (4;; = k,A;; = [)

= ( otherwise

The Y-array is a cross-classification of four variables and thus, its entries have four
subscripts: the nodes as senders (i), the nodes as receivers (j), and the relational
variables A;; (indexed by the third subscript, k) and Aj; (indexed by the fourth
subscript, [). The (i, j) th cell of Y is not a single quantity, but rather a 2 X 2 submatrix.
In this 2 X 2 submatrix, there is a single 1 found in the (k, [) th cell. The remaining 2%
1 elements are 0. Thus, one can view these submatrices as simply indicator matrices,

giving the ‘state’ of each dyad.

To understand the Y matrix an example of two nodes is given. The matrix in Table 7.1
represents the friendship of the nodes. The data show that node 2 does not name node 1

as a friend he likes, but node 1 nominates node 2.

Node 1

(9]

1 - 1

2 0 -

Table 7.1: Friendship of two nodes.
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From 1’s perspective, the relational variable sent is 4,, = 1, implying that node 1 likes
node 2 as a friend, and the relation received is A,; = 0, implying that node 1 is not
liked as a friend by node 2. From 2’s perspective, the relation sent is A,; = 0, node 2
does not choose node 1, and the relation received is 4,, = 1, node 2 is chosen by node
1. The recorded data for nodes 1 and 2 in this pair would be D;, = (4,2, 4,,) = (1,0),
so that ¥y310 =1, while ¥1500 = Y1201 = Y1211 = 0. Similarly, Dy; = (421,442) =

(0,10), so that ¥;59, =1, while ¥2100 = ¥2101 = Y2111 = 0. Now the Y array is

presented

J
i l=Aj;
k = Ajj o[1]o]1
0 - - 0 0
1 - - 1 0
0 0 1 B -
1 0 0 - -

Table 7.2: Y matrix for the friendship of two nodes.

The P1 model is presented by a 4-dimentional Y-array. For a single, directional relation,
the effects that represent the ‘expansiveness’ of nodes, the ‘popularity’ of their partners,
and the ‘reciprocation’ of the ties within the dyads are focused. The P1 model consists
primarily of three sets of parameters: one set of parameters describes the nodes’ sending
behaviour, one set describes the nodes’ receiving behaviour, and one set describes the
interactions between pairs of nodes within a dyad. The first set of parameters are called
expansiveness effects which reflect the tendency of each node to nominate others as
friends. The second set of parameters are called popularity effects which reflect the
tendency for a node to be nominated by others as friends. Positive values of these

parameters increase the probability of having ties. The final set of parameters are those
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that reflect the reciprocation, or mutuality, between two nodes, independent of the
expansiveness or popularity of either node. Reciprocity is the extent to which a dyad
exhibits mutual, as opposed to asymmetric ties. Positive reciprocity parameters increase

the likelihood that the dyad is mutual.

The P1 model is expressed in four statements. Each of the four statements represents
one of the four possible states of any given dyad: the null dyad (4;; = 4;; =
0,0r Yijoo = 1), the mutual dyad (4;; = Aj; = 1,0rY;;; =1), and two cases of
asymmetric dyads (A;; = 1,A; =0,0r Y0 = Land A;; = 0,A; = L,0r Y0, = 1).
In order to specify P1, the natural logarithm of the probabilities of each of these four
dyadic states is represented as a function of several parameters:

IogP(Yijoo = 1) = Ayj

logP(Yij1o=1)=2;;+ 6 +a; + B;

logP(Yijor =1) = 4;;+ 0 +a; + B (7.1)

logP(YU“ = 1) = /.i.”‘ + 26 -+ a; -+ G.'}‘ + Bi + Bj + ((IB)

The {4 j} parameters are mathematical necessities included in the model to ensure these
four probabilities sum to one for each dyad. Thus these parameters appear in all four
statements, regardless of the state of the dyad. The 6 parameter is interpreted as an
overall choice effect (analogous to a grand mean), reflecting the overall volume of
choices sent and received. If one tie is reciprocated, two ’s appear. Note that, 6 does
not appear in the model statement when ties are not present, and (af3) is present only
when the dyad is mutual. No substantive parameters appear in the first statement of the
model which represents a null dyad. For asymmetric dyads, the log probabilities depend
on parameters reflecting only one of the two possible ties in the dyad: dyads in which

node i chooses node j without reciprocation (so an @; but not an q; is relevant, and a §;
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but not a f8; is included) and dyads in which node j chooses node i with no reciprocated
choice (so the relevant parameters are @; and f3;, but not a; or f8; or (¢f)). All the
parameters appear together only for mutual dyads (the last statement of the model). The

(af) (some times denoted by p), is also called a mutuality parameter. The parameter

will be positive and large when the relation tends to be mutual.

In the equations (7.1), the @ parameters are interpreted as expansiveness measures for
each node. If a is positive and large of the corresponding node, it may be said that there
is a high probability that the node will influence the other nodes. The  parameters are
interpreted as attractiveness measures. If f is positive and large of the corresponding
node, it can be said that there is a high probability that the node is influenced by other
nodes. The parameters are estimated using the principle of maximum likelihood
method. To estimate the parameters the package UCINET [V is used. In this chapter,
only expansiveness and attractiveness parameters are considered for finding the

relationships of the nodes.

7.3  Analysis of connectivity of stimulus 1

The connection matrix (Fig. 7.4(a)) of 29 spike trains shows only 71 connections out of
812 possible connections. The connection matrix contains a low density (0.0874) which
means that under the stimulus | the spike trains are not densely connected. The sum of
indegree and outdegree known as degree is shown in Fig. 7.4(b). The degree of the
spike trains varies widely from 0 to 11 showing the same number of degrees for certain
spike trains. For example, spike trains #3, #8, #19, #24 and #32 have 8 degrees each. On
the other hand spike train 17 has no degree. Some spike trains have very few
connections known as low-degree spike trains (#13, #18, #21, #22 and #31); whereas

some spike trains have large connections known as high-degree spike trains (#28, #20
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and #12). A high degree spike train is a spike train whose degree is greater than the

mean plus one standard deviation of all the spike trains (Sporns et al., 2007).
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Figure 7.4: (a) Connection matrix of the 29 spike trains of stimulus 1. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains is displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation of the spike trains. High-degree
spike trains are displayed as green.
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The characteristic path length of the connection matrix (3.1634) is greater than the
characteristic path length obtained from a random network (2.6411). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges. Similarly, the global efficiency of
the connection matrix (0.2456) (random: 0.3040) indicates that pairs of spike trains, on

average, have long communication distances.

There is a variation of the clustering coefficient of the spike trains (Fig. 7.5(a)) ranging
from O to 0.72. Some spike trains have high clustering coefficient (#23, #11, #9 and
#19) indicating that the neighbours of these spike trains are also neighbours of each
other. There are some spike trains which have a low clustering coefficient (#10 and
#28), in fact, below the mean of all spike trains. Among the low clustering coefficients,
the spike train #28 has the highest degree of all the spike trains which indicates that this
spike train communicate to other neighbour spike trains but the neighbours are not
connected to each other. There are 13 spike trains that do not form any cluster to their
neighbour spike trains. The clustering coefficient of these spike trains is zero. The
global clustering coefficient (0.2276) (random: 0.1068) also indicates that many spike
trains do not have neighbours which are connected to each other. Fig. 7.5(b) shows the
betweenness centrality of the spike trains. There are some central spike trains (#28, #12,
#2 and #27) which transfer most of the information to the other spike trains. Among the
central spike trains, spike trains #28 and #12 have the highest degree. This means that
these two spike trains communicate to other spike trains through incoming and outgoing
connections. There are 10 spike trains which do not pass any information to other spike

trains. That means the betweenness centrality of these spike trains is zero.
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Figure 7.5: Clustering coefficient and betweenness centrality of the 29 spike trains of
stimulus 1. The solid horizontal line indicates the mean and the dashed horizontal line
indicates the mean plus one standard deviation. High-degree spike trains are displayed
as green. (a) Clustering coefficient of 29 spike trains is displayed in descending order.
(b) Betweenness centrality of the 29 spike trains is displayed in descending order.
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Figure 7.6: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 1. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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Among the 29 spike trains, spike trains #8, #16, #12 and #20 are the most influential
(Fig. 7.6(a)) spike trains. Investigation from the connection matrix reveals that these
spike trains have the high outdegree (6, 4, 5 and 5 respectively). Among the influential
spike trains there are two high degree spike trains (#12 and #20). Some of the spike
trains (#1, #11, #17 and #18) do not show any expansiveness because their outdegrees
are zero. Negative expansiveness coefficient indicates that the indegree 1s more than the
outdegree. Spike train #9 has the most negative expansiveness coefficient. Investigation
from the connection matrix reveals that this spike train has 3 indegree and 1 outdegree.
Spike trains #15, #28, #27 and #20 are the most attractive spike trains (Fig. 7.6(b)) as
they have high indegree (5, 6, 4, and 5 respectively) and two of them have the high
degree (#28 and #20). Similar to expansiveness coefficient some of the spike trains (#13,
#17, #21, #22 and #31) do not show any attractiveness as their indegrees are zero.
Negative attractiveness coefficient indicates that the outdegree is more than the indegree.
Spike train #16 has the most negative attractiveness coefficient (4 outdegree and 1
indegree). Spike train #20 has the high indegree and outdegree and simultaneously

considered as influential and attractive spike train.
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Figure 7.7: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 1.
Significant motif IDs are displayed as green. (b) Structural motif count of size m = 3
for the randomized diagram.
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To find the significant interconnections of the spike trains a motif analysis is applied to
the connection matrix. Fig. 7.7(a) shows the structural motif count of size m = 3 found
in the connection matrix of 29 spike trains. Motif ID 2 appears 36 times which is the
highest among the motif IDs. Motif [D 13 appears only | time in the connection matrix
and it is the lowest. To find the significant motif, 1000 random networks are generated
keeping the same indegree and outdegree of the spike trains. The structural motif count
of size m = 3 for the random network is shown in Fig. 7.7(b). The motif [D's 9, 10, 11,
12 and 13 appear more than the random network. The Z-score of these motif ID’s
(Zg = 3.66, p =.0005; Z,, =2.60, p=.013; Z,;; =397, p =.0001; Z,, = 8.10,
p <.0001; Z,3 = 6.51, p <.0001) indicate that they are significant. There are a low
proportion of connected motifs (25.20%) in the connection matrix indicating that the

spike trains are not strongly connected.

The same procedure is applied to the other five stimuli to analyse connectivity of the

spike trains. The results of analysing the five stimuli are presented in Appendix C.

7.4 Summary of connectivity of all stimuli

Comprehensive analysis of connectivity of all stimuli shows that all the connection
matrices have low density ranging from 0.0764 to 0.1429 (Table 7.3). It is observed that
stimulus 5 has the highest density. There are two stimuli (1 and 4) which have the same
density. The characteristic path length of all stimuli shows that on an average, pairs of
spike trains have long communication distances. The lowest characteristic path length is
observed in stimulus 5 which indicates that in this stimulus, the communication
distances between spike trains are less than all other stimuli. A related measure to
characteristic path length, the global efficiency also shows that on an average, there is a
long communication distances between spike trains. Like characteristic path length,

stimulus 5 has the highest global efficiency indicating lowest communication distances
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among the six stimuli. The global clustering coefficient indicates that most of the spike
trains in all stimuli do not form any cluster to their neighbouring spike trains and hence
the spike trains are not strongly connected to each other. In stimulus 3, the global
clustering coefficient is the highest which indicates that in this stimulus spike trains

form some clusters to their neighbouring spike trains.

Stimulus | Density | Characteristic path Global Global clustering
length efficiency coefficient
1 0.0874 3.1634 0.2456 0.2276
2 0.0764 2.7747 0.1871 0.2213
3 0.1170 2.8137 0.3428 0.3749
4 0.0874 3.1204 0.2278 0.2408
5 0.1429 2.3377 0.4041 0.2715
6 0.0936 3.0560 0.2939 0.2139

Table 7.3: Four graph theory measures for six stimuli.

The degree distribution of individual spike trains shows that some spike trains have high
degrees which are common to different stimuli (Fig. 7.8). Spike train #32 has the
highest degree in the case of five stimuli except stimulus 1. Similarly, spike train #28
has high degree in the cases of three stimuli (stimulus 1, stimulus 2 and stimulus 5) and
spike train #12, #24 and #27 have high degree in the case of two stimuli. Spike trains #3,

#9, #14, #20, #21 and #30 have the high degree in the case of only one stimulus.
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Figure 7.8: Spike trains which have high degree, high betweenness centrality, high
expansiveness coefficient and high attractive coefficient among all the spike trains in
different stimuli.

Investigation from the clustering coefficients reveals that all the high degree spike trains
have low clustering coefficient. Some spike trains have clustering coefficient below the
mean of all the spike trains. On the other hand, all these high degree spike trains have
high betweenness centrality. Similar to high degree, spike train #32 has the high
betweenness centrality in five stimuli except stimulus 1 and spike train #28 has high
betweenness centrality in three stimuli (stimulus 1, stimulus 2 and stimulus 5). Spike
train #12 has high betweenness centrality in two stimuli which are stimulus 1 and
stimulus 5. These high degree spike trains have also high expansiveness coefficient and
high attractiveness coefficient. Spike train #32 has high expansiveness coefficient in
five stimuli and high attractiveness coefficient in two stimuli. Spike train #28 has high
expansiveness coefficient in two stimuli (stimulus 2 and stimulus 5) and high

attractiveness coefficient in stimulus 1.
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Figure 7.9: Hub spike train in six stimuli. The hub spike train is shaded in magenta
colour. (a) Spike train #28 is the hub spike train in stimulus 1. (b) Spike train #32 is the
hub spike train in stimulus 2. (¢) Spike train #32 is the hub spike train in stimulus 3 (d)
Spike train #32 is the hub spike train in stimulus 4 (e) Spike train #32 is the hub spike
train in stimulus 5 and (f) Spike train #32 is the hub spike train in stimulus 6.

An important property of the graph theory measures is the identification of hubs. In
graph theory measures, highly influential nodes are often referred to as hubs. These
hubs have the capacity to transfer or process information to the other nodes. Hubs can
be identified either on the basis of the number of degrees or betweenness centrality
(Sporns, 2010). From the analysis of high degrees and betweenness centrality, it can be
concluded that there are some hub spike trains in all stimuli. Fig. 7.9 shows that there is

a hub spike train in stimulus 1 which is spike train #28, and spike train #32 is the hub
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spike train for all other stimuli. From the analysis it can be concluded that spike train
#28 and #32 are the main spike trains which transfer information to the other spike

trains and as well receive information from the other spike trains.

No of stimull

10 "
Mot#f ID

Figure 7.10: Significant motif ID in different stimuli.

Lastly, Fig. 7.10 shows the significant motif ID obtained from different stimuli. Out of
13 motifs ID, only 6 motifs ID are found significant. Motif [D’s 9 and 12 are significant
in all 6 stimuli. Motif ID 13 is significant in stimuli 1, 3, 4 and 6. Motif ID 8 is
significant in 3 stimuli (stimulus 2, stimulus 3 and stimulus 5). Both motif ID’s 10 and

11 are significant in stimulus 1.



Chapter 8

Contribution and conclusion

In this chapter the contributions of this thesis are highlighted. The main findings of the

statistical methods are reiterated to highlight the significance of the methods for the

analysis of functional connectivity.

8.1

Contribution

Here the major contributions of this thesis are summarized:

I

|88

A new statistical method known as the modified correlation grid (MCG) is
developed to analyse functional connectivity of multiple spike trains. The MCG
method enables researchers to distinguish the direct connections from the
spurious (common source and indirect connection) connections using an
automatic algorithm.

Another statistical method known as the Cox method is developed to analyse
functional connectivity of multiple spike trains. The original paper on the
application of the Cox method (Borisyuk et al., 1985) to neuroscience data was
used to analyse only pairs and triplets of spike trains.

A probabilistic model for the generation of dependent spike train is developed.
In this probabilistic model an influence function is described which is used in
neuroscience to study synaptic connectivity between neurons.

A technique based on the pair-wise analysis of the Cox method is developed.
This technique is called the Cox metric. The Cox metric is used to identify the

groups of similar spike trains among multiple spike trains.
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5. Another technique based on the triplet-wise analysis of the Cox method is
developed. This technique is used to identify the patterns of interconnections of
multiple spike trains.

6. In social science network the Pl model is used to identify influential and
attractive people. In this thesis this P1 model is used to the connection matrix of

multiple spike trains to identify the influential and attractive spike trains.

8.2 Conclusion

The MCG, developed in this thesis, is a useful method to identify functional
connectivity of multiple spike trains. In chapter 3, this method is applied to analyse
functional connectivity generated by the ELIF model. To generate spike trains the
architecture of connections between ELIF elements is prescribed and in the analysis of
these spike trains it is assumed that connections are unknown. A diagram of functional
connection is derived as a result of spike train analysis. This diagram of functional
connection is compared with the connection of ELIF model which is used for spike train
generation. Two examples are considered for comparison, a neural circuit of 15 spike
trains and a neural circuit of 20 spike trains. The neural circuit of 15 spike trains has
sixteen connections with one very strong connection known as outlier, and fifteen other
medium strengths of connections. The neural circuit of 20 spike trains has twenty five

connections where all the connections have medium strength.

Pair-wise analysis of the CCF of the 15 spike trains reveals 25 significant connections.
Application of the MCG to these 25 significant connections shows 16 direct
connections and 9 spurious (common source and indirect) connections. Comparing this
diagram of functional connectivity with the diagram of connectivity of ELIF elements
used for spike train generation reveals that all the direct connections identified by the
MCG are the same as the prescribed connections of the ELIF model.
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Similarly, the pair-wise analysis of the CCF of the 20 spike trains reveals 34 significant
connections. Application of the MCG to these 34 significant connections shows 25
direct connections and 9 spurious (common source and indirect) connections.
Comparing this diagram of functional connectivity with the diagram of connectivity of
ELIF elements used for spike train generation reveals that all the direct connections
identified by the MCG are the same as the prescribed connections of the ELIF model.
Thus using the MCG it is possible to distinguish the direct connection from the spurious

connections and can reveal the functional connectivity of the multiple spike trains.

In this thesis a statistical technique known as the Cox method is presented for analysing
dependencies of point processes for application to neuroscience data. It is found that the
Cox method is an efficient tool to study functional connectivity. Comparison with the
CCF which is traditionally used in neuroscience shows significant advantages of the

Cox method.

In chapter 5, the Cox method is applied to the multiple spike trains generated by the
ELIF model to analyse functional connectivity. To generate spike trains the architecture
of connections between ELIF elements is prescribed and in the analysis of spike trains it
is assumed that connections are unknown. The diagram of functional connections which
is obtained by the Cox method is compared with connections of ELIF model which is
used for spike train generation. Two examples are considered for comparison of the
result of functional connectivity of the Cox method and the connection of ELIF model.
The result of analysing five spike trains shows that the Cox method accurately identifies
all functional connections. The result of analysing a large neural circuit of twenty spike
trains also accurately identifies all forty two connections but also finds two erroneous

connections which are relatively weak.
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Comparison with the CCF shows that the Cox method has advantages over the CCF
technique. In particular, the Cox method is more accurate in difficult situations such as
a weak strength or short spike trains. One important advantage of the Cox method is
that this method allows analysing all simultaneously recorded spike trains. To
demonstrate this advantage the Cox method is applied to analyse three spike trains
coupled according to ‘common source’ scheme and shown that couplings can be
correctly identified, but the pair-wise CCF fails to distinguish between the direct
connection and the connection due to a common source. A similar example of three
spike trains with ‘indirect connection’ also demonstrates an advantage of the Cox

method over the CCF.

For comparison with CCF, a probabilistic model is used for generating two spike trains
which satisfy the assumption of the MRP. In this case the estimated Cox coefficient
equals the prescribed strength of influence for spike train generation whereas the CCF
fails to show the proper strength of influence. In chapter 4, it is shown that the
probabilistic MRP model can be fitted to a wide range of spike trains generated by the
integrate-and-fire model. To analyse functional connectivity of multiple spike trains it is
not known whether the analysed spike trains satisfy the assumption of MRP. However
application of the Cox method to both probabilistic mode] and ELIF model shows that
this method is robust and can be successfully used for finding functional connectivity

for a wide range of point processes.

A new technique known as the Cox metric, based on the pair-wise analysis of the Cox
method is developed in this thesis. This method is applied to a neural circuit of twenty
spike trains generated by the ELIF model to identify the groups of coupled spike trains.
The architecture of connections between ELIF elements is prescribed and it is assumed
that connections are unknown. The groups of mutually coupled spike trains are derived
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by the Cox metric and results are compared with connections of ELIF model which is
used for generating groups of coupled spike trains. The result shows that the Cox metric

accurately identifies the groups of coupled spike trains.

Another technique known as motif analysis, based on the triplet-wise analysis of the
Cox method is developed to identify patterns of interconnections among the spike
trains. Application of this method is presented for a neural circuit of twenty spike trains.
In addition to this technique, motif analysis is conducted based on the connection matrix
derived by the Cox method considering all spike trains at once. It is found that the
patterns of interconnections obtained by the triplet-wise analysis of the Cox method are
very similar to the patterns of interconnections obtained by the Cox method considering

all spike trains at once.

8.3 Application of the methods to the experimental data

8.3.1 Analysis of functional connectivity

The MICG method and the Cox method are applied to a set of experimental data
recorded from cat’s visual cortex to identify functional connectivity. Experimental data
includes six stimuli. For each stimulus a set of 29 spike trains are analysed to identify
functional connectivity. A simple study is conducted to understand how the Cox method
works for experimental data. Two small time intervals are considered for the analysis of
functional connectivity of 29 spike trains. Analysis of functional connectivity of 29
spike trains for these intervals show very similar results, which indicate that Cox
method is useful for analysis of experimental data. The MCG is not applied because the

number of spikes is too small for the application.

For each stimulus the diagram of functional connectivity obtained by the MCG method

is compared with the diagram of functional connectivity obtained by the Cox method.
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Although there are differences in the functional connectivity, importantly many
functional connections are common in both techniques. Application of Cox metric to the
functional connectivity of each stimulus has identified some groups of spike trains
which are common in different stimuli. The patterns of interconnections of the spike

trains in different stimuli obtained by motif analysis are also similar.

8.3.2 Graph theoretical methods for analysing connectivity

Matrix of connectivity obtained in chapter 6 by the Cox method for each stimulus is
further analysed by the graph theoretical methods in chapter 7. Importantly, the results
of graph theoretical methods found in chapter 7 have similar characteristics as in
previous studies. The average connection density of all the connection matrices is
obtained 0.100; this result is similar to the result of macaque cortex done by Young
(1993) where the density was 0.152. The average of the characteristic path length
(2.877) is found similar to the characteristic path length of macaque cortex (2.312). The
degree distribution of individual spike trains obtained in chapter 7 reveals that some
spike trains have high degrees which are common to different stimuli. Importantly,
these high degree spike trains have found low clustering coefficient even below the
mean of all spike trains. The low clustering coefficient of the high degree spike trains is
common in each stimulus. The similar result is obtained from a previous study (Spomns
et al.,, 2007) where the high degree areas of macaque cortex and cat cortex show low
clustering coefficient. Betweenness centrality of the spike trains obtained from different
stimulus reveals that the high degree spike trains have high betweenness centrality.
Importantly, all the high degree spike trains which are common to different stimuli also
have high betweenness centrality. Previous study (Sporns et al., 2007) also shows that
the high degree areas of macaque cortex and cat cortex have high betweenness

centrality. Connection matrices of all five stimuli except stimulus 1 reveal that spike
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train #32 has high degree and high betweenness centrality and this spike train can be
considered as the hub spike train which transmits and receives information from other
spike trains. Analysis of the matrices reveals that spike train #32 shows the high
expansiveness coefficient which is common in five stimuli except stimulus 1. This spike
train has also high attractiveness coefficient for stimuli 3 and 5. For all stimuli structural
motif ID’s 9 and 12 are found significant. Studies on the macaque cortex (Sporns and
Koetter, 2004; Sporns et al., 2007) have also revealed that structural motif ID 9

significantly appear more than the random network.



Appendix A

A.1 Enhanced Leaky Integrate and Fire model

The description of the Enhanced Leaky Integrate and Fire (ELIF) model follows the
paper by Borisyuk (2002). A discrete-time version of the model neuron is used with the
time increment equal to 1 ms. The state of each neuron at the moment ¢ is characterised
by a threshold and the total potential which is the sum of postsynaptic potentials and the
noise. If the value of the total potential has reached the threshold, the neuron generates a
spike. The spike propagates to other neurons with a time delay. The diagram of
connection should be defined as well as connection strengths, time delays, and time
decays of postsynaptic potentials. When the spike reaches another neuron, the
postsynaptic potential jumps up or down depending on whether the spike is from an
excitatory or inhibitory neuron, respectively. The value of the connection strength
controls the jump height. The postsynaptic potential exponentially decays to the resting
potential if there are no incoming spikes. After spike generation, the neuron is unable to
generate a spike during an absolute refractory period. When this period expires, the
threshold gets the highest value and then exponentially decays to the asymptotic
threshold value. This decay is used to model a relative refractory period. To model a
spontaneous background activity, the random noise is added to the membrane potential.
The amplitude of the noise exponentially decays with time and a normally distributed
random variable with zero mean and a fixed variance is added to the noise at each time
step. The noise is independent random process for each element. If the amplitude of
noise is large enough, then the element can be spontaneously active even without

influences from other neurons.
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A.2 Dynamics of the ELIF model
The dynamics of the ELIF is governed by the following equations:

1. The threshold:
r(t + 1) = (hax — To)exp(—(t — tsp)/aen) + 7
where 7,4, is the maximum value of the threshold
T is the asymptotic threshold value when t — oo
a;p, is the threshold decay rate
tsp is the last spike moment before t.

2. The post-synaptic potential for the input of the neuron:
PSPI(t + 1) = PSP/ (t)exp(—1/al,) +a,

a_{wf,ift£p+rf=t+1
0, otherwise

where w/ is the connection strength, positive for the excitatory connection and
negative for the inhibitory one
7/ is the time delay
aisp is the jth neuron PSP decay rate
tip is the last spike moment of the jth neuron before t.
3. The noise:
Nt +1) =N exp(—1/ay) +&, E€N(0,0)
where ay, is the noise decay rate

¢ is a random variable with the normal distribution

4. The soma’s membrane potential:

V(ie+1) = VAHPexp(‘(t - tsp)/av’)
where V,p is the value of after spike hyperpolarization

ay is the soma’s membrane potential decay rate
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tsp is the last spike moment before t.

5. The total potential:

P(t+1) = Z PSPI(t+1)+ N+ 1) +V(t+ 1)+ L (t+1)
J

where /.y, is the value of the external input.
6. Spike generation:

If P(t+1)>r(t+1),thent,, =t + 1.
7. The absolute refractory period:

There is no spike generation for the time interval t € (tsp, ts, + ref).

A.3 Parameters for spike train generation by ELIF model

An ELIF model can be simulated using software from the following website:
http://www.tech.plymouth.ac.uk/infovis. To run the simulation, the parameters of ELIF

neurons and their coupling should be specified.
Neural parameters:
Neural parameters describe the parameters of each neuron. The parameters are:

a) Maximum value of the threshold, b) Threshold decay rate, c) Asymptotic threshold
value, d) Amplitude of the noise (i.e. the standard deviation of the normally distributed
random variable), e) Noise decay rate, f) Initial value of after spike hyperpolarisation, g)
Soma’s membrane potential decay rate, h) External input, i) Absolute refractory period,

and j) Type of the neuron (0- non-pacemaker, 1 — pacemaker).
Connection parameters:

Connection parameters contain the parameters describing non-zero connections between

neurons. The parameters are:



http://www.tech.plymouth.ac.uk/infovis
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a ) List of the numbers of those neurons which send their connections to the current
neuron, b) Connection strengths for these connections (positive for excitatory
connection and negative for inhibitory), c) Decay rates of postsynaptic potential for
each connection respectively and d) Time lag of spike propagation for each incoming

connection (ms).




Appendix B

In chapter 6 the MCG method and the Cox method are applied to analyse functional
connectivity of 29 spike trains. The results of analysing the first stimulus are presented

in chapter 6. In this appendix the results of analysing the five stimuli are presented.

B.1  Analysis of functional connectivity of stimulus 2

The raster plot of 32 spike trains is shown in Fig. B.1. Like stimulus 1, spike trains #4,
#5 and #29 have high spiking rates compared to other spike trains and considered as
outliers. These three spike trains are not considered in the analysis of functional
connectivity. All other 29 spike trains have similar spiking pattern. Spiking rates of
these spike trains are high over the time interval [34000 ms, 78000 ms]. Importantly,
there are no spikes over the time interval [78000 ms, 84000 ms] of the 29 the spike
trains except spike train #1. These 29 spike trains are analysed to identify functional

connectivity keeping the original numeration of the spike trains.
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Figure B.1: Raster plot of 32 spike trains of stimulus 2. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysmg functional connectivity.
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B.1.1 MCG method

To identify functional connectivity, 406 pair-wise CCF are calculated with a bin size of
1 ms and a correlation window of 100 ms for the 29 spike trains. To test the
independence of two trains the significance level @ = 0.05 is used with the Bonferroni
correction. A connection is considered to be significant if a peak of the CCF exceeds the
upper boundary of the ‘confidence interval’. A total of 199 significant connections are
found for 29 spike trains. These significant connections are shown in a matrix format in
Fig. B.2(a) where the connections are indicated by circles. The direction of connection
is considered from the reference spike train to the target spike train. Among the 29 spike
trains, spike train #28 has 18 outgoing connections to other spike trains which is the

highest among 29 spike trains and similar 16 incoming connections from other spike

trains.
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Figure B.2: (a) Significant connections obtained from pair-wise CCF analysis of the 29
spike trains of stimulus 2. (b) Direct connections obtained from the connections in (a)
after the clustering algorithm. The radius of the circle indicates the strength of the
connections.

To 1dentify the direct connections from the 199 significant connections, a clustering
algorithm is applied. After clustering, a total of 129 connections are identified as direct

connections (Fig. B.2(b)). The radius of the circle indicates the strength of connection.
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Among 129 connections, 9 connections have strong strength compared to others. These
connections are: (#6, #9), (#7, #8), (#8, #7), (#8, #12), (#9, #3), (#9, #15), (#12, #8),
(#14, #9) and (#15, #9). All other connections have medium strength of connection.
Spike train #28 has 11 outgoing connections and spike train #32 has 12 incoming
connections, which are the highest among 29 spike trains. There are 38 pairs of

connections where both spike trains have functional connectivity to each other.

B.1.2 Cox method

To identify functional connectivity of the 29 spike trains using Cox method, one spike
train is considered as the target spike train and other 28 spike trains are considered as
the reference spike trains. The influence function (and its parameters) which determines
how the reference spike train influences the target spike train should be specified. The
inter spike interval (ISI) histogram of three spike trains, spike train #7, #10 and #13 are
given in (Fig. B.3). These histograms have high count for the short ISI and the ISI count
decreases with increase of the ISI length. That suggests that the influence function
should be specified by the formula (5.3). The parameters of the influence functions are
7, = 0.1 ms, 7, = 10 ms. Another parameter, the time lag A is specified from pair-wise

CCF analysis.

Thus, the influence functions are defined and the Cox coefficients and the
corresponding confidence intervals are calculated using formulas (5.5) and (5.6). This
procedure is repeated 29 times to obtain the full functional connectivity of the 29 spike
trains. The confidence intervals are calculated using the significance level @ = 0.05

with Bonferroni correction.
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Figure B.3: Inter spike interval histogram of the spike trains #7, #10 and #13 of
stimulus 2.

A total of 62 connections are identified by the Cox method which are shown by circles
in Fig. B.4(a). The radius of the circle indicates the strength of functional connection.
The direction of functional connection is from the reference spike train to the target
spike train. Among the 62 connections, the 3 connections have stronger strength
compared to others. These connections are: (#8, #7), (#20, #19) and (#32, #30). 9
connections have a small strength compared to others. These connections are: (#3, #15),
(#7, #3), (#7, #28), (#8, #3), (#25, #32), (#27, #32), (#28, #12), (#28, #32) and (#32,
#31). All other connections have a medium strength of connection. Spike trains #8 and
#32 have 8 outgoing connections and spike train #3 has 6 incoming connections, which
are the highest among 29 spike trains. There are 13 pairs of connections where both

spike trains have functional connectivity to each other.
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Figure B.4: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 2. Radius of the circle indicates strength of connection. (b) The
connections that are identified both by the MCG method and the Cox method.

Functional connectivity obtained by the MCG method and the Cox method show a good
agreement between them (Fig. B.4(b)). There are 49 connections which are common in
both techniques. Among the common connections spike train #32 has 8 outgoing
connections to other spike trains and spike train #32 has 5 incoming connections which

are highest among the 29 spike trains. There are 11 pairs of connections where both

spike trains have functional connectivity to each other.

B.1.3 Cox metric

All possible pairs of spike trains are analysed by pair-wise Cox method where one spike
train is taken as a target and the other spike train as a reference. All the influence
functions are considered identical and specified by (5.3) with the parameters 7, =
0.1 ms and 7, = 10 ms. Another parameter of the influence function, the time lag A is
obtained by the pair-wise CCF analysis. Using the parameter values, the influence
functions are determined and the Cox coefficients are estimated using (5.5) with
corresponding confidence interval by (5.6). The Cox metric is applied to the significant

connections to reveal the groups of similar spike trains. The result of Cox metric is
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shown in Fig. B.5(a) where the grey circles indicate the significant connections obtained
by the pair-wise Cox method. The black circles indicate symmetric of the grey circles
but not identified by the pair-wise analysis of Cox method. There are three groups of
coupled spike trains. Similarly, the Cox metric is applied to the functional connections
identified by the Cox method considering all spike trains at once. This functional
connection is shown in Fig. B.4(a) and the result of Cox metric is shown in Fig. B.5(b).
In the figure the grey circles indicate the significant connections obtained by the Cox
method considering all spike trains at once. The black circles indicate symmetric of the

grey circles but not identified by the Cox method considering all spike trains at once.

From Fig. B.5(a) three groups of similar spike trains are identified. The first group
consists of 10 spike trains, these are: spike trains #6, #9, #3, #15, #7, #8, #11, #16, #12
and #14. In this group, the connection from spike train #6 to #9, spike train #15 to #9,
spike train #8 to #9 and spike train #8 to #7 have the highest strength among other
connections. Spike train #8 has 7 outgoing connections to spike trains #9, #3, #15, #7,
#11, #16 and #12 and spike train #3 has 5 incoming connections from spike trains #9,
#15, #7, #8 and #14. Thus from this group it can be concluded that spike train #8 acts as
the most influential spike train. The second group consists of 2 spike trains: spike train
#1 and spike train #10. The third group consists of 11 spike trains; these are: spike trains
#19, #20, #24, #23, #27, #28, #26, #31, #25, #30 and #32. In this group, 4 connections
(#19, #20), (#20, #19), (#30, #32) and (#32, #30) have strong strength compared to
others. Spike train #32 has 8 outgoing connections to spike trains #19, #20, #24, #27,
#26, #31, #25 and #30 and 5 incoming connections from spike trains #27, #28, #31, #25
and #30. This spike train can be considered as the most influential spike train for this

group. Spike trains #2, #22, #13, #21, #18 and #17 do not form any group.
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Figure B.5: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 2. (a) Cox metric using pair-wise analysis. (b) Cox metric considering
all spike trains at once.

Similarly, from Fig. B.5(b) three groups of similar spike trains are identified. The first
group consists of 11 spike trains, these are: spike trains #19, #20, #23, #24, #27, #28,
#25, #26, #31, #30 and #32. In this group, the connection from spike train #19 to #20,
spike train #20 to #19, spike train #30 to #32 and spike train #32 to #30 have the highest
strength among other connections. Spike train #32 has the 8 outgoing connections to
spike trains #19, #20, #24, #27, #25, #26, #31 and #30 and 5 incoming connections
from spike trains #27, #28, #25, #31 and #30. Thus from this group it can be concluded
that spike train #32 is the most influential spike train. The second group consists of 3
spike trains, these are: spike trains #1, #10 and #13. The third group consists of 9 spike
trains; these are: spike trains #3, #15, #9, #11, #7, #8, #12, #14 and #16. In this group,
spike train #8 has 5 outgoing connections to spike trains #3, #15, #7, #12 and #16. As
these spike trains have the highest outgoing connections, these spike trains can be
considered as the most influential spike trains for this group. Spike trains #17, #6, #21

and #18 do not follow any group.
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Investigation from Fig. B.5(a)-(b) reveal that the Cox metric identified by the pair-wise
analysis and considering all spike trains at once show a good agreement. For example,
the third group of figure B.5(a) consists 11 spike trains which are the same as the first
group of figure B.5(b). Similarly, the other two groups of both figures consist same
spike trains except a few. From this analysis it can be concluded that application of the
Cox metric to experimental data using pair-wise analysis and considering all spike

trains at once enables to create similar result.

B.1.4 Motif analysis

To find the pattern of interconnections among the 29 spike trains, a structural motif
analysis is conducted using triplet-wise analysis of Cox method. A total of 3654 triplets
are analysed. All the influence functions are considered identical and specified by (5.3)
with the parameters 7, = 0.1 ms and 7, = 10 ms. Another parameter of the influence
function, the time lag A is obtained by the pair-wise CCF analysis. Using the parameter
values, the influence functions are determined and the Cox coefficients are estimated
using (5.5) with corresponding confidence interval using (5.6). Functional connectivity
of each triplet spike trains is used to identify the structural motif. Structural motif count

is obtained by analysing all 3654 triplets of spike trains which is shown in Fig. B.6.
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Figure B.6: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus
3

Out of 3654 triplets, 657 triplets have different structural motifs ID. Among the 657
triplets, 126 triplets have motif ID 3 which is the highest among others motif ID’s. Only
3 triplets have motif ID 7 which is the lowest. Motif ID’s 2 and 6 have similar number
of triplets; motif ID's 1, 4 and 5 have similar number of triplets; motif ID’s 8, 9, 10 and
12 have similar number of triplets. A total of 85 triplets have connected motifs
(connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, a total of 572
triplets have unconnected motifs. Thus there are low proportions of connected motifs
(14.86%) in the groups of triplet spike trains which indicate that in the group,

connection from every spike trains to every other spike trains is very low.

B.2  Analysis of functional connectivity of stimulus 3

The raster plot of 32 spike trains (Fig. B.7) shows that like stimuli 1 and 2, spike trains
#4, #5 and #29 have high spiking rates compared to other spike trains. Therefore, these
three spike trains (#4, #5 and #29) are considered to be outliers and are not considered

in the analysis of functional connectivity. All other 29 spike trains have similar spiking
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pattern. Spiking rates of these 29 spike trains is high over the time interval [43000 ms,
90000 ms]. These 29 spike trains are analysed to identify functional connectivity

between them keeping the original numeration of the spike trains.
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Figure B.7: Raster plot of 32 spike trains of stimulus 3. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysing functional connectivity.

B.2.1 MCG method

All pair-wise CCF are calculated with a bin size of 1 ms and a correlation window of
100 ms for the 29 spike trains. To test the independence of two spike trains the
significance level @ = 0.05 is used with the Bonferroni correction. A total of 89
significant connections are found for 29 spike trains. These significant connections are
shown in a matrix format in Fig. B.8(a) where the connections are indicated by circles.
The direction of connection is considered from the reference spike train to the target

spike train. Among the 29 spike trains, spike train #32 has 12 outgoing connections to
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other spike trains which is the highest among 29 spike trains and similar 13 incoming

connections from other spike trains.
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Figure B.8: (a) Significant connections obtained from pair-wise CCF analysis of the 29
spike trains of stimulus 3. (b) Direct connections obtained from the connections in (a)
after the clustering algorithm. The radius of the circle indicates the strength of the
connections.

A clustering algorithm is applied to the 89 significant connections to identify the direct
connections and a total of 16 connections are identified as direct connections (Fig.
B.8(b)). The radius of the circle indicates the strength of connection. All the 16
connections have strong strength. Spike train #8 has 3 outgoing connections to spike
trains #7, #12 and #13; and 3 incoming connections from spike trains #7, #12 and #13,
which are the highest among 29 spike trains. There are 7 pairs of connections where
both spike trains have functional connectivity to each other. These pairs are: (%3, #9),

(#7, #8), (#8, #12), (#8, #13), (#19, #20), (#19, #23) and (#30, #32).

B.2.2 Cox method
Application of Cox method to the 29 spike trains requires the identification of reference
spike trains, target spike train and the influence function. The inter spike interval (ISI)

histogram of three spike trains, spike train #15, #19 and #20 are given in (Fig. B.9).
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These histograms have high count for the short ISI and the ISI count decreases with
increase of the IS1 length. That suggests that the influence function should be specified
by the formula (5.3) with parameters 7,, = 0.1 ms, 7, = 10 ms. Another parameter, the
time lag A is specified from pair-wise CCF analysis. Thus, the influence functions are
defined and the Cox coefficients and the corresponding confidence intervals are
calculated using formulas (5.5) and (5.6). This procedure is repeated 29 times to obtain
the full functional connectivity of the 29 spike trains. The confidence intervals are

calculated using the significance level @ = 0.05 with Bonferroni correction.
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Figure B.9: Inter spike interval histogram of the spike trains #15, #19 and #20 of
stimulus 3.

A total of 95 connections are identified by the Cox method which are shown by circles
in Fig. B.10(a). The radius of the circle indicates the strength of functional connection.
The direction of functional connection is from the reference spike train to the target

spike train. Among the 95 connections, the 6 connections have stronger strength
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compared to others. These connections are: (#7, #15), (#8, #12), (#13, #8), (#17, #18),
(#20, #19) and (#32, #30). 6 connections have small strength compared to others. These
connections are: (#10, #32), (#21, #32), (#24, #27), (#24, #32), (#32, #2) and (#32, #10).
All other connections have a medium strength of connection. Spike train #32 has 12
outgoing connections and 9 incoming connections, which are the highest among 29
spike trains. There are 21 pairs of connections where both spike trains have functional

connectivity to each other.
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Figure B.10: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 3. Radius of the circle indicates strength of connection. (b) The
connections that are identified both by the MCG method and the Cox method.

Functional connectivity obtained by the MCG method and the Cox method show good
agreement between them (Fig. B.10(b)). There are 14 connections which are common in
both techniques. Among the common connections spike train #8 has 3 outgoing
connections to spike trains #7, #12 and #13. There are 5 pairs of connections where both

spike trains have functional connectivity to each other. These connections are: (#3, #9),

(#7, #8), (#8, #13), (#19, #20) and (#30, #32).
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B.2.3 Cox metric
All 812 possible pairs of spike trains are analysed by pair-wise Cox method where one
spike train is taken as a target and the other spike train as a reference. All the influence
functions are considered identical and specified by (5.3) with the parameters 7, =
0.1 ms and 7, = 10 ms. Another parameter of the influence function, the time lag A is
obtained by the pair-wise CCF analysis. Using the parameter values, the influence
functions are determined and the Cox coefficients are estimated using (5.5) with
corresponding confidence interval by (5.6). The Cox metric is applied to the significant
connections to reveal the groups of mutually coupled spike trains. The result of Cox
metric is shown in Fig. B.11(a) where the grey circles indicate the significant
connections obtained by the pair-wise Cox method The black circles indicate symmetric
of the grey circles but not identified by the pair-wise analysis of Cox method. Similarly,
the Cox metric is applied to the functional connections identified by the Cox method
considering all spike trains at once. This functional connection is shown in Fig. B.10(a)
and the result of Cox metric is shown in Fig. B.11(b). In the figure the grey circles
indicate the significant connections obtained by the Cox method considering all spike
trains at once. The black circles indicate symmetric of the grey circles but not identified

by the Cox method considering all spike trains at once.

From Fig. B.11(a) four groups of similar spike trains are identified. The first group
consists of 12 spike trains, these are: spike trains #19, #20, #23, #14, #21, #24, #27,
#30, #32, #25, #28 and #26. In this group, the connection from spike train #19 to #20,
spike train #20 to #19, spike train #30 to #32 and spike train #32 to #30 have the highest
strength among other connections. Spike train #32 has 9 outgoing connections to spike
trains #19, #20, #23, #14, #21, #24. #27, #30 and #25 and spike train #27 has 9

incoming connections from spike trains #20, #23, #21, #24, #30, #32, #25, #28 and #26.
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Thus from this group it can be concluded that spike train #32 is the most influential
spike train. The second group consists of 7 spike trains; these are: spike trains #1, #16,
#7, #15, #3, #9 and #11. In this group connection from spike train #7 to spike train #15
has stronger strength compared to others. Spike train #16 has connections to all other
spike trains except spike train #3. Spike train ##11 has 5 incoming connections from all
other spike trains. Spike train #16 can be considered as the most influential spike train
for this group. The third group consists of 3 spike trains: #8, #12 and #13. All the
connections have strong strength. Spike train #8 has connections to the spike trains #12
and #13. This spike train can be considered as the most influential spike train for this
group. The fourth group consists only 2 spike trains: #17 and #18, where there is a

connection from spike train #17 to spike train #18. Spike trains #31, #22, #2, #10 and

#6 do not form any group.
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Figure B.11: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 3. (a) Cox metric using pair-wise analysis. (b) Cox metric all spike
trains at once.

Similarly, from Fig. B.11(b) four groups of similar spike trains are identified. The first
group consists of 11 spike trains, these are: spike trains #8, #13, #12, #1, #16, #3, #9,

#11, #7, #15 and #10. In this group, the connection from spike train #8 to #13 and spike
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train #13 to #8 have the highest strength among other connections. Spike train #16 has
the 6 outgoing connections to spike trains #8, #12, #1, #9, #11 and #7. As this spike
train has the highest outgoing connections, this spike train is considered as the most
influential spike train for this group. The second group consists of 2 spike trains, these
are: spike trains #6 and #23. The third group consists of 13 spike trains; these are: spike
trains #14, #19, #20, #24, #22, #21, #31, #30, #32, #25, #28, #26 and #27. In this group,
four connections (#19, #20), (#20, #19), (#30, #32) and (#32, #30) have big strength
compared to others. Spike train #32 has 9 outgoing connections to other spike trains of
this group. As this spike train has the highest outgoing connections, this spike train can
be considered as the most influential spike train for this group. The forth group consists

only 2 spike trains, these are: spike trains #17 and #18. Spike trains #2 does not follow

any group.

Investigation from Fig. B.11(a)-(b) reveal that the Cox metric identified by the pair-
wise analysis and considering all spike trains at once show a good agreement. For
example, the first group of Fig. B.11(a) and the third group of Fig. B.11(b) consist the
same 11 spike trains (#19, #20, #14, #21, #24, #27, #30, #32, #25, #28 and #26) except
one (#23) in Fig. B.11(a) and two (#22, #31) in Fig. B.11(b). Similarly, the other three
groups of both figures consist same spike trains except a few. From this analysis it can
be concluded that application of Cox metric to experimental data using pair-wise

analysis and considering all spike trains at once enable to create similar result.

B.2.4 Motif analysis

To find the pattern of interconnections a structural motif analysis is conducted using
triplet-wise Cox method to the 3654 triplets. All the influence functions are considered
identical and specified by (5.3) with the parameters 7, = 0.1 ms and 7, = 10 ms.

Another parameter of the influence function, the time lag A is obtained by the pair-wise
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CCF analysis. Using the parameter values, the influence functions are determined and
the Cox coefficients are estimated using (5.5) with corresponding confidence interval
using (5.6). Functional connectivity of each triplet spike trains is used to identify the
structural motif among the triplets of spike trains. Structural motif count is obtained by

analysing all 3654 triplets of spike trains which i1s shown in Fig. B.12,

180
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Motif ID
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Figure B.12: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus

-

i

Out of 3654 triplets, 862 triplets have different structural motifs ID. Among the 862
triplets, 164 triplets have motif ID 6 which is the highest among other motif ID’s. Only
12 triplets have motif ID 7 which is the lowest. 161 triplets have Motif ID 2 which is
almost same as the motif ID 6. Motif ID’s 1, 3 and 4 have similar number of triplets;
motif ID’s 9, 10, 11 and 12 have similar number of triplets. A total of 145 triplets have
connected motifs (connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand,
a total of 717 triplets have unconnected motifs. Thus there are low proportions of
connected motifs (20.22%) in the groups of triplet spike trains which indicate that in the

group, connection from every spike trains to every other spike trains is very low.
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B.3 Analysis of functional connectivity of stimulus 4

Similar to stimuli 1, 2 and 3, spike trains #4, #5 and #29 have high spiking rates
compared to other spike trains (Fig. B.13). Therefore, these three spike trains are
considered to be outliers and they are excluded from analysis. All other 29 spike trains
have similar spiking pattern. Spiking rates of these 29 spike trains are high over time
interval [50000 ms, 83000 ms]. 29 spike trains are analysed for identifying functional

connectivity between them keeping the original numeration of the spike trains.
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Figure B.13: Raster plot of 32 spike trains of stimulus 4. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysing functional connectivity.

B.3.1 MCG method

All pair-wise CCF are calculated with a bin size of 1 ms and a correlation window of
100 ms for the 29 spike trains. To test the independence of two spike trains the
significance level @ = 0.05 is used with the Bonferroni correction. A connection is
considered to be significant if a peak of the CCF exceeds the upper boundary of the

‘confidence interval’.
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Figure B.14: (a) Significant connections obtained from pair-wise CCF analysis of the
29 spike trains of stimulus 4. (b) Direct connections obtained from the connections in (a)
after the clustering algorithm. The radius of the circle indicates the strength of the
connections.

A total of 67 significant connections are found for 29 spike trains. These significant
connections are shown in a matrix format in Fig. B.14(a)) where the connections are
indicated by circles. The direction of connection is considered from the reference spike
train to the target spike train. Among the 29 spike trains, spike train #32 has 12
outgoing connections to other spike trains which is the highest among 29 spike trains

and similar 12 incoming connections from other spike trains.

Application of clustering algorithm to the 67 significant connections reveals a total of
51 direct connections (Fig. B.14(b)). The radius of the circle indicates the strength of
connection. Among 51 connections, 10 connections have strong strength. These
connections are: (#3, #9), (#7, #8), (#8, #7), (#9, #30), (#19, #20), (#19, #24), (#20,
#19), (#24, #19), (¥25, #14), (#30, #32) and (#32, #30). Spike train #32 has 6 outgoing
connections to spike trains #14, #20, #25, #27, #28 and #30; and 8 incoming
connections from spike trains #2, #6, #14, #25, #26, #27, #28 and #30, which are the

highest among 29 spike trains. There are 16 pairs of connections where both spike trains
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have functional connectivity to each other. These pairs are: (#1, #3), (#1, #7), (#3, #7),
(#7, #8), (#7, #15), (#14, #32), (#19, #20), (#19, #24), (#24, #28), (#25, #28), (#25, #32),

(#27, #28), (#27, #30), (#27, #32), (#28, #32) and (#30, #32).

B.3.2 Cox method

To identify functional connectivity by the Cox method, the target spike train, reference
spike trains and the influence function which determines how the reference spike train
influences the target spike train should be specified. The inter spike interval (ISI)
histogram of three spike trains, spike train #12, #19 and #20 are given in (Fig. B.15).
These histograms have high count for the short ISI and the ISI count decreases with
increase of the ISI length. That suggests that the influence function should be specified
by the formula (5.3) with parameters 7, = 0.1 ms, 7, = 10 ms. Another parameter, the
time lag A is specified by the pair-wise CCF. Thus, the influence functions are defined
and the Cox coefficients and the corresponding confidence intervals are calculated using
formula (5.5) and (5.6). This procedure is repeated 29 times to obtain the full functional
connectivity of the 29 spike trains. The confidence intervals are calculated using the

level of significance @ = 0.05 with Bonferroni correction.

The 71 connections, identified by the Cox method, are shown by circles in Fig. B.16(a).
The radius of the circle indicates the strength of functional connection. The direction of
functional connection is from the reference spike train to the target spike train. Among
the 71 connections, the 5 connections have stronger strength compared to others. These
connections are: (#10, #31), (#12, #9), (#20, #19), (#26, #31) and (#32, #30). All other
connections have a medium strength of connection. Spike train #32 has 8 outgoing
connections and 6 incoming connections, which are the highest among 29 spike trains.
There are 19 pairs of connections where both spike trains have functional connectivity

to each other.
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Figure B.I5: Inter spike interval histogram of the spike trains #12, #19 and #20 of
stimulus 4.

Functional connectivity obtained by the MCG method and the Cox method show a good
agreement between them (Fig. B.16(b)). There are 31 connections which are common in
both techniques. Among the common connections spike train #32 has 4 outgoing
connections to spike trains #20, #25, #27 and #30 and 5 incoming connections from
spike trains #2, #25, #26, #28 and #30. There are 6 pairs of connections where both
spike trains have functional connectivity to each other. These connections are: (#3, #7),

(#9, #20), (#25, #28), (#25, #32), (#27, #30) and (#30, #32).
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Figure B.16: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 4. Radius of the circle indicates strength of connection. (b) The
connections that are identified both by the MCG method and the Cox method.

B.3.3 Cox metric

To apply Cox metric to the 29 spike trains all possible pairs of spike trains are analysed
by pair-wise Cox method where one spike train is taken as a target and the other spike
train as a reference. All the influence functions are considered identical and specified by
(5.3) with the parameters 7, = 0.1 ms and 7 = 10 ms. Another parameter of the
influence function, the time lag A is obtained by the pair-wise CCF analysis. Using the
parameter values, the influence functions are determined and the Cox coefficients are
estimated using (5.5) with corresponding confidence interval by (5.6). The Cox metric
is applied to the significant connections to reveal the groups of similar spike trains. The
result of Cox metric is shown in Fig. B.17(a) where the grey circles indicate the
significant connections obtained by the pair-wise Cox method. The black circles
indicate symmetric of the grey circles but not identified by the pair-wise analysis of Cox
method. Similarly, the Cox metric is applied to the functional connections identified by
the Cox method considering all spike trains at once. This functional connection is

shown in Fig. B.16(a) and the result of Cox metric is shown in Fig. B.17(b). In the
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figure the grey circles indicate the significant connections obtained by the Cox method
considering all spike trains at once. The black circles indicate symmetric of the grey

circles but not identified by the Cox method considering all spike trains at once.

From Fig. B.17(a) five groups of similar spike trains are identified. The first group
consists of 8 spike trains, these are: spike trains #30, #32, #21, #25, #27, #28, #14 and
#26. In this group, the connection from spike train #30 to #32, spike train #32 to #30,
spike train #14 to #26 and spike train #26 to #14 have the highest strength among other
connections. Spike trains #30, #25 and #28 have 6 outgoing connections to other spike
trains. Spike train #30 has 6 incoming connections from all 6 spike trains except spike
train #14. Thus from this group it can be concluded that spike train #30 is the most
influential spike train. The second group consists of 4 spike trains; these are: spike
trains #19, #20, #23 and #24. In this group, all the connections have strong strength,
which means that this group is strongly connected group. All the spike trains have
connections to each other, which mean there is no most influential spike train in this
group. The third group consists of only two spike trains: #10 and #31, where there is a
connection from spike train #10 to spike train #31. The fourth group consists of 5 spike
trains: #1, #7, #8, #11 and #15. All the connections in this group have a medium
strength. The fifth group consists of 4 spike trains: #9, #12, #13 and #16. Connection
from #12 to #9 has strong strength and spike train #12 can be considered as the most
influential spike train of this group. Spike trains #16, #2, #3, #17, #22 and #6 do not

form any group.
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Figure B.17: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 4. (a) Cox metric using pair-wise analysis. (b) Cox metric considering
all spike trains at once.

Similarly, from Fig. B.17(b) five groups of similar spike trains are identified. The first
group consists of 5 spike trains, these are: spike trains #30, #32, #25, #27 and #28. In
this group, the connection from spike train #30 to #32 and spike train #32 to #30 have
the highest strength among other connections. Spike trains #30 and #28 have outgoing
connections to all other spike trains. Thus from this group it can be concluded that spike
trains #30 and #28 are the most influential spike trains. The second group consists of 5
spike trains; these are: spike trains #19, #20, #24, #21 and #23. In this group, all the
connections have strong strength, which means that this group is strongly connected
group. In this group spike trains #19 and #20 have 3 outgoing connections to other spike
trains and are considered as the most influential spike trains in this group. The third
group consists of 4 spike trains: #10, #31, #14 and #26. Here spike train #26 has two
outgoing connections to spike trains #31 and #14 and is considered as the most
influential spike train. The fourth group consists of 6 spike trains: #1, #7, #11, #15, #9

and #12. There is no influential spike train in this group. The fifth group consists of 3
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spike trains: #8, #13 and #16. Spike trains #16, #2, #3, #17, #22 and #6 do not form any

group.

Investigation from Fig. B.17(a)-(b) reveal that the Cox metric identified by the pair-
wise analysis and considering all spike trains at once show a good agreement. For
example, the second group of both figures consists the same four spike trains (#19, #20,
#23 and #24) except spike train #21 in Fig. B.17(b). Similarly, the other four groups of
both figures consist same spike trains except a few. From this analysis it can be
concluded that application of Cox metric to experimental data using pair-wise analysis

and considering all spike trains at once enables to create similar result.

B.3.4 Motif analysis

A motif analysis is conducted to the 29 spike trains to find the pattern of
interconnections. For 29 spike trains a total of 3654 triplets are analysed. All the
influence functions are considered identical and specified by (5.3) with the parameters
7, = 0.1 ms and 7, = 10 ms. Another parameter of the influence function, the time lag
A is obtained by the pair-wise CCF analysis. Using the parameter values, the influence
functions are determined and the Cox coefficients are estimated using (5.5) with
corresponding confidence interval using (5.6). Functional connectivity of each triplet
spike trains is used for identifying the structural motif among the triplets. The structural
motif count is obtained by analysing all 3654 triplets of spike trains which is shown in

Fig. B.18.
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Figure B.18: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus
4.

Out of 3654 triplets, 789 triplets have different structural motifs [D’s. Among the 789
triplets, 190 triplets have motif ID 2 which is the highest among others motif ID’s. Only
9 triplets have motif ID 7 which is the lowest. 149 triplets have Motif ID 6 which is the
second highest among other motif ID’s. Motif ID’s 1, 3 and 4 have similar number of
triplets; motif ID’s 10, 11 and 13 have similar number of triplets and motif ID’s 5, 9 and
12 have similar number of triplets. A total of 121 triplets have connected motifs
(connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, a total of 668
triplets have unconnected motifs. Thus there are low proportions of connected motifs
(18.11%) in the groups of triplet spike trains which indicate that in the triplet,

connection from every spike trains to every other spike trains is very low.

B.4 Analysis of functional connectivity of stimulus 5

The raster plot of 32 spike trains is shown in Fig. B.19. Similar to other stimuli, spike
trains #4, #5 and #29 have high spiking rates compared to all other spike trains.
Therefore, these three spike trains are considered to be outliers and they are excluded

from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these
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29 spike trains are high over time interval [37000 ms, 100000 ms]. These 29 spike trains
are analysed for identifying functional connectivity between them keeping the original

numeration of the spike trains.
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Figure B.19: Raster plot of 32 spike trains of stimulus 5. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysing functional connectivity.

B.4.1 MCG method

All possible pair-wise CCF are calculated with a bin size of 1 ms and a correlation
window of 100 ms for the 29 spike trains. To test the independence of two spike trains
the significance level @ = 0.05 is used with the Bonferroni correction. A connection is
considered significant if a peak of the CCF exceeds the upper boundary of the
confidence interval. A total of 175 significant connections are found for 29 spike trains.
These significant connections are shown in a matrix format in Fig. B.20(a) where the
connections are indicated by circles. The direction of connection is considered from the

reference spike train to the target spike train. Among the 29 spike trains, spike trains

(]
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#30 and #32 have 17 outgoing connections to other spike trains and 16 incoming

connections from other spike trains, which are the highest among 29 spike trains.

TTTTT] 1 1 TTTT]

11

117

i E:_ N BN N i E dﬁm C i
Finie ¥ i
:—— E £ 1|#i

J ’! | '¢t
e H A_Jﬁ%
1238700 NARDUBNTENENENMNNNITEEN S 123070 NNEBHBNTHESENNDENNRT SN2
Referance spike train Referance spike train

(a) (b)

Figure B.20: (a) Significant connections obtained from pair-wise CCF analysis of the
29 spike trains of stimulus 5. (b) Direct connections obtained from the connections in (a)
after the clustering algorithm. The radius of the circle indicates the strength of the
connections.

A clustering algorithm is applied to the 175 significant connections for distinguishing
direct connections from spurious ones (i.e., indirect connections and common source).
After clustening a total of 49 connections are identified as direct connections (Fig.
B.20(b)). The radius of the circle indicates the strength of connection. Among 49
connections, 9 connections have strong strength. These connections are: (#7, #8), (#8,
#7), (#8, #12), (#12, #8), (#19, #20), (#19, #23), (#20, #19), (#23, #24) and (#24, #23).
Spike train #23 has 6 outgoing connections to spike trains #9, #14, #20, #24, #28 and
#30; and spike train 9 has 7 incoming connections from spike trains #3, #7, #8, #10, #15,
#16 and #23, which are the highest among 29 spike trains. There are 16 pairs of
connections where both spike trains have functional connectivity to each other. These

pairs are: (#3, #7), (#3, #9), (#7, #8), (#7, #9), (#7, #15), (#8, #12), (#8, #15), (#9, #15),
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(#12, #16), (#19, #20), (#21, #25), (#23, #24), (#23, #28), (#27, #28), (#28, #32) and

(#30, #32).

B.4.2 Cox method

Cox method is applied to the 29 spike trains to analyse functional connectivity,
considering one spike train as target spike train and other 28 spike trains as reference
spike trains. The influence function which determines how the reference spike train
influences the target spike train should be specified with parameters. All the influence
functions are assumed identical. The inter spike interval (ISI) histogram of three spike
trains, spike train #17, #18 and #22 are given in (Fig. B.21). These histograms have
high count for the short ISI and the ISI count decreases with increase of the ISI length.
That suggests that the influence function should be specified by the formula (5.3). The
parameters of the influence function (5.3) are 7, = 0.1 ms, . = 10 ms. Another
parameter, the time lag A is specified from pair-wise CCF analysis. Thus, the influence
functions are defined and the Cox coefficients and the corresponding confidence
intervals are calculated using formulas (5.5) and (5.6). This procedure is repeated 29
times to obtain the full functional connectivity of the 29 spike trains. The confidence

intervals are calculated using the significance level @ = 0.05 with Bonferroni correction.

A total of 116 connections are identified by the Cox method which are shown by circles
in Fig. B.22(a). The radius of the circle indicates the strength of functional connection.
The direction of functional connection is from the reference spike train to the target

spike train.
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Figure B.21: Inter spike interval histogram of the spike trains #17, #18 and #22 of
stimulus 5.
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Figure B.22: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 5. Radius of the circle indicates strength of connection. (a) The
connections that are identified both by the MCG method and the Cox method.
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Among 116 connections, 8 connections have strong strength compare to others. These
connections are: (#9, #15), (#13, #16), (#19, #20), (#20, #19), (#24, #23), (#25, #26),
(#28, #27) and (#32, #30). 5 connections have weak strength compared to others. These
connections are: (#9, #14), (#12, #32), (#14, #28), (#28, #15) and (#28, #32). All other
connections have a medium strength of connection. Spike train #28 has [ outgoing
connections and spike trains #12 and #32 have 8 incoming connections, which are the
highest among 29 spike trains. There are 22 pairs of connections where both spike trains

have functional connectivity to each other.

Functional connectivity obtained by the MCG method and the Cox method show a good
agreement between them (Fig. B.22(b)). There are 31 connections which are common in
both techniques. Among the common connections spike train #9 has 4 outgoing
connections to spike trains #7, #12, #15 and #30 and 5 incoming connections from spike
trains #3, #7, #10, #15 and #16. There are 5 pairs of connections where both spike trains
have functional connectivity to each other. These connections are: (#7, #9), (#8, #12),

(#9, #15), (#19, #20) and (#30, #32).

B.4.3 Cox metric

All possible pairs of spike trains are analysed by pair-wise Cox method taking one spike
train as a target and the other spike train as a reference. All the influence functions are
considered identical and specified by (5.3) with the parameters 7, = 0.1 ms and
7, = 10 ms. Another parameter of the influence function, the time lag A is obtained by
the pair-wise CCF analysis. Using the parameter values, the influence functions are
determined and the Cox coefficients are estimated using (5.5) with corresponding
confidence interval using (5.6). The Cox metric is applied to the significant connections
to reveal the groups of similar spike trains. The result of Cox metric is shown in Fig.

B.23(a) where the grey circles indicate the significant connections obtained by the pair-
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wise Cox method. The black circles indicate symmetric of the grey circles but not
identified by the pair-wise analysis of Cox method. Similarly, the Cox metric is applied
to the functional connections identified by the Cox method considering all spike trains
at once. This functional connection is shown in Fig. B.22(a) and the result of the Cox
metric is shown in Fig. B.23(b). In the figure the grey circles indicate the significant
connections obtained by the Cox method considering all spike trains at once. The black
circles indicate symmetric of the grey circles but not identified by the Cox method

considering all spike trains at once.

From Fig. B.23(a) five groups of similar spike trains are identified. The First group
consists of 7 spike trains, these are: spike trains #19, #20, #21, #23, #24, #27 and #28.
In this group, the connection from spike train #19 to #20 and spike train #20 to #19
have the highest strength among other connections. All other connections have a
medium strength. Spike train #28 has connections to all other spike trains and similar
spike train #23 has incoming connections from all other spike trains. Thus from this
group it can be concluded that spike train #28 is the most influential spike train. The
second group consists of 6 spike trains; these are: spike trains #1, #14, #25, #26, #30
and #32. In this group, all the connections have medium strength. Spike train #32 has 4
outgoing connections to spike trains #1, #25, #26 and #30 and 5 incoming connections
from all the spike trains. This spike train can be considered as the most influential spike
train for this group. The third group also consists of 6 spike trains; these are: spike trains
#3. #10, #6, #12, #9 and #15. In this group, spike train #3 has 4 out going connections
to all other spike trains except spike train #15. Similarly, spike train #12 has 4 incoming
connections from all other spike trains except spike train #15. In this group, spike train
#3 is considered as the most influential spike train. The fourth group consists of 3 spike
trains; spike trains #7, #18 and #8. The last group consists of 2 spike trains; spike trains

#13 and #16. Spike trains #31, #11, #22, #17 and #2 do not form any group.
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Figure B.23: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 5. (a) Cox metric using pair-wise analysis. (b) Cox metric considering
all spike trains at once.

Similarly, from Fig. B.23(b) five groups of similar spike trains are identified. The First
group consists of 7 spike trains, these are: spike trains #19, #20, #27, #28, #21, #23 and
#24. In this group, the connection from spike train #19 to #20 and spike train #20 to #19
have the highest strength among other connections. All other connections have a
medium strength. Spike train #28 has connections to spike trains #19, #20, #27 and #21.
From this group it can be concluded that spike frain #28 is the most influential spike
train. The second group consists of 7 spike trains; these are: spike trains #1, #14, #30,
#32, #31, #25 and #26. In this group, the connection from spike train #30 to #32 and
spike train #32 to #30 have the highest strength among other connections. Spike train
#32 has 4 outgoing connections to spike trains #1, #30, #25 and #26 and 5 incoming
connections from all the spike trains. This spike train can be considered as the most
influential spike train for this group. The third group also consists of 6 spike trains;
these are: spike trains #3, #10, #6, #12, #9 and #15. In this group, spike train #3 has 4
out going connections to all other spike trains except spike train #15. Spike train #3 is

considered as the most influential spike train. The fourth group consists of 4 spike trains;

249




Appendix B

spike trains #7, #8, #13 and #16. The last group consists of 2 spike trains; spike trains

#17 and #18. Spike trains #11, #2 and #22 do not form any group.

Investigation from Fig. B.23(a)-(b) reveal that the Cox metric identified by the pair-
wise analysis and considering all spike trains at once show a good agreement. For
example, the first and third group of both figures consists the same spike trains.
Similarly, the other three groups of both figures consist same spike trains except a few.
From this analysis it can be concluded that application of Cox metric to experimental
data using pair-wise analysis and considering all spike trains at once enables to create

similar result.

B.4.4 Motif analysis

To find the pattern of interconnections among the spike trains a structural motif analysis
is conducted using triplet-wise analysis of Cox method. A total of 3654 triplets are
analysed. All the influence functions are considered identical and specified by (5.3) with
the parameters 7, = 0.1 ms and 7, = 10 ms. Another parameter of the influence
function, the time lag A is obtained by the pair-wise CCF analysis. Using the parameter
values, the influence functions are determined and the Cox coefficients are estimated
using (5.5) with corresponding confidence interval using (5.6). Functional connectivity
of each triplet spike trains is used for identifying the structural motif. The structural
motif count is obtained by analysing all 3654 triplets of spike trains which is shown in

Fig. B.24.
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Figure B.24: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus
s

Out of 3654 triplets, 1724 groups have different structural motifs ID’s. Among the 1724
triplets, 339 triplets have motif ID 6 which is the highest among others motif ID’s. Only
12 triplets have motif ID 7 which is the lowest. Motif ID’s 2, 4, 9 and 12 have similar
number of triplets; motif ID’s 1 and 3 have similar number of triplets. A total of 532
triplets have connected motifs (connected motifs are motif ID 7, 9, 10, 12 and 13). On
the other hand, a total of 1938 triplets have unconnected motifs. Thus there are low
proportions of connected motifs (27.45%) in the groups of triplet spike trains which

indicate that connection from every spike train to every other spike trains is low.

B.5 Analysis of functional connectivity of stimulus 6

The raster plot of 32 spike trains is shown in Fig. B.25. Similar to all the 5 stimuli spike
trains #4, #5 and #29 have high spiking rates compared to all other spike trains.
Therefore, these three spike trains are considered to be outliers and they are excluded
from analysis. All the 29 spike trains have similar spiking pattern. Spiking rates of these
29 spike trains are high over time interval [55000 ms, 95000 ms]. Like stimulus 2, there

are no spikes over time interval [95000 ms, 101000 ms] of the 29 the spike trains except
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spike train #1. These 29 spike trains are analysed for identifying functional connectivity

between them keeping the original numeration of the spike trains.
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Figure B.25: Raster plot of 32 spike trains of stimulus 6. Spike trains #4, #5 and #29
have high spiking rates and are not considered for analysing functional connectivity.

B.5.1 MCG method

All possible pair-wise CCF are calculated with a bin size of 1 ms and a correlation
window of 100 ms for the 29 spike trains. To test the independence of two spike trains
the significance leve @ = 0.05 is used with the Bonferroni correction. A connection is
considered significant if a peak in the cross-correlation function exceeds the upper
boundary of the confidence interval. A total of 214 significant connections are identified
for 29 spike trains. These significant connections are shown in a matrix format in Fig.
B.26(a) where the connections are indicated by circles. The direction of connection is
considered from the reference spike train to the target spike train. Among the 29 spike

trains, spike train #32 have 17 outgoing connections to other spike trains and 18
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incoming connections from other spike trains, which are the highest among 29 spike

trains.
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Figure B.26: (a) Significant connections obtained from pair-wise CCF analysis of the
29 spike trains of stimulus 6. (b) Direct connections obtained from the connections in (a)
after the clustering algorithm. The radius of the circle indicates the strength of the
connections.

Application of clustering algorithm to the 214 significant connections identified 154
direct connections (Fig. B.26(b)). The radius of the circle indicates the strength of
connection. Among 154 connections, 6 connections have strong strength compared to
others. These connections are: (#7, #8), (#8, #7), (#8, #12), (#9, #7), (#12, #8) and (#19,
#20). Spike train #32 has 14 outgoing connections and spike train #30 has 10 incoming
connections, which are the highest among 29 spike trains. There are 48 pairs of

connections where both spike trains have functional connectivity to each other.

B.5.2 Cox method

Application of Cox method to the 29 spike trains requires the identification of target
spike train, reference spike trains and the influence function. The inter spike interval
(IST) histogram of three spike trains, spike train #17, #18 and #19 are given in Fig. B.27.

These histograms have high count for the short ISI and the ISI count decreases with
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increase of the ISI length. That suggests that the influence function should be specified
by the formula (5.3). The parameters of the influence function (5.3) are 7, = 0.1 ms,
¢ = 10 ms. Another parameter, the time lag A is specified from pair-wise CCF
analysis. Thus, the influence functions are defined and the Cox coefficients and the
corresponding confidence intervals are calculated using formulas (5.5) and (5.6). This
procedure is repeated 29 times to obtain the full functional connectivity of the 29 spike
trains. The confidence intervals are calculated using the significance level @ = 0.05

with Bonferroni correction.
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Figure B.27: Inter spike interval histogram of the spike trains #17, #18 and #19 of
stimulus 6.

The 76 connections, identified by the Cox method, are shown by circles in Fig. B.28(a).
The radius of the circle indicates the strength of functional connection. The direction of
functional connection is from the reference spike train to the target spike train. Among

76 connections, 3 connections have strong strength compared to others. These
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connections are: (#1, #9), (#14, #8) and (#32, #30). 4 connections have weak strength
compared to others. These connections are: (#7, #3), (#16, #13), (#32, #13) and (#32,
#28). All other connections have a medium strength of connection. Spike train #32 has
9 outgoing connections and spike trains #14 and #15 have 6 incoming connections,
which are the highest among 29 spike trains. There are 17 pairs of connections where

both spike trains have functional connectivity to each other.
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Figure B.28: (a) Functional connectivity of the 29 spike trains identified by the Cox
method of stimulus 6. Radius of the circle indicates strength of connection. (b) The
connections that are identified both by the MCG method and the Cox method.

Functional connectivity obtained by the MCG method and the Cox method show a good
agreement between them (Fig. B.28(b)). There are 57 connections which are common in
both techniques. Among the common connections spike train #32 has 8 outgoing
connections to spike trains #9, #19, #23, #25, #27, #28, #30 and #31. Spike trains #15,
#19, #20, #24, #27, #30 and #32 have 4 incoming connections from other spike trains.

There are 12 pairs of connections where both spike trains have functional connectivity

to each other.
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B.5.3 Cox metric
Application of Cox metric to the 29 spike trains requires the analysis of 812 possible
pairs of spike trains by pair-wise Cox method where one spike train is taken as a target
and the other spike train as a reference. All the influence functions are considered
identical and specified by (5.3) with the parameters 7, = 0.1 ms and 7, = 10 ms.
Another parameter of the influence function, the time lag A is obtained by the pair-wise
CCF analysis. Using the parameter values, the influence functions are determined and
the Cox coefficients are estimated using (5.5) with corresponding confidence interval
using (5.6). The Cox metric is applied to the significant connections to reveal the groups
of similar spike trains. The result of Cox metric is shown in Fig. B.29(a) where the grey
circles indicate the significant connections obtained by the pair-wise Cox method. The
black circles indicate symmetric of the grey circles but not identified by the pair-wise
analysis of Cox method. Similarly, the Cox metric is applied to the functional
connections identified by the Cox method considering all spike trains at once. This
functional connection is shown in Fig. B.28(a) and the result of Cox metric is shown in
Fig. B.29(b). In the figure the grey circles indicate the significant connections obtained
by the Cox method considering all spike trains at once. The black circles indicate
symmetric of the grey circles but not identified by the Cox method considering all spike

trains at once.

From Fig. B.29(a) four groups of similar spike trains are identified. The first group
consists of 2 spike trains, spike trains #1 and #9, where there is a strong connection
from #1 to #9. The second group consists of 7 spike trains; these are: spike trains #3, #7,
#8, #15, #14, #12 and #10. In this group, all the connections have a medium strength.
Spike train #3 has 4 outgoing connections to spike trains #7, #15, #14 and #10 and spike

train #15 has 5 incoming connections from all other spike trains except spike train #14.
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Spike train #3 can be considered as the most influential spike train for this group. The
third group consists of 13 spike trains; these are: spike trains #18, #25, #26, #30, #32,
#31, #19, #20, #21, #24, #27, #28 and #23. In this group, there are 6 strong strength of
connections (#30, #32), (#32, #30), (#19, #20), (#20, #19), (#24, #19), (#19, #24) and
(#23, #19). All other connections have a medium strength. Spike train #32 has outgoing
connections to all other spike trains except spike train #26. This spike train can be
considered as the most influential spike train. The fourth group coasists of 2 spike trains,
spike trains #13 and #16, where there is a connection from spike train #13 to #16. Spike

trains #2, #17, #11, #6 and #22 do not form any group.
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Figure B.29: Groups of similar spike trains revealed by the Cox metric of the 29 spike
trains of stimulus 6. (a) Cox metric using pair-wise analysis. (b) Cox metric considering
all spike trains at once.

Similarly, from Fig. B.29(b) four groups of similar spike trains are identified. The first
group consists of 2 spike trains, spike trains #1 and #9, where there is a strong
connection from #1 to #9. The second group consists of 4 spike trains; these are: spike
trains #13, #26, #18 and #25. In this group, all the connections have a medium strength.
The third group consists of 10 spike trains; these are: spike trains #19, #20, #21, #24,

#23, #27, #28, #30, #32 and #31. In this group, there are 2 strong strength of
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connections; (#30, #32) and (#32, #30). All other connections have a medium strength.
Spike train #24 and #32 have 6 outgoing connections and can be considered as the most
influential spike trains. The fourth group consists of 9 spike trains; spike trains #3, #7,
#8, #14, #15, #12, #6, #10 and #16. In this group spike trains #3, #7 and #8 have 4
outgoing connections to other spike trains. Therefore, these spike trains are considered
as the most influential spike trains for this group. Spike trains #17, #2, #22 and #11 do

not form any group.

Investigation from Fig. B.29(a)-(b) reveal that the Cox metric identified by the pair-
wise analysis and considering all spike trains at once show a good agreement. For
example, the first group of both figures consists the same two spike trains (#1 and #9).
Similarly, the other three groups of both figures consist same spike trains except a few.
From this analysis it can be concluded that application of the Cox metric to
experimental data using pair-wise analysis and considering all spike trains at once

enables to create similar result.

B.5.4 Motif analysis

To find the pattern of interconnections among the 29 spike trains, a structural motif
analysis 1s done using triplet-wise analysis of Cox method. For 29 spike trains a total of
3654 triplets are analysed. All the influence functions are considered identical and
specified by (5.3) with the parameters 7, = 0.1 ms and 7, = 10 ms. Another parameter
of the influence function, the time lag A is obtained by the pair-wise CCF analysis.
Using the parameter values, the influence functions are determined and the Cox
coefficients are estimated using (5.5) with corresponding confidence interval using
(5.6). Functional connectivity of each triplet spike trains is used to identify the structural
motif. The structural motif count is obtained by analysing all 3654 triplets of spike

trains which is shown in Fig. B.30.
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Figure B.30: Structural motif count of all 3654 triplets of the 29 spike trains of stimulus
6.

Out of 3654 triplets, 831 triplets have different structural motifs ID’s. Among the 831
triplets, 152 triplets have motif ID 6 which is the highest among others motif ID’s. Only
8 triplets have motif ID 7 which is the lowest. Motif ID’s (2, 4); (1, 3); (9, 12) and (5,
11) have similar number of triplets. A total of 178 triplets have connected motifs
(connected motifs are motif ID 7, 9, 10, 12 and 13). On the other hand, a total of 653
triplets have unconnected motifs. Thus there are low proportions of connected motifs
(27.26%) in the groups of triplet spike trains which indicate that connection from every

spike train to every other spike trains is low.
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In chapter 7, some graph theoretical methods are applied to analyse the connectivity
matrix of 29 spike trains. The results of analysing the first stimulus are presented in

chapter 7. In this appendix the results of analysing the five stimuli are presented.

C.1  Analysis of connectivity of stimulus 2

The connection matrix of the 29 spike trains is shown in Fig. C.1(a). There are 62
connections of the connection matrix and the connection matrix contains a low density
(0.0764). This indicates that in stimulus 2 the spike trains are not densely connected like
stimulus 1. The sum of indegree and outdegree of the spike trains is shown in
Fig. C.1(b). The degree of the spike trains varies widely from 0 to 13 showing the same
number of degrees for certain spike trains. There are 4 spike trains that do not have any
degree (#6, #17, #18 and #21). Some spike trains have high degree (#32, #28, #3 and

#27); whereas some spike trains have low degree (#2, #9, #11, #13 and #22).

The characteristic path length of the connection matrix (2.7747) is greater than the
characteristic path length obtained from a random network (2.6669). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges like stimulus 1. Similarly, the global
efficiency of the connection matrix (0.1871) (random: 0.2336) indicates that pairs of

spike trains, on average, have long communication distances.
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Figure C.1: (a) Connection matrix of the 29 spike trains of stimulus 2. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation. High-degree spike trains are
displayed as green.
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Clustering coefficient
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Figure C.2: (a) Clustering coefficient and betweenness centrality of the 29 spike trains
of stimulus 2. The solid horizontal line indicates the mean and the dashed horizontal
line indicates the mean plus one standard deviation. High-degree spike trains are
displayed as green. (a) Clustering coefficient of 29 spike trains is displayed in
descending order. (b) Betweenness centrality of the 29 spike trains is displayed in
descending order.
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Clustering coefficient of the spike trains is shown in Fig. C.2(a). Clustering coefficient
of spike train #16 is | which means that this spike train completely makes a cluster with
its neighbour spike trains. Investigation reveals (connection matrix) that spike train #16
has two neighbour spike trains (#12 and #8) and they are connected to each other. The
clustering coefficient of the remaining spike trains ranges from 0 to 0.5. Some spike
trains have high clustering coefficient (#14 and #25) compare to other spike trains
indicating that the neighbours of these spike trains are also neighbours of each other.
There are some spike trains which have low clustering coefficient (#12, #3, #32, #28
and #23), in fact below the mean of all the spike trains. Among the low clustering
coefficient, three spike trains (#3, #32 and #28) have the high degree of all the spike
trains which indicates that these spike trains communicate to other neighbour spike
trains but the neighbour spike trains are not connected to each other. There are 12 spike
trains that do not form any cluster to their neighbour spike trains. The clustering
coefficient of these spike trains is zero. The global clustering coefficient (0.2213)
(random: 0.1078) also indicates that many spike trains do not have neighbours which
are connected to each other. Fig. C.2(b) shows the betweenness centrality of the spike
trains. There are some central spike trains (#7, #28, #32 and #8) which transfer most of
the information to the other spike trains. Among the central spike trains, spike trains
#28 and #32 have the highest degree. This means that these two spike trains
communicate to other spike trains through incoming and outgoing connections. There
are 13 spike trains which do not pass any information to other spike trains. That means

the betweenness centrality of these spike trains is zero.
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Expansiveness coefficlent

Attractiveness coefficient

1 L 1 L L 1 1 L 1 L L 1 1 1 1 1 1 1 L L 1 1 1 1 | 1 1 1 1
A2 M MATIH02 AT 2DMIT 1116251920260 123 118
Spike train

(a)

45 |

4L

485 |

=

27 ) (R Sy (O N 1) (NN (R O Y . YUNDT ( (AMO (L N1 (NG (O (e (SN[ O B (B A (L (L N (T
312271902 23241525 2 11 226 9 10131417 182132 1 16 7 0 8 31 28

Figure C.3: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 2. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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There are two influential spike trains (#28 and #32) among the 29 spike trains (Fig.
C.3(a)). Investigation from the connection matrix reveals that these spike trains have the
high outdegree (8 each) and they have also high degree. There are 7 spike trains that do
not show any expansiveness. Spike trains #1 and #16 have the most negative
expansiveness coefficient. Both the spike trains have 2 indegree and 1 outdegree.
Among the high degree, spike trains #27 (5 indegree, 3 outdegree) and #3 (6 indegree, 2
outdegree) show negative expansiveness coefficient. Spike trains #3, #12 and #27 are
the most attractive spike trains (Fig. C.3(b)) as they have high indegree (6, 5 and 5
respectively) and two of them have the high degree (#3 and #27). Similar to
expansiveness coefficient 8 spike trains do not show any attractiveness as their indegree
are zero. Spike train #28 has the most negative attractiveness coefficient (8 outdegree

and 1 indegree) and this spike train has the high degree.
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Figure C.4: a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 2.
Significant motif ID’s are displayed as green. (b) Structural motif count of size m = 3
for the randomized diagram.

Fig. C.4(a) shows the motif count for structural motifs of size m = 3 found in the
connection matrix of 29 spike trains. Motif ID 3 appears 29 times which is the highest
among the motif ID’s. Motif ID’s 7 and 13 have no appearance in the connection

matrix. To find the significant motif, 1000 random networks are generated keeping the

same indegree and outdegree of the spike trains. The structural motif count of size m =
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3 for the random network is shown in Fig. C.4(b). The motif ID’s 8, 9 and 12 appear
more than the random network. The Z-score of these motif ID’s (Zg = 5.98, p <
0001; Zy = 2.93, p =.005; Z,; = 9.02, p < .0001) indicate that they are significant.
There are a very low proportion of connected motifs (10.79%) in the connection matrix

indicating that the spike trains are weakly connected.

C.2  Analysis of connectivity of stimulus 3

The connection matrix of the 29 spike trains is shown in Fig. C.5(a). There are 95
connections of the connection matrix and it contains a low density (0.1170) which
means that in stimulus 3, the spike trains are not densely connected. The sum of
indegree and outdegree of the spike trains is shown in Fig. C.5(b). The degree of the
spike trains varies widely from 1 to 21 showing the same number of degrees for certain
spike trains. Some spike trains have high degree (#32, #24 and #21); whereas some

spike trains have low degree (#2, #17 and #18).

The characteristic path length of the connection matrix (2.8137) is greater than the
characteristic path length obtained from a random network (2.5013). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges. Similarly, the global efficiency of
the connection matrix (0.3428) (random: 0.3955) indicates that pairs of spike trains, on

average, have long communication distances.
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Figure C.5: (a) Connection matrix of the 29 spike trains of stimulus 3. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains is displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation of the spike trains. High-degree
spike trains are displayed as green.
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Clustering coefficient
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Figure C.6: Clustering coefficient and betweenness centrality of the 29 spike trains of
stimulus 3. The solid horizontal line indicates the mean and the dashed horizontal line
indicates the mean plus one standard deviation. High-degree spike trains are displayed
as green. (a) Clustering coefficient of 29 spike trains is displayed in descending order.
(b) Betweenness centrality of the 29 spike trains is displayed in descending order.
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Clustering coefficient of the spike trains is shown in Fig. C.6(a). Clustering coefficient
of spike trains #22 and #31 are | which means that these spike trains completely make a
cluster with their neighbour spike trains. Investigation from connection matrix reveals
that spike train #22 has two neighbour spike trains (#20 and #24) and they are
connected to each other. Similarly, spike train #31 has two neighbour spike trains (#21
and #32) and they are connected to each other. The clustering coefficient of the
remaining spike trains ranges from 0 to 0.9. Spike train #14 has three neighbour spike
trains (#24, #25 and #32) and the neighbours are strongly connected to each other. Thus
the clustering coefficient of this spike train is high which is 0.9. There are 12 low
clustering spike trains which have the clustering coefficient below the mean of all the
spike trains. Among them, two spike trains (#24 and #32) have the high degree of all the
spike trains which indicate that these spike trains communicate to other neighbour spike
trains but the neighbours are not connected to each other. There are 4 spike trains (#2,
#6, #17 and #18) that do not form any cluster to their neighbour spike trains. The
clustering coefficient of these spike trains is zero. The global clustering coefficient
(0.3749) (random: 0.1701) also indicates that many spike trains do not have neighbours
which are connected to each other. Fig. C.6(b) shows the betweenness centrality of the
spike trains. There are some central spike trains (#32, #10 and #7) which transfer most
of the information to the other spike trains. Among the central spike trains, spike train
#32 has the highest degree. This means that these two spike trains communicate to other
spike trains through incoming and outgoing connections. There are 7 spike trains which
do not pass any information to other spike trains. That means the betweenness centrality

of these spike trains is zero.
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Figure C.7: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 3. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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The most influential spike trains are shown in Fig. C.7(a). There are three (#32, #28 and
#16) spike trains which are the most influential. Investigation from the connection
matrix reveals that these spike trains have the high outdegree (12, 6 and 6 respectively).
Among these high outdegree spike trains, spike train #32 has the highest degree also.
There are 3 spike trains (#2, #11 and #18) that do not show any expansiveness. The
outdegree of these spike trains is zero. Spike trains #31 and #15 have the most negative
expansiveness coefficient. Both the spike trains have 1 outdegree each and 2 and 3
indegree respectively. Spike trains #27, #24, #19 and #32 are the most attractive spike
trains (Fig. C.7(b)) as they have high indegree (7, 7, 5 and 9 respectively) and two of
them have the high degree (#24 and #32). Similar to expansiveness coefficient, spike
train #17 does not show any attractiveness as the indegree is zero. Spike train #28 has

the most negative attractiveness coefficient (6 outdegree and 1 indegree).
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Figure C.8: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus 3.
Significant motif ID’s are displayed as green. (b) Structural motif count of size m = 3
for the randomized diagram.

Fig. C.8(a) shows the motif count for structural motifs of size m = 3 found in the
connection matrix of 29 spike trains. Motif ID 6 appears 62 times which is the highest
among the motif IDs. Motif ID 7 has no appearance in the connection matrix. To find

the significant motif, 1000 random networks are generated keeping the same indegree

and outdegree of the spike trains. The motif count for structural motifs of size m = 3 for
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the random network is shown in Fig. C.8(b). The motif ID’s 8, 9, 12 and 13 appear
more than the random network. The Z-score of these motifs (Zg = 2.56, p = .014;
Zg=3.50, p=.0009; Z;;, =6.764, p <.0001; Z,5 =495, p<.0001) indicate
that they are significant. There are a low proportion of connected motifs (21.10%) in the

connection matrix indicating that the spike trains are weakly connected.

C.3  Analysis of connectivity of stimulus 4

The connection matrix (Fig. C.9(a}) of 29 spike trains shows 71 connections. The
connection matrix contains a low density (0.0874) which means that in stimulus 4, the
spike trains are not densely connected. The degree (Fig. C.9(b)) of the spike trains
varies widely from O to 14 showing the same number of degrees for certain spike trains.
Spike trains #6 and #22 have no indegree and outdegree, so their degrees are zero. Spike
trains #32 and #30 have the high degree (14 and 10) compared to other spike trains. On

the other hand. spike trains #9, #17 and #18 have low degree (1 each).

The characteristic path length of the connection matrix (3.1204) is greater than the
characteristic path length obtained from a random network (2.6491). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges. Similarly, the global efficiency of
the connection matrix (0.2278) (random: 0.3055) indicates that pairs of spike trains, on

average, have long communication distances.
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Figure C.9: (a) Connection matrix of the 29 spike trains of stimulus 4. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains is displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation of the spike trains. High-degree
spike trains are displayed as green.




Appendix C

The cluster coefficient of the spike trains (Fig. C.10(a)) widely varies from 0 to 0.807.
Spike train #28 has the highest clustering coefficient (0.807). This spike train has 4
neighbour spike trains (#25, #27, #30 and #32) and the neighbour spike trains are
strongly connected to each other. Some spike trains have high clustering coefficient
(#25, #1 and #24) compared to other spike trains indicating that the neighbours of these
spike trains are also neighbours of each other. There are some spike trains which have
low clustering coefficient (#32, #31 and #7), in fact below the mean of all the spike
trains. Among the low clustering coefficient, spike train #32 has the highest degree of
all the spike trains. This spike train communicates to other neighbour spike trains but
the neighbours are not connected to each other. There are 10 spike trains that do not
form any cluster to their neighbour spike trains. The clustering coefficient of these spike
trains is zero. The overall clustering coefficient (0.2408) (random: 0.1220) also
indicates that many spike trains do not have neighbours which are connected to each

other.

The betweenness centrality of the spike trains is shown in Fig. C.10(b). Spike train #32
is the most central spike train which transfer most of the information to the other spike
trains. There are some other central spike trains (#7, #3, #30 and #27) which pass most
of the information to other spike trains. Among the central spike trains, spike trains #30
and #32 have the highest degree. This means that these two spike trains communicate to
other spike trains through incoming and outgoing connections. There are 10 spike trains
which do not pass any information to other spike trains. That means the betweenness

centrality of these spike trains is zero.
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Figure C.10: Clustering coefficient and betweenness centrality of the 29 spike trains of
stimulus 4. The solid horizontal line indicates the mean and the dashed horizontal line
indicates the mean plus one standard deviation. High-degree spike trains are displayed
as green. (a) Clustering coefficient of 29 spike trains is displayed in descending order.
(b) Betweenness centrality of the 29 spike trains is displayed in descending order.
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Figure C.11: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 4. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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The most influential spike trains are shown in Fig. C.11(a). There are two (#32 and #30)
spike trains which are the most influential. Investigation from the connection matrix
reveals that these spike trains have the high outdegree (8 and 6). Both these spike trains
have the highest degree also. There are 4 spike trains (#6, #9, #18 and #22) that do not
show any expansiveness. The outdegree of these spike trains is zero. Spike train #15 has
the most negative expansiveness coefficient. This spike train has 2 outdegree and 6
indegree connections. Spike trains #15, #23 and #24 are the most attractive spike trains
(Fig. C.11(b)) as they have high indegree (6, 5 and 5 respectively). Similar to
expansiveness coefficient, 4 spike trains (#6, #10, #17 and #22) do not show any
attractiveness as the indegree of these spike trains are zero. Spike train #8 has the most

negative attractiveness coefficient (3 outdegree and 1 indegree).
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Figure C.12: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus

4. Significant motif ID’s are displayed as green. (b) Structural motif count of size m = 3
for the randomized diagram.

Fig. C.12(a) shows the motif count for structural motifs of size m = 3 found in the
connection matrix of 29 spike trains. Motif ID 2 appears 34 times which is the highest
among the motif IDs. Motif ID 7 has no appearance in the connection matrix. To find
the significant motif, 1000 random networks are generated keeping the same indegree

and outdegree of the spike trains. The motif count for structural motifs of size m = 3 for
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the random network is shown in Fig. C.12(b). Motif ID’s 9, 12 and 13 appear more than
the random network. The Z-score of these motif ID’s (Zg = 3.72, p = .0004; Z,, =
12.07, p < .0001; Z,3 = 15.80, p <.0001) indicate that they are significant. There
are a low proportion of connected motifs (19.70%) in the connection matrix indicates

that the spike trains are weakly connected.

C.4 Analysis of connectivity of stimulus 5

The connection matrix of 29 spike trains is shown in Fig. C.13(a). There are 116
connections in this stimulus which is higher than the previous stimuli. The connection
matrix contains a low density (0.1429) which indicates that in stimulus 5 the spike trains
are not densely connected. The degree (Fig. C.13(b)) of the spike trains varies widely
from 0 to 17 showing the same number of degrees for certain spike trains. Some spike
trains have the high degree (#28, #32, #9 and #12) whereas some spike trains have low
degree (#2, #11, #18, #22 and #17). Spike train #28 and #32 have highest 17 indegree

and outdegree connection whereas spike train 17 has 1 connection.

The characteristic path length of the connection matrix (2.3377) is greater than the
characteristic path length obtained from a random network (2.2100). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges. Similarly, the global efficiency of
the connection matrix (0.4041) (random: 0.4257) indicates that pairs of spike trains, on
average, have long communication distances. Compare to other stimuli this stimulus has

short communication distances.
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Figure C.13: (a) Connection matrix of the 29 spike trains of stimulus 5. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains is displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation of the spike trains. High-degree
spike trains are displayed as green.
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The clustering coefficient of the spike trains (Fig. C.14(a)) widely varies from O to 1.
Spike train #11 has two neighbour spike trains (#15 and #28) and they are connected to
each other, so the clustering coefficient of this spike train is 1. Spike train #22 has two
neighbour spike trains (#12 and #28) and there is a connection from spike train #28 to
spike train #12, so the clustering coefficient of this spike train is 0.5. All the high degree
spike trains (#9, #28, #32 and #12) have the clustering coefficient below the mean of all
the spike trains. These spike trains communicate to other neighbour spike trains but the
neighbours are not connected to each other. There are 4 spike trains (#2, #8, #17 and
#18) that do not form any cluster to their neighbour spike trains. The clustering
coefficient of these spike trains is zero. The global clustering coefficient (0.2715)
(random: 0.2080) also indicates that many spike trains do not have neighbours that are

connected to each other.

The betweenness centrality of the spike trains is shown in Fig. C.14(b). Spike train #32
is the most central spike train which transfer most of the information to the other spike
trains. There are some other central spike trains (#14, #15, #12, #9 and #28) which pass
most of the information to other spike trains. Importantly, all the high degree spike
trains have high betweenness centrality among the spike trains and most of the
information go through these spike trains. There are 5 spike trains (#11, #13, #17, #18
and #22) which do not pass any information to other spike trains. That means the

betweenness centrality of these spike trains is zero.
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Figure C.14: Clustering coefficient and betweenness centrality of the 29 spike trains of
stimulus 5. The solid horizontal line indicates the mean and the dashed horizontal line
indicates the mean plus one standard deviation. High-degree spike trains are displayed
as green. (a) Clustering coefficient of 29 spike trains is displayed in descending order.
(b) Betweenness centrality of the 29 spike trains is displayed in descending order.
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Figure C.15: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 5. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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The most influential and attractive spike trains are shown in Fig. C.15. There are 3 (#28,
#9 and #32) spike trains which are the most influential (Fig. C.15(a)). Investigation
from the connection matrix reveals that these spike trains have the high outdegree (11, 9
and 9 respectively). All these spike trains have high degree also. There are 3 spike trains
(#11, #18, and #22) that not show any expansiveness. The outdegree of these spike
trains is zero. Spike train #19 has the most negative expansiveness coefficient. This
spike train has 1 outdegree and 6 indegree connections. Spike trains #12, #32, #19 and
#15 are the most attractive spike trains (Fig. C.15(b)) as they have high indegree (8, 8, 7
and 6 respectively). Among the attractive spike trains two (#12 and #32) have high
degree also. Similar to expansiveness coefficient two spike trains (#13 and #17) do not
show any attractiveness as the indegree of these spike trains are zero. Spike train #2 has

the most negative attractiveness coefficient.
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Figure C.16: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus
5. Significant motif ID’s are displayed as green. (b) Structural motif count of size m = 3
for the randomized diagram.
Fig. C.16(a) shows the motif count for structural motifs of size m = 3 found in the
connection matrix of 29 spike trains. Motif ID 2 appears 139 times which is the highest

among the motif [Ds. Motif ID 13 has no appearance in the connection matrix. To find

the significant motif, 1000 random networks are generated keeping the same indegree
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and outdegree of the spike trains. The motif count for structural motifs of size m = 3 for
the random network is shown in Fig. C.16(b). The motif ID’s 8, 9 and 12 appear more
than the random network. The Z-score of these motifs (Zg = 2.23, p = .0325;
Zy =312, p=.003; Z,; = 4.44, p <.0001) indicate that they are significant. There
are a very low proportion of connected motifs (11.84%) in the connection matrix

indicating that the spike trains are weakly connected.

C.5 Analysis of connectivity of stimulus 6

The connection matrix of 29 spike trains is shown in Fig. C.17(a). There are 76
connections in this stimulus which is similar as stimuli 1, 2 and 4. The connection
matrix contains a low density (0.0936) which indicates that in stimulus 6, the spike
trains are not densely connected. The degree (Fig. C.17(b)) of the spike trains varies
from O to 14 showing the same number of degrees for certain spike trains. Some spike
trains have the high degree (#32, #24, #14 and #27) whereas some spike trains have low
degree (#1, #17 and #18). Spike trains #11 and #22 have no indegree and outdegree, so

the degree of these spike trains is zero.

The characteristic path length of the connection matrix is (3.0560) greater than the
characteristic path length obtained from random network (2.6545). This characteristic
path length indicates that, on average, to pass information from one spike train to
another spike train, it takes approximately 3 edges. Similarly, the global efficiency of
the connection matrix (0.2939) (random: 0.3242) indicates that pairs of spike trains, on

average, have long communication distances.
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Figure C.17: (a) Connection matrix of the 29 spike trains of stimulus 6. Connection
patterns are represented by the presence of connection (black square) and absence of
connection (white square). Main diagonals are indicated in grey and self-connections
are excluded. (b) Degree of the spike trains is displayed in descending order. The solid
horizontal line indicates the mean degree of the spike trains and the dashed horizontal
line indicates the mean plus one standard deviation of the spike trains. High-degree
spike trains are displayed as green.
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Figure C.18: Clustering coefficient and betweenness centrality of the 29 spike trains of
stimulus 6. The solid horizontal line indicates the mean and the dashed horizontal line
indicates the mean plus one standard deviation. High-degree spike trains are displayed
as green. (a) Clustering coefficient of 29 spike trains is displayed in descending order.
(b) Betweenness centrality of the 29 spike trains is displayed in descending order.
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The clustering coefficient of the spike trains (Fig. C.18(a)) varies from 0 to 0.61. Spike
train #23 has the highest clustering coefficient which is 0.61. This spike train has 4
neighbour spike trains (#19, #24, #27 and #32) and they have 7 connections to each
other. That means the neighbour spike trains are strongly connected to each other. Spike
train #12 has also 4 neighbour spike trains (#7, #8, #14 and #15) and they have 6
connections to each other. That means the neighbour spike trains are moderately
connected to each other. Similarly, the neighbours of spike train #19 are moderately
connected to each other as the clustering coefficient of this spike train is 0.5. All the
high degree spike trains (#24, #27, #14 and #32) have the low clustering coefficient
which means that these spike trains communicate to other neighbour spike trains but the
neighbours are not connected to each other. There are 8 spike trains that do not form
any cluster to their neighbour spike trains. The clustering coefficient of these spike
trains 1s zero. The global clustering coefficient (0.2139) (random: 0.1222) also indicates
that many spike trains do not have neighbours that are connected to each other. The
betweenness centrality of the spike trains is shown in Fig. C.18(b). Spike train #32 is
the most central spike train which transfer most of the information to the other spike
trains. There are 2 other central spike trains (#14 and #30) which pass most of the
information to other spike trains. There are 6 spike trains which do not pass any
information to other spike trains. That means the betweenness centrality of these spike

trains is zero.



Appendix C

Expansiveness coefficient

L 1 1 1 1 L L 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 L 1 1 1 1
32 3UMBIT S TI12232523 140 118221001316 117201921 6 2 15
Spike train

(a)

Attractiveness coefficient

1 1 1 1 L L 1 1 1 1 1 1 1 1 1 1 1 1 e |
15141921 302024 16 27 ® 183132 1 111722 2 7 1312232526 8 3 & 1028
Spike train

Ll | - L1 11

(b)

Figure C.19: Expansiveness and attractiveness coefficient of the P1 model of the 29
spike trains of stimulus 6. High-degree spike trains are displayed as green. (a)
Expansiveness coefficient displayed in descending order. (b) Attractiveness coefficient
displayed in descending order.
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The most influential and attractive spike trains are shown in Fig. C.19. There are 2 (#32
and #3) spike trains which are the most influential (Fig. C.19(a)). Investigation from the
connection matrix reveals that these spike trains have the high outdegree (9 and 5).
There are 4 spike trains (#9, #11, #18 and #22) that not show any expansiveness. The
outdegree of these spike trains is zero. Spike train #15 has the most negative
expansiveness coefficient. This spike train has 1 outdegree and 6 indegree connections.
Spike trains #15, #14, #19 and #21 are the most attractive spike trains (Fig. C.19(b)) as
they have high indegree (6, 6, S and 5 respectively). Similar to expansiveness
coefficient four spike trains (#1, #11, #17 and #22) do not show any attractiveness as
the indegree of these spike trains are zero. Spike train #28 has the most negative

attractiveness coefficient (1 indegree and 4 outdegree).
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Figure C.20: (a) Structural motif count of size m = 3 of the 29 spike trains of stimulus
6. Significant motif ID’s are displayed as green. (b) Structural motif count of size m =3
for the randomized diagram.
Fig. C.20(a) shows the motif count for structural motifs of size m = 3 found in the
connection matrix of 29 spike trains. Motif ID 6 appears 38 times which is the highest
among the motif IDs. Motif ID’s 8 and 13 appear twice in the connection matrix which

is the lowest. To find the significant motif, 1000 random networks are generated

keeping the same indegree and outdegree of the spike trains. The motif count for
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structural motifs of size m = 3 for the random network is shown in Fig. C.20(b). The
motif ID’s 9, 12 and 13 appear more than the random network. The Z-score of these
motifs (Zy =5.73, p <.0001; Z,, =547, p<.0001; Z,3=13.16, p<.0001)
indicate that they are significant. There are a low proportion of connected motifs (20%)

in the connection matrix indicating that the spike trains are weakly connected.
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1. Introduction

Multi-electrode array (MEA) enables a simultaneous recording
of electrical activities of many neurons (Boven et al., 2006). From
the application of a spike sorting technique (e.g. Quiroga et al,,
2004) to such recordings, it is possible to extract multiple spike
trains assaciated with different neurons. Simultaneously recarded
spike trains are used to study how groups of neurons process infor-
mation and how they interact with each other. Developing a new
statistical method for analysing multiple spike trains and, in partic-
ular, estimating the functional connectivity between spike trains,
is a challenging problem that has resulted in substantial research
(Brown et al., 2004; Reed and Kaas, 2010).

The standard approach to analysing functional connectivity is
based on calculation of the cross-correlation function (CCF) (Perkel
et al, 1967). However, there are other methods to characterise the
pair-wise dependencies between spike trains. These include the
cross-intensity function (Cox and Lewis, 1972; Brillinger, 19763,
1992), product densities, cumulant densities, cumulant spectra,

* Correspending author. Tel.: +44 01752 B4920; fax: +44 01752 586300,
E-mail addresses: mohammad.masud@plymouth.ac.uk (M.S. Masud),
rbarisyuk@plymouth.ac.uk (R Borisyuk).

0165-0270/S - see front matter © 2011 Elsevier B.V, All rights reserved.
doi:;10.1016/j.jneumeth.2011.01.003

method of moments (Bartlett, 1966; Brillinger, 1975a, 1975b), cal-
culation of the coherence (Brillinger, 1976b, 1992), and the joint
peristimulus time histogram (JPSTH) (Gerstein and Perkel, 1969,
1972; Aertsen et al., 1989). All these methods are focused on a
pair of spike trains but they fail to consider all possible influences
from other simultaneously recorded spike trains. For this reason,
these pair-wise estimates of the functional connectivity sometimes
can lead to inaccuracies. Furthermore, there are some well known
limitations of statistical methods based on CCF; (1) Most of the tech-
niques based on the CCF require the spike trains to be stationary,
(2) The number of spikes should be large enough to ensure reliable
estimation and (3) CCF based methods are linear and only consider
a linear component of interconnectivity.

Alternatively, a different approach to analysing functional con-
nectivity is based on the maximum likelihood (ML) method which
estimates the probability of a spike as a result of multiple influences
from other spike trains. Using the ML function, the algorithm cal-
culates the regression parameters, which characterise the strength
of the influences.

Recently, a new technique called the generalised linear mod-
els (GLM) was introduced to the study of neuronal interactions
(Stevensan et al., 2008 ). The GLM assumes that the neuren's spike
is influenced by such factors as the neuron's own recent spik-
ing activity, the recent spiking activity of other neurons and the
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activity of some external variables (stimuli). The conditional inten-
sity function is the exponential of the linear combination of the
factors being analysed. Brillinger (1988) developed such a GLM for
a spike train based on the influence from other neurons within the
group. Chornoboy et al. (1988) also use the GLM for the simultane-
ous analysis of multiple pair-wise interactions among neurons. In
their model, the probability of a spike response depends upon the
neuron’s own spiking activity as well as the activity of other neu-
rons in the population. Okatan et al. (2005) introduced a different
method to estimate the functional connectivity of stochastic neural
networks, based on a discrete time version of the approach devel-
oped by Chornoboy et al. (1988). Truccolo et al. (2005) used the
GLM to estimate influences to the target spike train from both other
spike trains of the neural population and the external inputs to the
population. A good performance of this technique has been demon-
strated in a special case of simulated activities of six neurons and
in case of experimental recordings from motor neurons. A number
of recent studies (Pillow, 2007; Pillow et al., 2008; Paninski et al.,
2007) use the GLM to investigate the influence of sensory stimuli to
spiking activity of the neural population (neuronal code). The diffi-
culties associated with the study of neuronal coding are substantial
but the evidence shows that the GLM based approach is useful.

However, there are some limitations of GLM approach. For
example, the result of the analysis depends upon the size of the
testing window (bin) as it is used to find estimates of parame-
ters describing the influences to the spike train (Eldawlatly et al.,
2009). It is clear that estimated values of parameter depend on
the selected size of the bin. Additionally, GLM contains many
parameters (approximately hundred). The result of this is that the
optimization problem ( finding the maximum of the likelihood func-
tion) could have a non-unigue solution (see e.g. Stevenson et al,
2008; Chornoboy et al.,, 1988), A standard approach to resolve this
difficulty is to incorporate prior knowledge about the nature of
the influences. There are a variety of techniques to deal with this
problem including the regularization method, Bayesian approach,
and calculation of the maximum a posteriori (MAP) estimate (see
Paninski, 2004; Rigat et al., 2006; Gerwinn et al., 2007: Stevenson
et al., 2009).

In this work, study of the functional connectivity of neurons is
based on the modulated renewal process (MRP) (Cox, 1972 and
Borisyuk et al., 1985)'. The MRP is considered in terms of spike
generation under multiple influences from other spike trains and
estimates of the strength of each influence using the Cox method,
which itseif is based on conditional likelihood method (Cox, 1972).
The MRP model describes the hazard function of spike appearance
atthe MRP and itincludes a modulation which is the exponential of
the linear combination of influence functions. In fact, this model is
similar to the regression model and the set of influence strengths is
similar to the regression coefficients. The definition of the influ-
ence function is based on some neurobiological details of spike
generation and propagation. This function reflects the dynamics of
postsynaptic potential under bombardment by spikes from other
neurons.

When the original paper on the application of the Cox method
to neuroscience data was published, back in 1985 (Borisyuk et al.,
1985), its use was limited by the availability of computation power.
At that time, only pairs and triplets of spike trains were consid-
ered. However, in this paper, the Cox method is further developed
to support simultaneous consideration of any possible set of multi-
ple spike trains. The corresponding formulas for the calculation of
estimates of the influence strengths and their confidence intervals
have been derived. Thus, this new development of the Cox method

! Alsa,. in many cases a simplified approach based on the modulated Poisson
process might be useful.

enables researchers to simultaneously analyse any number (n) of
spike trains (where n=3, 4, 5....). A numerical method and soft-
ware application have been developed for the identification of the
functional connectivity from the simultaneously recorded multi-
ple spike trains. Testing results have shown that the Cox method is
highly successful. Therefore, this method is recommended for the
analysis of functional connectivity of neuronal circuits from mul-
tiple spike trains. The software is freely available from the authors
on request.

Rigorous testing of the Cox method has shown that this statisti-
cal technique is not only highly efficient but it also overcomes some
of the limitations of other classical methods. The Cox method has
been tested on numerous sets of simultaneous spike trains: both
artificially generated by different mathematical modeis as well as
datasets recorded in experiments. These tests have shown that this
method works well and provides reliable estimates of influence
strengths. These influence strengths are used to define a diagram of
functional connections. In particular, the Cox method can be used to
analyse the functional connectivity of large groups (up to hundred)
of spike trains. Thus, we conclude that this Cox method is a useful
tool for analysing experimental data of multi-electrode recordings.

In conclusion, the main advantages of this method are: (1) It
does not require the specification of a bin (see Paiva et al., 2009 for
a review of binless techniques); (2) it supports the simultaneous
analysis of multiple spike trains and provides statistical estimates
of influence strengths and their confidence intervals (to test the
hypothesis that the influence is zero); (3) it is applicable in situa-
tions where sample sizes are small; (4) it is sufficiently sensitive
such that it estimates weak influences; and finally (5) it is able to
identify a correct connectivity scheme in difficult cases of “common
source” or “indirect” connectivity.

This paper describes the Cox method and demonstrates the
application of the Cox method to both a small neural circuit of five
spike trains and to a large circuit of twenty spike trains. In both
cases, the Cox method is shown to be effective for analysing the
funcrional connectivity. In these tests, an enhanced leaky integrate
and fire model (ELIF) is used to generate the data with a prescribed
scheme of connections. Naturally, this scheme is never used dur-
ing the analysis phase. It is solely required for evaluation of the
final results. Additionally, the Cox method is also compared to the
CCF approach for analysing two and three spike trains. The results
demonstrate that the Cox method has some significant advan-
tages when compared to the pair-wise cross-correlation approach.
Although in this paper the only excitatory connections are consid-
ered, the Cox method is applicable for analysing of both excitatory
and inhibitory connection strengths.

Section 2 of this paper describes the Cox method and defines the
influence function for use within neuroscience. Section 3 reports
the results of applying the Cox method to a neural circuit of five
and a neural circuit of twenty spike trains generated by ELIF model.
In Section 4, a comparison of the Cox method with CCF is presented
using pairs of spike trains generated by a probabilistic model. This
probabilistic model is based on the modulated renewal process.
Furthermore, it is a convenient technique for testing due to the
common probabilistic basis of the MRP model and the Cox method.
Subsequently, the analysis of a set of three spike trains is used to
demonstrate that the Cox method can find a scheme of connections
in a case of “common source” connection architectures. The method
was similarly successful when used to analyse sets of three spike
trains with “indirect connection” architecture. This is a problem for
pair-wise methods to analyse these kinds of connectivity. A discus-
sion of the work is presented in Section 5, which summarises the
results and highlights the advantages of the method.

Appendix A presents the formulas for the calculation of the
estimates of Cox coefficients. Appendix B presents the parameter
values for the ELIF generator. Finally, in Appendix C, the flexibil-
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ity of the probabilistic mode] is shown and the parameters of the
probabilistic model can be adjusted using an optimization proce-
dure such that these parameter values can be subsequently used
to generate spike train similar to the “integrate and fire” neuron
model.

2. Statistical technique to analyse functional connectivity
(Cox method)

In this section we revise the Cox method (Cox, 1972; Borisyuk
et al., 1985) which provides statistical estimates (and their confi-
dence intervals) for the strength of influence from one spike train
to another. In fact, we test the hypothesis that the influence from
one spike train to another is zero and in case if this hypothesis is
rejected we use the value of the estimate as a measure of influence.
This technique is based on the assumption of the renewal process
and modulated renewal process. Considering the renewal process
we assume that inter-spike intervals (ISis) are independent with
the probability density function flx). If flx) is the non-exponential
density function then the process is called the renewal process.
In fact, the assumption of the renewal processes is broadly used
in neuroscience. Another approach to specification of the renewal
process comes from survival analysis where spike rate density or
rate of death (or failure) per time unit (hazard function) can be
interpreted in terms of the density function flx). The hazard func-
tion is defined as the spike rate at time  conditional on survival
time (without death) until time ¢ or later:

Prit<X<t+Ane=X) f(t)
T 1-F(t)'

where X is inter-spike interval, Ft) is the cumulative probability
function of ISL

The modulated renewal process allows introducing of depen-
dencies (influences) between spike trains. Let us suppose that spike
generation in spike train A depends on spikes of spike train B and
the hazard function of process A is a product of two multipliers:
one is the own hazard of process A without influence from B and
another multiplier describes influence from spike train B. Thus, the
hazard function at the moment ¢ is:

@(t) = galUa(t)) expl BZp(t)}, (1)

where ga( - ) is the hazard function of the renewal process Awithout
influence from the point process B, U,(£) is the backward recurrence
time of the process A at the mament ¢, Zg(t ) is the influence function
determining how the process B influences the process A, and B is
the unknown parameter (Cox coefficient) describing the strength
of the influence from process B to A. Therefore, given the influence
function Zg(t), the goal is to estimate the parameter f.If §=0 then
there is no influence from spike train B to A. To test the hypothe-
sis Hp:{# =0} we use statistical technique based on a conditional
maximum likelihood principle (Cox, 1972). Application of the Cox
method to analyse influences between two or three spike trains
is described in (Borisyuk et al., 1985). Here we present a general-
isation of the Cox methad for simuitaneous analysing of arbitrary
number (n) of spike trains and demonstrate how this technique can
be applied to study the functional connectivity of neural circuits.
The Cox method is applied to analyse a set of n simultaneously
recorded spike trains. One spike train is selected to be considered
as a target spike train and all other (n— 1) spike trains are con-
sidered to be the reference spike trains. The Cox method allows
analysing of all n spike trains and estimating the (n— 1) dimen-
sional vector B of regression coefficients under the assumption
(1), where Zg(t) is (n — 1) dimensional vector-function of influences
from reference spike trains to the target and BZg(t) is the dot prod-
uct. Application of the Cox method provides both {1}e estimates
of unknown parameter (Cox coefficients) B1. Bz. -... Bn_1 and the

t)= lim
) At—D At

corresponding confidence intervals of these estimates {[Ib,, ub,],
i=1,2, ...(n—1)}, where Ib; and ub; are lower and upper bound-
aries respectively of the confidence interval for B;. The hypothesis
Hi: B, =0 is accepted if the corresponding confidence interval
contains zero (0« [ib;, ub;|) otherwise the hypothesis is rejected
and the estimate f; is considered as a measure of influence strength
from the ith reference spike train to the target. To study the func-
tional connectivity we apply this method consequently (n times)
selecting the target and estimating the influence strengths from
reference spike trains. The equations that are used to estimate the
vector of regression coefficients and their confidence intervals are
given in Appendix A.

2.1. The influence function

It is important for successful application of the Cox method to
choose an appropriate influence function which takes into account
some characteristic properties of neuronal interactions. We have
studied (both analytically and numerically) different candidates
and find that the alpha function which is used in neuroscience
to describe synaptic connectivity between neurons (Gerstner and
Kistler, 2002) is an appropriate description for modulation of the
hazard function (see formula (1)). In fact, we find that the best
influence function should describe the dynamics of postsynaptic
potential: the influence function increases when spike arrives to
the postsynaptic neuron and the probability of spike generation
by postsynaptic neuron increases; after that the influence function
decays to zero. Thus, the influence function is:

Za(t) = —ED—(e /% et/ 2)
r

(s - 1)
where t; and t, are the characteristic times of decay and rise
of postsynaptic potential respectively. Parameter gy, provides the
normalization that the maximum of the influence function is one.

A simplified version of the influence function corresponding to
the case 1, =1, is given by the following formula:

Zo(t) = Let-t/n (3)
Ts

In formulas (2) and (3) we assume that the presynaptic neu-
ron (spike train B) has generated an action potential at time zero
and this spike arrives to the target neuron (spike train A) with-
out any delay. Now we re-write formulas (2) and (3) taking into
account times of spiking at the reference process B. We suppose
the influence function depends on the backward recurrence time
of the process B which we denote as Ug(t) and substitute this vari-
able as the argument to formula (2). It means that the influence
described by formula (2) starts increasing from the last spike in B
before time t. To take into account the time delay of spike propaga-
tion, the argument in formula (2) should be shifted by the time lag
A. Thus the influence function is defined by the following formula:

EBm
Z {[} = —_—
. [s—1)
where Ug(t) is the backward recurrence time of the process B; A
is a time lag corresponding to delay of spike propagation from B
to the target A. Similar to (3), a simplified version of the influence
function with time lag A is given by the following formula:

(e Uslt- A/t _ p-Unlt-2)/1r) (@)

Tilt)e %UBU— A)e\—UB(t—A];‘n (3)

In formulas (4) and (5) we define the influence function taking
into account only the last spike in B before the time (t— A). In some
cases it is fruitful to consider accumulation of postsynaptic poten-
tial in time interval T considering a history of spiking in B over the
time interval (r — T, t). This type of the influence function is useful if
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Fig 1. Generalised influence function which accumulates influences from several
spikes of the reference spike train in the history interval (¢ - T, t) with propagation
delay A.

decay time of the postsynaptic potential is relatively small in com-
parison with the mean interspike interval of the process B. Thus, a
generalised influence function is:

- . Bm —U(t-A)/xs _ U (e-A)e
A=), =t e ) (6)
here k is an index which denotes the highest order of the backward
recurrence time in the history interval (the first order corresponds
to a spike which is the most close to the moment (¢ — A) in back-
ward time, the second order relates to the previous spike in the
reward time, etc.). Fig. 1 shows the generalised influence function
over the accumulation time T, thus, U§(t) < T and US*'(f) > T. A
simplified version of the generalised influence function is given by
the following formula:

k
Zy(t) = Z}=l %u{,[: — A)exp (1 = &u{lu AJ) (7)

In case of multiple reference spike trains B=(B,, B;... .. By), the
influence function should be defined independently for each refer-
ence spike train and the hazard of the target spike train A is

@(t) = @alUa(t)) exp{B1Zp,(t) + BaZp, () + - -- + BiZp, (L)), (8)

where g4( - ) is the hazard function of the renewal process A with-
out influence from the reference processes B, U, (t) is the backward
recurrence time of the process A at the moment t, Zg(¢) is the
influence function determining how the process B, influences the
process A, and f; is the unknown parameter describing the strength
of the influence from the process B, to A (i=1.2.....k).

3. Functional connectivity of multiple spike trains

In this section we use the Cox method to identify functional
connectivity of simulated multiple spike trains. For simulations we
use the Enhanced Leaky Integrate and Fire model (Borisyuk, 2002)
with a given scheme of coupling. Simulating a small neural cir-
cuit of five ELIF elements with prescribed connectivity we generate
five spike trains and use the Cox method to identify the functional
connectivity. We show that the method is effective and allows find-
ing all connections and identifying their relative strengths. The Cox
method is multivariate and enables to analyse all simultaneously
recorded spike trains at ones. A relatively large circuit of twenty
ELIF elements is used to generate twenty spike trains. Application
of the Cox method to analyse twenty spike trains at ones can iden-
tify all functional connections; therefore, these results show that
the Cox method is fruitful for study of functional connectivity of
multiple spike trains.

3.1. Enhanced leaky integrate and fire model for data generation

We consider a neural network of enhanced leaky integrate and
fire elements (Perkel, 1976; Borisyuk, 2002). A discrete-time ver-

Table 1
Connection strengths, time delays of spike propagation and decay times of postsy-
naptic potential that are used for generating five spike trains.

Connection strength (w) Time delay [A) Decay time
{rs)

W . =10.786 Ay =12 209

Wy .2=11.081 Agz =10 1.63

Wy 3=8973 Agm=10 456

W, _4=7354 Ap=10 435

Wi _5=6.801 Az =6 435

sion of the model neuron is used with the time increment equal
to 1 ms. The state of each neuron at the moment ¢ is charac-
terised by a threshold and the total potential which is the sum of
postsynaptic potentials and the noise. If the value of the total poten-
tial has reached the threshold, the neuron generates a spike. The
spike propagates to other neurons with a time delay. The diagram
of connection should be defined as well as connection strengths,
time delays, and time decays of postsynaptic potentials, When the
spike reaches another neuron, the postsynaptic potential jumps
up or down depending on whether the spike is from an excita-
tory or inhibitory neuron, respectively. The value of the connection
strength controls the jump height. The postsynaptic potential expo-
nentially decays to the resting potential if there are no incoming
spikes. After spike generation, the neuron is unable to generate
a spike during an absolute refractory period. When this period
expires, the threshold gets the highest value and then exponen-
tially decays to the asymptotic threshold value. This decay is used
to madel a relative refractory period. To model a spontaneous back-
ground activity, the random noise is added to the membrane poten-
tial. The amplitude of the noise exponentially decays with time and
a normally distributed random variable with zero mean and a fixed
variance is added to the noise at each time step. The noise is inde-
pendent random process for each element. If the amplitude of noise
is large enough, then the element can be spontaneously active even
without influences from other neurons. The formal description of
the enhanced integrate-and-fire element and examples of param-
eter values are given in paper {Borisyuk, 2002) and a short descrip-
tion of parameters of the ELIF model is provided in Appendix B.

3.2. Analysis of functional connectivity of five spike trains

We generate the five spike trains using the connection architec-
ture shown in Fig. 2A. The values of connection strength, time delay
of spike propagation and time of decay of postsynaptic potential
are given in Table 1. In this paper we do not consider self-coupling
and therefore, we do not analyse self-influences. Fig. 2B shows the
result of ELIF model simulation, i.e. the raster plot of spiking activity
of these five neurons in time interval of 20s. These spike trains are
considered as a data set for analysing the functional connectivity.
It is important to note that for analysing the functional connectiv-
ity we use only spike trains and we suppose that the scheme of
connections is unknown. Also we assume that values of neuronal
parameters and parameters characterising connections (connec-
tion strength, delay of spike propagation and time of decay of PSP)
are also unknown. After completion the analysis, we compare the

Table 2
Statistics of the [51 of the neural circuit of five spike train.
Spiketrain  Number of Mean Minimum  Maximum  Standard
spikes deviation
1 281 70.7 17 267 436
2 245 Bi1 18 271 473
3 244 Bl4 13 315 479
4 281 763 10 235 467
5 246 B1.4 15 326 50.7
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Fig. 2. [A) Connection scheme of the five spike train. There are five non zero connections which are shown by arrows. (B) Raster plot of five spike trains generated for the
neural citcuit (A) of the duration 20,000 ms, (C) 1! histograms of the generated five spike trains.

result of statistical analysis with parameter values which have been
used forspike train generation. Fig. 2C shows the histogram of inter-
spike intervals for each spike train and Table 2 provides the number
of spikes, the mean IS] and the standard deviation of ISI for each
spike train.

To apply the Cox method, one spike train should be selected as
a target and other four are considered as the reference trains. Also,
the influence functions should be specified to describe the influence
from the reference spike train to the target. Here we assume that all
influences are identical and the influence is specified by formula (4).
This function includes three parameters (ts, rr, A) and their values
should be defined for each reference spike train.

Characteristic times of rise and decay of the postsynaptic poten-
tial (PSP) are usually known from experimental recordings (e.g.
they can be estimated from intra-cellular recordings). There are
theoretical attempts to estimate characteristic decay of PSP from
the histogram of inter-spike intervals (see e.g. Tuckwell and Richter,
1978; Lansky et al., 2006; Mullowney and lyengar, 2008 ). The
approach is based on consideration of a simple integrate and fire
model with white noise for spike generation. Using some statisti-
cal technique (e.g. maximum likelihood), it is possible to estimate
parameters of the model from the histogram of ISls, including the
time of decay of PSP. An approximation of recorded spike train by
the integrate and fire model has a limited use due to over simplicity
of this model and difficulties of numerical procedure.

In case of generated data, the values of PSP decay time are known
(see column three in Table 1); however, we assume that these val-
ues are unknown and do not use them for analysis of connectivity.
Instead, we estimate these values from the histogram of ISls using
technique from Tuckwell and Richter (1978) which shows that the
PSP decay times are about 10 ms. Thus, we select r.=10ms and
7r=0.1 ms. It means that the PSP rises very fast and decays relatively
slow. We have studied how the result of analysing the functional
connectivity depends on chosen values of PSP characteristic times
and found that the Cox method has low sensitivity to selected val-
ues of these parameters. Other words, there is no requirement to

# All these over simplified models consider immediate jump of potential (r, =0)
and decays with characteristic time 7,.

choose these times accurately. In fact, these characteristic times
can be varied in a broad range and the results of analysing will be
similar. Therefore, in this analysis we do not adjust characteristic
times of postsynaptic potential for each neuron but use the same
values of PSP characteristic times for (rs = 10msand r, =0.1 ms) for
all reference spike trains.

Also, the time lag A corresponding to the delay of spike prop-
agation should be specified. To do this we consider a pair of spike
trains: the target and the reference spike train and we analyse inter-
dependences of two spike trains. A traditional approach is to apply
the cross-correlation function which provides both a statistical esti-
mate of dependency and a corresponding time lag.

The CCF is widely used in neuroscience to analyse dependen-
cies and influences between pairs of simultaneously recorded spike
trains. To measure the association between two spike trains A (tar-
get) and B (reference) over the time T the counting function nag(u)
is calculated. The function nag(u) counts and accumulates the num-
ber of spikes of spike train A falling in a small interval of length h
(bin) which is attached to a spike in B (u=0) or shifted from a ref-
erence spike in B by u (left or right). A shift to right side means
that with a high enough probability a spike in the reference trains
causes a spike in the target spike train; therefore there is an influ-
ence from reference (B) to the target (A) spike train. This counting
function is an estimate of the cross-product density pag. To test
the independence of two spike trains Brillinger (1976¢) considers
the estimate pag(u) = v/Pas(u)/Pabs. where pag(u) = nap(u)/2hT,
pa =na/T and pg = ng/T and normalises the counting function
nap{u) accordingly. Here na, ng denote the number of spikes in A
and B respectively. For a large sample size the random variables
pag(u) are independent and the distribution of each of them is the

normal with the mean m = /pag(u)/PapPr and the standard devi-
ation S = 1/(2+/2hTpapg). Therefore, in case of two independent
spike trains the mean of pag(u) equals to one (because in inde-
pendent case pag(t) = Palu)pg(u)). To test the hypothesis Hy that
two spike trains are independent, the boundaries of the confidence
interval with the significance level « are plotted by two horizon-
tal lines at levels 1 £ Q% /1+/2hTpaPs. where QF is a critical value
of normal distribution corresponding to the significance level a. If
Hp is correct then all values of the cross-correlation function cor-




206 M5, Masud, R Borisyuk / Journal of Neuroscience Methods 196 (2011) 201-219

Table 3
Time lags obtained from Fig. 3. These time lags are used to get the full functional
connectivity of neural circuir of five spike train.

Target splke train Reference spike train

1 2 3 4 5
1 8] 2 2 12 a
2 0 0 9 10 i}
3 21 4] 0 10 0
4 10 o 0 0 41
5 o (i} B o 0

responding to different bins fall inside the confidence interval and
the estimated value of CCF (pag(u)) is zero. If some value of CCF
exceeds the upper boundary of the confidence interval then the
hypothesis Hp is rejected and we conclude that two spike trains
are not independent. The highest value of CCF exceeding the upper
boundary of the confidence interval can be considered as a mea-
sure of influence strength from one spike train to another and the
corresponding time shift can be considered as a time delay in spike
propagation (Stuart et al., 2005).

Fig. 3 shows CCFs of five spike trains. The highest peak outside
the confidence interval is interpreted as an indicator of influence
and the corresponding time shift of CCF is considered as a time lag
corresponding to delay of spike propagation. Time lags are sum-
marised in the Table 3 and these values are used for analysing
the functional connectivity. For example, if the first spike train is
selected as a target, then the first row of the Table 3 provides param-
eter values of time lags which are parameters of the respective
influence functions: A;=2, A;=2, A4=12, A5=0

Remark: it is common that there are muitiple peaks of CCF out-
side the confidence interval. They reflect a complex structure of
interactive point processes. Here we analyse the excitatory connec-
tions only, therefore the drops of CCF below the lower boundary of
significance interval are not considered.

Thus the general procedure of analysing the functional connec-
tivity is: (1) select a target spike train and consider all others as the
reference spike trains; (2) for each reference spike train specify the
influence function using the values of three parameters: (3) apply
the Cox method and calculate the estimates of Cox coefficients and
their corresponding confidence intervals (with a prescribed confi-
dence level).

Appendix A provides formulas (A-1) and (A.2) for calculation of
estimates of Cox coefficients B = (f;. fa. ~. Bp) p—is the num-
ber of reference spike trains as well as formulas (A.3) for calculation
of confidence interval for each Cox coefficient.

Functional connections can be derived from these estimates and
their confidence intervals, If the confidence interval contains zero,
then we conclude that the corresponding Cox coefficient is not dis-
tinguishable from zero; therefore the functional connection from
the reference spike train to the target is absent. If the confidence
interval does not include zero, we conclude that there is a signifi-
cant influence from the reference spike train to target and the value
of the estimate characterises the strength of this functional con-
nection. To define a complete diagram of functional connectivity
we repeat the calculation of estimates and confidence intervals for
each target spike train and define all functional connections incom-
ing to the target. Thus, in case of n spike this procedure should be
repeated n times.

Table 4 summarises the result of analysing spike trains by the
Cox method. Each row of the table shows the Cox coefficients
characterising the influence strength to the target spike trains. For
example, the first row of Table 4 corresponds to the case that the
first spike train is considered as a target and this row shows the
estimates of Cox coefficients characterising influences to the tar-

get spike train (#1) from the reference spike trains (#2 o #5):
B2 =0.5, 37 =0.2, iy = 1.6, fi5; = 0.09. Also the correspond-
ing confidence intervals (the confidence level here is 0.95) are
shown. These intervals are used to test the hypothesis that the
Cox coefficient is zero: if the confidence interval includes zero then
this hypothesis should be accepted and we conclude that there are
no influence from reference spike train to the target (i.e. influence
strength is zero). in the first row there is only one Cox coefficient
that significantly differs from zero (shown in bold) which char-
acterises the influence from spike train #4 to spike train #1. This
non-zero influence strength is interpreted as strength of the func-
tional connection from spike train #4 to spike train #1. All other Cox
coefficients at the first row are not distinguishable from zero and
the corresponding functional connections to the target spike train
#1 are absent. This procedure of estimation of Cox coefficients is
repeated for the target spike train #2 and the result is shown in row
2, etc. Thus, considering Table 4 we conclude that there are five Cox
coefficients that significantly differ from zero; therefore there are
five functional connections between spike trains. These functional
connections are shown by circles in Fig. 4B and a radius of the cir-
cle is proportional to a relative strength of influence: a small radius
corresponds to a relatively weak functional connection. Diagonal is
shown by filled squares.

Comparison of the matrix of functional connectivity (Fig. 4B)
with the matrix of connections (Fig. 4A)? which has been used for
simulation of spike trains reveals a good correspondence between
these two schemes of connections. Moreover, relative connection
strengths have been correctly identified: circles with smaller radius
correspond to weaker connections (see connection strengths in
Table 1).

To emphasise how importance of this result, we note that
the diagram of connectivity in Fig. 2A contains direct connec-
tions shown by arrows (e.g. from spike train #4 to spike train #3)
and some “spurious™ connections: connection due to a “common
source™ and connection due to “indirect coupling”. For example,
there is no direct connection between spike trains #1 and #2; how-
ever, spike train #4 is a common source which delivers spikes to
both spike trains (#1 and #2). Another example of spurious connec-
tion is "indirect coupling”: there is no direct connection between
spike trains #1 and #3, however, there is an indirect influence
(coupling) from spike train #1 to spike train #3 via spike train #4.

Remarkably, the Cox method ignores all “spurious” connections
and correctly finds the direct connections which have been used
for data generation. Thus, it is shown that the Cox method can dis-
tinguish between “direct connection” and the connectivity duetoa
“common source” (or similar, to distinguish “direct “and “indirect”
connections).

This problem is difficult for pair-wise methods. For example,
the pair-wise CCF for spike trains #1 and #2 is shown in Fig. 3
{first row and second column). There is the significant peak of CCF
corresponding to time lag of 2 ms (see Table 3) which can be erro-
neously interpreted as a connection from spike train #2 (o spike
train #1 with time lag of 2 ms. Similar, a spurious connection from
#1 to #3 is correctly ignored by the Cox method but erroneously
identified by the pair-wise method which shows a significant peak
corresponding to 21 ms time lag (see the CCF in Fig. 3, third row and
first column and the time lag value in Table 3). This advantage of
the Cox method is due to a possibility to analyse all simultaneously
recorded spike trains at once. Other advantages of the Cox method
in comparison with CCF will be considered in the Section 4.

1 In face, this martrix is equivaient to the connection diagram in Fig 2A.

* A common source is a neuron that simultaneously modulates the finng patterns
of two or more other neurons. For example, in Fig. 2A the neuron #4 is a common
source which modulates firing patterns of neurons #1 and #2.
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Fig. 3. Cross correlation function of the neural circuit of five spike trains.

3.3. Analysis of functional connectivity of twenty spike trains

In this section we analyse a relatively large set of twenty spike
trains which are generated by the ELIF model with twenty elements
and with forty two connections. A diagram of connections is shown
in Fig. 5A. Parameter values of ELIF model are similar to the param-
eter values which have been used in the previous example of five
spike trains. A simulation has been run in time interval of 50 s and
Fig. 5C shows an initial part of the raster plot of twenty spike trains
generated by the model (from 0 to 20s), Fig. 5B shows an example
of the four ISI histograms of spike trains #1 to #4.

The procedure for analysing the functional connectivity is the
same as above. The target spike train is selected and other nine-
teen spike trains are considered as reference trains. The influence
function is given by the formula (4) and characteristic times are
the same as in case of five spike trains because spike trains have
similar statistical characteristics of ISIs—we select 7s=10ms and

Table 4

7-=0.1ms. To select a proper time lag for the influence function
we calculate the pair-wise CCF between the reference spike train
and the target spike train and identify the highest significant peak.
The corresponding time shift of the CCF is used as the value of time
fag A. If there are no significant peaks of CCF then A =0. Thus, the
influence function is defined and using the Cox method we can cal-
culate the estimates 31. fig ..... B1g of Cox coefficients and their
confidence intervals. Testing the hypothesis that the Cox coefficient
is not distinguishable from zero, we identify “zero” Cox coefficients
which are interpreted as absence of functional connection. All "non-
zero” coefficients define functional connections and the value of
estimate is considered as connection strength.

From statistical point of view, the repetitive application of the
Cox method means that we carry out M =380 independent statis-
tical tests. In case of a large value of M, the probability of error
is artificially inflated. Therefore, the significance level should be
adjusted with taken into account the number of repetitions M. [t is

Result of analysis of five spike trains by the Cox method. The estimates of Cox coefficients and corresponding confidence intervals are shown. Cox coefficients which
significantly differ from zero (i.e. the confidence interval does not include zero) are in bold.

Target spike rain Reference spike tram

1 2 3 4 5
1 0 05(-009,1.1) 02(-04,089) 1.6(1.1,2.1) 0.09 (-0.5,0.8)
2 -02(-1.0,04) 0 04(-0.1,11) 19(14.24) 03(-03,1.0)
3 05({-006,12) -03(-1.0.04) o 1.1(05,1.7) -02(-1.1,05)
4 1.2{0.7, 1.8) -0.1(-0.9,08) 0.1(-05,08) 0 -02(-10.05)
5 -0.1(-08,0.6) -02({-1.1.05) 1.2(0.7.1.8) 0.003 (-0.7,.0.7) 0
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a common practice to employ a Bonferroni statistical adjustment to
counteract the effect of multiple tests. Thus the significance level
has been corrected: a/M. In the case of 20 spike trains we have
used a=0.05 and M =380 and the corrected significance level was
0.00013.

To simplify a comparison of the result of data analysis with a
connection scheme used for data generation we show both con-
nection schemes in matrix format. Fig. 6A shows connections of a
neural network of twenty ELIF elements used for data generation
(the same scheme is shown in Fig. 5A in a graph format). Fig. 6B
shows a diagram of functional connections in matrix format which
has been identified by the Cox method. A matrix of functional con-
nectivity in Fig. 6B results from twenty repetitive applications of
the Cox method. The first row of the matrix corresponds to the
case when the first spike train is selected to be a target; the sec-
ond row corresponds to the case when the second spike train is
the target, etc. A circle indicates that there is a significant influence
(functional connection) to the target spike train and the radius of
the circle shows the relative strength of the influence. Compari-
son of connectivity matrix in Fig. 6A with matrix in Fig. 6B shows
that the Cox method correctly identifies all forty two direct con-
nections between spike trains. The connectivity matrix is derived
from the repetitive testing of hypothesis that there are no depen-
dencies between the target and reference spike trains using the Cox
method. In the hypothesis testing, two null hypotheses of indepen-
dence are incorrectly rejected. These two false positive connections
are shown by green circles (Fig. 6B) and these erroneous connec-
tions are not present at the circuit for the spike train generation.

Fig. 6C shows the matrix of functional connectivity which has
been constructed by using the pair-wise CCF technique. Compar-
ison this matrix with the matrix of connections which have been
used for data generation shows that all forty two null hypotheses
of independency are correctly rejected. It means that all forty two
non-zero connections have been correctly identified. However, in
addition, fifteen null hypotheses of independency are incorrectly
rejected. Thus, there are fifteen type I errors (false positives) and
corresponding non-zero erroneous connections are shown by green
circles (Fig. 6C). A radius of circles corresponding to these erroneous
non-zero connections is relatively large, therefore, a strength of
erroneous influence is also relatively large®. This comparison shows
that the Cox method has some advantages over CCF technique.

4. The Cox method versus cross-correlation function

In this section we compare the Cox method with a traditional
technique based on the cross-correlation function and show advan-
tages of the Cox method especially in cases which are difficult for
analyses. The CCF is a pair-wise method, therefore in this section we
mainly analyse a connection of two spike trains. The main assump-
tion of the Cox method is that the target process is the modulated
renewal process with the hazard function described by formula (1).
A probabilistic model has been developed to generate the MRP. It
is expected that for this data the estimate f of the Cox coefficient
equals to the influence strength B in formula (1). Of course, in a
general case of data generation using the ELIF model, we do not
expect that the target spike train is MRP. However, we demon-
strate that the Cox method can be successfully applied to analyse
functional connectivity and the estimate  monotonically increases
with increase of connection strength in generated data. Also, in this
section we study connectivity of three spike trains generated by
ELIF model with “common source” connections. This connection
scheme is very difficult for analysing by pair-wise methods and in

* The Bonferroni correction is applied to test the hypathesis of independency for
CCF method.

particular by CCF. We show that the Cox method which can analyse
three spike trains at once can be successfully applied to identify a
functional connectivity. In a similar way we study another set of
three spike trains with “indirect” connections.

4.1. Description of the probabilistic model

The probabilistic model generates two spike trains A and B. Spike
train B is a renewal process with the gamma-distribution y{x: a, b)
of interspike intervals, where parameters a and b are the shape and
the scale parameters respectively. Spike train B influences spike
train A and spikes of B modulate the probability of spike genera-
tion in the process A which is the modulated renewal process with
the hazard defined by formula (1). The hazard function of A without
the influence from B depends on the backward recurrence time of
the process A. This assumption corresponds to a standard consid-
eration of neuronal spiking (Daley and Vere-Jones, 2003; Truccolo
et al,, 2005), For example, after firing a spike, the process is less
likely to fire again immediately afterward. Also, we suppose that
the backward recurrence times have the Weibull distribution W{x;
¢, d) (see Cox, 1972), where parameters ¢ and d are the shape and
the scale respectively. In fact, the types of the distribution of 151
of process B and the distribution of backward recurrence times of
A can vary. Our choice of the gamma distribution and the Weibull
distribution is motivated by the fact that both families include the
exponential distribution which can be seen in many neuroscience
data.

To generate spike trains, the influence strength 8 should be
selected. The influence function describing an impact of the spike
train B to the spike train A is given by formula(5) with the character-
istic time 1, and the time [ag A. Thus, the hazard of the modulated
renewal process A is completely defined and we use this function
to generate spikes of A using a small time step and calculating the
probability of spike at discrete times ty.

The probabilistic mode] includes five parameters and we would
like to adjust them in such a way that the 18] distribution of the
MRP is similar to the ISI distribution of the spike train which is
generated by the ELIF model. In Appendix C we briefly describe
the cost function which enables us to find an optimal set of five
parameters of the probabilistic model.

4.2. Analysis of two spike trains

In this section we consider two spike trains (A and B) which
are generated by the probabilistic model. The probabilistic model
generates a pair of spike trains A (target) and B (reference) with
only one connection from B to A and the connection strength is Baa.
We use both the Cox method and CCF to estimate the connection
strength.

The influence function of the Cox method is given by formula
(5) with characteristic times <= 7-=5 ms and zero time lag (A =0).
The estimate fga of the Cox coefficient is calculated as well as the
confidence interval. Alsg, the CCF has been calculated and the value
of highest peak outside of the confidence interval pgy is considered
as an estimate of the connection strength. Of course, if there are
no peaks outside of the upper bound of the confidence interval,
the connection strength is considered to be zero and gy = 0. We
demonstrate some advantages of the Cox method both in case of
short spike trains and in case of a weak coupling.

Moderate and high strength of influence: Varying the strength of
influence fBgy in a range from moderate to high, we generate eight
pairs of spike trains and for each pair we analyse connectivity. The
average number of spikes in the reference spike trajn B is about
400 and target spike train A has a larger number of spikes. The blue
line in Fig. 7A shows the estimated Cox coefficient fga (with corre-
sponding confidence interval which is shown by black vertical bar)
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Fig- 6. (A} Connection scheme of the neural circuit of twenty spike trains in matrix format (the same as a scheme of connections in a graph format in Fig. 5A). (B} Functional
connections identified by the Cox method. (C) Functional connections obtained by the CCF method.

versus the strength of influence fga. This plot shows that the esti-
mated values are close to the values which have been used for data
generation. The magenta line shows the independency measure of
CCF pgp versus the strength of influence fg,. It is clear from Fig. 7A
that the CCF also allows to identify this connection; however, the
plot of CCF is not monotonically changing and fails to indicate the
increase of influence.

Short spike train: To test sensitivity of the Cox method in a case
of short spike trains we use the same pairs of spike trains as in
the previous example but for the analysis we cut the epoch time
and consider only a part where the independent spike train has
about 70 spikes, thus a time epoch is about six times shorter than
in the previous example. Fig. 7B shows the estimate of Cox coef-
ficient Bga versus the strength of influence figs for the moderate
and high strength of influence (shown by the blue line with the
black vertical bars of confidence intervals). This line shows that the
estimated values are similar to the strengths which have been used
for data generation with the only one exception: for figa =0.5 the
confidence interval contains zero and therefore, the Cox coefficient
i$ not distinguishable from zero.

The magenta line in Fig. 7B shows that the CCF fails to identify
functional connection for the moderate influences figs =(0.5.1). For
the higher influences figa =(1.5, 2, 2.5, 3, 3.5, 4) the CCF measure
is nearly constant and fails to indicate the increase of influence.
Therefare, the Cox methad has some advantage in a case of shart
spike trains.

Weak influence: To test an efficiency of methods and to identify
weak connection strength we use the same probabilistic model to
generate another eight pairs of spike trains with weak influence:
Bra=(0.1,0.2,0.3,04,05, 0.6, 0.7, 0.8). In this case the time epoch
should be long enough (about 1400 spikes in the reference spike
train B) to allow a distinguishing of weak influence. Fig. 7C shows
that both methods demonstrate a good result and identify the con-
nection, The Cox coefficient increases with the connection strength
increase, but the CCF measure is not monaotonically increasing.

Sensitivity to the length of spike train: Here we study how a sen-
sitivity of methods depends on a length of spike trains under a
constant value of the influence strength. The conclusion is that for
shorter trains, the Cox method identifies the connection but the
CCF fails. The strength of influence fga = 1.0 is relatively small. We
have fixed the value of influence and generated eight pairs of spike
trains with the different number of spikes in the reference spike
train B: n=50.60, - - - -, 120. Fig. 7D shows that the estimated Cox
coefficient is almost constant (fps = 1) and does not depend on
the length of spike train. The CCF measure (fna) shows the con-
nection for the larger spike trains (n=90, 100, 110, 120) but fails to

identify a strength of influence for the shorter lengths of reference
spike trains (n=50, 60, 70, 80).

4.3. Analysis of three spike trains: common source and indirect
connection

Here we show that the Cox method is very effective to analyse
connections which are not direct such as "common source” circuit
(Fig. 8A) and “indirect connection” circuit (Fig. 10A). Usually it is
very difficult to analyse these types of connection using pair-wise
CCF technique. The Cox method is multivariate and can analyse
three spike trains at ones and it makes this method more sensitive
than pair-wise CCF. For example, this advantage enables the Cox
method to distinguish between “direct” connection and connection
due to a “common source” in case of a moderate influence form the
common Source.

Common source: Three spike trains ( {#1, #2, #3} ) are generated
using ELIF with the same parameters like in previous examples and
a “common source” connections (Fig. BA). The “common source”
circuit includes two connections from spike train #1 to spike trains
#2 and #3. Connection strengths are 12.6 and 10.6; delays of spike
propagation are 11 ms 14 ms, respectively.

We analyse these three spike trains by the Cox method with the
influence function given by formula (4), characteristic times are
7s=10ms and r.=0.1 ms. To prescribe the time lags we calculate
the CCF function for all pairs of spike trains (Fig. 9): Ay;=11ms,
Ajz3=14ms, Az; =3ms, and all other time lags are zero. We apply
the Cox method three times (each of spike trains is selected to be a
target spike trains).

Suppose that the target spike train is #k, (k=1.2.3). The esti-
mates (By. Bi)i=1.2.3:k=1.2.3.i #j.i # k.j # k) of two
Cox coefficients have been calculated using formulas(A.1) and (A.2)
as well as a confidence region on plane (B;. By ) using formulas
(A.4). The confidence region (e =0.05) has an elliptic shape and the
centre of the confidence region is located at point (8. By )-

We test the hypothesis that a pair of Cox coefficients (fj,. fijk)
equals to zero (i.e. both component of the pair are zero). We accept
the hypothesis (i.e. the data does not contradict to the hypothesis)
if the origin is inside of the confidence region and conclude that
both connections are absent (i.e. connection strength is zero). If the
hypothesis is rejected then we test the hypothesis that one Cox
coefficient equals to zero. This hypothesis is tested separately for
each coefficient. We consider two projections of the elliptical con-
fidence region to the coordinate axis: (i) and ( B;). i projection to
the axis ( ;) contains zero then the hypothesis is accepted and we
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60, . 120. Esumated Cox coefficients ( flas ) are almaost constant for all lengths but independency measures of CCF { pga) fail to identify strength of influence for shorter

lengths of reference spike trains (n =50, 60, 70, 80},

conclude that the connection is absent (i.e. the connection strength
is zero), otherwise the hypothesis is rejected and a centre of the
interval (8 is considered as strength of connection. Similar, if a
projection to another axis (f;;) contains zero then the hypothesis
is accepted and we conclude that the connection is absent, other-
wise the hypothesis is rejected and a centre of the interval ( ff,k} is
considered as strength of connection.

Fig. 8B shows three confidence regions. A region on the left side
corresponds to the target spike train #1; region in the middle cor-
responds to target spike train #2, region in right side corresponds
to target spike train #3. It is shown in Fig. 8B that the region on the
left side contains zero, therefore both connections to spike train #1
are absent. This result is shown in Fig. 8C by two dashed arrows
pointing to #1. These dashed arrows mean an absence of both con-
nections.

The region in the middle does not contain the origin and it means
that the hypothesis that both Cox coefficients are zero should be

rejected. The centre of the confidence region is shown by the cross
and its coordinates are the estimates (f#u, B12). The projection
to the vertical axis i3, contains zero, therefore, we conclude that
hypothsis is accepted and connection from #3 to #2 is absent. The
projection to the horizontal axis 8,2 does not contain zero, there-
fore, we conclude that the hypothesis is rejected and the estimate
B,z is strength of connection from #1 to #2. This result is shown in
Fig. 8C by two arrows pointing to the #2: the dashed arrow means
absence of connection and the solid lines means presence of con-
nection from #1 to #2 and the value of connection strength is 2.6.

The region in right side can be interpreted in a similar way. The
result is shown in Fig. 8C by two arrows pointing to #3: the dashed
arrow means the absence of connection #2 to #3 and the solid
arrow means the presence of connection from #1 to #3 and the
value of connection strength is 1.7

The result of analysing is in a good agreement with the archi-
tecture of connections which has been used to generate these data
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(compare Fig. 8A with Fig. 8C). For example, for data generation the Thus, the result in Fig. 8C indicates that there are two sig-
higher connection strength has been selected for connection from nificant influences only (shown by solid lines, all others are
#1 to #2 and the estimated connection strength from #1 to #2 is shown by the dashed lines): from spike train #1 to spike
also higher than estimated connection strength from #1 to #3. train #2 and from spike train #1 to spike train #3 and the
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(commeon source) is shown in Fig. 8A



influence strengths are shown with their confidence intervals
(a=005).

Fig. 9shows the result of analysing of the same three spike trains
by the pair-wise CCF. Each row of the figure shows two CCF corre-
sponding to the selected target spike train - spike train #1 is the
target for the first row, spike train #2 is the target for the second
row, etc. The CCF analysis reveals three connections: from spike
train #1 to spike train #2 (second row, first column); from spike
train #1 to spike train #3 (third row, first column); from spike train
#2 to spike train #3 (third row, second column). First two of these
connections correspond to the diagram of connectivity (Fig. 8A)
but the third one is erroneous and this connection appears due the
common source to spike trains #2 and #3. Thus, the Cox method is
able to distinguish the common source from the direct connections
but the CCF fails.

Indirect connection: Similar to the previous example, we gener-
ate a set of three spike trains ({#1, #2, #3}) using ELIF model with
the same parameters as in the previous examples and indirect con-
nections (Fig. 10A). The “indirect connection” circuit includes two
direct influences: from spike train#1 to spike train#2 with the time
fag 11 ms and from spike train #2 to spike train #3 with a time {ag
12 ms. The connection strengths are 11.2 and 9.1, respectively.

To analyse functional connectivity by the Cox method with the
influence function given by formula (4), we specify the characteris-
tic times are r;=10ms and 7.=0.1 ms. To specify a time lag we
calculate the CCF function for all pairs of spike trains (Fig. 11):
Ay =11ms, Axz=12ms, A;3=23ms, and all other lags are zero.
We apply the Cox method three times (each of spike trains is
selected to be a target spike trains}).

Suppose that the target spike train is #k, (k=1.2,3). The esti-
mates (B, Buli=1.2.3:j=1.2.3: k=1.2.3.i#j i # kj#k)
of two Cox coefficients have been calculated using formulas (A.1)
and (A.2) as well as a confidence region on plane ( By ) using for-
mulas (A.4). The confidence region (¢ =0.05) has an elliptic shape
and the centre of the confidence region is located at point { Ay, Bie)-

Fig. 10B shows three confidence regions. The region on the left
side corresponds to the target spike train #1; region in the middle
— target spike train #2, region in right side - target spike train #3.
The region on left side contains zero, therefore both connections
to spike train #1 are absent. This result is shown in Fig. 10C: two
dashed arrows pointing to #1 mean the absence of both connec-
tions.

The region in the middle does not contain the origin and it means
that the hypothesis that both Cox coefficients are zero should be
rejected. The centre of the confidence region s shown by the cross
and its coordinates are the estimates (B;2, B12). The projection
to the vertical axis fi3; contains zero, therefore, we conciude that
hypothsis is accepted and connection from #3 to #2 is absent. The
projection to the horizontal axis ;> does not contain zero, there-
fore, we conclude that the hypothesis is rejected and the estimate
B3 is strength of connection from #1 to #2. This result is shown
in Fig. 10C by two arrows pointing to the #2: the dashed arrow
means absence of connection and the solid lines means presence
of connection from #1 to #2 and the value of connection strength
1523,

The region in right side can be interpreted in a similar way. The
resuit is shown in Fig. 10C by two arrows pointing to #3: the dashed
arrow means the absence of connection #1 to #3 and the solid
arrow means the presence of connection from #2 to #3 and the
value of connection strength is 1.5

A result of analysis is in a good agreement with the architecture
of connections which has been used to generate these data (com-
pare Fig. 10A with C). For example, for data generation the higher
connection strength has been selected for connection from #1 to
#2 and the estimated connection strength from #1 to #2 is also
higher than estimated connection strength from #2 to #3.
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Thus, the result in Fig. 10C indicates that there are two signifi-
cant influences only (shown by solid lines, all others are shown by
the dashed lines): from spike train #1 to spike train #2 and from
spike train #2 to spike train #3 and the influence strengths are
shown with their confidence intervals (@=0.05).

Fig. 11 shows the result of analysing of the same three spike
trains by the pair-wise CCF. Each row of the figure shows two CCF
corresponding to the selected target spike train — spike train #1
is the target for the first row, spike train #2 is the target for the
second row, etc. The CCF analysis reveals three connections: from
spike train #1 to spike train #2 (second row, first column); from
spike train #2 to spike train #3 (third row, second column}; from
spike train #1 to spike train #3 (third row, first column). First two
of these connections correspond to the diagram of connectivity
(Fig. 10A) but the third one is spurious (from #1 to #3) and this
connection appears due the “indirect” connection from trains #1 to
train #3. Thus, the Cox method is able to distinguish the “indirect”
connection from the direct connections but the CCF fails.

4.4. How to find a time lag of spike propagation by pair-wise Cox
method

In this section we show that a time lag of spike propagation can
be found by analysing a pair of spike trains with the Cox method.
We suggest that there is a pair of simultaneous spike trains and
we would like to study connection from spike train B (reference)
to another spike train A (target). We generate a pair of spike trains
by ELIF model with the same parameters as above and connection
from B to A, the connection strength is 18.04, time delay of spike
propagation is 11 ms. Of course, we suppose that all parameters
which have been used for data generation are unknown and their
values cannot be used when we analyse connections.

Let us suppose that two spikes of the reference spike train B
appear at times £} and (2. We assume that there is a time delay §; of
spike propagation from the reference spike train to the target spike
train. It means that if there is a spike in train B at time moment tg
then the probability of spike at train A at time moment ty = 3 + 8§y
is very high. The influence function Zy(t) is described by formula (4)
requires prescribing of a time lag A corresponding to the delay of
spike propagation from the reference to target spike train. The time
delay & is unknown, therefore we will repeat the calculation of the
Cox coefficient for different values of time lag A. Fig. 12A shows
estimates fga versus time lag A. The increment of time lag is 1ms
and the corresponding confidence intervals are shown by vertical
bars. The estimate £, increases with increase of A and reaches its
highest value at A=10ms but for A =11 ms this coefficient drops
down toanegative value (Fig. 12A). We calculate the Cox coefficient
for values of the time lag in the interval [10.95, 11.03] (ms) with
an increment of 0.01 ms. The result is shown in Fig. 12B. The Cox
coefficient drops down from a high positive value to a negative
value in a small interval [10.99, 11] (ms).

We conclude that a time delay of spike propagation is consid-
ered to be 11 ms (6p=11) and an estimate of the Cox coefficient
Bea = 2.2. To justify this interpretation of the data analysis, let us
assume that achosen time lag is smaller than the time delay of spike
propagation: As < 8. According to formula(4), the backward recur-
rence time is calculated at the moment (1, — As ) and this backward
recurrence time is smaller than the time delay of spike propaga-
tion: Ug(ta — As) <8p. Therefore, the value of the influence function
depends on the backward recurrence time Zg(Ug(ts — As)), which
is shown by the circle in Fig. 13, This value is less than the maximum
of the influence function and if the time lag A increases, then the
influence function also increases and tends to the maximum of the
influence function if the time lag tends to §,. A described calculation
of the backward recurrence time can be applied in a small vicinity
of each spike of the train B under the main assumption that the time
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delay of spike propagation is dg. This consistency in calculation of
the backward recurrence time is important for a reliable numerical
procedure for calculation of estimate of the Cox coefficient.

Now we assume that a time lag ¢! of the influence function is
larger than the time delay of spike propagation 1> §; (see Fig. 13)
and the calculation of the backward recurrence time will be based
on the spike at time ¢}, which is a previous spike according to the
spike at moment t2 (see Fig. 13). Thus, for the time lag 41> §; the
backward recurrence time can get an arbitrary value, The backward
recurrence time is calculated for each spike of train B, therefore, the
estimate of the Cox coefficient is calculated using arbitrary (ran-
dom) values of the influence function. Thus, the estimate will be
very different from the correct value and it might be zero or a
negative number.

5. Discussion

We have presented here a statistical technique (Cox, 1972)
for analysing dependencies of point processes for application to
neuroscience data. We find that the Cox method is an efficient
tool to study functional connectivity. Comparison with the cross-
correlation technique which is traditionally used in neuroscience
shows significant advantages of the Cox method.

The Cox method is based on mathematical ideas of the mod-
ulated renewal process developed by Cox (1972). This approach
provides a useful mathematical tool to study dependencies and
mutual influences of point processes. The main advantage is that
the Cox method can analyse all available simultaneously recorded
spike trains at once. Another important advantage of the Cox
method is that this method is binless. Also, the estimates of the Cox
coefficients indicate a relative strength of influence from the refer-
ence to the target spike train. The Cox method enables us to select
the influence function which takes into account the specificity of
neural connections. We have found that the best candidate for the
influence function reflects the dynamics of postsynaptic potential.

Recent progress in development of statistical methods for
analysing multiple spike trains includes both techniques based on
pair-wise spike coincidence analysis (e.g. Pipa et al., 2003; Stuart
et al,, 2005) and approaches which consider all (or several) spike
trains at once (e.g. Staude et al., 2010a). For example, a procedure
of using some appropriate surrogate data looks like a promising
improvement of pair-wise correlation based method (see, Louis
et al,, 2010a,b). This method of surrogate data has been success-
fully applied to analyse data of multi-electrode recordings from the
visual cortex of a cat (Berger et al,, 2007, 2010) and, in particular,
to decide on participation of a neuron in synchronous population
activity.

There are several recent techniques which can analyse multiple
spike trains at once. For example, the method based on the esti-
mation of higher order correlations has been suggested in papers
Martignon et al. (1995, 2000). This technigue is aimed to esti-
mate a huge amount of parameters and, therefore, requires very
long recordings and can be applied to a relatively small number of
spike trains (about ten spike trains). This approach has been fur-
ther developed in Staude et al. (2010a) where a cumulant-based
inference of higher-order correlations (CuBIC) method has been
presented. This method estimates the low-order cumulants and
is able to decide whether the high-order correlations are needed.
Thus, both a direct calculation of higher-order correlations and a
requirement of a large sample size might be avoided. In Staude
et al, (2010b) a modified version of the CuBIC method has been
reported. This version is based on a statistical model which includes
the non-stationary compound Poisson process.

Another technique which is well known in neuroscience and has
been applied for analysing multiple spike trains is the generalised
linear model (GLM), Comparison of MRP and GLM assumptions
shows that they are similar: both methods assume that the prob-
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parameters.

ability of spike generation at time ¢t in the target train (under a
given set of reference spike trains) depends on the intensity of
the target train (without influences) modulated by a term which
describes influences. To describe influences, the GLM based meth-
ods consider a number of time windows preceding time t and there
is a prescribed parameter which indicates the strength of influence
corresponding to this window (Okatan et al., 2005; Truccolo et al.,
2005; Paninski et al., 2007). Thus, statistical procedures of GLM
based methods count the number of spikes in reference spike trains
falling into the window (bin) and use this information to calculate
the strength of influence corresponding to the window. Therefore,
the number of parameters equals to the number of windows and
in some cases this number might be very large and it causes an
over-fitting of data (Stevenson et al., 2008).

It is worth to apply all three methods (the Cox method, the
higher order correlation technique and the GLM) to analyse the
same data (both generated and experimental) and compare the
results.

The Cox method has been applied to analyse functional con-
nectivity of multiple spike trains generated by the enhanced leaky
integrate and fire model (Borisyuk, 2002 ). To generate spike trains
we prescribe the architecture of connections between ELIF ele-
ments. However, to analyse the generate data we suppose that
connections are unknown. A diagram of functional connections is
derived as a result of data analysis. We compare this diagram of
identified functional connections with connections of ELIF model
which have been used for data generation. Two examples have been
considered. The result of analysing the five spike trains shows that
the Cox method accurately identifies all functional connections. The
result of analysing a large neural circuit of twenty spike trains also
accurately identifies all forty two connections but also finds two
erroneous connections which are relatively weak.

Comparison with the cross-correlation function shows that the
Cox method has advantages over the CCF technique. In particular,
the Cox method is more accurate in difficult situations such as a
weak strength or short spike trains. One important advantage of
the Cox method is that this method allows to analyse all simul-
taneously recorded spike trains. To demonstrate this advantage
we apply the Cox method to analyse three spike trains coupled
according to “common source” scheme and show that couplings
can be correctly identified, but the pair-wise CCF fails to distinguish
between the direct connection and the connection due to a com-
mon source. A similar example of three spike trains with “indirect

connection” also demonstrates an advantage of the Cox method
over the CCF.

For comparison with CCF we use a probabilistic model to gen-
erate data which satisfy with the assumption of the modulated
renewal process. In this case the estimated Cox coefficient equals
the prescribed strength of influence for data generation. A study of
the probabilistic MRP model shows that this model can be fitted
to a wide range of spike trains either generated by the integrate-
and-fire model or experimentally recorded. In general the case we
do not know whether the analysed spike trains satisfy with the
assumption of MRP. However, our multiple tests show that the Cox
method is robust and can be successfully used to find a functional
connectivity for a wide range of point processes. In particular, we
applied the Cox method for analysing connections in many cases of
spike trains generated by the ELIF model. This nonlinear model is
based on consideration of a threshold mechanism of spike gener-
ation and the postulates of this model are different from the MRP
approach. Nevertheless, these tests show that the Cox method can
be successfully applied to analyse data which are generated by the
ELIF model.

Also, we have applied the Cox method to analyse functional
connectivity of experimental recordings. Of course, in this case we
cannot be sure that the result is correct. However, we can use some
implicit tests to increase our confidence of the method. For exam-
ple, we use the following methodology for testing the robustness of
the statistical estimates. The epoch of recording is divided into two
equal subintervals of time (left and right) and for each subinterval
we apply the Cox method to analyse the functional connectivity of
multiple spike trains. Thus, we have three sets of estimated coeffi-
cients: for the left interval, for the right interval, and for the whole
epoch. If all three sets are identical or similar, then it means that the
result is robust and the functional connections are the same for all
three time intervals. A detailed report on the application of the Cox
method to analyse experimental recordings is under preparation.

We have applied the Cox method to study the functional con-
nectivity of many data sets of both generated and experimentally
recorded, small size and large size (up to 100 spike trains), and
we found that the Cox method is efficient, allows to identify the
functional connectivity, and has some advantages in comparison
with the method based on the cross-correlation function. Thus, we
conclude that the Cox methed can be successfully used to anal-
yse functional connectivity of both generated and experimental
data.
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Appendix A.
A.1. Derivation of formulas for the Cox method

A description of the method follows the paper by Cox (1972). To
describe dependencies and influences among (p+ 1) spike trains we
select a target spike train A, other p spike trains are called reference
spike trains and they are denoted by B=(B;, B,..... Bp). The goal is
to estimate the vector of unknown parameters fi=(f#;. f3..... fp)
which describe the strengths of influences from reference trains to
the target. Thus f,, represents the strength of influence from the
spike train By, to the target A (m=1,2,.. ., p). The main assumption
is that the point process A is the modulated renewal process with
the hazard function:

O =wUsep {3 Anza,(0)}.

where Ca(r) is the hazard of the modulated renewal process A, ¢a(-)
is the hazard function of the renewal process A without modula-
tion (i.e. without influence from another point processes), Ua(t)
is the backward recurrence time of the process A at the moment
t, Zg(t) is the influence function determining how the process
By, influence the process A, and f, is the parameter describing
the influence strength from the spike train Bn to the target A. To
estimate the parameters S=(f, ;... .. Bp) we use the method of
conditional likelihood which eliminates the nuisance function ga(-)
(Cox, 1972).

Let us suppose that the spike train A contains n interspike
intervals xi, Xa... ., Xp. For simplicity we assume that all intervals
Xy, X3,..., Xp are of different length. If there are several identi-
ca) intervals we use a randomization procedure and add a small
normally distributed random number to the interval length. We
arrange intervals in order of increasing size Xy <Xz;<...<X(n).
For i>], let x;;;=x; and x;; =x;. We define Zp_ to be the value of
Zg, (t)m=1,2,...,p) where time  is calculated in the following
way: the interval x; is allocated inside of the interval x; and the left
ends of both intervals coincide, time t corresponds to the right end
of the interval x;. Respectively, Zg_ is the value of Zg, (t) at the right
end of the interval x;.

We build up likelihood for the data conditionally on the magni-
tudes of the intervals, by considering contributions in order starting
with the smallest interval. Thus the contribution from the first
interval is

exmth iﬂﬂ'zsm 1 )
ZL! exP{Zfﬂ:iﬂszMHJ

Conditionally on the first interval, the contribution from the
second interval is

Exp( zﬁl=l ﬁmzﬂm]! J
Yo exp(Xn_ AnZs,;,)

and so on.

The log likelihood is
n
Upr. Bao B) =Y Za,

Yree {3 e (X, e }

Now the first derivatives of the log likelihood is
dL n
P = Dsies o

E z" ZL:ZB-nu s (Zfﬂ:‘l ﬁmzﬂmh )
= Yiexp (X BmZe,)

The estimate for f is obtained by setting the first derivatives at
zero.
The second derivatives can be obtained by

P =[St o (5, petnn)
TR Z[ S (5 ) }

5 F exp (0, o) S0, 20 0 ,(zzﬂamzsw)] ;
(X8 oxp (5 pnten)]
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Let U(B)= [i-'[fl”ﬂm]p” is the score vector and I(ff)=
[-#2L/ Bﬁ,ilﬂ;] pup 15 the observed information matrix.
Now to obtain maximum likelihood estimate f, we have to

find a numerical sofution of the equation U (§) = 0. We use the
Newton-Raphson iterative method starting from the initial guess
B°). Formula for iterations is:

Bo=Bocs $ Bl B =120 @ (A1)
The iterations converge to the estimates:
Bo—sB.B= (B By (A2)

To obtain the confidence interval for ;. we use the fact that
AL/A Bm has asymptotically normal distribution N(O, I{ m)) where
I{ Bm) is the mth diagonal element of I{8). The confidence interval
with the confidence level vy is

[Bm ~aH (fim)ffn yi/2s Bm + ‘”(ﬁm)K{‘l—yh’z]

whereK(; ,z istheupper (1 — y)/2 quantile of normal distribution.
We accept the hypothesis that spike train Bm;(m=1,2,.....,p)
does not influence A if the confidence interval includes zero.

To obtain the 2D confidence region for f; and fis, we use the fact
that UT(ls) 'U has 2 distribution with two degrees of freedom.
Here U = (3L/dB;, dL/dfs) and the matrix I is

(A3)

al #L

T9pE 09B.Bs
el B o
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The confidence region on the plane (£, ,B;) with the confidence
level y is defined by the following equation:

(B~ Br. e 5) [ (B )] B

x (fb ~Br.Bs— ﬁs) =3k (A4)
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where xf‘1 yiay IS the upper {1 - y) quantile of chi-square distribu-
tion with two degrees of freedom. We accept the hypothesis that
Cox coefficients ( B-. ﬂ:) = Difthe confidence region includes zero.

Appendix B.

B.1. Parameter values for spike train generation by enhanced
leaky integrate and fire model

An ELIF model can be simulated using software frem the fol-
lowing web-site: http://www.tech.plymouth.ac.uk/infovis. To run
the simulation, the parameters of ELIF neurons and their coupling
should be specified.

Parameters of ELIF neuron:

(a) Maximum value of the threshold, (b) Threshold decay rate,
(c) Asymptotic threshold value, (d) Amplitude of the noise (i.e. the
standard deviation of the normally distributed random variable),
(e) Noise decay rate, (f) Initial value of after spike hyperpolarisation,
(g) Soma's membrane potential decay rate, (h) External input, (i)
Absolute refractory period, and (j) Type of the neuron (0 - non-
pacemaker, 1 - pacemaker).

Connection parameters describe synaptic coupling between ele-
ments:

(a) List of the numbers of those neurons which send their con-
nections to the current neuron, (b) Connection strengths for these
connections (positive for excitatory connection and negative for
inhibitory), (c) Decay rates of postsynaptic potential for each con-
nection respectively and (d) Time lag of spike propagation for each
incoming connection (ms).

Below we show some examples of parameter values which have
been used in simulations.

Neural parameters:

#ofneuron o b e d El f g h [

1 4612 297 1517 460 999 -28%94 2076 073 6 0O

2 4307 287 1433 538 991 -2831 1953 026 4 O

Connection parameters:

Neuron The numbersof  Connection Decay Time lag {ms)
presynaptic strength for rate of spike
neurons these incoming propagation
coupled with connections from pre to
current neuron post-synaptic

neuron

2 15 1237 11.59 318 129
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Appendix C.

C.1. Fitting the probabilistic model with the ELIF model

Probabilistic model includes several parameters. Here we
describe how parameter values have been selected. We start from
the ELIF model which generates two spike trains (A; and B, ) with
connection from B, to A;. An optimization procedure is used to find
the parameters of the probabilistic model which provides the best
fit to the spike trains generated by the ELIF model. In optimization
procedure we use a cost function which depends on the difference
of the histogram of ISI of the probabilistic model and the ELIF model.
The minimum value of this cost function shows the minimum dif-
ference of the histogram of ISI of the probabilistic mode! and the
ELIF model and suggests that both models generate nearly the same
shape of ISI distribution.

First, we generate two spike trains using the enhanced leaky
integrate and fire model with directed coupling from one neuron
to another. The independent spike train B, simulates spikes gen-
erated by a neuron under some constant stimulation. This spike

train influence the spike train A; emulating the synaptic connec-
tion from B, to A,. Thus, we consider these two spike trains as the
given data and wouid like to adjust parameters of the probabilistic
model in such a way that this model will be able to generate spike
trains which are similar to the given ones. To find the best values
of parameters of the probabilistic model we use an optimization
procedure and the cost function is calculated in the following way.
Let select some parameter values of the probabilistic model (£, a,
b, c. d), where § is the strength of influence from one spike train to
another, (a,b) are the shape and scale parameters of the gamma dis-
tributionand (c,d) are the shape and scale parameters of the Weibull
distribution. Using these parameter values we generate the inde-
pendent renewal process B with the gamma distributed ISIs and
another spike train A which is the modulated renewal process. The
cost function Q takes into account a difference between the IS dis-
tributions of the ELIF generated spike train Ay and the MRP denoted
by A:

Q=Y (H-#)’

here ' and h! are the frequency of appearance of ISl in the bin
i of the histogram for A; and A respectively and k is the number of
bins. This bin number is arbitrary and we use k=5.

The optimization procedure provides the optimal parameter
values corresponding to the best fitting and the histograms are
shown in Fig. 14. Fig. 14A shows the ISI histogram for the ELIF gen-
erated data and Fig. 14B shows the ISI histogram for the MRP data
generated by the probabilistic model with the optimal values of
parameters. These histograms are similar and the corresponding
value of the cost function is small enough: Q is 49964 x 10-5,

In the cost function we use the histogram of ISI which consider
the shape of IS1 distribution. This approach can be improved in such
a way that the cost function includes both the histogram of ISl and
the second order histogram of ISI (histogram of pairs of adjoin inter-
vals) to reflect both the shape of 151 distribution and allocation of
IS! in time. Of course, further improvement along this line leads to
the cost function which includes both the histogram of ISI and the
auto-correlation function. For simplicity we use the histogram of
ISI in the cost function.
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