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Abstract 

The prefrontal cortex (PFC) is critically involved in many higher cognitive functions such as goal-

directed behaviour, affective behaviour and especially working memory. In vivo extracellular recordings 

of PFC neural activity during working memory tasks show high variety in observed spiking patterns. 

These complex dynamics are critically shaped by intrinsic, synaptic and structural parameters of 

respective prefrontal networks. Moreover, dopamine (DA) is crucial for correct functioning of the PFC 

during working memory tasks. DA modulates a number of synaptic and intrinsic biophysical properties of 

single neurons, in particular deep layer pyramidal cells, which represent the major output neurons of the 

PFC. Despite a high variability of cortical pyramidal cell firing patterns, and somatodendritic 

morphology, no study has yet systematically examined correlations between intrinsic properties, 

morphological features and dopaminergic modulation of intrinsic properties. 

This study investigated properties of deep layer pyramidal cells through whole cell patch clamp in acute 

brain slices of the adult rat PFC. Cells were characterised physiologically through a variety of stimulation 

protocols surveying different time scales and wide intensity ranges, while all fast synaptic transmission 

was blocked. Furthermore the same catalogue of stimuli was recorded whilst applying specific DA 

receptor agonists to elucidate effects of DA receptor activation on intrinsic properties. All recorded cells 

were injected with biocytin and dendritic morphology was reconstructed from confocal image stacks of 

fluorescently labelled neurons. From the resulting data a set of characteristic variables were defined and a 

combination of principal components analysis and hierarchical cluster analysis was used to identify 

similarity between recorded cells in different parameter spaces spanned by intrinsic properties, intrinsic 

properties under dopaminergic modulation and morphology, respectively. The analysis presents evidence 

for distinct subpopulations within prefrontal deep layer pyramidal cells, as seen by clustering of recorded 

cells in these high dimensional parameter spaces. These subpopulations also show distinct input-output 

relationships, bearing implications for computational functions of these subpopulations. Furthermore, this 

study presents for the first time evidence of subpopulation specific DA effects in deep layer pyramidal 

cells. The quantitative analysis of somatodendritic morphology confirms physiological subpopulations 

and identifies characteristic morphological features of deep layer pyramidal cells. Moreover, cluster 

observed in different parameter spaces overlap, leading to a definition of subpopulations that concurs with 

previously described prefrontal pyramidal cell types. In conclusion, the results presented provide some 

deeper insight into fiindamental principles of information processing in prefrontal pyramidal cells under 

the influence of dopamine. 
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Introduction 

The prefrontal cortex (PFC) is crucially involved in many higher cognitive functions such as 

planning, goal-directed behaviour, and working memory (Goldman-Rakic, 1995; Miller et al., 

2002; Fuster, 2008). Goal-directed behaviour and working memory involves integrating 

multimodal perceptual information, short term memorizing and evaluation of integrated 

information for initiating appropriate behaviour. The PFC has to process several streams of 

complex information on different time scales, in a parallel, flexible and reversible manner. In 

contrast, to simple short term storage, information has to be evaluated and manipulated 

according to the current behavioural situation; hence it has been described as "working with 

memory" (Winocur, 1992; Seamans and Yang, 2004). 

Critically involved in optimal function of prefrontal networks during working memory tasks is 

the neurotransmitter dopamine (DA), (Goldman-Rakic et al., 2000; Durstewitz et al., 2000b). 

Despite a long interest in DA and its effect on working memory processes, the actions of DA in 

the PFC are not fully imderstood. DA has been shown to have complex time and activity 

dependent effects, varying for cell type or even specific synapses (Seamans and Yang, 2004). 

Recent studies highlight substantial heterogeneity amongst cortical neurons (Markram et al., 

2004; Bernard et al., 2009). This has been extensively studied in the case of cortical inhibitory 

intemeurons (Ascoli et al., 2008), but the existence of functionally distinct subpopulations 

within excitatory pyramidal cells has only recently begun to be addressed. In fact, much debate 

has been dedicated to whether pyramidal cells can be divided into subpopulations at all 

(Steriade, 2004). From a theoretical point of view, different cell types would arise from 

individual cells that are clustered in a multidimensional parameter space spanned by intrinsic, 

synaptic and morphological properties. As opposed to a clear separation of cluster, one could 

also envisage a continuous sampling of the parameter space by individual cells. Cells would not 

form distinct clusters and individual cell parameter would vary randomly. 

This thesis will shed some light on the intricate biophysical mechanisms that lay foundation for 

neural correlates of prefrontal function. This will be achieved through careful quantification of 

intrinsic properties (with particular emphasis on the impact of DA modulation), and 

morphological properties of prefrontal pyramidal cells. Intrinsic biophysical properties of 

pyramidal cells will be characterised through stimuli on multiple time scales and wide intensity 

ranges. The impact of DA will be examined through the same catalogue of stimuli while 

applying selective DA receptor agonists. Morphology of pyramidal cells will be assessed 
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through confocal imaging and 3-dimensional reconstruction of the dendritic tree and subsequent 

quantitative morphometric analysis of somato-dendritic properties. 

In each resulting dataset similarity between individual cells will be identified through a 

combination of two multivariate analysis techniques, principal component analysis (PCA) and 

hierarchical cluster analysis (HCA). This will allow an unbiased view on how pyramidal cells 

populate the multidimensional parameter space spanned by either intrinsic properties, intrinsic 

properties imder dopaminergic modulation or somatodendritic morphology. 

It will be demonstrated that pyramidal cells do form distinct, sometimes overlapping groups in 

all of these parameter spaces. I will argue that at least two distinct groups of pyramidal cells 

exist, which differ in basic intrinsic properties, dopaminergic modulation of these intrinsic 

properties and in quantitative measures of somatodendritic morphology, although heterogeneity 

within groups exists. 

To this end the thesis presents a systematic and quantitative approach to classifying pyramidal 

cells based upon biophysical and morphological criteria and is structured as follows. 

Chapter 2 gives a brief review of the PFC. I will describe the anatomy in primates and rats and 

will particularly address the issue of homologous regions between primates and rodents. Then I 

will describe its role in cognition and behaviour and present some evidence for neural correlates 

of behaviour shown to be dependent on the PFC. Then I will review cytoarchitectural features 

that differentiate the PFC from sensory cortices. I will arrive at the single cell level where I will 

focus on biophysical properties of deep layer pyramidal cells which are the major projection 

neurons of the PFC and constitute the main subject of this thesis. Moreover, I will present recent 

evidence for the crucial role of DA in optimal function of prefrontal cortices during working 

memory and goal-directed behaviour and will describe in more detail how DA affects 

biophysical properties of deep layer pyramidal cells. Eventually, I will formulate some key 

questions for this thesis, and describe how these questions are addressed in this thesis. 

Chapter 3 introduces all experimental and analysis methods used in this thesis. I will briefly 

review the whole cell patch clamp method, which is used to obtain single cell recordings in 

acute slices from the prefrontal cortex of adult rats. Furthermore, I will describe the stimulation 

protocols designed to probe biophysical properties of pyramidal cells and in particular explain 

how key variables were extracted to capture responses of neurons to the diverse stimulation 

protocols. I will briefly introduce confocal imaging and how it can be applied to reconstructing 

neuronal morphologies. Then I will present how a reconstructed morphology is subjected to 

quantitative analysis of morphological features. 
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Chapter 4 describes the experimental results obtained. This chapter will be divided into four 

sections. In the first section I will present the results of PCA and HCA for biophysical 

properties measured while all fast synaptic transmission was blocked in the slice preparation. 

Established groups and their properties will be described and briefly discussed in the light of 

previous findings. In the second section, I will describe effects of applied dopamine receptor 

agonists on intrinsic properties. These effects will be described based on the groups established 

in the previous section. Based on observed heterogeneous DA effects in the previously 

established groups, an extended PCA/HCA analysis will be presented where dopamine agonist 

modulated variables are included. The results obtained indicate possible groups of cells that 

show distinct DA modulation. This will be comapred to previous studies on dopaminergic 

regulation of intrinsic properties. In the third section I present the PCA/HCA analysis for 

quantitative analysis of neuronal morphology, and briefly discuss the results. In the last section I 

will present a HCA analysis based on the principal components from both electrophysiology 

and morphology, and will compare these results to the cluster solutions obtained in the previous 

sections. 

Chapter 5 will present a synopsis and wider discussion of the results obtained from the different 

analyses. I discuss methodological aspects and caveats of the presented analysis and compare it 

with other approaches and current research in the field. I will also describe the wider impact of 

the obtained results in reference to computational properties of single cells and networks in the 

PFC. Finally, I will give an outlook for future work based on the obtained results. 
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Prefrontal Cortex 

2.1 Human and Primate Prefrontal Cortex 

The term prefrontal cortex (PFC) was introduced at the turn of the 19''' century by 

neuropathologists and anatomists to describe a collection of brain areas in the frontal lobe of 

humans and primates. One of the first documented case studies illustrating the essential fiinction 

of the prefrontal areas in cognition and behaviour is the mid-nineteenth century case of Phineas 

Gage, a New England raih-oad construction worker who was accidentally struck by an iron bar 

whilst positioning explosive portions. The accidental explosion of one such portion propelled 

the iron bar through his face from below, traversing the base of his skull, and landed about 20-

25 yards behind him, inflicting a massive damage on his left frontal lobe. Dr John Martyn 

Harlow, who arrived an hour later at the site, managed to ease the severe haemorrhage. This and 

his subsequent successful treatment of the infection saved Gage's life (Harlow, 1999). Gage was 

able to return to his parents' farm after only 3 months in hospital and had lived for over 11 years 

after the accident, but the damage to his frontal lobe had left him with severe psychological 

changes. In his description of the case Harlow explained why his company would not reemploy 

him (Harlow, 1999): 

His contractors, who regarded him as the most efficient and capable foreman in their 

employ previous to his injury, considered the change in his mind so marked that they 

could not give him his place again. He is fitful, irreverent, indulging al times in the 

grossest profanity (which was not previously his custom), manifesting but little deference 

for his fellows, impatient of restraint or advice when it conflicts with his desires, at times 

pertinaciously obstinate, yet capricious and vacillating, devising many plans of future 

operation, which are no sooner arranged than they are abandoned in turn for others 

appearing more feasible. In this regard, his mind was radically changed, so decidedly 

that his friends and acquaintances said he was 'no longer Gage'. 

Although this report is merely anecdotal it illustrates a few of the most important fiinctions that 

have been attributed to the prefrontal cortex since these early days of neuroscience. Later 

reconstruction of Gage's lesion (Damasio et al., 1994; Ratiu and Talos, 2004) revealed that 

mainly ventromedial areas in the PFC were affected by the iron bar passage. Figure 2.1 depicts a 

3d rendering of Gage's skull including the possible trajectory of the iron bar. Based on the case 
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description Gage was unable to make rational decisions in the social realm and was emotionally 

depleted. Surprisingly abilities that seem to relate to rational thought alone, i.e. calculations, 

tackling abstract problems or recalling appropriate knowledge seem not to be affected (Damasio 

eta l , 1994; Harlow, 1999). 

The detailed neuropsychological characterisation of various frontal patients since then has led to 

distinction of frontal syndromes based on affected areas. Lesions confined to the three major 

prefrontal regions orbital, medial and lateral, result in different psycho-cognitive changes 

(Fuster, 2008): The orbital syndrome mainly includes changes in the control of affect, such as 

impulsivity, instinctual disinhibition, euphoria, and lack of moral restraint but also 

hypermotility, perseveration and distractibility (very much like the case of Phineas Gage). The 

mediaL'anterior cingulate syndrome is mainly distinguished by lack of initiative and spontaneity, 

hypokinesia or akinesia, and apathy. Also, commonly impaired is the monitoring and correction 

of errors. A lateral syndrome includes deficits in focusing and sustaining attention, a general 

lack of initiative and decision-making, inability to make plans and to execute them, poor 

performance in working memory tasks, and low verbal fluency. This is commonly accompanied 

by disorders of affect such as apathy and depression. 

Figure 2.1 | Digital reconstruction of 
Pliineas Gage' lesion 
A three-dimensional computer reconstruction 
of Phineas Gage's skull generated from thin-
slice computed tomographic images. A 
reconstruction of a normal human brain 
generated by magnetic resonance imaging 
was registered within the skull using a non-
affine algorithm (Ratiu and Talos, 2004). 
This reconstruction shows that the iron bar 
most likely affected ventromedial areas of 
the PFC (Damasio et al., 1994). 

Based on these results from human neuropsychology and primate electrophysiology different 

authors have conceptualised theories of prefrontal function, mainly differentiating between 

orbitofrontal (equivalent to ventromedial) (OF-PFC) and dorsolateral networks (DL-PFC). 

Many authors have emphasised the involvement of OF-PFC in integrating emotional and 

motivational state information with current cognitive task demands (Damasio, 1994; Damasio et 

al., 1996; Rolls, 2000, 2005; Wallis, 2007) which concurs with strong projections to the 
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amygdala and basal ganglia from OF-PFC (Cardinal et al., 2002). Thus orbitofrontal networks 

have been regarded as a rapidly flexible associative-learning area encoding associations 

between sensory cues and behavioural outcomes, in particular reward (Rolls 1996, 2008). More 

recent research indicates that OF-PFC might instead encode general outcome expectancies 

(Tremblay and Schultz, 1999; Wallis, 2007; Burke et al., 2008; Mainen and Kepecs, 2009). 

The DL-PFC has been mainly associated with executive ftinctions such as sensory working 

memory, attention, response selection and top down control of information in order to generate 

plans and strategies for goal-directed behaviour (Goldman-Rakic, 1995; Miller and Cohen, 

2001; Fuster, 2001; Duncan, 2001). The DL-PFC has reciprocal cormections with higher order 

sensory cortices (visual, auditory and somatosensory) and in turn sends strong projections to 

premotor and motor cortices (Bates and Goldman-Rakic, 1993; Lu et al., 1994). This enables 

the DL-PFC to bias sensory processing in favour of selected motor programs (Miller and Cohen, 

2001). One key function of the DL-PFC is to initiate appropriate behaviour in a given context 

and the active maintenance of task relevant information, i.e. working memory (Fuster, 1973; 

Niki, 1974b; Goldman-Rakic, 1995). 

These distinct functions of prefrontal areas are reflected in their anatomical cormections to other 

cortices and subcortical regions. Anatomically the PFC of humans and primates has been 

defined as all cortical areas rostral to the premotor cortex up to the frontal pole, while its lateral 

boundary is marked by the inferior precentral fissure. Figure 2.2 shows a comparative labelling 

of human and macaque prefrontal areas from Petrides & Pandya (2002b). Within the frontal 

lobes of the human brain, the PFC itself can be divided into 3 parts using Brodmann's 

cytoarchitectonic areas. A medial or parahmbic part roughly consisting of areas 10-14, an 

orbital part comprising areas 11, 12, 47 and a lateral part which is fiirther divided into 

dorsolateral and ventrolateral comprising areas 8-10 and 44-46, respectively. This partition into 

three subfields is also found in the brain of non-human primates where a dorsolateral area 

comprising Walker's areas 8-10, 45, 46 (Walker, 1940) and an orbitofrontal/ventromedial 

(Walker's areas 11-14) region are distinguished. Generally, there is now wide agreement on the 

homology between human and non-human primate frontal cortices (Uylings and van Eden, 

1990; Barbas, 2000; Petrides and Pandya, 2002b). 

In the past the PFC was defined as the principal projection area of the mediodorsal thalamic 

nucleus (MD) and forms strong reciprocal connections with it (Rose and Woolsey, 1948; Akert, 

1964). Several other cortical areas receive fibres from this structure, but exclusively the 

prefrontal cortex sends afferents to it. The MD relays information from subcortical regions such 

as the mesencephalon, the amygdala, the substantia nigra, the prepiriform cortex, and the 

inferior temporal cortex to the prefrontal cortex via the pars magnocellularis of the MD (Ray 

and Price, 1993). The thalamic projections differ for the different prefrontal regions. The 
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magnocellular part of the MD projects mainly to the orbital and medial parts of the PFC and the 

parvocellular part projects mainly to the cortex of the lateral parts of the PFC (Akert, 1964; 

Goldman-Rakic and Porrino, 1985; Barbas et al., 1991). 

B Uppef Bank 

Mr^** ^^*^^ 

Sulon Piincipali* 

Figure 2.2 | The human and primate PFC 
Comparative anatomical subdivisions of the PFC in human (A) and macaque (B) brain. The 
respective top image shows the lateral surface, whereas the respective bottom image shows 
the medial surface of the PFC. Homologous regions have similar the same colour shading. 
Brodman's (A) and Walker's areas (B) are labelled, respectively. Insets in B show 
magnification of the sulcus principalis and the lower limb of the arcuate sulcus. 
From (Petrides and Pandya, 2002b). 

Several other thalamic projections reach the prefrontal cortex, originating in the intralaminar 

and midline nuclei, the anterior medial nucleus and the rostral parts of the ventral complex 

(Groenewegen and Berendse, 1994; Barbas and Ghashghaei, 2002; Groenewegen and Witter, 

2004). Furthermore, direct afferents ascending from the ventral tegmental area, tegmentum, 

hypothalamus and amygdala exist (Krettek and Price, 1974; Kievit and Kuypers, 1975; Divac et 

al., 1978). 

The different prefrontal regions (dorsolateral, medial, and orbital) also receive diverse, 

sometimes overlapping, projections from all higher sensory cortices. An early account for 

systematic discussion of prefrontal cortico-cortico networks comes from Jones and Powell 

(1970). They observed a general pattern in how sensory input is relayed to the PFC. For 

example the primary visual cortex (V1) not only sends afferents to V2 and other higher visual 

areas, but also to prefrontal area 8A, which itself sends recurrent projections back to VI. This 
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pattern of recurrent connections can be observed at each step within the hierarchical processing 

of visual information, (i.e. VI has recurrent connections with 8A, area 20 with 8A+, and 

temporal cortices with 46). This pattern of recurrent connectivity of sensory cortices with the 

PFC at every processing step also applies to auditory and somatosensory cortices (Jones and 

Powell, 1970; Fuster, 2008). Later studies have examined projections of sensory association 

areas to prefrontal areas in more detail (Petrides and Pandya, 2002b). There are 4 major cortical 

areas projecting to the PFC: the posterior parietal cortex projects to all areas of the PFC via the 

superior longitudinal fasciculus and the occipitofrontal fasciculus. The inferotemporal cortex 

sends projections mainly to orbital areas via the uncinate fasciculus, whereas the superior 

temporal cortex sends 3 different fibre bundles (arcuate fasciculus, extreme capsula uncinate 

fasciculus) originating from different subdivisions of the superior temporal cortex (Petrides and 

Pandya, 2002a; Fuster, 2008). Within a given fascicule one can observe a remarkable 

topological organisation of higher sensory inputs to the PFC. For example the higher visual area 

7 sensory fields seem to be preserved in their projections to the respective frontal areas (Cavada 

and Goldman-Rakic, 1989). Despite this independence of incoming projections of higher 

sensory areas, many bimodal or trimodal association areas have been identified, for example in 

the sulcus principalis, but also in ventral and medial areas of the PFC (Jones and Powell, 1970; 

Chavis and Pandya, 1976; Fuster, 2008). 

On the whole, two major functional prefi-ontal networks can be distinguished based on incoming 

afferents (Fuster, 2008). The lateral PFC receives mainly visual, auditory and somatic inputs, 

whereas the orbital PFC predominantly processes olfactory, gustatory and some auditory inputs. 

Fuster (2008) assumes a functional segregation of these networks, relating the lateral PFC to the 

organisation of sequential motor planning and the orbital PFC (which also receives major 

efferents from amygdala and basal ganglia) to the integration of sensory and motivational 

aspects of behaviour. 

Most of the structures that send efferents to prefrontal areas do receive reciprocal efferents from 

their prefrontal target areas. The main projection area of the PFC is the mediodorsal nucleus of 

the thalamus (Akert, 1964; Groenewegen and Witter, 2004). The PFC also sends strong 

projections to the hypothalamus, the ventromedial caudate nucleus, and the amygdala via its 

orbital portions. The dorsolateral PFC projects to the lateral thalamus, the dorsal caudate 

nucleus, and to other cortical areas (Goldman-Rakic, 1988; Fuster, 2008). The mesencephalon, 

pons, subthalamus, hypothalamus, and septum are further subcortical structures innervated by 

prefrontal fibres (Smith and DeVito, 1984; Goldman-Rakic, 1988). 

One notable exception to the theme of reciprocal connections between the PFC and target 

structures is the basal ganglia. For example, both in rats and humans the prefrontal cortex sends 

efferents to the caudate nucleus and the anterior putamen (Ongur and Price, 2000; Uylings et al., 
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2003) without receiving direct afferents. Feedback from these target structures could reach the 

PFC through the substantia nigra, which receives projections from caudate and putamen, or via 

the ventral anterior and the mediodorsal thalamic nuclei (Middleton and Strick, 2000; Ongur 

and Price, 2000). 

2.2 The rat PFC as a model of the primate PFC 

According to a current standard rat brain atlas (Paxinos and Watson, 2007) prefrontal cortices in 

the rat can be divided into four areas (Figure 2.3 A): infralimbic (IL), prelimbic (PL), dorsal and 

ventral anterior cingulate (ACd, ACv) and medial precentral areas (PrCm or Fr2). Other authors 

have used different labels (Zilles, 1985), but agree on the general map of prefrontal subdivisions 

(Ongur and Price, 2000). Figure 2.3 depicts a medial view on the left rat PFC (Uylings et al., 

2003) and a sagittal view at about +3.6 mm AP (Paxinos and Watson, 2007), where different 

regions and labels currently used are compared. 

One major difference to frontal areas in monkeys and humans, where layer IV mostly contains 

stellate cells and is clearly distinguishable from other layers (sometimes referred to as frontal 

granular cortex), is that the rat prefrontal areas lacks a distinct layer IV (i.e. it is agranular). 

Although Brodmann did not map the rat cortex in his original studies (Brodmann, 1909), he did 

map some related species (ground squirrel and rabbit), and concluded that rodents indeed lack a 

comparable frontal cortex because of the missing layer IV. Later Rose and Woolsey (1948) 

suggested identifying homologous brain regions based on connectivity to other brain regions, 

and proposed a prefrontal cortex in rats based on homologous strong reciprocal connection with 

the mediodorsal thalamic nucleus (MD). Although most researchers agree on the boundaries of 

the prefrontal cortex itself in rats, it is still debated if and which areas in the rat are homologous 

to dorsolateral and orbitofrontal areas in monkeys and humans. In partuclar, Preuss (1995) 

questioned whether rats would have an equivalent prefrontal cortex at all. He concluded that Fr2 

and the ACd are more similar to primate premotor areas and thus should not be included in the 

rat prefrontal cortex (Conde et al., 1990, 1995; Preuss, 1995). In an attempt to reconcile 

conflicting reports, Uylings et al. (2003) suggested a range of criteria to identify homologous 

brain structures between species: the pattern of specific connections and their relative strength, 

functional properties as estimated by electrophysiological or behavioural studies, the presence 

of specific neurotransmitters or modulators, embryological development, and only when closely 

related species are compared local cytoarchitecture should be taken into account. 

With respect to prefrontal connections to other brain areas. Rose and Wolsley (1948) initially 

regarded the MD as the defining projection for prefrontal areas. But with the advance of tracing 

methods, recent and more detailed studies have shown that in primates various other thalamic 
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nuclei (i.e. the intralaminar and midline nuclei and the anterior medial nucleus) project to 

prefrontal areas (Uylings et al., 2003; Groenewegen and Berendse, 1994; Barbas and 

Ghashghaei, 2002). Moreover, there is evidence from monkeys and other species that the MD 

does not exclusively project to the PFC but also sends efferents to other cortical areas such as 

premotor, motor, temporal and parietal cortices (Paxinos and Watson, 2007). 

B 

Figure 2.3 | Prefrontal regions in tiie rat 
A) Medial view: Frontal region 2 (FR2), ventral and dorsal anterior cingulate (ACv, 
ACd), prelimbic (PL) and infralimbic region are the main prefrontal areas (cc: corpus 
callosum, MO, medial orbital, VO ventral orbital, from Uylings et al., 2003. 
B) Corresponding saggital view from Paxinos and Watson, 2007: Cingulate 1 (Cgl) 
is identical with ACd, prelimbic (PrL) and infralimbic (IL) are identical with regions 
in A. 

Uylings and van Eden (1990) suggested "strong reciprocity" (i.e. the number and density of 

projections of projections from the MD to the PFC) as improved criterion for defining 

homologous PFC regions. They suggested including the AC of rats and primates into the 

prefrontal cortex. Supporting this notion, but opposing results by Preuss et al. (Conde et al., 

1990, 1995; Preuss, 1995), other groups have found extensive reciprocal connections of ACd 

and Fr2 to the MD (Ray and Price, 1992; Reep and Corwin, 1999; Vertes, 2002). This argues in 

favour of a homologous "dorsolateral" region in the rat located in the medial sections of the rat 

PFC (mPFC). Also, this is supported by connectivity of the rat mPFC to other cortical areas. In 

particular one can define three distinct cortico-prefi'ontal loops (Uylings et al., 2003). The 

prelimbic/infralimbic cortices (cytoarchitectionally less differentiated) receive projections from 

perirhinal and entorhinal cortex and directly from the hippocampus. A dorsal shoulder region is 

mainly connected to visual and retrosplenial cortices indicating some homology to the frontal 

eye field in monkey. And a rostral area interconnected with motor, somatosensory-motor, and 

somatosensory-association cortices indicating role in motor planning and execution, maybe 
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even colocalisation of premotor and prefrontal functions (Uylings and van Eden, 1990; Uylings 

et al., 2003). 

There is also a strong homology of projections from subcortical and limbic areas such as the 

amygdala, entorhinal and perirhinal cortex and a number of cortico-basal ganglia-thalamic 

networks that have strong homology with monkeys (Ongur and Price, 2000; Uylings et al., 

2003). Uylings et al. (2003) have described four of these 'indirect' frontal-basal ganglia-thalamic 

loops in rats which always involve different parts of the frontal cortex, the dorsal or ventral 

striatum, the pallidal and nigral complex and the ventral and medial thalamic nuclei. These 

loops can in some cases be modulated by inputs from amygdala or other thalamic nucleii. 

Studies using in vivo electrophysiology show a variety of dynamic firing rate changes that can 

be observed in the prefrontal cortex of rats during behavioural tasks that depend on the 

prefrontal cortex (Jung et al., 1998; Chang et al., 2002; Baeg et al., 2003), some of which are 

similar to response patterns found in monkeys (Fuster, 1973; Quintana and Fuster, 1999). 

Seamans and colleagues have recently reviewed electrophysiological and behavioural evidence 

for homology between rat and primate prefrontal areas, where they concluded that the mPFC of 

rats is somewhat a rudimentary predecessor of the dlPFC in monkeys merging functions of 

anterior cingulate, dlPFC and premotor cortices in monkeys (Seamans et al., 2008). 

Support for this notion also comes from a number of lesion studies (Kolb, 1984). Lesions to the 

medial prefrontal areas in the rat produce strikingly similar behavioural deficits to those 

observed in monkeys after lesion of dorsolateral and orbitofrontal regions. For example medial 

prefrontal lesions in rats evoke deficits in different aspects of various working memory tasks 

such as delayed response, delayed alternation and non-matching to sample tasks (Kolb et al., 

1974; Kolb, 1984; Otto and Eichenbaum, 1992; Uylings et al., 2003). 

Finally, there is a sfrong homology of cholinergic and monoaminergic innervation between rat 

PFC and primate PFC, i.e. direct projections from the PFC to cholinergic nucleii in the basal 

forebrain (Gaykema et al., 1991; Ghashghaei and Barbas, 2001), to serotonergic neurons in the 

locus coeruleus (Amsten, 1997; Jodoj et al., 1998), and to dopaminergic neurons in the ventral 

tegmental area (VTA) and substantia nigra (SNr) in both rats and primates (Williams and 

Goldman-Rakic, 1998; Carr and Sesack, 2000). 

In summary, a wide range of studies support the idea of a moderate degree of homology 

between rat mPFC and monkey dlPFC, and the overall usefulness of the rat PFC as a model for 

prefrontal function in humans (Kolb, 1984; Uylings and van Eden, 1990; Ongur and Price, 

2000; Brown and Bowman, 2002; Uylings et al., 2003; Seamans et al., 2008). 
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2.3 Neural correlates of prefrontal cortex function 

A first insight into the neural basis of working memory came from in vivo recordings in 

monkeys (Fuster, 1973, 2008; Niki, 1974a; Funahashi et al., 1989). Neurons in the prefrontal 

cortex can enter a persistent high activity state correlated with active working memory. In their 

studies monkeys were trained to perform a delayed matching to sample task and single cell 

activity in the PFC was recorded at the same time. During the task monkeys were shown two 

dots, red and green, where they had to remember the location of the red dot for a period of a few 

seconds until they received a go signal to indicate position of the red dot with a saccade. Correct 

choices were rewarded with juice or water. During the waiting time or delay time the dots were 

not shown so that the monkey had to keep an active memory of the location of the red dot over 

time. It was shown that some stimulus-property selective cells in the PFC showed a constant 

elevation in firing rate only during delay period - that is while the stimuli are not visible to the 

monkey. This persistent activity is believed to be a neuronal correlate of working memory 

(Goldman-Rakic, 1995), an active short term encoding of stimulus properties needed for 

obtaining fiiture reward. 

Attempts to understand the underlying mechanisms of persistent activity have been made 

mainly through models based on an attractor framework rooted in dynamical systems theory 

(Strogatz, 2001). Attractor network models show one, two or many stable activity states (fixed 

points), where firing rate is relatively insensitive to perturbations. The achieved fixed point 

depends on immediate input history, thereby forming memory of previous inputs (Hopfield, 

1995). Persistent activity has been found in different preparations and brain areas (Major and 

Tank, 2004), suggesting it is a universal mechanism for short term storage and manipulation of 

information. Different models of how attractor states could arise especially in prefrontal 

networks have been developed (Amit and Brunei, 1995; Wang, 1999; Compte et al., 2000; 

Brunei and Wang, 2001; Durstewitz and Seamans, 2002, 2006; Compte, 2006). But discrete 

attractor dynamics for working memory have been challenged by recent experimental data 

(Komura et al., 2001; Brody et al., 2003; Ikegaya et al., 2004; Jones and Wilson, 2005) which 

indicates that distinct temporal dynamics might be important for working memory function 

(Durstewitz and Seamans, 2006). 

Although mean firing rates can be stable across delay periods, PFC neurons show highly 

irregular firing patterns within persistent activity states (Compte et al., 2003). Different models 

suggest this irregularity might arise either from stochastic (Shadlen and Newsome, 1994, 1998) 

or deterministic mechanisms (Softky and Koch, 1993; vanVreeswijk and Sompolinsky, 1996; 

Durstewitz and Gabriel, 2007). A deterministic (near chaotic) mechanism might facilitate 

processing of temporal information (Bertschinger and Natschlager, 2004; Durstewitz and 
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Gabriel, 2007) but further experiments are needed to pinpoint biophysical mechanisms of 

temporally irregular activity. 

Apart from high variability of firing rate patterns during delay period activity, temporal 

variations in overall delay period activity have been observed. For instance in single neurons a 

slowly rising firing rate, also known as climbing activity, has been observed during working 

memory tasks (Komura et al., 2001; Brody et al , 2003; Reutimann et al., 2004). Climbing 

activity slowly rises during delay period to reach its maximum firing rate at the end of the delay 

period where it abruptly ends. Interestingly this climbing activity can be adjusted to varying 

delay period lengths quickly and is therefore suggested to be a neural correlate for intemal 

timing of behaviour (Leon and Shadlen, 2003; Durstewitz, 2003). 

Furthermore, average population activity (local field potential) displays oscillations in theta and 

gamma frequency range during working memory (Pesaran et al., 2002; Lee et al., 2005; 

Raghavachari et al., 2005; Jones and Wilson, 2005) and phase locking of individual prefrontal 

units to theta rhythm in the hippocampus (Siapas et al., 2005; Jones and Wilson, 2005) 

advocating that temporal structure on the network level might be equally important for working 

memory processes. A wide range of experimental and theoretical studies suggest that temporal 

relations between spikes and/or population activity may be used to encode information (von der 

Malsburg, 1981; Abeles, 1991; Mainen and Sejnowski, 1995; Hopfield, 1995; Riehle et al., 

1997; Ikegaya et al., 2004; Dragoi and Buzsaki, 2006). Therefore, it seems plausible to assume 

that these different aspects of temporal structure in prefrontal neural activity may be functional 

correlates of working memory. 

In summary, there is a rich repertoire of neural activity patterns related to working memory and 

other prefrontal fiinctions. This emphasises the need for a detailed analysis of underlying 

structural and electrophysiological properties of neurons in the prefrontal cortex. In the 

following section, I will briefly introduce general cortical network topologies (cortical column) 

and point out some differences of frontal areas compared to other cortices. Finally, I will 

describe the principal cell types that these networks are composed of, with a focus on deep layer 

pyramidal cells, which were examined in this study. 

2.4 Deep layer pyramidal cells the rat PFC 

The basic microcytoarchitecture of the rat PFC is that of the canonical cortical column (Douglas 

and Martin, 2004; Thomson, 2007). Inputs from sensory cortices or associative cortices 

primarily arrive in the superficial layer 2/3, which in turn send local recurrent projections to 

neighbouring cells in layer 2/3 and to pyramidal cells deep layers 5 and 6, where they meet 

[24] 



arriving projections from subcortical thalamic structures (Levitt et al., 1993; Kuroda et al., 

1995). 

One can identify 4 major excitatory cell types: pyramidal cells in layer 6, layer 5 and layer 2/3, 

plus aspiny stellate cells in layer 4 of sensory cortices (the majority rat prefrontal cortex is 

agranular), and a large variety of inhibitory intemeurons (Markram et al., 2004; Thomson, 

2007). Layer 5 pyramidal cells are the major output neurons of the cortex and receive dense 

inputs from layer 2/3 (Thomson and Bannister, 1998; Reyes and Sakmann, 1999). They project 

to a variety of subcortical targets including the thalamus, the superior colliculus, pons and spinal 

cord, as well as to other cortical regions and to the contralateral cortex (Thomson 2007). L5 

pyramidal cells have been divided into two subclasses, regular spiking (RS) and intrinsically 

bursting (IB) cells (Connors 1982, McCormick 1985). These different physiological cell types 

have also been linked to differences in morphological properties of these cells in rodent cortices, 

i.e. RS cells have been observed to have generally more slender non-tufted apical dendrites, 

whereas IB cells had thick tufted apical dendrites (Larkman and Mason, 1990; Mason and 

Larkman, 1990; Kasper et al., 1994). These firing patterns can be explained by a different 

composition of intrinsic biophysical properties, in particular the occurrence of dendritic calcium 

spikes has been linked with burst generation (Rhodes and Gray, 1994). 

It is important to point out though that differences in microcircuitry and cellular complexity 

between prefrontal and other cortices are increasingly recognised (Elston, 2003a). For example, 

there are strongly clustered lateral projection of pyramidal cells in layer 2/3 in prefrontal areas 

of the monkey and the rat (Isseroff et al., 1984; Kritzer and Goldman-Rakic, 1995; Pucak et al., 

1996). These connections show as characteristic stripes after injection of retrograde tracer into 

superficial layers (Levitt et al., 1993; Pucak et al., 1996). This stripe-like organisation is 

distinctly different to patchy lateral connections found in visual cortex (Gilbert and Wiesel, 

1989; Kritzer and Goldman-Rakic, 1995), and might add to the increased robustness of 

persistent activity in prefrontal areas as opposed to other in cortices (Goldman-Rakic, 1995; 

Lewis et al., 2002). 

Differences in deep layer pyramidal cell properties in the PFC have also been reported. In a 

slice preparation of the rat prefrontal cortex Yang et al. (1996) distinguished 4 different deep 

layer pyramidal cell types the classic RS and IB types plus an intermediate type (IM) and a 

rhythmic oscillatory bursting cell type (ROB), based on firing patters and other intrinsic 

properties. They stated that IB cells are the major cell type of the PFC (65%), as opposed to 

sensory areas where bursting cells constitute only a small fraction of overall pyramidal cells. In 

a later study Degenetais et al. (2002) recorded prefrontal pyramidal cells in vivo in anaesthetised 

rats and found similar cell types, but adopted a slightly different terminology. 
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Figure 2.4 | Prefrontal deep layer pyramidal cell 
A) Schematic view of a saggital slice of rat prefrontal cortex including an illustration for 
the approximate position of the cell depicted in B. 
B) Example of a typical prefrontal pyramidal cell. Digitally reconstructed after staining 
with a fluorescent marker (see Methods section). Scale bar equals 100 pm. 

An intriguing study on prefrontal pyramidal cells in ferrets found a distinct correlation between 

dendritic morphology of deep layer pyramidal cells and synaptic coupling and plasticity (Wang 

et al., 2006). They described a morphological phenotype with an early diverging apical dendrite 

(complex pyramidal cells), that is connected to other complex pyramidal cells through mainly 

facilitating synapses; thus gives rise to a hyper-reciprocal network of pyramidal cells in the 

PFC. 

The apparent use of different 'cell type' definitions highlights the quintessential problem of cell 

classification within the neocortex. Previous studies have established various 

electrophysiological classes of neurons in the neocortex (Llinas, 1988; Connors and Gutnick, 

1990; Hausser et al., 2000; Nowak et al., 2003; Stcriade, 2004), but unambiguous classification 

of cells is required to ease comparison of results from different laboratories. A common 

framework for classification of pyramidal cells has not been established yet. In the case of 

GABAergic intemeurons, which seem much more diverse than pyramidal cells (Markram et al., 

2004), a recent initiative proposed the Petilla framework in an attempt to unify classification 
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schemes for neocortical intemeurons (Ascoli et al., 2008). This approach attempts to establish 

distinct parameter from physiology, morphology, connectivity and molecular properties to 

unequivocally determine cell classes. Only through the rigorous analysis of correlations 

between these different aspects of neuronal function, can one establish meaningful neuronal 

classes and thus, disentangle the role of single neuron properties in neuronal network dynamics. 

Recent efforts increasingly focus on correlating neuron classes established in different 

parameter spaces (e.g. physiology v morphology). For example Dumitriu et al. (2007) recently 

revealed correlation between dendritic morphology and synaptic plasticity in intemeurons. In a 

similar fashion recent research on pyramidal cells identified functional networks of distinct cell 

types (Markram et al., 1997; Yoshimura et al., 2005; Song et al., 2005) which can be correlated 

with synaptic plasticity parameters, (Hefti and Smith, 2000; Wang et al., 2006), projection 

targets and/or expression of molecular markers (Molnar and Cheung, 2006; Molyneaux et al., 

2007; Brown and Hestrin, 2009b; Groh et al., 2009) 

These recent studies were the main inspiration for the current study and the attempt to correlate 

intrinsic biophysical properties of deep layer pyramidal cells with morphological parameters. 

The current approach differed in that I also probed biophysical properties under the influence of 

dopaminergic agonists, which has, to my knowledge, not been attempted in this way. The 

following section will describe the importance of dopamine for proper function of prefrontal 

networks. 
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2.5 Dopamine actions in the PFC 

Optimal performance in working memory tasks depends critically on dopaminergic modulation 

of the PFC (Goldman-Rakic et al., 2000; Durstewitz and Seamans, 2002). The PFC of monkeys 

and rats receives major dopaminergic afferents from the ventral tegmental area (VTA, Figure 

2.5) (Seguela et al., 1988; Goldman-Rakic et al., 1989; Vemey et al., 1990) and in primates DA 

concentration in the PFC rises at the beginning of a working memory task and stays elevated 

throughout many trials (Watanabe et al., 1997). 

DA exerts its actions via G-protein coupled receptors that can be divided in two main receptor 

types: Dl type receptors (including the genotypes D| and D5) coupled to G-proteins that 

stimulate intracellular cyclic adenosine-monophosphate (cAMP), namely Gs, Goif, or G,; and the 

D2 type receprotrs (including the genotypes D2, D3, D4) coupled to G proteins that inhibit cAMP 

via Gi/o (Neve et al., 2004). Prefrontal regions show DA-receptor immunoreactivity on both 

pyramidal and non-pyramidal cells (Goldman-Rakic et al., 1989; Vincent et al., 1993; Sesack et 

al., 1995; Santana et al., 2009). Activation of the respective receptor types may be controlled by 

the extracellular concentration of DA, where low concentrations primarily activate Dl receptors 

and high concentrations primarily activate D2 type receptors in the PFC (Trantham-Davidson et 

al., 2004). 

The importance of intact DA signalling in the PFC for working memory has been demonstrated 

by in vivo application of dopaminergic agonists and antagonists in monkeys while they are 

performing working memory tasks. Effects of local injection of DAR-ligands on working 

memory are complex and depend on the magnitude of stimulation and timing of application 

relative to the ongoing task. Sawaguchi and colleagues demonstrated that DA injection 

enhanced delay period activity substantially (Sawaguchi et al., 1990a), which was Dl receptor 

dependent (Sawaguchi et al., 1990b; Sawaguchi and Goldman-Rakic, 1991). Dl receptor 

stimulation can improve delay period activity and behavioural performance in low 

concentrations, but impairs activity and performance in high concentrations (Williams and 

Goldman-Rakic, 1995; Amsten, 1997; Zahrt et al., 1997; Granon et al., 2000). In conclusion the 

influence of Dl receptor activation on delay period activity has been described as an inverted U-

shape function, where Dl receptor activation has an optimal range, but hyper or hypo-

stimulation of Dl receptors both disrupt delay period activity and behavioural performance 

(Goldman-Rakic et al., 2000). Furthermore, it has been shown that Dl receptor type activation 

can have exactly opposite effects depending on the actual task phase during a working memory 

experiment (Floresco and Phillips, 2001). 
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Figure 2.5 | 
Mesocortical DA 
projections in the rat 
brain 
The mesocortical DA 
system originates from 
DA positive neurons in 
the VTA (A8-10) and 
projects mainly to 
prefrontal areas, the 
hippocampus, the 
perirhinal and entorhinal 
cortex and the 
amygdala. 

In order to fiilly understand the complex effects DA imposes on working memory one has to 

take a close look at the changes DA introduces to single cells in the PFC. DA effects can differ 

between brain regions, for example DA stimulation has opposite effects on NMDA currents in 

the hippocampus (Hsu, 1996; Otmakhova and Lisman, 1999) compared to the PFC and striatum 

(Cepeda and Levine, 1998; Seamans et al., 2001a). I will focus on DA effects described in the 

rat PFC (see Seamans and Yang, 2004 for a comprehemsive review). There has been a long 

controversy about whether DA effects in the PFC are excitatory of inhibitory. Initially DA was 

characterised as an inhibitory neurotransmitter, based on suppressive effects of exogenous DA 

on firing rate (Herrling and Hull, 1980; Bemardi et al., 1982; Thierry et al., 1998). Later studies 

have also found excitatory effects of DA (Penit-Soria et al., 1987; Yang and Seamans, 1996). 

Somewhat reconciling these conflicting results, Gulledge and Jaffe (1998, 2001) illustrated that 

timing of DA application can be decisive for the course of DA action on excitability. DA 

application initially suppressed firing, but was followed by a rebound of excitability, resulting in 

a net increase in excitability compared to baseline about 15 minutes after the initial DA 

apphcation. Such biphasic effects of DA have observed in other studies (Seamans et al., 2001b; 

Gorelova et al., 2002) and illustrate the necessity for time resolved measurement of DA effects. 

Since then, a large number of studies have contributed to elucidating the effects of DA on 

biophysical properties of deep layer pyramidal cells. DA has been shown to modulate all major 

synaptic conductances and various voltage regulated conductances in pyramidal cells and 

inhibitory intemeurons (Seamans and Yang, 2004). 

DA (via Dl receptors) has been shown to modulate the persistent sodium current (Iwap) by 

shifting the voltage dependent activation towards more negative voltage values, hence lowering 

the threshold for the occurrence of Na^ spikes, effectively increasing excitability (Gorelova and 

Yang, 2000) but other studies failed to show effects of DA on iNaP (Maurice et al., 2001). 

Furthermore, Dl receptor activation reduces a 4-aminopyridine sensitive slowly inactivating K^ 
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conductance (Yang and Seamans, 1996; Dong and White, 2003), which normally opposes iNap. 

This reduction effectively adds to the increase in excitability caused by Iwap facilitation. DA also 

influences various voltage gated calcium channels in prefrontal neurons. Dl receptor activation 

reduces the half-width and amplitude of dendritic Ca^^ potentials (Yang and Seamans, 1996) 

mainly thought to be carried by L-type calcium currents. Later Young and Yang (2004) 

demonstrated that DA (via Dl receptors) can both transiently augment (via protein kinase A) 

and time-dependently suppress (via protein kinase C) L-type calcium chaimels. In summary, 

DA increases intrinsic excitability through modulation of Na^, K^ and Ca^* currents. 

In addition to intrinsic currents DA has also been shown to modulate all major synaptic 

currents. DA enhances NMDA receptor currents in pyramidal neurons via Dl receptor 

activation, but decreases NMDA receptor currents through D2 receptor activation (Zheng et al., 

1999; Seamans et al., 2001a; Chen et al., 2004). DA receptor activation also slightly reduces 

AMPA receptor currents through Dl receptor dependent pathways (Seamans et al., 2001a; Gao 

et al., 2001) but see Wang and Goldman-Rakic (2004) for an account of D2 receptors enhancing 

AMPA current. DA modulates GABA currents in pyramidal cells in a receptor and time-

dependent manner. DA itself shows a biphasic modulation of GABA currents, with an initial 

depression followed by a later augmentation (Seamans et al., 2001b). The initial decrease has 

been attributed to Dl receptor activation, and the augmentation to D2 receptor activation. 

Interestingly D1 receptor dependent depression of GABA currents can readily be reversed by 

D2 receptor activation and vice versa. Figure 2.6. shows the Dl and D2 receptor specific effects 

on spontaneous GABA evoked post synaptic potentials (PSP) in deep layer pyramidal cells. 

Here the receptor specific and time dependent effects of DA are demonstrated. In addition to 

modulating synaptic inputs and excitability of pyramidal cells, DA alters various biophysical 

properties of GABAergic intemeurons in the PFC (Zhou and Hablitz, 1999; Gorelova et al., 

2002; Gao and Goldman-Rakic, 2003; Trantham-Davidson et al., 2004; Kroner et al., 2007). 
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Figure 2.6 | Time dependent and 
reversible DA receptor specific effects 
on GABA IPSP's. 

A) Selective DA receptor agonists have 
time dependent and reversible effects on 
post synaptic GABA PSP's. Dl receptor 
increases PSP amplitude, but D2 
receptor stimulation decreases PSP 
amplitude. 
B) These effects are time dependent and 
can be fully reversed by applying 
agonists for the previously not 
stimulated receptor type. 

From Seamans et al., 2001b. 

In summary, these examples illustrate the complex influence DA bears on single cell biophysics 

in the PFC. In an attempt to understand how these changes might explain in vivo effects on 

working memory, a range of theoretical modelling studies investigated the impact of DA on 

prefrontal network dynamics (Durstewitz et al., 2000a; Compte et al., 2000; Brunei and Wang, 

2001; Dreher et al., 2002; Durstewitz and Seamans, 2002). In particular Durstewitz and 

colleagues (Durstewitz et al., 2000b; Durstewitz and Seamans, 2002) implemented a detailed 

biophysical network model, and showed that Dl activation stabilises persistent activity states 

evoked by external input fed into the model. This stabilisation can be explained by the 

simultaneous increase in NMDA and GABA currents, where in particular NMDA activation has 

been regarded as an essential prerequisite for persistent activity in recurrent networks (Wang, 

1999; Durstewitz and Seamans, 2002; Shu et al., 2003; Seamans et al., 2003). 
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Figure 2.7 | Summary of DA effects 
Dopamine modulates various 
intrinsic and synaptic properties in 
pyramidal cells and fast spiking 
intemeurons, differentially through 
Dl and D2 type receptors. See text 
for details. 
From Lapish et al., 2007. 
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Despite this large body of experimental and theoretical modelling work, questions still remain, 

especially on how modulation of intrinsic properties might influence computational properties 

in PFC cells and networks. In particular since intrinsic properties of neurons have recently 

received increased attention, e.g. as an alternative plasticity mechanism in cortical circuits 

(Zhang and Linden, 2003; Xu and Kang, 2005; Janowitz and van Rossum, 2006). In the 

following section I will outline the motivation for focussing on examining intrinsic properties of 

pyramidal cells, formulate some specific questions and describe the major tasks outlined in this 

thesis to address these questions. 

2.6 Motivation and aims of this thesis 

To sum up, the prefrontal cortex is an anatomically well defined region in humans, monkeys 

and rats that is involved in various higher cognitive functions, especially working memory. 

Within the PFC, specific circuits and cell types have been correlated with PFC fiinction. DA 

modulation is crucially involved in working memory and has been shown to modulate a large 

number of biophysical parameters in neurons of the PFC. Different classes of deep layer 

pyramidal cells have been reported, but a systematic examination of cell type specific effects of 

DA has not been reported. Furthermore, morphological correlates of prefrontal function have 

been described (Lewis et al., 2002; Wang et al., 2006), but if or how these correlate to 

dopaminergic modulation is unknown. 

Thus I would like to raise a few key questions that this thesis aimed to address: 

• How do intrinsic single cell properties give rise to computational functions of pyramidal 

cell types? 

• Does dopaminergic modulation of intrinsic properties differ between cell types and does 

that relate to distinct dynamical regimes? 

• How does dopaminergic modulation of intrinsic properties affect single cell 

computational properties? 

• How do morphological properties of pyramidal cells correlate with intrinsic properties, 

and more interestingly with dopaminergic modulation? 

Single cell recordings in acute slices from rat PFC have been used to examine dopaminergic 

effects on biophysical parameters. Acute brain slices provide an instant snapshot of prefrontal 

networks, where reduced connectivity is outweighed by easy application of pharmacological 

agents both intra- and extracellularly. 

To answer the questions raised above the following major tasks for this thesis are the following: 
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Probe intrinsic properties of deep player pyramidal cells through a variety of protocols 

to characterise cell behaviour on multiple time scales. 

Examine receptor specific dopaminergic modulation of intrinsic properties of deep layer 

pyramidal cells through application of dopaminergic agonists (Dl and D2 agonists) 

Reconstruct digitally the morphology of recorded cells and quantitatively analyse 

morphological features. 

Analyse correlations between different aspects of cell function through multivariate 

statistical analysis, i.e. principal component analysis, hierarchical cluster analysis and 

analysis of variance. 
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Methods and Materials 

This Chapter will describe the technical background of the experimental and analysis methods 

used in this study. I will briefly describe the principle of the whole cell patch clamp method and 

the stimulation protocols used to characterise pyramidal cells physiologically. Furthermore, I 

will describe principles of confocal microscopy and its use for reconstruction of neuronal 

morphology using biocytin tracing. In the final section, I will describe all statistical analysis 

methods used. 

All experiments involving animals were reviewed by the University of Plymouth Ethics 

Committee and followed the guidelines for minimisation of animal use for research issued by 

the Home Office, as summarised by reduction, refinement and replacement (3 R's). 

3.1 The whole cell patch clamp method 

By the early 1970's, it became clear that discrete molecular entities, integral membrane proteins, 

were responsible for conducting electrical signals in nerve and muscle tissue. Experiments with 

a variety of toxins indicated that potassium and sodium channels were separate macromolecules 

(Hille, 1976; Armstrong et al., 1973). Inspired by discrete current changes seen in artificial 

membrane preparations (Bean et al., 1969), the neurophysiologists Erwin Neher and Bert 

Sakmann were determined to measure similar signals in a biological preparation. To reduce 

background noise in voltage clamp recordings Neher and Sakmann attempted to isolate a piece 

of membrane ("patch") from the surrounding by pressing a glass pipette to the surface of the 

membrane. In initial experiments, they achieved a seal resistance of around 50-100 MQ. that 

allowed them to resolve picoampere sized currents from acetylcholine activated currents in frog 

muscles (Neher and Sakmann, 1976). 

The method made a breakthrough, when it was found that using clean micropipettes and slight 

suction increased the seal resistance to an order of magnitude ("gigaseal") (Hamill et al., 1981). 

This method, since then coined patch clamp, allowed the high resolution recording of currents 

in excised cell membrane patches and those that remain cell attached. Moreover, it allowed the 

application of the classic voltage clamp method in cells that are too small for intracellular 

recordings by high resistance ("sharp") microelectrodes. The breaking of the membrane patch 

gives rise to the patch clamp configuration used in this thesis, tight seal whole cell recording. 

After establishing the gigaseal one can deliberately break the membrane patch by applying brief 
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strong suction or a voltage pulse. This "break-in" results in electrical and diffusional access of 

the pipette internal to the cytoplasm of the cell, without altering the seal resistance between 

glass and membrane. If the access resistance between pipette electrode and cytoplasm is lower 

than the cell membrane resistance, a small cell is effectively voltage clamped to the pipette 

potential and the overall activity of ion channels can be measured. Similarly the change in 

voltage difference across the membrane can be measured in the current clamp mode where the 

current flow through the membrane is held constant, which allows observation of voltage 

changes, i.e. the natural physiological excitation patterns. This configuration is called tight 

whole cell recording (Marty and Neher, 1995), which is now the most common used 

configuration. This technique has later been adapted to record neurons in acute slices of brain 

tissue (Yamamoto and Mcllwain, 1966; Lynch and Schubert, 1980; Sakmann and Stuart, 1995). 

While recording from neurons with complex dendrites the voltage clamp assumption only holds 

true for the soma, and care has to be taken when interpreting signals from remote synapses or 

intrinsic currents (Spruston et al., 1993; White et al., 1995). In the last 15 years the patch clamp 

technique has contributed a wealth of data on neuronal properties and is therefore the method of 

choice for analysing single cell electrophysiology. 

Whole cell patch clamp in acute slices of the rat PFC: 

Whole cell patch clamp recordings and deep layer pyramidal cells were performed in acute 

slices from adult rat PFC as described previously (Moyer and Brown, 1998; Durstewitz and 

Gabriel, 2007). 

Sprague Dawley rats (55-80 d, Charles River, UK) were killed according to Home Office guide 

lines (Schedule 1) and then decapitated. The rapidly dissected brain is immersed for 1 min in 

cold (4°C), oxygenated (5% CO2, 95% O2) artificial cerebro-spinal fluid (ACSF) (in mM): NaCl 

(125), NaHCOj (25), glucose (10), KCl (3.5), NaH2P04 (1.25), CaCl2 (0.5), MgCl2 (3); pH 7.45, 

osmolarity 300 ±5 mOsm. 

Coronal slices (300-350 ^m) containing the prelimbic-infralimbic region of the PFC were cut on 

a Vibroslice MA752 (Campden Instruments, Loughborough, UK) and transferred into heated 

(37 °C) ACSF solution with CaCU changed to 2 mM and MgCl2 changed to 1 mM. After 20 

min, ACSF was allowed to cool down to room temperature for at least 40 min before recording. 

AH solutions were constantly oxygenated with 95% 07/5% CO2 throughout the experiments. 

Slices were placed in a Warner Instruments recording chamber and perfused with recording 

solution through a gravity fed system at a rate of 2-3 ml/min. The solution was preheated up to 

about 26° C through a regulated power supply and heated up to 33-35°C by a Warner 
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Instruments bath chamber heating system (Harvard Apparatus Ltd, Edenbridge, UK) regulated 

by a TC-10 temperature control system (NPI Electronics, Tamm, Germany). 

Slices were viewed on a Zeiss Axioskop FS Microscope using a 40x 0.9 NA water immersion 

objective plus additional ocular tube magnification (2x) using differential interference contrast 

(DIC) optics (Luigs und Neumann, Ratingen, Germany) and imaged by a Hamamatsu analogue 

video camera (Hamamatsu Photonics Deutschland GmbH, Herrsching am Ammersee, 

Germany). 

Recording pipettes were pulled from thick walled borosilicate glass on a Sutter P-97 pipette 

puller to a resistance of 3-8 MQ (~ 20 ^m tip) and filled with freshly prepared internal solution 

containing (in mM): K-gluconate (115), 4-(2-hydroxyethyl)-l-piperazineethanesulfonicacid 

(10), MgClz (2), KCl (20), MgATP (2), Na.-ATP (2), and Guanosine-5'-triphosphate (0.3) (pH 

= 7.3, 285 ±5 mOsm). The internal solution also contained biocytin (15 mM) for later 

morphological identification of recorded cells. 

All recordings were either made with Axoclamp 2B (Molecular Devices Ltd, Wokingham, UK) 

or NPI SEC05LX amplifier (NPI Electronics, Tamm, Germany) using a O.lx headstage. Data 

was acquired at sampling rates of 5-30 kHz by a PC16E A/D (National Instruments Germany 

GmbH, Miinchen, Germany) card mounted to a Dell Precision 5510 (Dell Products, Berks, UK) 

which ran a custom made Labview-based recording software, written by Lee Campbell (Salk 

Institute, La JoUa, CA). 

All pharmacological experiments included bath applied specific antagonists to all major 

synaptic amino acid receptors, i.e. NMDA blocker AP-5 (10 )iM, Sigma, UK), AMPA blocker 

DNQX (10 nM, Sigma, UK), GABAa blocker Picrotoxin (50 [iM Tocris, Bristol, UK) and 

GABAb blocker Phaclofen (100 HM, Tocris, Bristol, UK). 

All experiments included the Dl-receptor agonist SKF-38983 or SKF 81297 (50 |iM), the D2-

receptor agonist quinpirole (10 pM), added to the ACSF, where the range of concentrations 

were chosen based on previous studies (Seamans et al., 2001b, 2001a; Trantham-Davidson et 

al., 2004) A typical recording lasted around 50 minutes. 

Although this is a standard procedure for conducting whole cell patch clamp recordings in brain 

slices, this slicing procedure will most likely introduce a bias in the sample of selected cells for 

patching under visual control. Only robust cells will survive the grave procedure, so that cells 

with large cells bodies (supposedly more robust) might be overrepresented in the sample as 

opposed to the in vivo situation. In the current study I have selectively patched cells from the 

posterior side of every slice since cells in the PFC are slightly angled in relation to the sagittal 

cutting plane, which increased the likelihood of recording from cells with preserved apical 

dendrites. 
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Yet, since the method is literally identical to hundreds of other in vitro slice studies on 

prefrontal cortical pyramidal cells, this bias would have been present in all studies. Thus the 

results are comparable to other in vitro slice studies, but caution has to be used when relating 

the current results to in vivo studies. 

B 

I—^A^V 

Figure 3.1 | Patch clamp of prefrontal 
pyramidal cells 
A) Schematic illustration of cell position to 
be targeted by the patch pipette. Large 
pyramidal shaped cell bodies would be 
typically found in layers 5/6, about 800-
lOOOfim from the pial surface. 

B) Photograph of a patch pipette attached of 
a deep layer pyramidal cell body. Notice 
the prominent pyramidal shape of the cell 
body. 

C) Schematic of the equivalent circuit 
during whole cell configuration, with all 
synaptic inputs blocked by selective 
antagonists, and activation of either D1 or 
D2 receptors through specific agonists. 
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3.2 Stimulation Protocols and Analysis of Electrophysiology Data 

1 have applied 5 different protocols to probe passive and active properties of recorded cells. 

Table 3.1 shows a summary of all stimulation protocols used. 

To obtain an estimate for the passive properties of a recorded cell I applied 200 millisecond 

steps of -25 pA, repeated between 50-100 times. The responses were inspected by eye for 

obvious artefacts (e.g. 50 Hz noise), noisy traces were removed, and responses were averaged 

and then fitted to a single exponential function. Figure 3.2 shows an example trace (A), the 

average of 83 injections and exponential fit to the average voltage trace (B). The input 

Resistance was estimated by a linear fit on the steady state voltage response to a series of brief 

hyperpolarising and depolarising current steps (Figure 3.3). 

The excitability of deep layer pyramidal cells was probed by 3 different protocols: in voltage 

clamp mode through injection of a series of voltage steps; in current clamp mode through 

increasing and decreasing current ramps and through 25 s long current steps. 

In voltage clamp I used a series of voltage steps, ranging from -80 to 0 mV, to record current 

responses. From the current responses I calculated the steady state current as the mean of the 

last 200 ms of the voltage step. Figure 3.4 shows an example series of voltage steps and 

measured current responses (A) and the resulting voltage-current curve (B). From this curve the 

reversal potential was estimated by detecting the zero crossing of a linear fit between the two 

current values just below and above 0 mV. To fiirther characterise the V-I curve, I extracted the 

minimum slope of the curve, which effectively returns the inflection point (0), the current value 

of the inflection point and the difference between inflection point and the local minimum of the 

curve ("bump deepness"). 

To assess the excitability of recorded cells further, I injected slowly increasing and decreasing 

current ramps spanning a range of current from 0-300 pA over a time of 9 seconds. Figure 3.5 

shows example traces of ramp currents and respective voltage traces in the control condition. In 

this example the rheobase current for the increasing ramp is lower than for the decreasing ramp, 

which was the case for most recorded cells. From this I also extracted the maximum firing rate 

observed during each ramp (red circles). 

To quantify excitability during an extended period of time I injected series of 25 second long 

current steps. Figure shows 3 out of 10 pulses (bottom) and respective voltage traces (top) from 

a typical example of a 25 s current pulse injection. Figure 3.6 B shows the respective current v 

firing rate curve (f/I) based on the steady state firing rate (i.e. the last 5 seconds of the pulse). 

Figure 3.6 C shows a square root fit {a^fx -I- b) to zero ISI (spike latency) and last ISI (steady 

state FR) at different current steps. As input for resulting cluster analysis I extracted the 

maximum slope and the onset of the fTI curve, coefficient (a) and y-intercept {b) of the square 
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root fits for zero and last ISI. Furthermore the coefficient of variation was measured on a spike 

train of at least 100 spikes. 

The coefficient of variation (Cv) describes the dispersion of a probability function and is 

commonly used to assess irregularity in time series (especially spike trains). The Cv is given by 

c=^ 
^ ISI 

where a and ji are the standard deviation and the mean of the ISI of a given spike train. 

Table 3.1 Stimulation protocols 

Protocol 

Recording mode 

Type 

Stimulus length 

Passive 

CC 

Single Step 

200 ms 

Short V-I 

CC 

Steps 

500 ms 

Ramps 

CC 

Ramp 

9s 

Long V-I 

CC 

Steps 

30$ 

I-V 

vc 

Steps 

500 ms 

Amplitude range --50 pA -150-150 pA 0 - 300 pA -100-300 pA -80-0 mV 

n times applied 50 100 1 1 1 1 
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Figure 3.2 | Estimating the membrane 
time constant 
A) Typical single trace showing voltage 
response (top) and injected current 
(bottom). 
B) Average of all included voltage 
responses and single exponential fit in red. 

2000 

Figure 3.3 | Estimating the input 
resistance 
A) Example trace showing a voltage 
response (top) to a series of hyperpolarising 
current steps (bottom). 
B) Linear fit to current-voltage plot 
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500 1000 
Time (ms) 

Figure 3.4 | Voltage 
clamp step stimulation 
A) Example of voltage 
clamp step stimulation. 
Series of voltage steps (-
80-0 mV) were injected 
and the total steady state 
(>500 ms) membrane 
current is measured. 
B) Resulting I-V curve 
with the resting potential 
(•, E(rev)), maximum 
slope (•, dV/dl) and the 
maximum current (•) 
annotated. 
C) Magnified view of B. 
The bump height is the 
difference between the 
local maximum and 
minimum of the I-V curve. 

50i 50i 

5 
Time (s) 

Figure 3.5 | Current 
clamp ramp stimulation 
A) Example traces (top) 
from upward ramp 
injection (bottom). 
B) Example traces (top) 
current ramp injection 
(bottom). Red circles 
indicate rheobase current. 
C) Instantaneous firing 
rate (iFR) from spike train 
in A. Red circle indicates 
maximum iFR. 
C) iFR from spike train in 
B. Red circle indicates 
maximum iFR. 
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Figure 3.6 | Long current 
step stimulation 
A) Example of long (25 s) 
current step injection, for 
clarity only 3 out of 8 steps 
are shown. 
B) Steady state f-I curve, 
with onset, maximum slope 
and max firing rate 
annotated. 
C) Resulting square root fit 
for the average 
instantaneous firing rate 
(iFR) for the spike latency 
(1/ISIo) and average iFR 
during the last 5 seconds of 
thestep(l/ISIJ. 
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Table 3.2 Characteristic physiological variables 

Protocol # Variable unit Description Method 

Passive 

Short VI 

Ramps 

Long VI 

VC steps 

1 

10 
11 

12 
13 

14 

15 

16 

17 

Tau 

2 Sag 

3 R(in) 

4 Rmp (u): rheobase 

5 Rmp(d): rheobase 

6 Rmp(u): max (f) 

Rmp(d): max (J) 

V-I: onset 

V-I: max(dV/dI) 

V-I: a (ISIo) 
V-I: b(ISIo) 

V-I: a(ISIoo) 
V-I: b(ISIoa) 

V-I: CV 

E(rev) 

I-V: max(I) 

I-V: max (dV/dl) 

18 I-V: max (I (dV/dl)) 

mV 

pA 

pA 

Hz 

Hz 

pA 

Hz/pA 

19 I-V: bump 

mV 

pA 

mV/pA 

pA 

pA 

Passive membrane 
time constant estimate 

Ih estimate 

Mii Input resistance 

Minimum current for 
eliciting an AP during 
upward ramp 
Minimum current for 
eliciting an AP during 
downward ramp 
Maximum 
instantaneous 
frequency during 
upward ramp 
Maximum 
instantaneous 
frequency during 
downward ramp 

Onset of f/I curve 

Maximum slope of f/I 
curve 
Square root fit to 
latency to first spike 
for all steps 
Square root fit to last 
ISI for all steps 
CV all spikes from 
step that elicited more 
than 100 spikes 

Reversal potential 

Maximum current 
Maximum slope of 
steady state V-I curve 
Current at maximum 
slope of V-I 
Differences between 
max slope and local 
minimum of V-I 

Exponential fit to 200 ms, -0.1 pA 
current step 
Difference between exponential 
fit and average Vm trace at the 
end of step. 
Linear fit of current clamp steps 
against subthreshold voltage 
responses 

Time of first AP from upward 
ramp injection 

Time of last AP from downward 
ramp (down) injection 

Max of 1/ISI from upward ramp 

Max of 1/ISI from downward 
ramp 

current step (i-1), whit step(i) 
being the first step to evoke AP's 

max of diff(f) 

fita*sqrt(I)+btoIvs(l/ISIo) 

fit a*sqrt(I)-i-b to I vs (I/ISIQO) 

std(ISI) / mean(ISI) 

Zero crossing of I-V curve 
voltage clamp steps 
max (I) 

max(diff(V)/diff(I)) 

I(max(diff(V)/diff(I))) 

I (max(diff(V)/difF(I))) - min(I)ioc 
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3.3 Biocytin tracing, confocal imaging and an reconstruction of 
neural morphologies 

Since the first descriptions of neuronal morphologies by Ramon y Cajal and Golgi (Cajal, 1899) 

in the late 19* century various methods have been developed to visualise cellular morphology of 

neurons in brain tissue. In particular, intracellular labelling methods were developed to stain 

individual neurons (Snow et al., 1976; CuUheim and Kellerth, 1978). One widely used approach 

in combination with whole cell patch clamp recordings is to add biocytin (a weight analogue of 

biotin) to the intracellular solution of the patch pipette (King et al., 1989). Biocytin is a small 

molecule (MW = 244) and will easily diffuse into the cell inside and into distant dendrites 

within 20-30 minutes if added to the inside of a patch pipette. Biocytin has a very high affinity 

to streptavidin (Kd = 10"'̂ ), a tetrameric protein that binds up to 4 molecules of biocytin. This 

highly specific, but non-covalent, binding can be used to selectively visualise the morphology of 

recorded neurons by using a streptavidin-fluorophore conjugate and confocal laser scanning 

microscopy (CLSM). CLSM was invented in the late 1950's (Halbhuber and Konig, 2003), but 

only the fiirther development of crucial components, i.e. laser as a light source, computer for 

control and data storage, lead to the first instruments being commercially available in the late 

1980's. In design CLSM is similar to conventional epi-fluorescence microscopy, only that the 

high energy UV light source (e.g. Hg arc lamp) is replaced by a laser. This provides a much 

more focussed and energy dense excitation of fluorescent reporter molecules (Hibbs, 2004). 

The principle setup for a confocal microscope is shown in Figure 3.7. The laser light is reflected 

onto the specimen by means of a dichroic mirror which allows selective filtering of different 

wavelengths. In particular high intensity excitation light (green) reaches the specimen, but only 

the elicited fluorescence (red) passes the dichroic mirror to be detected by a photomultiplier 

tube (PMT). Two pinhole apertures are used, firstly for focussing the laser beam (precise spatial 

excitation) and secondly to reduce the amount of scattered, out of focus-light just before the 

fluorescence signal enters the PMT. An image is formed using scanning mirrors to deflect the 

laser beam in x and y direction, to serially scan points in a defined area within the focal plane. 

After digitising the analogue intensity signal of the PMT, the image is a grey scale bitmap with 

either 8-bit, 12-bit or 16-bit resolution, depending on the sensitivity range of the PMT and 

software settings. A fiill x-y scan represents an optical slice of the specimen ('optical 

sectioning'). The 'depth' of the optical slice within the specimen depends on the focus plane 

chosen with the objective. Since the excitation through the laser source is focussed through the 

pinhole, only a thin section of the specimen is imaged, and by taking a series of consecutive 

images at different focal planes, one can infer 3-dimensional information about the specimen 

(Carrington et al., 1999). 
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Figure 3.7 | Light 
patliways in a confocal 
microscope 
Light from the laser 
excitation source passes the 
light source pinhole and is 
reflected by a dichroic 
mirror onto the specimen. 
Evoked fluorescent light 
passes the objective in 
opposite direction passes 
the detector pinhole and is 
detected by the 
photomultiplier. From 
www.olympusfluoview.com 

Some of the earliest applications of confocal microscopy were in the field of neuroscience. For 

example Egger and Petran (1967) imaged imstained brain and ganglion cells. Later, lamprey 

spinal cord has been imaged using injected fluorescent dyes (Wallen et al., 1988) and images of 

individual neurons have been used to reconstruct complete cell morphologies (Carlsson et al., 

1989). Since these early applications of confocal microscopy to neuroscience questions, a 

wealth of new techniques and applications has been developed (Wilt et al., 2009). 

For the current analysis, fixed brain slices (350 pm) were sandwiched between two coverslips to 

enable imaging from both sides, since the maximal penetration depth of confocal lasers is about 

150-200 pm. Image stacks were acquired with a lOx-Neofluar objective using small pinhole 

diameter and long pixel dwell times to enhance signal to noise ratio in the stacks. Image stacks 

were highly oversampled in the z-direction to obtain nearly cubic voxel dimensions. Indeed the 

greatest disadvantage of using confocal image stacks is the limited z resolution (as opposed to 

2-photon LSM). Since the laser light passes all the tissue above the focal plane, all fluorescent 

markers above the focal plane will be excited by the laser. Out of focus light in the x-y direction 

can be efficently removed by the confocal apertures, as opposed to diffracted light in z-direction 

(Boutet de Monvel et al., 2001). Combined image stacks were imported into the Neurolucida 

software package and traced manually. Due to the use of a low magnification objective and 

occurence of significant z-blur, all diameter measurements were excluded from the analysis (see 

below). Figure 3.8 shows a maximum intensity projection from an example image stack. The 

advantage of using low magnification image stacks lies in being able to capture the whole 

neuron morhology at once, although two stacks had to be acquired from each side, to avoid 

resectioning of the slices. 

[45] 

http://www.olympusfluoview.com


Figure 3.8 | Maximum 
intensity projection of an 
example confocal image 
stacli. 
The image is combined from 
two z-stacks, imaged with a 
lOx Neofluar objective, from 
both sides of the slice. Apical 
and basal dendrites are clearly 
visible. 

Materials for histological procedures, confocal imaging and morphological reconstruction 

After recording and filling cells with biocytin, brain slices were fixed in 100 mM phosphate 

buffered saline (PBS), adjusted to pH =7.4, containing 1% paraformaldehyde at 4 °C for at least 

24 h. After extensive rinsing in PBS (2x5 mins + 3x30 mins) slices were incubated overnight 

with a streptavidin Alexa-488 conjugate (5 ^M) in PBS plus 0.4 % Triton X. 

After rinsing in PBS (2x5 mins + 3x30 mins) slices were sandwiched between two coverslips 

(No. 0) using SecureSeal imaging spacers (Grace Bio-Labs, from Stratech Scientific Ltd., 

Newmarket, UK) and Vectashield mounting medium (Vector Laboratories Ltd., Peterborough, 

UK). 

Alexa-Sfrepatvidin labelled cells were visualised by confocal laser scanning microscopy using a 

Zeiss 510 LSM with Arg/He laser with a lOx Neofluar (NA 0.3). Z-stacks of Images were 

acquired every 1 ^m with a high pixel sampling time (-25 us) to increase the quality of 

acquired images. Slices were imaged from both sides as one photon excitation of fluorescent 

probes is limited by increasing scatter of light when imaging deeper in the tissue, which results 

in a penefration depth of max 150-200 |im (Rodriguez et al., 2003). 

After inspection of max intensity projections of Z-stacks only cells with minor damage to basal 

and apical dendrites were used for fiirther morphological analysis. 
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Z-stacks were sometimes post-processed with deconvolution algorithm in ImageJ (Collins, 

2007) and reoriented using ImageJ and the stack alignment plug-in (JA Parker, Harvard Medical 

School, Boston, MA). Then stacks were imported to the VIAS software package (Weame et al., 

2005) for alignment and volume integration into one Z-stack volume. These combined Z-stacks 

were imported to the Neurolucida software package (Microbrightfield Europe, Magdeburg, 

Germany) and the cell morphology was digitally reconstructed in 3 dimensions. 

3.4 Morphometric Analysis 

The morphology of reconstructed neurons was analysed within the software tool 

NeuroExplorer, which is part of the Neurolucida package and includes a variety of measures 

that quantify properties of somatodendritic morphology. The analysis results were copied to 

spreadsheets (OpenOffice) and exported to Matlab through custom OOBasic scripts. 

The neuronal dendrite can be described through several quantitative measures. Each dendritic 

main branch starts at the root segment (usually the soma) and branches out into smaller 

dendrites. Simple measures (Figure 3.9 A) include the number of branchings (node), or 

segments, and the number of endings. These numbers can be calculated either per main branch 

or for the whole neuron. Furthermore segments can be labelled by segment order, which counts 

the number of previous branchings that occurred before accessing a segment by starting from 

the root segment. For each node one can also calculate the distance from the current node to the 

root segment, either along the dendrite or in a straight connecting line (Figure 3.9 B). The ratio 

of the two is called the node's tortuosity and gives an indication of how "twisted" the path up to 

that particular node is. 

Branch angle analysis (Figure 3.9 C, D) is concerned with characterizing the direction branches 

take after a branching. A number of different measurements are possible when considering the 

change in direction between a branch and the sub-branches that meet at a node. Angles can 

measured locally (planar angle) or with respect to the coordinate system formed at the root 

segment. For this study only the planar angle was considered as it represents the local structure 

of the neuron. The planar angle is the angular value describing the change in direction from one 

branch to the next branch. 

The NeuroExplorer analysis software offers fractal dimension as a global measure of neuronal 

complexity. In detail, the fractal dimension, D, is a statistical quantity borrowed from fractal 

geometry, that gives an indication of how completely a geomefric structure (or fractal) is filling 

space. This measure has been adopted to quantify dendritic morphology of cortical neurons. 
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There are various methods for obtaining D (Smith et al., 1996; Jelinek and Fernandez, 1998). 

The NeuroExplorer software has a box counting method implemented that has been used: 

1092 (QCM) 
k-D(x) = Urn r - — , Qix) = NBoxes 

q^o -Log2{q) 

which can be approximated by: 

n Yi=i XiYi - Yi=i Xi Y.'i=i Yi 
k - DM = 

\I?=iXiV-nT^^,xf 

One other popular analysis method of dendritic morphology is ShoU analysis, which places 

concentric cycles in a fixed interval (Ar) around a neuron using the soma as origin and counts 

relevant structures, such as number of dendrites, branchings (nodes) and endings that fall in 

every cycle (Sholl, 1953). In the current analysis apical and basal dendrites were subjected to 

separate Sholl analyses and the resulting histogram was fitted either with a bimodal (apical 

dendrite) or a unimodal (basal dendrite) Gaussian. From the Gaussian the medium, the standard 

deviation and the scaling (amplitude) for each peak were used for further analysis. 

Dendritic Hull Analysis 

In a study on axonal morphology Dumitru et al. (2007) introduced a manual hull analysis, where 

separate polygons (tiles) were drawn that enclosed soma, dendrites and axon. This gives a 

measure of how much space is covered by the respective part of the cell morphology and 

various variables can be calculated based on the coordinates of the polygon. For this study tiles 

were drawn around soma, basal and apical dendrite to quantify gross morphological differences 

dendrite structure. Figure 3.10 shows an example reconstruction of a single neuron. The red box 

indicates the limits of the image stack, whereas the manual hulls applied to soma, basal and 

apical dendrite are indicated as grey shadows at the bottom of the image stack volume. 

NeuroExplorer also features an automatic hull analysis that calculates an area and perimeter of a 

2D hull, and volume and perimeter of a 3D hull applied to the neuron morphology. 
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Figure 3.9 | Dendritic tree analysis 
Quantification of dendritic structure through segment properties, see text for details. 
Illustrations from http://microcircuit.epfl.ch/ 

Figure 3.10 { Manual hull analysis of somatodendritic morphology 
Hulls are placed around the neuron morphology, by manually connecting dendrite end 
points. This is done for the apical and basal dendrite, and for the soma (white and grey 
shapes). 
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For all hulls, manual and automatic, and the soma shape NeuroExplorer features a series of unit 

free measures that quantify form factors of these polygons: 

Aspect ratio, 

Compactness, 

Form Factor, 

Solidity, 

Roundness, 

Convexity, 

Aped ratio = 
MaxDiameter 

MinDiamter 

Compactness = 
Area 

n 
MaxDiameter 

Form Factor = 
4 n Area 

Perimeter^ 

Solidtity 

Roundness = 

Area 

ConvexArea 

4 Area 

n MaxDiameter'^ 

Convexity = 
ConvexPerimeter 

Perimeter 

All of these measures were calculated for each manual and automatic hull and included for 

further analysis. In total 62 morphometric variables were calculated which are shown in Table 

3.3. 
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Table 3.3 Morphometric variables 

# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

whole neuron/soma (units) 

all hull auto 2d area (p •n') 

all hull auto 2d perimeter 
(pm) 

all hull auto 3d volpme 

all .hull auto 3d surface 

all fractal (#) 

soma perimeter (pm) 

soma area (pm ) 

somaferet max (pm) 

somaferet min (pm) 

soma aspect ratio(#) 

soma compactness (#) 

soma form factor (#) 

soma roundness (#) 

soma solidity (#) 

(pm') 

(pm-) 

# 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

Basal (units) 

basal tile perimeter (pm) 

basal tile area (pm ) 

basal tileferet max (pm) 

basal tileferet min (pm) 

basal tile aspect ratio (#) 

basal tile compactness (#) 

basal tile convexity (#) 

basal tile form factor (#) 

basal tile roundness (#) 

basal tile solidity (#) 

basal tile dsoma (pm) 

basal n dendrites (#) 

basal n nodes (#) 

basal n ends (#) 

basal total length (pm) 

basal mean length (pm) 

basal cv length(#) 

basal mean turtoisity (#) 

basal cv turtoisity (#) 

basal sholl ratio (#) 

basal sholl mean I (pm) 

basal sholl std 1 (pm) 

basal sholl scale (#) 

# 

38 

39 

40 

41 

42 

43 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

Apical (units) 

apical tile perimeter (pm) 

apical tile area (pm ) 

apical tileferet max (pm) 

apical tileferet min (pm) 

apical tile aspect ratio (#) 

apical tile compactness (#) 

apical tile convexity (#) 

apical tile form factor (#) 

apical tile roundness (#) 

apical tile solidity (#) 

apical tile dsoma (pm) 

apical n nodes (#) 

apical n ends (#) 

apical total length (pm) 

apical mean length (pm) 

apical cv length (#) 

apical mean turtoisity (#) 

apical cv turtoisity (#) 

apical sholl ratio (#) 

apical sholl mean 1 (pm) 

apical sholl std 1 (pm) 

apical sholl mean 2 (pm) 

apical sholl std 2 (pm) 

apical sholl scale (#) 
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3.5 Statistical analysis methods 

The analysis of the obtained datasets was carried out with the aim of characterising and 

classifying cells in the high dimensional parameter space spanned by all variables describing 

electrophysiology and morphology of the recorded cells. Since the number of cells was small 

compared to the variables, it seemed appropriate to first reduce the complexity of the dataset, 

before establishing similarity between cells. This problem is known as p « N , with p being the 

number of documents (here: cells) and N being the number of features (here: variables) (Hastie 

et al., 2009). Various methods have been proposed to solve the p « N problem, but a series of 

recent studies from the Rafael Yuste's lab have successfully applied a combination of principal 

component analysis (to reduce complexity or dimensionality) and hierarchical cluster analysis 

(to assess similarity) to analyse large datasets of physiological and morphological variables 

(Kozloski et al., 2001; Tsiola et al., 2003; Dumitriu et al., 2007). The current analysis uses a 

similar but slightly modified approach. 

Principal component analysis 

Principal component analysis (PCA) is a dimensionality reduction technique that describes a 

high dimensional dataset through rotated subset of these variables (Jolliffe, 2004). PCA is an 

orthogonal linear transform that projects a given dataset into a new set of coordinates such that 

new coordinates are chosen to maximise variance within the dataset. The largest variance is 

projected to the T' coordinate (T' principal component), the second greatest variance to the 2"^ 

coordinate and so on. This can be easily achieved by calculating a singular value decomposition 

(SVD) of the covariance matrix. If X represents the original data matrix, 

y = (yir--,yn). Yi = Xi- X 

represents the centred data matrix, where 

Z_i n 

i 

The covariance matrix (ignoring the factor 1/n) is given by: 
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Principal directions u^and principal components v^ are eigenvectors satisfying; 

YY^u^ = 

Y'-Y v^ = 

Vk= Y' 

^fcWfc 

= ^kVk 

,1 /2 

These are the defining equations for the SVD of Y: 

Y = 2^AfcUfei7^ 

k 

Elements of v^ are the projected values of data points on the principal component u^. In effect 

PCA provides a method of eliminating correlations in a given dataset and lays emphasis on high 

variance variables. Presumably these variables are more useful at distinguishing differences 

between individual items in a dataset. Here the MATLAB statistics toolbox function 

p r i n c o m p is used, which implements the steps described above. 

Hierarchical Cluster Analysis 

Cluster analysis is a method related to unsupervised learning that seeks to classify and group 

entities based on a multivariate dataset describing these entities (Jain and Dubes, 1988; Jain et 

al., 1999). Cluster analysis is an exploratory analysis method, i.e. there is no a priori statistical 

model formulated of how data is correlated. Instead one wishes to establish groups based on 

similarity between individual entities. An entity is defined by a pattern e.g. a vector of 

continuous valued measurements. In the simplest case similarity can be defined as the inverse of 

the Euclidean distance, but various similarity measures are used. Quantitative similarity allows 

assignment to groups by an iterative algorithm (linkage method) and resulting groups (cluster) 

can then be used to establish statistical properties. 

There are different approaches to cluster analysis, the most prominent techniques being K-

means clustering and hierarchical clustering. Hierarchical cluster analysis builds up a hierarchy 

of entities where algorithms can work either top-down or bottom-up. Bottom-up algorithms treat 

each entity as a singleton cluster at the outset and then successively merge (or agglomerate) 

pairs of clusters until all clusters have been merged into a single cluster that contains all entities. 

The decision of which pair of entities to merge next is taken based upon an updated distance 
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matrix of existing clusters/entities. Bottom-up hierarchical clustering is also called hierarchical 

agglomerative clustering and is the most common approach. 

Results of an agglomerative clustering are typically represented by a dendrogram. Each merge is 

in the agglomeration procedure is represented by a horizontal line. The y-coordinate of the 

horizontal line is the similarity of the two clusters that were merged, where entities are viewed 

as singleton clusters. In effect a dendrogram provides a direct visual representation of the 

dataset at hand and allows identification of clusters readily by eye. Still, the results of cluster 

analysis have to be evaluated carefully since all cluster algorithms tend to cluster even data 

without any structure. 

Hierarchical cluster analysis has a long history of application in biosciences (Kriventseva et al., 

2001; Zhao and Karypis, 2005; Miller et al., 2008) and has been used to classify neiu-ons based 

on electrophysiology and/or morphology (Cauli et al., 2000; Kozloski et al., 2001; Tsiola et al., 

2003; Nowak et al., 2003; Krimer et al., 2005; Benavides-Piccione et al., 2006; Garrido-

Sanabria et al., 2007; Chen et al., 2009; Helmstaedter et al., 2009a, 2009b, 2009c). 

In particular the group of Yuste have used a combination of PCA and cluster analysis to classify 

neuron morphologies (Kozloski et al., 2001; Tsiola et al., 2003; Dumitriu et al., 2007). The 

current approach was inspired by these studies. In particular Dumitriu et al. (2007) performed a 

3 step procedure. In order to remove redundant information they computed a correlation matrix 

on the original dataset and removed highly correlated (r>0.8, p<0.05) variables. Then PCA was 

used to identify relevant variables, performing PCA and extracting the factor loadings for each 

principal component. High load variables (>0.7) were then selected to perform cluster analysis 

in this reduced variable space. Starting with this procedure, I have compared different variations 

of the procedure and carefully evaluated the impact on cluster analysis results. 

After transforming the database into z-scores, a correlation matrix was calculated and variables 

that correlated significantly (r>0.8, p<0.05) with one or more other variables were excluded. 

Secondly a principal component analysis was performed either on the previously reduced 

dataset or on the original dataset. Then cluster analysis was performed on the original (z-

transformed) dataset, the manually de-correlated set, on the first 3 principal components from 

the original dataset and on the first 3 principal components of the de-correlated dataset. 

Clustering was performed by using Ward's method (Ward, 1963) using the Euclidean distances 

as similarity measure. At each stage of the agglomeration, the number of groups is reduced by 

one through merging two groups (or individuals) whose combination gives the least possible 

increase in the within-group sum of squared deviation. This is implemented through updating a 

temporary matrix of Euclidean distances between cluster centroids. 

[54] 



The cophenetic correlation coefficient was used to assess the quality of cluster analysis results 

(Rohlf and Fisher, 1968). The cophenetic correlation is computed as the correlation between the 

distances displayed in the dendrogram and the distances in the original dataset, thus quantifying 

how well a dendrogram represents the original data. With Xij = [X;- Xy |, the Euclidean 

distance between the i* and j"^ observations (feature), and tj y the dendrogrammatic distance 

between the points Tj and Tj, i.e. the height of the node at which these two points are first joined 

together, the cophenetic correlation coefficient c is given by: 

c = 
T.i<jixij - x){tij - t) 

J[i:.<;(^y-X-)'][E,<;(t,;-0'] 

Figure 3.11 shows the results of these 4 different approaches for the clustering of control 

condition electrophysiology variables (see Results). Each row in the figure depicts the result of 

one dataset, the first column showing the resulting dendrogram with the cophenetic correlation 

coefficient on the top left, the second column showing a scatter plot of the first two normalised 

principal components, and the third row depicting a bar plot showing explained variance of 

every component, including the cumulative sum (red line). 
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Figure 3.11 | Comparison of data preparation for cluster analysis 
Inputs to the clustering were: A) Raw normalised of data, B) decorrelated data, C) principal 
components 1-3 or raw data, principal components 1-3 of the decorrelated dataset. 
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In row A the complete original dataset was fed into the cluster analysis, and a PCA on the 

original dataset was computed for comparison to the other results. In row B the manually de-

correlated dataset was clustered and PCA was computed separately. In row C the first 3 

principal components of the PCA from the full dataset were clustered. In row D the first 3 

principal components of the manually de-correlated dataset were clustered. Here it seems that 

the direct clustering of principal components gives the highest correlation to the original dataset. 

Moreover, clusters seem to be more compact. Although the cluster assignment seems slightly 

counterintuitive in the scatter plot of principal components (C, 2"'' column), the additional 

information in the 3"* principal component possibly adds to the distinction of cells. Based on 

this and on the fact that selecting highly correlated variables by hand imposes some sort of 

intentional bias to the dataset, I have settled for clustering the first 3 principal components. 

Support for this procedure comes from studies that have shown that PCA itself is related to 

clustering, and selects a subspace where the optimal clustering solution lies (Ding and He, 

2004). It further increases the ratio between intra-cluster similarity and inter-cluster similarity 

and thus clustering in the reduced PCA space produces a more accurate solution than if the 

algorithm was run in the original feature space (Ding and He, 2004; Vempala and Wang, 2005; 

Andrews and Fox, 2007). 

In the obtained results pair-wise significance between individual features of established clusters 

was assessed by one-way analysis of variance (ANOVA) or paired student t-tests. 
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Results 

I have recorded 47 prefrontal deep layer pyramidal cells of which 22 cells retained a complete 

apical dendrite, as revealed by confocal imaging of Streptavidin-Alexa-488 Fluor stained cell 

morphologies. Only cells with intact morphology (especially intact apical dendrite) were 

included in the following analysis. All recordings were obtained while bath applying antagonists 

for all fast synaptic transmission receptors, AMPA-R, NMDA-R, GABAa-R and GABAb-R. All 

protocols were recorded under control conditions (only synaptic blocker), with added D2 

agonist (quinpirole, 10 nM) or added Dl agonist (SKF 39383, 50 pM), in that order. In between 

pharmacological applications 5-10 minutes were allowed to washout a previous treatment and 

simultaneously wash-in a new application. Typical recordings lasted between 35 and 50 

minutes. All data was tested for significant differences between obtained mean values of 

pharmacological conditions by independent sample t-test (p=0.05) or analysis of variance 

(ANOVA) with post-hoc Tukey-Kramer test. 

Recorded cells are first analysed based on electrophysiological properties such as the passive 

membrane time constant, input resistance and various parameters quantifying firing properties 

established by injection of ramp and step protocols in current clamp and voltage clamp mode. 

These results are fed into a cluster analysis to identify systematic differences between intrinsic 

biophysical properties of pyramidal cells. These results are discussed in the light of previously 

conducted studies. 

Next the analysis was extended to include dopaminergic modulation of biophysical properties. 

First I present an overall account for effects of dopamine receptor specific agonists by 

calculating mean effects over the whole dataset. Then dopaminergic effects are analysed based 

on cell type classification established in the previous chapter. Also, a cluster analysis including 

all dopaminergic parameters is performed. The resulting cluster properties will be analysed in 

more detail and compared to previously reported effects. 

I present the results from imaging, digital reconstruction of morphology and quantitative 

morphometric analysis of recorded pyramidal cells. These results are fed into a separate cluster 

analysis to identify quantitative morphological differences between deep layer pyramidal cells. 

Finally, I compare electrophysiological and morphological cluster and discuss the results in 

light of previous studies on biophysical and morphological properties of pyramidal cells in the 

rat PFC and will infer implications for computational properties of single cells and networks. 
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4.1 Classifying prefrontal pyramidal cells based on intrinsic 
properties 

Nineteen variables calculated from raw electrophysiology data served as a database for 

hierarchical cluster analysis. Cells were clustered solely based on their intrinsic properties in 

control condition, i.e. all fast synaptic transmission blocked. The final result of the cluster 

analysis is visualised in Figure 4.1. A dendrogram (Figure 4.1, top) shows the result of 

clustering the first 3 principal components of the dataset using Ward's method with Euclidean 

distance matrix. Every leg at the bottom of the dendrogram represents a single cell. The bottom 

left of Figure 4.1 depicts the z-scores of all 19 variables that entered the analysis in a box and 

whisker plot. This is a convenient way to visualise basic statistical properties of a dataset by 

plotting the smallest observation within the 1.5 interquartile distance (whisker left), lower 

quartile (left end of the box), median (red line), upper quartile (right end of the box), and largest 

observation within the 1.5 interquartile distance (whisker left). All values outside the upper or 

lower 1.5 interquartile distances are plotted as red crosses and might be possible outliers. 

Variables have been sorted by their respective median value in the first cluster (dark blue). The 

bottom right of Figure 4.1 depicts a colour coded matrix of all z-scores (data matrix) sorted by 

the results of the cluster analysis, where values in each row of the matrix correspond to the 

variable in the neighbouring box plot and every column corresponds to results from a single 

cell, sorted according to the dendrogram above. 

Here one can see 3 distinct clusters present in the dataset, as marked by different shades of blue 

in the dendrogram. There is a small cluster of 5 cells (dark blue) which is very compact has only 

small within cluster distances. As seen in the data matrix the cluster seems to separate well fî om 

neighbouring clusters. Figure 4.2 shows the firing patterns of cells in response to a brief 

suprathreshold current step grouped according to cluster membership. Here it becomes obvious 

that this cluster contains cells displaying burst firing and a strong AHP. Cells within this cluster 

will be referred to as intrinsically bursting (IB). 

The second cluster (medium blue) is also small (n=4) but has rather large intracluster distances 

indicating a less homogenous group of cells. Indeed when inspecting the data matrix, it seems 

that only a few variables in these cells are strongly correlated (horizontal patterns in the matrix 

indicate a strong correlation). Those are the minimum slope [I-V: min(dI/dV)] and the bump 

deepness of the voltage clamp V-I curve [I-V: bump] and the reversal potential [E(rev)]. These 

variables are very distinct when compared to the other clusters. Other variables (especially in 

the top rows of the data matrix) seem to lay in between values of the first (IB) and the third 

cluster (see below). This cluster will be referred to as intermediate (IM). 
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Here it has to be noted that cell #17 displayed rather extreme values in a few measurements, for 

example no spikes were elicited during short current steps, but behaved within range for other 

measures; hence the cell was included into the analysis. A separate cluster analysis without cell 

#17 yielded the same grouping of cells (data not shown). 

5 3 131512 22142021 1 7 1 9 5 1 6 1 1 1 9 2 18 4 7 6 8 1 0 

Cell ID 

Figure 4.1 | Cluster analysis of electrophysiology variables from control condition 
Top) Dendrogram of linkages obtained by Ward's method based on Euclidean distances between z-
scores of all cell variables. Left) Box plot of z-score transformed variables. Right) Matrix of z-
scores sorted according to the dendrogram. 

The third cluster is the largest (n=13). Cells in this cluster seem to be quite opposite in most 

parameters compared to IB cells, as easily seen in the data matrix. When examining the firing 

pattern of cells in this cluster most cells display regular spiking (RS), although some cells 

display initial doublet spikes (#'s 8,10,11). 

The factor loadings of the principal components fed into the clustering indicate which variables 

contribute to the differentiation of cells. The factor loadings represent the relative contribution 

of each variable to the respective principal component. Figure 4.3 summarises the results of the 

PCA. A biplot (Figure 4.3 A) shows individual cells (dots) in the axes spanned by the first 2 

principal components and coloured by their cluster membership. Moreover, the contributions of 

single variables to the principal components are indicated by vectors, where length and direction 

are proportional to the factor loading in each principal component. Each vector is colour coded 
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by their contribution to the first principal component. A scree plot indicates the contribution of 

each principal component to the total variance in the dataset (Figure 4.3 B). 

Ai \.:\ '\-

14 

,'AA -̂' 

20 21 

K^-A •~XJ-^^ 

_r i _ 

Figure 4.2 | Firing patterns grouped into cluster 
Cells in the IB cluster (dark blue, top), display repetitive burst and strong AHP, where as cell in the 
IM (medium blue, middle) and RS cluster (light blue, bottom) display regular spiking patterns. 
Notice that cells #20, 21, 11,8 and 10 display an initial doublet of spikes. 

The first principal component explains about 43 % of the total variance, whereas PCs 1 -3 sum 

up to 71.5% of the total variance. The contribution of each variable to PCI is presented in 

Figure 4.3 C. Here, variables with the highest magnitude (either positive of negative) contribute 

most to the explained variability. For the positive half of PCI these are notably passive 

properties, the estimated membrane time constant [TOM] and the input resistance [R(in\, but also 

the second coefficients of the square root fit for spike latency [b(ISIo)^ and steady state [b(ISIy,)']. 

The current at the minimum slope of the voltage clamp I-V curve [I(min(dV/dI))], the first 

coefficient of the square root fit for spike latency [aflSIo)] and the rheobase currents for both 

upward and downward current ramp injection [Rmp (u): rheobase, Rmp(d): rheobase]. 

contribute most to the negative half of PCI. The PCA effectively groups correlated variables 

into the same PC, thus vectors in the same quadrant indicate groups of variables with similar 

covariance that distinguish cells. 
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This becomes evident when performing separate ANOVAs on every variable, using cluster 

membership as independent variable. Table 4.1 presents the result of separate unbalanced one

way ANOVAs including a posthoc Tukey-Kramer test. 
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Figure 4.3 | Summary of PCA results 
A) Scatter plot of cell positions (dots) within the coordinate system spanned by the first 2 PCs, 
cell are coloured according to the dendrogram in Figure 4.1. Factor loading of variables is 
indicated by coloured vectors according to C. B) Scree plot of PCs. PCl-3 explain 71.5% of 
the total variance in the dataset. C) Bar plot of factor loading for variables to the first PC. 

Indeed 10 variables show highly significant effects of cluster membership. The highest 

significance (p<10-5) is displayed for the square root fit to spike latency [a,b(ISIO)] and the 

passive variable [Tau]. Slightly lower significant effects (p<10-4) are seen for [R(in)], the sag 

current [sag], the square root fit to steady state ISI [a,b(ISIco)], for maximum firing rate of a 

downward ramp [Rmp(d): max(/)], the current level at the minimum slope of the voltage clamp 

I-V curve, [I-V: I(min(dI/dV))] and the upward current ramp rheobase [Rmp(u): rheobase]. 

Moreover, the resting potential, [E(rev)], the downward rheobase [Rmp(d): rheobase], the 

minimum slope [I-V: min(dI/dV)] and the bump deepness [I-V: bump] of the voltage clamp I-V 

curve show highly significant p values (p<0.01). This shows highly significant differences 

between the established physiological subpopulations, despite the relative low numbers of cells 

per cluster. Also, this indicates that the change in spike latency in response to a series of simple 

current steps is highly indicative of the cell type at hand and could be used for fast online 

determination of pyramidal cell type. 

[61] 



V-I: a(lSIO) 

V-I: b(ISIO) 

Tau 

R(w) 

V-I: bflSIoo) 

Sag 

V-I: a(ISIoa) 

Rmp(d): max(f) 

I-V: I(min(dI/dV)) 

Rmp(u): Rheobase 

I-V: bump 
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I-V: min(dI/dV) 

E(rev) 
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Table 4,1 Mean cluster properties 

IB 

(n=5) 
7.03 ±1.14* 

-69.38 ±11.60* 

16.26 ±1.93 

57.67 ±4.95 

-24.54 ±7.09 

0.34 ±0.08 • 

2.24 ±0.42 

150.75 ±14.40* 

129.25 ±27.32 

138.29 ±24.58 

5.64 ±6.90* 

158.60 ±24.30 

-1.01 ±1.40* 

-59.60 ±2.03 

0.16 ±0.05 

1146 ±271 

0.16 ±0.11 

13.96 ±0.68 

135.21 ±21.14 

Cluster 

IIV1 
(n=4) 

4.20 ±0.82 

-45.91 ±14.86" 

20.32 ±3.76" 

70.70 ±14.87" 

-19.13 ±5.42" 

0.12 ±0.07 

1.73 ±0.40" 

61.92 ±48.06 

146.93 ±38.30" 

169.91 ±53.07" 

37.17 ±7.65" 

188.96 ±48.72' 

-5.94±1.21" 

-64.16 ±1.78" 

0.13 ±0.03 

792±116 

0.14 ±0.04 

11.58 ±4.50 

157.00 ±39.92 

RS 
(11=1.3) 

3.39 ±0.73* 

-27.50 ±7.09* 

30.03 ±4.20* 

99.10±16.10* 

-8.63 ±4.70* 

0.11 ±0.08* 

1.00 ±0.43* 

72.47 ±24.14* 

75.03 ±22.06* 

86.64 ±19.13* 

9.31 ±12.82 

120.04 ±16.67 

-1.42 ±2.06 

-58.08 ±3.22 

0.10 ±0.04 

992 ±314 

0.20 ±0.06 

14.57 ±3.65 

126.56 ±51.90 

ANOVA 

F(2,19) 

28.34 

27.87 

24.91 

15.48 

14.98 

14.77 

14.68 

13.59 

12.64 

12.56 

10.12 

9.74 

9.51 

6.4 

3.35 

1.55 

1.03 

1.02 

0.62 

P 

0.000002 

0.000002 

0.000005 

0.0001 

0.0001 

0.0001 

0.0001 

0.0002 

0.0003 

0.0003 

0.001 

0.001 

0.001 

0.007 

0.056 

0.24 

0.38 

0.38 

0.54 

Unequal sample size ANOVA with post hoc Tukey-Kramer test: 
• IB vs. IM, • IM vs. RS, ARS vs. IB 

In order to distinguish RS and IM cells the most informative parameters are \Tau\, \R(m)'\ and 

the steady state measures [a(ISIx). bflSIa,)], whereas for the distinction of IB cells one would 

mostly rely on the presence of a sag current [sag], and parameters from the voltage clamp I-V 

curve, in particular [I-V: bump]. 

To evaluate the impact of single variables on the clustering results I have performed a "leave-

one-out"-type analysis. By performing the same analysis routine on a dataset where selected 

variables have been excluded, one can infer the robustness of the obtained cluster solutions. 

I have selected 5 variables that were, based on the results from the ANOVA, either significantly 

different between all cell groups [V-I: b(ISIo)], significantly different between IB and RS cells 
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[Sag], significantly different between IM and RS cells [I-V: l(min(dI/dV))], significantly 

different between IM and IB cells [I-V: bump], or not significantly different between groups 

[Rmp(u): max(f)]. 

• full datasel 
- [V-J: b{ISI0)3 

• - [Sag] 
l H - [I-V l( nnn(dl/(JV) )1 

- [I-V bumpl 
- [Rmp(j) f(max)] 

(J 0 
n. 

- ^ • 

* • • 
.• JT 

' ' ^ 
• ^ ^ 

B 
full dataset 

- [V-i b[iSIO)] 

- [Sag] 

• [I-V l( min(ai('dV))] 

- [I-V bump] 

- [Ritip{u) l(max!] 

0 
PC 1 

5 16 4 6 9 1 18 2 7 B 10 11 19 3 13 15 22 12 14 20 21 17 
Cell ID 

Figure 4.4 | Leave-one-out analysis 
A) Cell positions in principal component axes and results of repeated HCAs (indicated by 
color) wilh ihe full dalasei (full circles) and datasets without selecled variables (see text for 
details. B) Comparison of cluster solutions &om reduced dalasets to tuU datasel. Colour codes 
are same as in Figure 4.3, 

Each of these selected variables was removed from the dataset, and the reduced dataset 

subjected to the very same routine of PCA/HCA. as described above. The results were then 

compared to the results obtained with the full dataset. Figure 4.4 shows the cluster results 

obtained for different reduced datasets. Overall the cluster results are very robust against 

deletion of single variables from the datasel. All obtained cluster solutions occupy a narrowly 

dcfmcd area in a scatter plot of cells in principal components (Figure 4.4A) and are very similar 

to the solution obtained using the fiill dataset. I plotted the cluster membership for each cell in 

each cluster solution in a colour coded table (Figure 4.4B). Here it becomes obvious that all 

solutions, apart from one arc indeed identical. Only when removing [I-V: bump] is one cell, 

otherwise classified as RS celi, included in the IM cluster. Since [I-V: bump] is one of the most 

characteristic variables for IM cells, this seems to reduce the distance between the centre of 
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mass of the IM cluster and that particular RS cell (ID#16), so that it gets included into the IM 

cell cluster. On the one hand, this shows that IM cells are closer to RS cells in their intrinsic 

parameter set, as can be readily seen by their distance to the RS cluster compared to the IB 

cluster. Moreover, since the number of IM cells is quite small, one can raise reasonable doubt 

whether IM cells do indeed form a separate cluster or are instead just extreme variants of RS-

like celts. The current analysis suggests that IM cells do have particular properties that 

distinguish them well from RS cells (i.e. the rather large "bump" in the steady state voltage 

clamp IV curve), but only a larger database of recorded cells could provide final evidence. 

In summary, RS type cells show higher mean membrane time constant [Tau = 30.03 ±4.20 ms], 

a lower sag current indicator [sag = 0.11 ±0.08 mV] and a higher mean input resistance, [Rfin) 

= 99.I0±16.I0Ma]. 

RS dusler. Gel ID=1 

02 ti.« oa 0.8 1 
TrfnB (sec) 

Figure 4.5 | Raw 
membrane 
voltage traces for 
an example RS 
cel l ( ID#l) . 

Notice the long 
spike latency for 
the low intensity 
step as quanlitied 
by the variables 
a(l/ISIo),and 
b(l/ISIu). 

Figure 4.5 shows raw membrane voltage traces from selected brief (1.5 s) current step injections 

in one from the RS cluster. Here no bursting is observed, the cell emits only single spikes, a 

classic RS cell. In these cells the current value at the inflection point for the voltage clamp V-I 

curve is lower, with a mean of [I-V: [( mm(dI/dV) ) =75.03 ±22.06 pA], For both ramp 

injections, increasing and decreasing, rhcobase currents were lower with means of [Rmp(u): 

Rheobase = 86.64 =19.13 pA] and [Rmp(d): Rheobase 120.04 ±16.67 pA], respectively. Also, 

the maximal instantaneous firing rate evoked by a decreasing ramp was on average lower 

[Rmp(d): maxfj) = 72.47 ±24.14 Hz]. When looking at measures extracted from the long current 

step injection, RS cells showed lower coefficients \_ailSI,,) - 3.39 =t0.73. u(IS]-J = 1.00 ±0.43], 

but higher values for the y-axis mtercept [bflSIp) = -27.50 ±7.09. bflSIJ = -8.63 ±4.70]. These 

values indicate a flatter fit to the 1ST curve over different current steps, i.e. cells exhibit a smaller 

range of firing frequencies. 

[64] 

file:///_ailSI


In contrast, IB cells seem to have mostly opposite properties to RS cells. Figure 4.6 shows mw 

voltage membrane traces in response to selected brief current step stimulation from an example 

IB cell. Notice the repetitive bursting at lower stimulation intensities, whereas regular sp,kmg 

occurs after an initial bui^t at high stimulation intensmcs. Here the strong after depolarisation 

(ADP). on top of which addinonal spikes during a burst occur, is clearly visible. Also, these 

cells display rather strong after-hyperpolarisation (AHP) in between bursts, when compared to 

RS cells (Figure 4.5). CeUs in the IB cluster have a lower mcmbiBue time constant [Tau =16.26 

±1.93 ms], a higher sag component [Sag = 0.34 ±0.08 mV] but a lower input resistance [R(m) ^ 

57.67 ±4.95 Mfi]. In terms of excitability IB cells exhibit a shaUower V-T curve [I-V: bump-

5.64 :.6.90 pA] and the curve is shifted slightly to higher currents [I-V.- Umin(dI/dlO) - 129.25 

±27.32 pA] compared to RS cells. They have higher rheobase currents [Rmp (u): rheobase = 

138,29 ±24.58 pA], bui the maximum instantaneous firing nilc obtained from a decreasing r^mp 

protocol is much higher [Rmp<u>: max 0 = 150.75 ^14.40 Hz], which is a reHection of burs, 

firing. Furthermore, bursting cells show higher coefficients but lower y-iniercepts for both sp.ke 

latency [V-J: ailSl^Mm ±1.14, V-l: /,</5/„V^69.38 ±11.60], and steady state FR [V-l: a(ISM 

- 2.24 ±0.42, V-l: b(JSI^) = -24.54 ±7.09]. which is opposite to ceUs in the RS cluster. 

lBc*jsler,CeSlD^15 Figure 4.6 ] Raw 
membrane voltage 
traces Tor an example 
]BGell(IU#15>. 

Notice the repealed 
occurrences of bursts 
ailhe 175 pA current 
siep. Also, ihe first 
spike (hursi) occurs at 
much higher stimulus 
inlensiiies (as 
quantified by the 
riieobase current), 
when compared lo RS 
cells. 

Tima{»c) 

Cells in the 3^ cluster seem lo have properties of both RS and IB cells and hence have been 

termed btermediate (IM). Figure 4.7 shows raw voltage membrane traces in response to 

selected brief current step stimulation from an example IM cell. This particular cell responds 

with an initial spike doublet to current step stimulation, but then switches into repetitive single 

spike firing mode. No. all IM cells show the initial doublet, and some cells in the RS cluster 

show an imtia! doublet as well. IM cells have literally intermediate values for certain 

parameters, i.e. for mean membrane time constant [Ta^ = 20.32 ±3.76 ms], input resistance 
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[Rfin) = 70.70 ±14.87 Mii], and for the coefficient and y-intercept of root square fits to spike 

latency [a(lSl„) = 4.20 ±0.82, b(lSl„) - -45.91 ±14.86] and steady state FR [a(ISIJ = 1.73 

==0.40, h{IShJ = -19.13 ±5.42]. Interestingly, for other parameters these cells seem to be either 

more IB-like or more RS-like. The sag component has a similar low value as in RS cells [sag = 

0.12 ±0.07 mV], but rheobase currents are on average higher than those for bursting cells 

[Rmp(u): rheobase = 169.91 ±53.07 pA; Rmp(d): rheobase - 188.96 ±48.72 pA] and maximum 

firing rates during ramps are lower than for RS cells [Rmp(d): max(f) = 61.92 ±48.06 Hz]. In 

their voltage clamp 1-V curve these cells have a very pronounced kink [I-V: bump = 29.03 

±12.10 mV], but the curve is shifted to higher current values [I-V; !<mm(dl/dV)) = 146,93 

±38.30 pA]. 

IM duster Cel ID=21 

rim» (Eftc] 

Figure 4.7 | 
Kan membrane 
voltage traces 
Tor an example 
IMcell(ID#21). 

Note the iniliai 
doublet in 
response to step 
stimulation. This 
cell shows a 
small ADP. little 
AHP and very 
regular spiking 
after the initial 
spike doublet. 

Input -output functions of established cell groups 

These significant differences reflect how cells in different cluster respond to input. Figure 4,8 

shows the mean Jnput-output functions for each cluster derived for 3 different stimulation 

protocols probing excitability, i.e. current ramps, voltage clamp steps and long current steps, 

where each protocol presents different aspects of input-output relations. For the voltage clamp 

steps the mean 1-V curves summarise behaviour of the total membrane current at different 

voltages on a relatively long time scale (800-1000 ms), which is well in the steady state for most 

intrinsic membrane conductances (Figure 4.8 A). RS cells have a less steep sub-zero 1-V 

relation; the curve is more N-shaped and reaches smaller total membrane currents. In contrast, 

IB cells have steeper sub zero I-V relation, the ciu-ve is less N-shaped, greater total membrane 

currents are reached, the upper part of the curve, above the zero crossing, is shifted towards 

higher currents compared to RS cells. IM cells have an intermediate sub-zero I-V relation, with 
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a very strong N-shapie. Their curve is more IB-like near threshold, but reaches smaller total 

membrane currents (RS-like). 

For both upward and downward ramp injection (Figure 4.8 Bl. B2). the firing rate was binned 

over 0.5 second bins (9 seconds in total) and plotted against the average current during ramp 

injection (for ease of readability the curreol axis for the downward ramp was reversed in Bl). 

For RS cells this ramp f-I curve had a lower onset (rheobase) and was shifted towards lower 

currents compared to IB and IM cells. Also, RS cell achieve higher average firing rates 

compared to IB cells in this protocol (as opposed to the instantaneous firing rates discussed 

above). IB and IM cells have a higher onset (rheobase), where IB cells reach higher firing rates 

during strong stimulation compared to IM cells. 
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Figure 4.8 | Average input-output functions for each cluster 
A) Mean voltage clamp I-V curves. B) Mean t-I curves for upward (Bl) and downward (B2) ramp 
injeciion. Note the reversed x-axis in B2. C) Steady state f-1 curves (CI) and mean square root fit to 
1/ISloand 1/ISU(C2) from long current step stimulation. Error bars indicate SEM. 

The steady state f-I curve based on long current injections (Figure 4.8 CI) points to differences 

in the steady state behaviour of the ceil groups. IB cells have a similar ramp f-I curve, a higher 

onset of the f-I curve and a higher slope (gain). lu contrast, RS type cells have lower onset, IM 

cells behave more IB-like for low intensity input, but might have slightly lower gain. 

The mean square root fits to 1/TSI for different input strengths illustrate both transient (1/iSlf,) 

and steady state (l/ISI:^) output (Figure 4.8 C2). This is mainly useful for depicting the degree 

of accommodation. Here IB cells fu-e a fast action potential in fast response to (relatively strong) 
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incoming input (lower spike latency) and show higher firing rates in the steady state as shown in 

the steady stale f-I curve. On first view IB cells seem to show large accommodation from very 

high to rather low firing rates in steady state, but analysis of the second and third ISI (Figure 

4.9) shows that the following ISIs are very close to the steady state response, hence IB cells 

show little or no accommodation. Indeed, consecutive TSI are shorter compared to previous 

ones, that is, later spikes fire at a higher frequency than earlier ones. Compared to IB cells, 

spiking of RS cells occupies a wide range of frequencies, mainly due to varying levels of 

accommodation. 1/ISI curves are distributed evenly, with stronger accommodation after the 

initial spike. The response to input is much slower in RS cells (probably due to a slowly 

inactivating potassium current 1̂ ), but are more sensitive to weak input. IM cells need stronger 

inputs, but seem to display moderate but fast accommodation. 
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Figure 4.9 | Average square root (It for each cluster 
Mean square root fits for 1/lSIO, 1,2, *, for long ciurent step stimulation. Note the increase in iFR 
towards the steady state in IB cells. 

Discussion 

In conclusion the current analysis identified 3 distinct cluster of deep layer pyramidal cell in a 

parameter space spanned by intrinsic biophysical properties. These cluster arc in good 

agreement with previously reported 'cell types' in the rat PFC (Kawaguchi, 1993; Yang et al.. 

1996; Degenctais et al.. 2002; Morishima and Kawaguchi, 2006: Otsuka and Kawaguchi. 2008) 

and other cortical areas (Connors et al., 1982; McCormick et al., 1985; Coimors and Gutnick, 

1990; Larkman and Mason, 1990). 

One of the earliest accounts of discrete cell types in the PFC comes from Kawaguchi (1993). 

They differentiated deep layer pyramidal cells into a high and a low input resistance group. The 

low resistance group seemed to display initial bursts but also moderate firing rate adaptation, 

whereas the high input resistance group showed fast adaptation. They did not report mtrinsically 

bursting cells, as reported in other cortical areas at the time (Connors et al., 1982; McCormick et 
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al., 1985; Connors and Gutnick, 1990), but this might be due to recording in slices from young 

rats (P<26) and recording at room temperature, 

Tn contrast. Yang et al. fl996) observed bursting cells in rat prefrontal slices. In fact they stated 

IB cells were the main type of pyramidal cells in the rat PFC. This could be partially explained 

by differences in recording techniques ('sharp' intracellular recording at 34° C), but more 

importantly they used different criteria for defining RS and IB cells. Their RS cells are very fast 

adapting, showing a strong fast AHP, and sodium dependent subthreshold oscillations. Their IB 

cells made up 64% of all recorded neurons and displayed an initial spike doublet but then 

changed into a regular spiking pattern (sometimes referred to as phasic-tonic firing cells). The 

key feature they used to distinguish IB cell from RS cells was a calcium dcpcndcnl depolarising 

afterpotential (DAP or ADP). Interestingly, these IB cells had a similar input resistance and 

membrane time constant compared to their 'RS' cells. They also described one other ceil type, 

rhythmic oscillatory bursting cells (ROB), which fired repeated bursts to low intensity 

stimulation but changed to initial burst and regular firing at higher intensities. These cells had 

significantly lower input resistance and a very strong sag component. 

Recently Otsuka and Kawaguchi (2008) classified cells as either slowly adapting, slowly 

adapting with a spike doublet or as fast adapting. They did not report any bursting cells, which 

could be due to recording at 30°C. 

An intracellular recording study performed in anaesthetised animals in vivo (Degenetais et al., 

2002) has adopted a similar scheme to classify prefrontal deep layer pyramidal cells. They 

divide RS cells into slow adapting RS and fast adapting RS and together these made up 70% of 

recorded cells. Slow adapting cells are further divided into cells with doublet and without, 

where cells with doublets showed no adaptation during steady state firing, RS cells without a 

doublet showed no ADP but adaptation well beyond the initial 2-3 spikes. Their IB cells have 

low input resistance, strong ADP and strong medium AHP (similar to non-inactivating bursting 

cells in Connors ei al,, 1982), They displayed multiple bursts upon low intensity stimulation but 

RS-likc pattern for strong stimulation. 

In relation to these previous studies the results of the current analysis confirm these qualitative 

reports, TTic RS cluster in the current analysis correlates to the high input resistance group of 

Kawaguchi (1993). the RS and IB type of Yang et al, (1996). and to the RS type of Degenetais 

et al. (2002). The IB cluster of the current analysis relates to the low input resistance of 

Kawaguchi (1993), the ROB type of Yang el al. (1996) and the IB type of Degenctais (2002). 

Indeed the current analysis suggests that doublet firing and non-doublet firing cells arc very 

much alike in terms of intrinsic properties, as they were not distinguished into distinct cluster; 

hence the nomenclature of Degenetais et al. seems more appropriate and has been adopted here. 
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All these studies have reported qualitative morphological properties in addition to physiology; 

these will be discussed in the context of the results presented in the following chapters. IM cells 

might form a distinct third cluster. Yang ct al. (1996) have also described iM type cells in 

prefrontal slices. They constituted only 4% of recorded cells, and their intrinsic properties were 

reported to be inbetween RS and IB cells, very much like the IM cells described in the current 

study. 

The emphasis in the current analysis lies less on actual firing patterns, as these can be 

influenced by a variety of factors (Sleriade, 2004), but more on capturing a wide range of 

intrinsic parameters and also functional input-output relationships. For example, there is good 

evidence for dendritic input promoting bursting in all types of pyramidal cells, especially 

through a combination of back propagating action potentials and evoked dendritic calcium 

plateaus (Larkumetal., 1999, 2001; Williams and Stuart, 1999), 

To this end, I have focussed on the difference in intrinsic properties as measured from a variety 

of stimulation protocols. These differences in intrinsic properties manifest as differences in 

input-output functions of the obtained cell classes. RS cells respond to smaller inputs (lower 

rhcobase) but can reach high firing rates upon ramp stimulation. In steady state they reach much 

lower firing rates compared to bursting cells, enabling them to encode a wider range of input 

strengths (at low input intensities). In opposition, IB cells need stronger input to be activated 

{higher rheobase) but can maintain much higher firing rates in their steady state. 

One interesting etTect seen in the input-output functions is hysteresis of firing rate changes, 

when comparing upward and downward current ramp injections (figure 4.8 B). Hysteresis 

means that identical current levels during an upward ramp result in higher firing rates than 

during downward ramp stimulation. This can be easily seen in the rheobase: rheobase currents 

for upward ramps are always smaller than rheobase currents for downward ramp injection. This 

hysteresis has been observed in all cell types and is most likely due to inactivated sodium 

currents after initial strong stimulation during the downward ramp. Here hysteresis is clockwise, 

as described in pyramidal cells before (Calvin and Sypert. 1976) as opposed to counter

clockwise hysteresis in firing rate seen in alpha-motor neurons (Hounsgaard ct al., 1988). The 

implications of this hysteresis on information processing in cortical neurons have received little 

attention so far. The transition from resting to spiking and vice versa indicate dynamical 

properties of neurons (Izhikevich, 2007), but this would need further investigation and is 

beyond the current study. 

Only a few studies systematically investigated the influence of intrinsic properties on input-

output flinctions of cortical pyramidal cells. One apparent difference between IS and RS cells is 

the increased adaptation found in RS cells. Adaptation has been studied extensively through 
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experimental and theoretical work to determine its importance for neural coding. I( has been 

suggested to implement temporal masking of subsequent stimuli (Wang. 1998). may correlate to 

contrast adaptation in the visual cortex (Sanchez-Vives et al.. 2000), remove temporal 

correlations from input streams (Wang et al., 2003), imptemeni a high pass filter (Benda ct al., 

2005) or stabilise network oscillations {Crook ct al., 1998; Fuhrmann et al., 2002). 

One recent study by Prescott and Sejnowski (2008) examined how different types of adaptation 

influence coding mechanisms in pyramidal cells. They found that adaptation induced by a low 

threshold activated persistent potassium currenl (1M) enhances the firing of independent, reliable 

single spikes in a close-to-threshold regime. Hence ihe combination of subthreshold oscillations 

and specific adaptation mechanisms might provide RS cells with the possibility to resonate with 

ongoing population oscillations, but also to encode information by reliable spike patterns rather 

than mean firing rates, as implicated by inlcgratc-and-fire models (La Camera et al., 2008). 

Another recent study investigated the influence of slow AHP on the input-output function of 

cortical cells (Higgs et al., 2006). They demonstrated thai the amount of slow AHP in pyramidal 

cells determines the gain modulation seen through synaptic noise. Pyramidal cells with strong 

adaptation are more susceptible to gain increase through increased synaptic noise than non-

adapting cells. Thus RS cells in this study (showing greater adaptation) are more likely to be 

gain modulated by synaptic inputs than IB cells (with little adaption). Since non-adapting cells 

are less prone to gain changes through synaptic noise they might be better suited for temporal 

integration, whereas adapting pyramidal cells change from integration to differentiation of 

inputs with increasing synaptic noise (Higgs et al.. 2006), 

Influence of in vivo like conditions 

Since all data in this study was collected with synaptic transmission blocked, one key question 

is how these cell types react to incoming input, when faced with constant background synaptic 

bombardment foimd in vivo. Background synaptic activity puts single neurons into a "high-

conductance slate' that profoundly differs from the in vitro situation (Dcstexhe et al.. 2003). 

Various studies have examined the influence of synaptic input on input-output relationships, 

with sometimes conflicting results. Dendritic input has been shown to both increase (Fcllous et 

at.. 2003: Larkum et al., 2004) and decrease Chance et al. (2002) the gain of input-output 

functions. For example Chance et al. (2002) used dynamic clamp as an in vitro model of ;>i vivo-

likc synaptic input, and found a gain reduction (reducing the slope of the f-I curve) in 

somatosensory cortical neurons through increased variance in balanced excitatory-inhibitory 

background noise. In contrast, Fellous et al. (2003) used a similar approach in prefrontal areas 

and observed a gain increase through variance. Interestingly, the f-1 curves differed between the 
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two areas, Fcllous et al. found a more sigmoid input-output function (much like the RS function 

observed in this study) compared to a more steeper, more second-order polynomial f-i curve 

that included a 'hard threshold' observed by Chance et al., which might point to differences in 

excitability seen here between RS and IB cells. 

It would be interesting to repeat similar in vitro experiments for both RS and IB cells and see 

how they difter in integrating inputs under these in vivo like conditions. Surprisingly few studies 

have addressed pyramidal cell type (bursting v regular spiking) specific integration of synaptic 

inputs. One notable exception is a recent study by Otte et al. (2010), where cell type specific 

response to gamma frequency input was investigated in vitro. They have found a striking 

difference in sensitivity to oscillatory input between bursting and non-bursting deep layer 

pyramidal cells in the somatosensory cortex of mice. Regular spiking neurons show a strong 

increase in firing rate when somatic stimulation contains larger amplitude sinusoidal 

components, whereas bursting cells are largely insensitive to change in sinusoidal input 

amplitude variations. Yet, through increasing synaptic noise in the stimulation, bursting cells 

can be pushed into a regime where their output rates faithfiilly reflect the level synchrony in 

received input (i.e. the amplitude of the sinusoidal input component). 

This demonstrates that the interplay of intrinsic biophysical properties and synaptic input 

critically shape input-output functions of pyramidal cells. Indeed the modifications of input-

output functions can be used to implement complex computational operations. Gain shifts along 

the input strength axis can implement sublractivc and additive computations, whereas gain 

increase or decrease can implement multiplicative/divisive computations (Silver. 2010). A 

recent study showed how manipulation of input-output functions in cortical networks can be 

exploited to implement stimulus discrimination during working memory. Through stimulus 

dependent shaping of input-output functions of neuronal populations. Machens et al. (2005) 

implemented a single network model that can both maintain working memory and compare 

stimulus properties by entering a 'line attractor' state. This line attraetor critically depends on 

the similarity between input-output fimction of different encoding populations. Since input-

output functions can be readily modulated through intrinsic plasticity (Cudmore and Turrigiano. 

2004), synaptic inputs (Chance et al.. 2002: Fetlous et al., 2003: Higgs et al., 2006) and 

neuromodulation (see below), a dynamic task dependent modulation of input-output functions is 

well conceivable. Thus, further examination of input-output functions of cortical cells promises 

to provide more insight into fundamental computational properties of ncocortical neurons. 

In summary, a complicated interaction between intrinsic, dendritic and synaptic factors 

determines the input-output behaviour of pyramidal cells. In the following section, I will look at 

modulation of these mput-output relations through dopaminergic receptor agonists. 
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4.2 Dopaminergic modulation of biophysical properties of deep 
layer pyramidal cells 

Here I present the effects of applying selective dopamine receptor agonists SKf 39383 {DI 

receptor agonist) and quinpirole (D2 receptor agonist) on the intrinsic properties described 

above. These cells present only a subset {n=18) of the control datasci, since not all cells 

displayed stable patch clamp conditions until the end of the pharmacological stimulation. 

First I will present an overview over the mean effects of dopaminergic stimulation, including a 

brief discussion of cell type specific effects. The results obtained from dopaminergic stimulation 

were analysed in a separate cluster analysis to reveal dopamine receptive subgroups, without 

any bias from previous classifications. 

Overall effects of DA agonists 

There were only few significanl effects of dopamine receptor agonists on the measured 

variables. Table 4.2 shows the mean values for all cells for control (C), SKF39383 (DI) and 

quinpirole (D2) condition. All significant differences reported here are marked in the tabic and 

arc based on separate one-way ANOVAs including post-hoc Tukey-Kramer test for multiple 

comparison (p<0.05). Application of either DI or D2 agonist docs not affect the affect the time 

constant [lau. C: 24.39 ±7.35 ms, DI; 25.53 ±6.57 ms, D2: 24.76 ±7.38 ms], the sag estimate 

[sag, C: 0.17±0.13 mV, Dl: 0.22±0.18 mV, D2: 0.20±0.16 mV], the input resistance [R(in). C: 

85±24.07 Mil, Dl: 90.85±27.7I Mil, D2:83.78i25.85 Mil] or the reversal potential [E(re\'). C: 

-60.09 ±2.78 mV, Dl: -57.89 ±3.54 mV, D2: -59.32 ±4.32 mV]. 

A significant change occurs for the current value at the minimum slope of the voltage clamp I-V 

curve al\cr Dl stimulation {/fmin(JV/df)). Dl: 69.16±32.08 pA] compared to control conditions 

[I(min(dV/dl)). C: I02,85±43.94 pA]. Dl seems to shift the V-I curve towards lower current 

values, effectively increasing excitability. 

Dl agonist application significantly reduced both the upward rheobase current values [Rmp (u): 

rheobase: C: 117.70 ^47.02 pA. Dl; 80.89 =31.86 pA. D2; 102.60 ^55.51 nA] and the 

downward ramp rheobasc [Rmp (d): rheobase: C; 146.87 =39.91 pA. Dl; 109.51 :t27.32 pA, 

D2; 140.31 3i55.62 nA], whereas the D2 agonist had no significant effect. Also, neither a Dl nor 

a D2 agonist has a significant effect on the maximum firing rate during an upward ramp 

injection [Rmpfti): max 0. C: 13.86 ±3.57. Dl: 14.57 ±2.88. D2; 14.32 ±4.31 Hz]. But in the 

case of a downward ramp injection, both application of either Dl or D2 receptor agonist reduces 

the maximally evoked firing rale significantly [Rmp(d): max 0. C; 92.52 ±46.39 Hz, Dl: 59.93 

±32.7 Hz, D2; 63.14 ±33.74 Hz]. 
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Table 4.2 Mean effects of dopamine receptor agonists. 

Tau 

Sag 

/t/ifi> 

EIrev) 

I-V: mm<dV'/dl) 

I-V: Iiminidy/dl)) 

I'V: bump 

I-V: mtaO) 

Rmp (u/: rheobase 

Rmp (d): rheobase 

Rmpfu): maxifi 

Rmpid) max(f) 

V-l: max(dl/dV) 

V-l: onset 

V-l: aflSy 

V-l: b(IS!.J 

V-l- a(lSU 

V-J: hdS/j 

V-l CV 

Control 

24.39 ±7.35 

0.i7±0.I3 

85.03 ±24.07 

-60.09 ±2.78 

-2.25 ±2 J6 

102.85 ±43.94 

12.71 ±12.72 

1051.24 ±287.76 

117.70 ±47.02 

146.87 ±39.91 

13,86 i3.57 

92.52 ±46.39 

0.11 ±0.05 

II8-66 ±39.64 

4.67 ±1.74 

-43.21 ±20.91 

1.43 ±0.70 

-14.25 ±« .29 

0.18 ±0.08 

Dl 

25.53 ±6.57 

0.22 ±0.18 

90.85 ±27,71 

-57.89 ±3.54 

-2.24 ±3,23 

69.16 ±32.08* 

I1.77±16.67 

930.00 ±327.48 

80.89 ±31.86* 

109.51 ±27J2 * 

14.57 ±2.88 

59.93 ±32.71 * 

0.11 ±0.05 

100.83 ±32.99 

4.54 ±1.73 

-37,34±16-24 

0.99 ±0.54 • 

-735 ±6.42 " 

0.22*0.13 

D2 

24.76 ±7.38 

0.20 ±0.16 

83,78 ±25.85 

-59.32 ±4.32 

-1.15 ±2.65 

91.65 ±46.99 

5.85 ±13.24 

964.46 ±382,40 

102.60 i55.5I& 

140J1 ±55.62#.& 

14.32 ±4.31 

63.14 ±33.74 * 

0.12 ±0.04 

120.03 ±45.70 

5.27 ±2.05 

-49J1 ±27J4& 

1.43 ±0.93& 

-13.69 ±12.19& 

0.22 ±0.13 

• significant difference lo Control (two tailed t test, p<0.05), # significant ditTerence of Dl against 
D2 (two tailed t lest. p<0.05). & significant difference in variance Dl against D2 (two tailed F-tesl 
p<0.05). Sec Methods for appropriate units. 

Dopaminergic agonists had little effect on the measured parameters during long current ramp 

injection. The Dl agonist decreased the coefficient [V-I: a(ISIJ C: 1.43 ±0.70. Dl ; 0.99±0.54, 

D2: 1.43±0.93] and the y-intcrcept [V-l: b(lSIJ, C:-14.25±9.29. Dl>7.35±6.42, D2: -13.69 

±12.19] of the square root fit to the steady state 1ST. Therefore a D1 agonist reduces the steady 

state firing rate as the square root fit is less steep for the D1 condition. 

To briefly summarise, when looking at the average across all cells recorded with Dl and D2 

agonist, there are 6 significant changes in variables induced by Dl receptor agonist and 1 

significant change induced by a D2 receptor agonist. 

Bath application of a Dl receptor agonist significantiy reduced the current value at which the 

minimum slope occurred in the voltage clamp V-I curve. It significantly reduced both rheobase 

currents (increasing and decreasing ramp), but also decreased the maximum firing rate evoked 
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through a decreasing ramp and significantly reduced both parameters of the square root fit for 

the steady state ISI. 

This shows that dopamine receptor activation has significant effects across different subtypes of 

deep layer pyramidal cells, but they depend on the stimulation protocol. Dl receptor activation 

increases excitability for a slow increase in excitatory input (during a slow upward current 

ramp). In contrast, the response to sudden and strong excitatory drive (downward current ramp) 

is reduced and the transition from spiking to rest (rhcobase, down) is shifted towards lower 

currents. Furthermore, activity towards the steady state seems to be reduced as well as both 

coefficients for the square root fit of ISI intervals are significantly reduced. 

D2 receptor activation shows only one significant effect, it reduces the maximally evoked firing 

rate for a downward ramp, which is identical to the DI effect. 

ICznrDi 

Figure 4.10 | Summary of overall DA agonist effects 
Six variables show significiuii eftecis of either Dl (red) or D2 (green) agonist application 
compareii lo control condilion (black), when averaged across all recorded cells. *two tailed 
independent sample SnjdenI lesl (p<0.05) 

Analysis based on control condilion cluster 

In order lo recognise possible cell type specific effects 1 have reanalysed the data through a 

series of one-way ANOVAs using cluster assignments obtained from the control dataset as 

mdcpendent variables (Table 4.3). Only cells with all protocols recorded during Dl and D2 

agonist application were included (n=18). For RS cells (n=8) Dl decreases maximum firing rate 

for a decreasing ramp significantly (untsjual sample size 1-way ANOVA, with post hoc Tukey-

Kramer test, p<0.05). For the IB cells (n=5) six significant effects remain. In IB cells Dl 

stimulation increases the membrane time constant and the maximum firing rate for an increasing 

current ramp injection, bul reduces the minimum slope of the voltage damp V-1 curve, the 

rheobasc current for both increasing and decreasing current ramp injection, and the maximum 

frequency for a decreasing current ramp injection (Table 4.3). Surprisingly, the effects of Dl 
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and D2 receptor activation seem to be similar for most of these variables (with exception of the 

time constant and the downward rheobase current). 

There are no significant effects of dopamine receptor agonists on the IM cell type cluster. 

A more detailed look at Dl and D2 effects reveals that some responses for Dl and D2 receptors 

can be very heterogeneous across different celts. Figure 4.11 depicts values for four selected 

variables and the effect of dopamine receptor agonists. Here two characteristics of the voltage 

clamp based I-V curve (minimum slope and bump height) show quite heterogeneous changes 

after dopamine receptor apphcation. Especially for the bump height Dt or D2 agonist induces 

either increase and decrease in the bump height. Although the means [I-V: bump, C: 12.71 

±12.72 pA, Dl: 11.77 ±16.67 pA, D2, 5.85 ±13.24 pA], which arc indicated as bar? in Figure 

4.11, are not significantly different. Instead all variables show rather large standard derivations, 

as seen in the spread of points. In contrast, other variables, for example the coefficient and y-

intercept for the square root fit of the spike latency, show rather homogenous effects. Due to the 

large heterogeneity of some variables, I sought to assess receptor specific effects through a 

separate PCA/HCA analysis that included Dl and D2 modulated variables into the database. 
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Figure 4.11 | In homogeneous effects of dopamine receptor stimulation 
Top) DA agonisl application can have heterogeneous effects on variables: e.g. the current of the 
maximum slope [I-V: limaxidl/dV>)'\ (lop left) and the bump heighl [/-('. hump] (lop, right) 
measured from the voltage clamp [-V curve. 
Bottom) DA agonisl application can al.so have homogenous effects on other variables: e.g. both 
constants of the square rooi fti lo spike latency [adSln). hllShj]. Note the clustering of conU-ol 
values. 
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Table 4 3 DA effects in cootrol cluster 

IB IM RS 

Conirol Dl D2 Control Dl D2 Control Dl D2 

Tau 16^6 20.19* 11.91 19.87* 25.06 33.i7 29.BU* 28 J 3 28.5 

Sag 

Rtin) 

E(rei-) 

l-V: max 

1-V:l(max 
(dV/dl)) 

0 3 4 * 0.46 0.39 0.13' 

l-y.bvmp 5.64" 

0.21 0.22 0,1 0.[ 

1.89 

0.09 

57.67 59.18 58.74 69.53* 82.76 72,99 103.36* 109.1 99.54 

-59.60* -57.11 -57.79 -64.09 -58.32 -63,26 -59.15' -58.14 -58.91 

-1.01* -0J8 -0.53 -6,28 -5.74 -5.16 -1.67* -2.12 -0.25 

129.35 St.S4* 88.11 • 154 80* 79.23 123.67 74 56* 59.8 83.81 

2.64 33.27 31.15 25.76 10,07* 10.9 1.48 

/4':matrl) 1146,62 988,79 990.12 848.43 741.54 754.65 1064.39 957.14 1014.57 

Ump til): 
rheiifujse 

Rmp (d): 
rhcobase 

Rmp(u). 
max if) 

Rmpdl): 
max0 

V-l 
maxidVldl) 

138.29 B9.90* 96.26' 182J!6* 109.04 139,52 88.03 * 67.94 94.69 

158.6 I14J0* 121J!5 205.82 134.04 167,17 133,31* 99,75 141,78 

13.96 I6J1O* 16.26* 9.23 (3.25 12J9 15.20' 14 

0-16 0-17 0,15 0,1 : 0,12 0 12 0.09 D.OS 

13,93 

150,75* 99.09* 95.27* 44.79* 62,91 63-64 77,73 39.46 • 46.93^ 

0,1 

V-L onset 135.21 119.72 119,71 167,14 142,75 149,22 111.92 89.06 129-96 

V-l:a(tSIJ 7,03* 6.97 7_S2 4J6' 4.1 4.B7 J.53 3 47 4_26 

y-/:h(IStj -69,38 -59,33 -66,75 -51,09* -39,7 -19,49 -27,75* -25,64 -40,53 

y-i: 

aOSlcBj 

V-l CV 

224 

0.16 

1,55 

0,2 

2,3 1,55' 1.05 1.56 0.99 0 69 0,96 

-24.54 -13.52 -22.17 -17.59* -9.61 -17 06 -8.1 -3.58 -844 

0,16 0,13 0 16 0 1-' 0.:i l).24 0.28 

• One-way ANOVA with posl-hoc Tukey-Kramer lesi, p<0,05. 

See Melhods for appropriaie units. 
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Hierarchical cluster analysis of dopaminergic modulated biophysical properties 

To unravel possible specific effects of dopamine receptor activation I have performed a 

hierarchical cluster analysis which included variables from dopamine receptor agonist 

conditions. Here 1 have used the same procedure as described before for clustering the control 

variables. First 1 employed PCA to reduce the dimensionality of the data (a total of 57 variables 

from 18 cells). Again the first 3 principal components were then fed into a cluster analysis to 

establish group effects. 

Figure 4.12 summarises the results of the hierarchical cluster analysis of combined control and 

DA-modulatcd variables (n=18). Similar to the previous section, 1 have combined a bar and 

whisker plot (left) with a dendrogram (top, right) and a colour coded data matrix of all variables 

(bottom, nght) lo show the result of the cluster analysis. Three distinct clusters were found. 

These cluster will be referred to as cluster DA-a ( n ^ , dark purple), DA-b (n=5, light purple), 

and one possible third cluster (DA-c, n=3, purple). There is also one cell with a very high 

distance to cluster DA-b which will be excluded from further analysis. The two largest clusters 

show a clear separation in the data matrix. Cluster DA-c is more similar to DA-a, than DA-b. In 

fact the second cluster. DA-b. is identical with the previously established IB cluster. The DA-b 

cluster is compact and has small inter-cell distances in the dendrogram, but with the two other 

clusters inter-cell distance is fairly large, which point to more heterogeneity within these 

clusters. 

Figure 4.13 visualises the overlap between two cluster solutions by indicating cluster 

membership by different colours. Here it is easy lo see that the IB cell cluster is identical with 

ihc DA-b cluster. The DA-a cluster consists of cells that have previously been classified as 

either RS (overlap =5) or IM (overlap=4) cells. Cluster DA-c (n-3) consists entirely of RS cells. 

This indicates that dopaminergic modulation of RS and IM cells is more heterogeneous. In the 

following section 1 wilt describe ditTcrcntial effects of dopamine for these clusters. 

The results of the PCA were analysed to identity the variables contributing most to the principal 

components. Figure 4.14 shows a summary of the PCA results. A plot of cell properties in the 

reduced variable space (biplot) shows that the established clusters arc well separated (Figure 

4,14 A). Here all 3 principal components arc plotted, since a scree plot of summed variances for 

each PC (Figure 3,7 B) revealed that the PC I only contributes about 40% of the total variability. 

Together the first three PCs sum up to 64°o of total variance, which sUghtly less than for the 

previous PCA. This is likely due to the higher number of variables included in this PCA. Still, 

the first three PCs explain considerable variability in the dataset. This was deemed sufficient 

since clustering results with more PCs mcluded did not differ qualitatively (not shown). The 

variables with the highest factor loading for each PC are indicated as vectors in the biplot 
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(positive: yellow, negative: red. Figure 4.14 A) to illustrate their contribution relative to the 

PCs. 
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Figure 4.12 | Summary of cluster analysis including dopaminergic conditions 
Top) Dendrogram oblaioed for Ward's meihod using a Euclidean distance inatrix of control and 
dopamine modulated variables, BoUom. lef\) Box and whisker plol of all variables. Bottom, 
right) Colour coded normalised data matrix. Note the clear separation of the two largest clusters 
in the data matrix. 

The passive membrane time constant [Tau] in control condition and the maximum slope of the 

steady state firing f-I curve [I-V: max (dV/dl)] in the Dl condition have the highest factor 

loading for PCI. The maximum firing rate for an upward ramp [Rmp(u): max (/)] in control 

condition and the rheobase current for an upward ramp [Rmp (u): rheobase] have the highest 

factor loading for PC2, whereas the maximum slope for the voltage clamp I-V curve [max 

(dV/dl)] in control condition and the I-V curve bump deepness [l-V: bump] in the D2 condition 

have the highest factor loading for PC3. Here it appears that all positive loadings include control 

variables, but the highest negative loadings are either Dl or D2 related variables. Indeed, when 

looking at the six most contributing variables for each PC (Figure 4.14 C), PCI distinguishes 
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control and Dl variables, whereas PC2 distinguishes control and D2 variables. PC3 is a 

combination of variables in all three conditions. 

To assess significant differences between cluster and between pharmacological treatments 

within cluster 1 performed a series of one-way ANOVAs. Table 4.4 shows a summary of all 

significant effects of DA in clusters DA-a, DA-b and DA-c. 

In the largest cluster, DA-a, two variables are significantly modulated by Dl receptor activation. 

Dl receptor agonist SKF38393 reduced the maximum frequency during a downward current 

ramp injection from [Rmp(d): max (f), C: 80.09 Hz] to {Rmp(d): max(j). D l : 45.07 Hz]. 

Additionally, Dl reduced the y-axis intercept of the square root fit to l/ISI,, from \b(}SI^, C: 

10.84 Hz] to [bdSU. Dl : -4.58 Hz]. 

p=0 0006 

3 13 15 12 22 14 20 21 17 1 9 5 16 11 19 2 
CelMD 

B 10 

Figure 4.13 | Cluster overlap of control and DA cluster 
When including DA modulated variables into the dataset. IB cluster is found again in the DA 
dalasel (DA-b). A cluster assignment is found for non-IB ceils, where a subgroup of RS (n-3) 
cells fonn a new cluster (DA-c) 

As mentioned previously, DA modulation for IB cells is very consistent. Cells in the DA-b 

cluster (IB cells) exhibit two significant effects that are unique to Dl receptor activation (i.e. not 

similar to the D2 condition): Bath application of SKF38393 increased the membrane time 

constant from [Tau, C: 16.26 ms] to [Tau, D l : 20.19 ms] and decreased rheobase current for a 

downward current ramp injection from \Rmp(d}: rheobase.C: 158.60 pA] to {Rmp<d): rheobase 

D l : 114.30 pA]. The values for the respective D2 condition show a similar trend to the D l 

values, but did not reach significance. Besides, four significant effects remain that show similar 

values for both Dl and D2 application. Dl or D2 apphcation increased the maximum firing rate 

during an upward current ramp injection from [Rmp(u): max (J), C: 13.96 Hz] to [Rmp(u): max 

09, Dl : 16.50 or D2: 16.26 Hz], but decreased the maximum instantaneous firing rate during a 

downward current ramp injection from [Rmp(d): max (j). C; 150.75 Hz] to [Rmp(d): max (f), 

Dl : 99.09, D2: 95.27 Hz]. In addition. Dl or D2 receptor agonist application attenuated the 

current value at the minimum slope of the voltage clamp V-I curve from [1-V: I (maxfdV/dl)). C: 

129.25 pA] to [I-V: I (max(dV/dl)), D l : 81.84 pA, D2: 88.11 pA]; and reduced the rheobase 

current for an increasing current ramp injection from [Rmp(u): rheobase, C: 138.29 pA] to 
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[Rmp (u): rheobase. Dl : 89.90 pA, D2: 96.26 pA]. There are no significant differences between 

Dl and D2 effects for all these variables. 

CT« j 

^ 

zmnt 
t, VC llmxidWVll 

J?VC JimBiliUfllVll 
S i n n 

^1 Eirtvi 

::l JO ISO D 

PCI • 1 1 PC 2 -0 5 0 0 5 

Factor laading 

Figure 4.14 | PCA results b> DA cluster solution 
A| Scalier piol of cell positions (dots) within the coordinate system spanned by the firsi 3 PCs, 
cell are coloured according to the dendrogram in Figure 4.10. B) Scree plot of PCs. PCl-3 
explain (A°/a of the total variance in the dataset. C) Bar plot of variables that contribute most to 
ibe fii^l 3 PCs. 

In the smalt DA-c cluster ( D = 3 ) D 2 effects are very strong and reach significance despite the 

few cells recorded, in particular quinpirole increased the mean rheobasc current for an upward 

ramp fi^m \Rmp (u): rheobase. C: 95.24 pA] to [Rmp (u): rheobase. D2: 172.83 pA] which is 

only significantly different compared to the value Dl condition [Rmp (u): rheohaae. D l : 64.63 

pA]. Quinpirole also increased the mean rheobase current for a downward ramp from [Rmpfd): 

rheohase. C: 131.22 pA] to [Rmp(d): rheobase. D2: 223.49 pA] which is, again, only significant 

compared to the Dl condition [Rmp(d): rheobase. D l : 88.34 pA]. D2 agonist applicafion also 

decreased mean maximum firing rates during both ramp protocols, quinpirole decreased the 

maximum firing rate during an upward current ramp from [Rmp(u): max (f), C: 12.83 Hz] to 

[Rmpiui: max (j). D2: 7,62 Hz], which is also only significant compared to the value obtained 

under Dl agonist application [Rmpiu): max (f). D l : 13.54 Hz]. Likewise, quinpirole 

significantly decreased the mean maximum instantaneous firing rate during a downward current 

ramp to [Rmp(d): max (f). D2: 15.93 Hz] compared to ihe control value [Rmp(cij: max 0. C: 
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62.49Hz], Subsequent Dl agonist application reversed this elTcct partly [Rmp(d): max (j). Dl: 

31.41 Hz], but was not significanily different compared to the control or the D2 value. 

Figure 4.15 summarises the main effects of DA agonist. DA-a shows only Dl effects, DA-b 

cells show both similar Dl and D2 effects, whereas cells in cluster DA-c show only D2 effects. 
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Figure 4.15 | Summary o f maiG significaQt D A agonist effects. 
SchemalJc of the most signiUcam DA effects in all DA clusters. DA-a: 
Al) Dl reduces the coefficieni and y-inlercept of the sqrt(l/ISl,) fit . 
A2) Dl agonist reduces max iFR by 44%. DA-b: Bl) DJ and D2 
reduce the liieobase guirenl by 35% and the max iFR during 
downward ramp by 33%. DA-c: Ci) D2 receptor stimulation increases 
rheobase current by 80%, and C2) reduces max iFR by 75%. 

To investigate systematic differences between clusters in fiirther detail, the input-output 

functions obtained from all protocols were plotted for each cluster. 

When plotting the average I-V relationship obtained from voltage clamp for each cluster {Figure 

4.16), there are no significant differences between control and application of dopaminergic 

agonists for the large cluster DA-a (independent sample t-tcst for, p<0,05). In contrast, for cells 

in cluster DA-b there are significant differences for both, the Dl agonist at voltage levels -45 

and -40 mV. and the D2 agonist at voltage of -45 mV to the control condition. Here both 

dopamine agonists decrease the net membrane current near the threshold for action potential 

initiation. For the smallest of the three clusters DA-c, there are significant differences for lower 

voltage values. Here the opposite effect of Dl vs. D2 receptor activation within the cluster is 

visible, but also D2 stimulation seems to have opp)Ositc effects m terms of excitability compared 

to those seen in DA-b (IB) cells. The voltage clamp I-V curve is shifted upwards on the current 
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axis and flattened out compared to the control condifion. But significant differences arc only 

seen in a few mean values with very low standard errors. This is probably due to the low 

number of cells in this cluster. The I-V curve is significantly different from the control 

condition for current values at more hyperpolarised voltage levels of 60 and 55 mV (green stars, 

independent sample t-test, p< 0.05). The curve obtained in the D2 agonist condition is also 

significantly different from the Dl condition ai voltage levels 55 and 50 mV (blue stars, 

independent sample t-tcst. p< 0.05). 

Additionally, T examined the results of the slow current ramp injections. Figure 4.17 depicts the 

binned firing rate (in steps of 42 pA, or 0.5 s) against the binned injected current, for an 

increasing current ramp (Figure 4.17 A) and a decreasing current ramp (Figure 4.17 B) for each 

cluster. Note that Figure 4.17 B shows the injected currenl values on an inverse x-axis. There 

are no significant effects of dopamine receptor agonists on cells in cluster DA-a (Figure 4.17, 

lefl). In contrast, there are significant effects of both Dl and D2 agonist application on the 

binned firing rate during a slow upward and dowTiward current ramp injection in the DA-b/lB 

cluster. Here Both Dl and D2 agonist shift the f-l curve towards lower current values, 

effectively increasing excitability. For ceils in the DA-c cluster a strong inhibitory effect after 

02 agonist application is observed (Figure 4.17, right). Although this effect appears strong, 

there are only a few significant differences in average firing rate. Only at two current levels 

there are significant differences induced by D2 agonist application (green stars, independent 

sample t-test, p<0.05). More values show significant differences between D2 and Dl agonist 

application (blue stars, independent sample t-test. p<0.05). although Dl effects themselves are 

not significantly different from control. Overall, D2 receptor agonist application reduces the 

average firing rate for both increasing and decreasing cumnt ramps for the whole range of 

current values. 

Next I compared the mean transient (first 5 seconds of the long current step. Figure 4.18 A) and 

steady-state (last 5 seconds of the long current step. Figure 4.18 B) f-I curve for each cluster. 

For cluster DA-a there are some significant effects of Dl application on the transient f-l curve 

(independent sample t-test, p<0.05) at medium current levels (Figure 4.18 A, left). There are no 

significant differences between dopamine agonist application and control condition for the 

steady state f-I curve. Although Dl receptor activation seems to slightly shift the curve to the 

left, this docs not reach significance for any current level. 
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Sag 
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Table 4.4 Mean values of DA cluster. 
DA-a 

(11=9) 

D l 

28.07 

0-OS 

105.57 

-58.62 

-2.99 

57.14 

15.72 

835 96 

71.36 

107,82 

14.09 

45.07 ' 

0.08 

93.55 

3.7 

-27.5 

0.79 

-4 .58* 

0.22 

D: 

30.41 

0,12 

99.54 

-5S.2B 

-2-36 

65.55 

12.01 

913.24 

72.03 

115 2 

15 92 

5R.K6 

O i l 

118.98 

3.86 

-30.67 

1,(M 

-8.54 

0.22 

Control 

16.260 

0.34 0 

57.67 0 

-59.6 

1.01 

129.25 

5.64 

1146.62 

138.29 

158.6 

13,96 

150.75 0 

0.16 

135,31 

7 03 0 

•69,38 0 

2,24 0 

-24,54 0 

0,16 

DA-b 

(n=5) 

D i 

20.19 • 

0,46 

59.18 

-57,11 

-0,38 

81.84* 

1,89 

988,79 

89.90* 

l U J O * 

16.50* 

99.09* 

0-17 

119,72 

6.97 

-59.33 

1.55 

-13,52 

0,2 

D2 

17-92 

0 J 9 

58-74 

-57.79 

-0,53 

88.11 • 

2-64 

990,12 

96.26 * 

121-35 

1 6 ^ 6 * 

95.17 * 

0,15 

119,71 

7,52 

-66.75 

2.3 

-22,17 

0.16 

Control 

29.61 

0-15 

110,77 

-58,43 

-2,26 

77,74 

11,27 

1349.48 

95.24 

131,22 

12,83 

62.49 

0.09 

134,64 

2,73 

-22,68 

0,56 

-1-41 

0,26 

DA-c 

tn=3) 

D l 

30,07 

0:22 

114 08 

-56.11 

-2-54 

57,9 

13,8 

1161.92 

64.63 

88,34 

[3,.*^i 

31,41 

0.07 

108.7 

3.2 

-28,47 

0,45 
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Figure 4.16 | Influence of dopaminergic agonist on voltage clamp l-V cur\'es 
Mean l-V curves for voltage clamp slep stimulation for conlml (black). Dl (red) and D2 condition 
(green) for each cluster. Error bars indicate SEM, independent sample t-tesl (p<0.05); Dl vs. 
Control (*). D2 vs. Control {'). Dl vs. D2 ('). 

The changes induced by dopamine receptor agonists arc more pronounced in the DA-b cluster 

compared to cluster DA-a, for both the transient and the steady state f-I curve. The f-] curves 

obtained with bath application of a Dl or a D2 agonist both show a clear shift to the left (Figure 

4.18, middle), which results in significant differences al foiir different currenl levels for Dl 

agonist application and at 5 ditTerent levels for D2 agonist application. Only a D2 agonist still 

achieves a shift of the f-I curve at very high current inputs (300 pA). 
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Figure 4.17 {Influence of dopaminergic agonists on ramp evoked f-i curves. 
Mean f-I curves for an upward (A) and downward (B) ramp injection for DA cluster in conlrol 
(black), Dl (red) and D2 condition (green). Error bars indicate SEM, independent sample i-Iest 
(p<0.05);DI vs. Control O.DZvs-Control O . D l vs. D2C), 
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The steady state f-I curve for the smallest cluster (DA-c) showed different effects for transient 

and steady state f-I curve. The transient f-I curve (Figure 4.18 A, right) is shifted rightward and 

the gain is reduced, after application of a D2 agonist although this reaches significance only for 

one low current value (1(X) pA). There is no significant shift for either Dl ora D2 agonist of the 

steady state f-I curve (Figiu-e 4.18 B, right). Although here it seems that there is a slight Dl 

effect for very low stimulus intensities, but this does not reach significance. Interestingly the 

average f-I cm^'es for all conditions in this cluster seem have a lower overall gain (slope) 

compared to cluster DA-a. 
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Figure 4.18 [ Influence of dopaminergic agonists on transient and steady state f-I curve 
A) Transient (firsl 5 sec) f-I curves for clusters DA-a lo DA-c. B) Steady slate (las! 5 sec) f-I 
curves for DA cluster in control (black). Dl (red) and D2 condition (green|, Error bars indicate 
SEM, independent sample t-test (p<0.05): Dl vs. Conmjl (*), D2 vs. Control ('). 

The results of the transient and steady state f-I functions arc consistent with the results from 

averaging all mean square root (1/lSI) ftinctions in Figure 4.19. For cluster DA-a there are no 

obvious effects of Dl or D2 agonist application on the average l/ISI function. In contrast, for 

cluster DA-b the application of Dl or D2 agonist shift the spike latency curve (l/!SIo) clearly to 

the left DA-b. For the steady state curve (I /ISI^), D2 receptor agonist quinpirolc shifts the curve 

clearly to the left, whereas Dl application also reduces the gain (slope) of the fitted curve. For 

the last cluster, Dl application seems to have little effect on average, but D2 receptor agonist 

quinpirolc, shifts both the spike latency and the steady state curve strongly lo the right (i.e. to 

higher current values). 

To illustrate dopamine receptor influence on overall spiking statistics, ISl histograms of all ISIs 

(during all stimulation steps) for typical example cells from each cluster were plotted (Figure 
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4.20). The 1ST distribution for cell number 2 from cluster DA-a (Figure 4.20. top) shows a peak 

at slightly above 10 Hz firing (100 ms ISI), with no ISIs at higher frequencies (<50 ms. 20Hz), 

and falls of very smoothly to lower frequency ISIs. Dl agonist application shifts the peak of the 

distribution towards lower ISI lengths and also broadens the whole of the distribution compared 

to control condition. This peak occurs at higher stimulation intensities, whereas for lower 

intensities Dt seems to enhance lower frequency firing. Thus the differential effects of Dl seem 

to be dependent on input strengths: Di seems to reduce firing rate in response to strong inputs, 

but increases firing in response to low intensity stimuli. This is effectively a gain reduction and 

shift of the input-output curve to the left, although this effect docs not become significant when 

comparing mean f-I relationships. Interestingly, the peak of the distribution lies at around 150 

ms. which correlates to theta fiiequency firing (~7 Hz). Although, for some cells in this cluster 

the effect is less pronounced, or Dl even introduces higher frequency firing. Application of a 

D2 agonist also shifts the distribution to lower frequency firing, but less pronounced than Dl 

agonist application. The peak hcs at around 10 Hz, with similar width and height as the control 

condition distribution. 
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Figure 4.19 ] Influence of dopamine agonists of averaged square root 1/ISI functions. 
Mean square rool tils in eonnol (black), Dl (red) and D2 condition (greenj lo I/ISIO (solid line) and 
mSlcc (dashed line) for DA cluster. 

For cells in cluster DA-b, the ISI distributions did not change much in mean or shape after Dl 

or D2 agonist application. In this particular example (Figure 4.20, middle), both agonists seem 

to increase the number of spikes in the same frequency ranges as those spikes that are fired 

during control condition. There is a slight increase in ISIs at around 125-150 ms. and a very 

shghl increase in very low ISIs, that correspond lo bursting (-lOms). 

One cell from cluster DA-c shows a quite distinct ISI distribution, with the peak of the 

distribution at much higher ISIs compared to both DA-a and DA-b cells. Also, the distribution is 

much Hatter and the cell emits less spikes overall {note different scale on the count axis), with a 

peak around 200-250 ms (5-4 Hz). This pattem of ISI disiribution correlates to fast adapting 
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cells, which fire only a few number of spikes at low frequencies. Dl application increases the 

number of spikes fired for most ISI lengths and also shifts the peak slightly towards higher 

frequencies. This presents a mechanism for selectively increasing excitability for low or high 

intensity inputs. D2 apphcation shifts the IS! distribution towards shorter ISIs, but reduces firing 

at intennediate frequencies (6-4 Hz) but Dl allows for higher frequency firing. 
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Figure 4.20 { DA influence on ISI hislogrsms 
Representative examples of ISI hislograms ofall spikes evoked by long currenl 
step stimujaiion at different current levels in control (black), Dl (red) and D2 
condition (green). Top) ceil #2 in cluster DA-a. middle) cell #15 in cluster DA-b, 
bottom) cell #1 in cluster DA-e. 

Discussion of DA modulated duster results: D! effects 

To summarise, Dl effects in all clusters except from DA-b, seem to be weak but consistent. For 

cluster DA-a, one significant effect was found within the cluster (Table 4.4). Dl agonist 

application reduces the maximum instantaneous firing rate for a downward current ramp 

injection. In addition Dl introduces a slight shift at intermediate current values in the transient 

long step f-l curve, although no significant effects were measured in the averaged ramp protocol 

f-I curve, or the long step steady state f-I curve. The same is true for the small DA-c cluster. 

There are no significant effects of Dl application when compared to control condition, but a few 

when compared to the D2 agonist condition. 
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In contrast. DI receptor stimulation has a distinct effect on IB cells. Dl agonist application 

increases the gain for low intensity inputs both transiently and in the steady state, and there is a 

tendency to reduce firing in response to very strong stimulation. Overall, DI receptor 

stimulation enhances excitability, especially to low stimulus intensities, and reduces firing to 

high intensity stimuli (i.e. the maximum instantaneous firing rate for a downward ramp) in all 

clusters. 

The effects of Dl receptor stimulation seen in this study fit well with previous reports of Dl 

receptor modulation of intrinsic properties. Dl receptor activation has been shown to activate 

persistent sodium currents (Gorclova and Yang, 2000) which results in increased excitability 

and might also promote burst firing. Furthcnnore, Dl activation has been shown to reduce 

various potassium currents, i.e. inward rectifying potassium channels (IRKC) and a slow 

inactivating voltage gated potassium current, I(K.DI- Both channels contribute to repolarising the 

cell to resting membrane potential and a reduction leads to an increase in excitability (Yang and 

Seamans. 1996; Dong and White, 2003; Dong ct al., 2004). Furthermore, Dl stimulation has 

been shown to regulate calcium electrogenesis in prefrontal neurons (Yang and Seamans, 1996; 

Young and Yang, 2004; Seamans and Yang, 2004). This regulation is input dependent and 

might explain the effects of Dl receptor stimulation in cluster DA-a. In detail. Young and Yang 

(2004) showed that Dl receptor activation modulates mainly somatically located calcium 

channels dependent on the input strength. Dl receptor activation reduces supra-thrcshold 

calcium spikes through a PKC dependent pathway, but enhances sub-threshold calcium 

potentials through a PKA dependent activation of L-type calcium channels. This explains the 

selective gain increase for low intensity inputs seen in the current study and the reduction of 

high frequency firing by Dl receptor activation, since reduced calcium influx will be 

detrimental to calcium dependent back-propagating of action potentials, which can promote 

continuous firing. 

A recent study by Thurlcy et al. (2008) has examined the effects of DA on input-output function 

of deep layer pyramidal cells in the rat prefrontal cortex. Using similar control conditions as in 

the current study (all fast synaptic transmission blocked) they have reported similar effects of 

DA on the gain of input-output functions, i.e. gain increase for low to intermediate intensity 

stimulation and reduction of firing rates to strong inputs. It has to be noted that Thurley et al. 

claim to have recorded only from regular spiking cells, but detailed characterisation of firing 

patterns is not reported. The stronger effect on regular spiking neurons seen in their study might 

also relate to the use of noisy current injections, which itself shifts the f-I curve of prefrontal 

pyramidal cells towards lower current values and higher firing rates (Arsiero et al., 2007). 

Thurlcy et al. (2008) also report a significant increase in membrane time constant through bath 

application of high DA concentrations (100 pM) while blocking fast synaptic transmission 
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(NMDA, AMPA and GABAa). This resembles the Dl effect seen in DA-b/IB ceUs in the 

current study, but as mentioned above Thurlcy el al, repon to have recorded only RS type cells. 

In my hands RS-typc cells did not show any significant changes in passive membrane 

properties. This might point to possible contusion of cell types in the study by Thurley et al., 

which is also indicated by their reported low averages for time constants (similar lo IB cells) in 

very similar experimental conditions to the current study. 

D2 effects 

The effects of D2 receptor siimulalion seem to be more diveree and depend on the cell type at 

hand. There is no evidence for D2 effects in the largest cluster DA-a, None of the values used in 

the PCA/cluster analysis did show significant effects, nor did any of the input-output 

relationships. The example ISI distribution might indicate reduced high firing rales, but the 

effect is not consistent across cells within cluster DA-a. On the contrary, D2 receptor 

stimulation has distinct and reproducible effects on bursting cells in cluster DA-b. It seems to 

enhance excitabihty for all input strengths, i.e. it shifts the input-output function clearly towards 

lower current input, without affecting the gain of the curve. The last cluster DA-c seems to 

consist of cells where D2 receptor stimulation reduces transient excitability dramatically. Bath 

application of a D2 receptor agonist reduces the gain of the f-I curve obtained by an upward or 

downward current ramp, and shifts it to higher currcnl values. A similar effect is seen in the 

transient f-I curve for long current steps and the respective square root fits lo ISIs. Hence a 

subpopulation of pyramidal cells that responds differently to D2 receptor activation might exist. 

Previous reports on the effects of D2 receptor activation on intrinsic properties of pyramidal 

ceils have been diverse and of̂ en contradicting. 02 receptor agonist have been shown to have 

mostly inhibiting effects in slice preparations, attnbutcd mainly to activation D2 receptors on 

local inhibitory intcmeurons (Gorclova et al.. 2002: Gao et al., 2003; Gao and Goldman-Rakic, 

2003; Trantham-Davidson ct a!., 2004). In opposition, other studies have reported D2 receptor 

effects that could increase cell excitability. Gulledge and Jaffe (1998) repiorted increase in 

excitabihty after D2 receptor stimulation in the presence of a GABAa receptor blocker. Dong ct 

al. (2004) showed that D2 receptor activation can reduce IRKC, and this is in fact the 

predominant effect observed in viiro. Moreover. D2 receptor activation has been shown to 

promote bursting in intrinsically bursting cells though a combination of synaptic (AMPA) and 

intrinsic mechanisms, where D2 receptor stimulation has been linked to augmenting low 

threshold spikes carried by low-threshold activated calcium currents (Wang and Goidman-

Rakic, 2004). The latter could explain the observed effect of D2 receptor activation in bursting 

cells in the cuixenl study. Indeed, low voltage activated calcium currents have been reported to 

occur mainly m deep layers of the rodent PFC (dc la Pena and Geijo-Barrientos, 1996). 
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These inhibitory effects of D2 receptor agonists on excitability in pyramidal cells in the DA-c 

cluster have, lo my knowledge, not been observed yet. These effects might have coincided with 

effects observed in intemcurons. Since in the current study all GABA transmission was blocked, 

effects mediated by local intemeurons should be excluded, unless synaptic blocking was 

incomplete. This is imlikely, since ACSF solution was first switched to contain only synaptic 

blockers where the disappearance of spontaneous PSP was carcfiilly monitored, and only then 

were dopamine receptor agonists bath applied. Still, further experiments are advised to confirm 

this D2 receptor mediated inhibition, since the number of cells that show this particular effect is 

small. 

Opposite effects ofDl andD2 receptor stimulation 

Opposing actions of Dl vs. D2 receptor stimulation can be explained by their action on 

intracellular signalling mechanisms. For example, application of a Dl agonist induces a 

significant increase in the membrane lime constant in DA-b/TB cluster cells, whereas D2 

receptor activation reduces the membrane time constant in cells in the cluster DA-c (Table 4.4), 

Although the membrane time constant tau, as estimated here from brief depolarising current 

steps, has been used as a measure of passive synaptic integration, it has been pointed out that tau 

can be only used as a rough estimate of integrative properties of neurons (Koch ct ai., 1996). 

Instead, it is likely that fast currents activated near threshold contribute to shaping the time 

constant estimated from hypcrpolarising steps. In fact, D! receptor stimulation has been shown 

to increase the membrane time constant in EC pyramidal cells by increasing intracellular cAMP 

(via Gs-type G-proteins) and reducing HCN currents (Ih) (Rosenkranz and Johnston, 2006). 

Since IB-type cells in this study showed stronger Ih components (sag) it is likely that a similar 

mechanism is in place in this cell type. Indeed there is a non-significant increase in the sag 

component after Dl agonist application in IB cells, in favour of this explanation. It might 

equally explain the reduction of the time membrane constant seen in the DA-c cluster. D2 type 

receptors coupled to G.-type G-proteins inhibit adenylate cyclase, thus reduce intracellular 

cAMP formation (Neve and Neve, 1997), which concurs a reduced mean sag after D2 agonist 

application in cluster DA-e cells. Why these opposing DA receptor effects do not occiu-

simultaneously in the same cell type remains to be explained. 

DA effects by cell type 

As seen in the comparison between cluster solutions (Figure 4,13). cells previously classified as 

RS cells are heterogeneous in their response to DA. Three cells fi-om the previous RS cluster 

formed cluster DA-c (showing strong D2 effects), whereas two cells from the intermediate 
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cluster were included into the large DA-a cluster (showing weak Dl effects). One simple 

explanation for heterogeneous DA effects might be different expression levels of D2 receptor 

expression within RS cells, i.e. a possible subpopulation of RS cells that has increased D2 

receptor numbers. Indeed DA receptor expression varies considerably for pyramidal cells and 

intemeurons, across and within layers in the rat PFC (Vincent et al., 1993. 1995; Caspar et al., 

1995; Santana et al., 2009), One recent study, where DA receptor expression was assessed 

through in situ hybridisation (Santana et al., 2009), shows that the highest proportion of Dl and 

D2 receptor expressing pyramidal cells is found in layer V, where some cells express very high 

levels of either Dl orD2 mRNA (co localisation was not tested) compared to average expression 

in the PFC. These 'hot spots' of DA receptor expression might explain variability in responses 

to dopamine receptor stimulation. 

IB cells constitute a very distinct cell population with consistent DA modulation of intrinsic 

properties. The counterintuitive result of this study is that Dl or D2 receptor stimulation seems 

to have almost identical effects on excitability of cells in the IB/DA-b cluster. Both Dl and D2 

agonists increase excitability in response to current stimulation in the form of a slow ramp 

protocol or long current step. Previously both Dl and D2 receptor agonist application has been 

shown to have long lasting effects on synaptic conductances that outlast the application of the 

respective agonist (Seamans et al.. 2001a, 2001b). It could be argued thai similar effects of Dl 

and D2 receptor activation seen in the current study stem from the sequence of agonist 

application in the experiment (first quinpirote, then SKF 39383), where Dl receptor activation 

failed to have any effect, but instead a persistent D2 effect would be measured. Preliminary 

results from application of only a Dl receptor agonist to intrinsically bursting cells (data 

recorded by Thomas Gabriel) indicate that Dl receptor agonist SKF 39383 shows a similar 

effect on the steady state f-I curve as seen in the current study. 

To my knowledge, no other study has reported specific effects of DA receptor activation on 

subtypes of pyramidal cells. Although Yang and colleagues have distinguished several 

pyramidal cell types in the rat PFC (Yang et al.. 1996). they did not report any cell type specific 

dopaminergic effects in an accompanying paper on dopamine modulation (Yang and Seamans, 

1996). Although this charactensation of dopaminergic in deep layer pyramidal cells is far from 

complete, it points to some interesting possibilities of cell type specific actions of dopamine. 

This raises the important question of how DA receptor activation would affect the 

computational properties of these different pyramidal cell populations in the prefrontal cortex. 

In RS cells you can see an amplification of low intensity inputs, effectively making the resting 

to spiking transition easier. The input-output function shifted towards iower stimulus intensities 
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and increased sensitivity for transient inputs, as shown in the transient V-1 curve during upward 

current ramp injection. This is similar lo the effect described by Thurley et al (2008). In a 

network simulation of integrate and fire neurons Thurley et ai. show that this increase in gain 

for low intensity inputs stabilises persistent activity stales through widening the basin of 

attraction for the respective stable fixed point. 
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Figure 4.21 | Dl agonist application in bursting p>ramidal cells 
Application SKF 39383 (50 (iM) plus blocker for all fast synaptic iransmission 
(withoui previous D2 agonisl application) introduces a similar increase in gain 
off-] curve for putative IB cells (recorded by Thomas Gabriel). 

In addition, a Dl receptor agonist shifts the voltage clamp I-V curve towards lower current 

values, essentially pushing DA-a and DA-c cells closer towards intrinsic bistability. Hence, 

these cells become more susceptible to low intensity input and are easier pushed into a stable 

firing rale regime, which can be used as a short term memory buffer to encode recent stimulus 

inputs after these stimuli have gone. This would be in line with previously described effects of 

Dl receptor stimulation on synaptic properties (Durstewitz and Seamans, 2002) and further 

contribute to stabilisation of persistent activity in prefrontal networks. Moreover, there is a 

slight reduction in responsiveness to very strong inputs (reduced maximum instantaneous firing 

rates to downward ramp) which probably relates to reduced intraburst ISIs. This might indicate 

a dampening of strong inputs to fiirther enhance stability of persistent firing regimes and 

prevent runaway excitation. 
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In a subset of cells (cluster DA-c) D2 receptor activation has the opposite effect: it shifts the I-V 

curve up on the current axis and makes the I-V curve more monotone. This effect is only 

observed in a few cells (n=3). It might implement a cell type specific shunting of activity after 

D2 receptor activation, but further experiments need to confirm this cell type specific action of 

D2 receptors. 

In DA-b cells both Dl and D2 type receptor activation shifts input-output functions towards 

lower strength inputs, but interestingly in DA-b cells Dl activation reduces non-significantty 

bump deepness of the voltage clamp I-V curve, i.e. it makes the I-V curve more monotonic. 

Therefore, DA receptor stimulation increases intrinsic excitability in DA-b cells but, in contrast 

to cells in cluster DA-a and DA-c, pushes cells away from bistability. The data from ISI 

histogram might suggest a possible shift in preferred frequency ranges, but a detailed 

experimental investigation has to be undertaken to unravel specific effects of DA on resonance 

properties of bursting pyramidal cells. 
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4.3 Morphometric Analysis 

22 recorded neurons were filled with biocytin, fixed and Ihcir morphology was visualized by a 

Sireptavidin-AIexa 488 Fluorophore conjugate. Confocal image stacks were acquired on a Zeiss 

LSM5I0 confocal microscope using a lOx Apochromat objective. Combined image stacks were 

then imported into Neurolucida and the ceil morphology was reconstructed by manually tracing 

the neuron in the image stack. All reconstructed neurons were analysed with the Neurolucida 

NeuroExplorer analysis tool, which has multiple analysis methods readily implemented {see 

Methods). The results of these morphomelric measures were exported to spreadsheets 

(OpenOfTicce.org) and imported into the Matlab enviroimient for further analysis. Some 

variables were excluded after carefiil evaluation: 1 have excluded x-y and z angles since they 

describe angles in a relative coordinate system that depends on slicing and imaging of the ceil. I 

have also excluded the soma convexity since only discrete values were observed, which is 

probably due to an error in the calculation method. All diameter based variables (except for the 

soma) were excluded, since the limited resolution of the acquired image slacks (voxel 

dimension: x: 0.82, y: 0.82, z: 0.80 îm) would not allow reliable diameter measurements, 

especially for fine distal dendrites. 

Figure 4.22 shows the results of the cluster analysis based on the first 3 principal components 

calculated from the remaining morphometric variables. The dendrogram shows that 

morphologies of recorded cells can be divided into 3 clusters, which have been colour coded in 

the dendrogram. The largest cluster contains 13 cells and will be referred to as cluster M-a (light 

green in the dendrogram). The distances between individual cells within the cluster are 

relatively small, although the dendrogram might suggest two subgroups with the cluster, but the 

data matrix (displayed below) does not indicate a distinct separation between subgroups. The 

second largest cluster includes 6 cells (dark green in the dendrogram) and will be referred to as 

cluster M-b. This cluster is identical to previously established clusters IB and DA-b, with one 

cell (#1D 17) added. This cell has been classified as an IM cell based on control data regulation, 

and was classified as single cluster in the DA dataset. Within this cluster there is a larger 

distance between two groups of 3 cells each, which might point towards subgroups within this 

cluster. The last cluster comprises 3 cells and has rather large inter-cell distances, i.e. this group 

of cells is rather heterogeneous in morphology, but is more similar to cluster M-a than to cluster 

M-b. This third cluster will be referred to as cluster M-c. 

The results of the pre-cluster analysis PCA were used to determine variables that contributed to 

separating cells in the morphology based parameter space. Figure 4.23 depicts the summary of 

the PCA results. Notably, there is no steep decrease in explained variance for principal 

components in the scree plot (Figure 4.23 B). as expected to be seen for a faithftil 
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dimensionality reduction. The explained variance for the first 3 PCs sums only up to 47% of the 

total variance in the dataset. Despite this low sum of explained variance cluster analysis was 

based only on the tirst 3 PCs, since including of up to 7 PCs (74% of total variance) did not 

change the results of the cluster analysis qualitatively (not shown). As seen in the 3D bipiot, 

cells separate well in the reduced parameter space of the first three PCs (Figure 4.23 B). The 

variables with the highest positive and negative factor loading are indicated as vectors in the 

bipiot. 
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Figure 4.22 j Cluster analysis of morpbometric variables 
Top) Dendrogram of linkage obtained by Ward's method based on Euclidean distance!^ between 
z-scores of all morphology variables. Boiiom, left) Box plot of z score transformed morphology 
variables, rows sorted by mean values of cluster M-b (dark greenj. Bottom, right) Colour coded 
matrix of ; scores, columns sorted according lo dendrogram. 

Figure 4.23 C shows the six variables with the highest factor loading for each PC in a bar plot, 

where colours of the bars correlate to the vectors in the bipiot. Here it appears that the first 

principal component distinguishes mainly between properties of the basal dendrite and the 

apical dendrite. In particular, positive factor loadings correlate lo variables describing properties 

[96] 



of the tile analysis applied lo the basal dendrite ([basal tile perimeler], [basal lileferet max\), 

i.e. the area covered by the basal dendrite. The mean length of a basal dendritic section [ba%al 

mean ten] has the third highest factor loading for PCI, which is indirectly linked lo the area 

covered by the basal dendrite. Variables that relate the 'complexity' of the apical dendrite reach 

the highest factor loadings for PCI , i.e. the total length of the apical dendrite [apical total len], 

the number of apical dendrite endings [apical n ends] and the number of apical branch points 

[apical n nodes]. 
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Figure 4,23 | Summan of pre-cluster PCA 
A) Scalier plot tell positions within coordinates of the flrel 3 PCs, cells are labelled according 
to subsequent clustering. Variables with the highest factor loading for each PC are indicated 
as vectors, colour coded according loC. B) Screeplot of explained variance per principal 
component (bars) and cumulative sum (line). The first 3 PCs explain 47% of the lolal 
variance. CjBarploiof ft variables with the highest factor louding for PCs i-3. 

Variables with high positive factor loadings in PC2 relate to shape factors of the apical dendrite 

or the whole neuron dendrite. The perimeter of an automatically constructed 2-diraensional hull 

[all hull auto 2d peri] has the highest positive factor loading followed by the perimeter of the 

apical tile [apical tile perimeter] and the maximum Feret diameter of the apical tile [apical tile 

ferel max]. Negative factor loadings in PC2 are shown by variables that describe basal dendrite 

properties. In detail variables that describe form factors of the basal dendrite tile have the 

highest loading, i.e. the roundness [basal tile roundness] and compacmess [basal tile 

compactness] of the basal tile. Additionally, the scaling of the Gaussian fit to results of the Sholl 

analysis [basal sholl scale] has the third highest factor loading. This scaling factor is needed lo 

scale the bimodal fit to normal distributions with probabilities ranging from 0 to I, hence it is 

proportional to the total number of counts. 
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The highest factor loadings for PC3 are reached mainly by variables describing size and form of 

the soma, with the exception of one apical variable. The highest positive loadings are achieved 

by the maximum and the minimum Feret diameter of the soma [somaferet max, somaferet min\ 

and the aspect ratio of the soma. High negative factor loadings of PC3 include form factors of 

the soma, i.e. the roundness [soma ronniiness^ and the compactness [soma compactness] but 

also the aspect ratio of the apical tile [apkal tile aspect ratio]. 

Overall, the PCA successfully separates different aspects of somato-dendritic morphology. 

There is high presence of apical and basal variables in the first two PCs indicating the highest 

variance in the datasct is present in dendritic morphology. To a lesser extend, somatic properties 

contribute to variability in morphology. 

The properties of the obtained clusters become more obvious when plotting the morphologies 

ordered by the cluster solution (Figure 4.24). In this plot the complexity of dendritic arboure 

increases from cells placed on the left towards cells on the right side of the figure. The 3 cells in 

cluster M-c (left, medium green box) have simple apical dendrites that show only few 

arborisations, especially towards superficial layers, although not distinctively different from 

cells in cluster M-a. Instead these cells seem to have a somewhat skewed basal dendrite. In 

contrast, cells in the largest cluster (M-a, light green box. middle) show a range of complexity in 

apical dendrites, where cells at the top have less complex apical dendrites but complexity 

increases towards the bottom of the box. Also, the basal dendrite seems slightly more elaborated 

when compared to cells in cluster M-c. Cells in cluster M-b exhibit the most complex dendritic 

arbours with complex elaborated apical dendrites, especially when reaching superficial layers 

(tufted apical dendrite). The apical dendrite also shows multiple arborisations at the proximal 

half near the soma. The basal dendrite appears more complex compared to cells in the other 

cluster, but also more compact and less extended, i.e. the span of the apical tuft is larger than the 

span of the basal dendrite. 

To determine variables that bear statistically significant differences between clusters, unequal 

sample size one-way ANOVAs were calculated separately for each variable, using the cluster as 

independent variables (Table 4.5). Individual significance between clusters was tested by a post-

hoc Tukey-Kramer test. Out of 61 variables included, 30 showed significant effects (F>3.5, 

p<0.05) between cluster. For the sake of clarity and brieftiess I will only describe these most 

significant effects. 
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Significant variables describing apical and basal dendrites can be separated into those descnbing 

the size and shape of the area covered by the dendrite and variables describing mean properties 

of individual sections. Properties of apical sections best distinguish cluster M-b compared to M-

a/M-c. Indeed some of the highest F values are obtained by apical section variables, where 

cluster M-b clearly stands out with a higher average nimiber of apical nodes [apical n nodes = 

38.33 ±1.76, F=5I.41, p=2.16e-8] and ends [apical n nodes = 40.17 ±1.85, F=50.2I. p= 2.60e-

8], longer total apical length [apical rota! length = 6647 ±353 iim. F-23.05, p=8.30e-06] but a 

lower mean section length [apical mean length = 84.86 ±4.037 |jm, F=8.22, p=0.0027]. The 

apical dendrite of M-b cells also covers a greater area [apical tile area = 1.19e5±1.0e4 ^mi", 

F=5.06. p=0.017]. Figure 4,25 shows example morphologies for each of the obtained 

morphological cluster. Here the difference in apical dendrite morphology between M-a and M-b 

cluster cells becomes clear. Cell #4 has a slimmer apical dendrite and fewer branches when 

compared to cell # 22. 

B 
M-a (1D#4) M-b (ID #22) M-c (ID #21) 

Figure 4.25 ( Eiample morphologies from the established morphological cluster. 
A) Morphology of teU 34, clusler M-a. Notice the slimmer apical dendrite and rather round appearance 
but wider extend of [he basal dendrite. B) Morphology of cell /'22, cluster M-b. The apical dendrite 
occupies a larger area and has more arborisations, whereas the basal dendrite is more compact when 
compared to M-a cells. C) Morphology of cell #21, clusler M-c. This cell has a longer apical dendrite 
which is similar in complexity lo M-a cells, bul ihe basal dendrites extend mainly in perpendicular 
directions lo Ihe apical dendrite. 

Notably some variables describing form factors of the apical dendrite might also distinguish 

cluster M-a from clusters M-b '̂M-c. CeUs in cluster M-c have a longer apical tile perimeter 
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[apical lile perimeter ^ 2600 ±206,4 jim, F=4.60 p=0.024], greater aspect ratio [apical lile 

aspect ratio = 2.687 ±0.242, F=4.45, p=0.026] and a greater maximum Fcrct diameter [apical 

tile feret max ^ 786.6 ±48.63 nm, F=4.23, p=0.0301. compared to clusters M-a/M-b. This can be 

seen in Figure 4.25, where the longer apical is seen in the comparison to both M-a and M-b cells 

(images are scaled to match scale bars). 

When comparing effects for basal dendrite variables, size of area variables and section variables 

generally best distinguish cluster M-b vs. M-a/M-c. Here M-b cells have a shorter the basal tile 

perimeter [basal lile perimeter ^ 1034 ±82.83 \im, F= 15.33, pKI.OOOl 1], smaller tile area [basal 

tile area = 55110 ±8667 \ai^, F=8.49 p=0.0023], a lower mean section length [basal mean 

/engr/i = 75.15 i4.00^m,F-11.81 p=0.00046] and total basal dendrite length [AaW/oto//OTgfA 

3425 ±302 [jm. F=6.49, p=0.0071]. .Again these differences are seen by eye when comparing the 

example morphologies in Figure 4.25. 

One distinct exception from the similarity between M-a and M-c is the maximum Feret diameter 

of the basal tile [basal tile ferei max. F=25.70. p=3.94e-06], which was found to be the only 

variable significantly ditTerent between all clusters. M-b cells have the lowest maximum Feret 

diameter [basal file feret max = 358.1 ±19.67 |im] followed by M-a cells [basal tile ferel max ^ 

495 =bI3.37 |im] and M-c cells [hasal tile feret max = 579.8 ±27,82 urn]. In addition, M-b cells 

have smaller CV in section length [basal cv length = 0.83 ±0.036 F=6.25. p=0.0082], lower 

turtoisity of sections [basal mean lurtoisily = 1.123 ±0.014 F=4.46, pK).026] and a smaller 

width in theunimodal fit to Sholl analysis results [basal shall std I = 52.12 ±5.684 |im, F=4.26, 

p=0.030] compared to M-a cells. 

Variables that best distinguish M-c vs. M-a/b cells describe form factors of the basal dendrite 

tile. The basal tile of M-c cells has a smaller form factor [basal tile form factor ^ 0.36 ±0.05, 

F=12.24, p=0.00038], solidity [basal tile solidity = 0.67 ±0.04, F=9.53, p-0.0014], compactness 

[basal tile compactness = 0.57 ±0.034, F=9.43. p=0.0014] and roundness [basal lile roundness 

= 0.32 ±0.047, F=8.31, p=0.0026]. Also, an automatically generated 2-dimcnsional hull applied 

to the whole neuron dendrite differs in area [all hull auto 2d area = 3.6e5 ±2.]6e3 nm". F=7.16, 

p=0.0048] and perimeter [all hull auto 2d peri = 2441 ±75.72 ^m, F=6.02. p=0.0094] between 

M-c cells and M-a/M-b cells. A weaker effect can also be seen for the soma aspect ratio, which 

is smaller for M-c cells [soma aspect ratio = 1.163 ±0.067, F=4.10. p=0.033] compared to M-a 

cells. 

in summary, size of dendritic area and section features are most different between clusters M-a 

and M-b, where M-b cells cover a greater apical area with a greater number of nodes and 

sections, but smaller basal area and smaller total length of basal dendrite. The small M-c cluster 

differs from M-a/M-b cells mainly in the shape of the basal dendrite, with lower values for 
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shape factors such as roundness, solidity and compactness. These lower values describe the 

basal dendrites as further away from an ideal circle, indicating a asymmetric spatial field of the 

basal dendrite. 

Table 4.5 Mean values of morphologv' cluster 

apical rt nod^s 

apical n eriils 

hasal tileferel max 

apical total len 

basal lite perimeter 

basal lilefiinn 
factor 

basal mean le" 

basal lile soliiliiy 

basal lile compact 

basal tile area 

basal lile round 

apical mean length 

hull auto 2d area 

basal lolal length 

basal o ' ten 

hull auto 2d peri 

basal lileferet min 

apical tile ansa 

Frailal Jim 

apical tile pert 

apkai scholl ratio 

basal mean 
turtoisil) 

apical lile aspect 

basal schotl sid 1 

apical lile feret mas 

soma aspect ratio 

epical lile d soma 

basal lile cunrtsit}-

apical lile compact 

apical cv length 

M-a 
(n-13) 

t 7 . 8 5 ± l . l 4 * 

19.0S±l . lg* 

4 9 5 ± I 3 J 7 * 

3837±I3I .6* 

I486 i56.27* 

0.56 ±0.02 

96.63 ±1.72* 

0R22.1 10.019 

f l .7 i : . l lO.IJIW 

98240 ±5888 • 

0.51 10.022 

104.6 ±2.743* 

2.69c5 i l . 0 f4 

4533 ±205* 

0.967 ±0.023* 

2150 ±36.38 

341.8 ±17 J 4 * 

82000 ±6858* 

1.149 ±0.006* 

2001 t99.IJ 

0-679t0.029 

1.173 ±0.009* 

1.967 ±0.1162 

70.78 ±3.861 * 

640.1 ±23.36 

1-372 10.032 

240.9 ±11.13 

Q.9062 iO.01.1 

0 5n.lH 10 019 

OJ118±0.015* 

C l u s t e r 

M-b 
(n=6) 

38 J 3 ±1.68* 

40.17 ±1,74* 

358.1 ±19.67* 

6647 ±341 J * 

1034 ± 8 : J 3 • 

0.65 ±0.03* 

75.15 ±4.00* 

0.88 r 7 ±0.029* 

0.7383 ±0.024* 

55110*8667 

0J5 ±0 .031 ' 

84.86 Ld.037 

2.88c6 ±1.52e4* 

3425 U 0 2 • 

0.83 ±0.036* 

2200 ±53.54 • 

243.4 125.53 

II9500±10090 

1.182 10.009 

2375 i l 4 5 9 

0.561 ±0.042* 

1 123 10.014 

1.84*0-1711 • 

52-12 15.684 

709,5 134J8 

1 3 ±0.047 

284.4 116J8 

0.9333 ±0.010 • 

03467 ±0.018-

0.7484 10.022 

M-C 

(n=3) 

22.67 ±2.37 

24.33 ±2.47 

579.8 ±17.82 " 

4748 ±4li4.1 

1747 ±117.1 

0 J 6 ±0.05* 

102 ±5.67 

0.6667 ±0.040* 

0.5667 ±0.034 * 

86990 ±12260 

0J2 ±0.047* 

100.5 ±5.71 

3.6e5±1.16e4* 

507K ±427 

0.994 10.049 

2441 ±75.72 • 

320.7 ±36.1 

81260±14280 

I.I73±O.OI2 

2600 ±106.4 * 

0.767 1O.O6O 

I 151 =0 020 

2.687 ±0.242 • 

74.13 18.038 

786.6 ±48.63 • 

1.163 ±0 .067 ' 

295.6 ±23,16 

0.84 ±0-028 

0.4167 10.039 

0.7826 ±0.031 

ANOVA 

F 

51.41 

50.21 

25.70 

23-05 

15.33 

12.24 

11.SI 

9.53 

9 43 

K.49 

8.31 

8.22 

7.16 

6.49 

6.25 

6.02 

5.12 

5.06 

4.95 

4.60 

4.51 

4.46 

4.45 

4.26 

4.23 

4.10 

3.76 

3 71 

3.68 

3.55 

P 

2.16C-08 

2.60e-08 

3.94e-06 

S.30e-O6 

0.00011 

0.00038 

U.00046 

0.0014 

0.0014 

0.0023 

0.0026 

0.0027 

0.OO48 

0.0071 

0.0082 

0.0094 

0.017 

0-017 

0-019 

0.024 

0.025 

0.026 

0.026 

0.030 

0.030 

0-033 

0.042 

0044 

0.045 

0.049 

Significant variables from separate one-way ANOVA (non-equal sample size) 
post-hoc Tukey-lCramer test (p<0,005); ' M-a vs M-c HH-b vs M-a 0 -M-c vs M-b. 
See Methods for appropriate units. 
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Discussion of morphology based clustering 

The PCA based cluster analysis of morphological structure presented here has identified at least 

two distinct populations of deep layer pyramidal cells based on quantitative morphological 

parameters: a complex cell population with a wide apical tuft and small basal dendritic area and 

a heterogeneous population of cells with wide, symmetric basal dendrite but variable apical 

tufts. 

The results of this analysis agree with previously reported quahtative morphological properties 

of deep layer pyramidal cells, which were originally classified into two main groups based on 

somatodendritic morphology, projection site, and physiology (Hallman et al., 1988; Chagnac-

Amitai et a).. 1990; Larkman and Mason, 1990; Mason and Larkman, 1990; Kasper et a!., 

1994): Type 1 neurons have thick tufted apical dendrites and are more likely to exhibit bursting, 

and project to the superior eoUiculus, the spinal cord, the basal pons or the striatum. In contrast. 

Type IT neurons have slender apical dendrites, mostly show regular spiking behaviour, and 

project either to contralateral cortical sites or the ipsilateral striatum. This basic characterisation 

has been proven to be useful, but is certainly oversimplified. 

To my knowledge this is the first quantitative study on deep layer pyramidal cell morphology in 

the rat PFC. Previous studies that report quahtativc morphological features of prefrontal deep 

layer pyramidal cells have shown similar classifications, where a thicker apical dendrite and 

more complex dendritic arborisation was associated with bursting behaviour (Yang ct al., 1996; 

Degenetais et al., 2002; Otsuka and Kawaguchi, 2008). 

Other studies have focussed on classitying morphology and electrophysiology of prefrontal 

pyramidal cells based on their projection targets. For example Morishima and Kawaguchi 

(2006) have used retrograde tracing methods to selectively label subpopulations of deep layer 

prefrontal pyramidal cells. Injection of fluorescent tracer into the pons and the striatum revealed 

non-overlapping populations of deep layer pyramidal cells. Corticostriatal cells were 

morphologically heterogeneous especially with regard to their apical tuft structure as opposed to 

corticopontine neurons which appear to be more homogenous, but distinctly different in 

dendritic morphology. It is likely that these two populations have been sampled in the current 

study, where M-b cells would correlate with corticopontine neurons and M-a cells correlate with 

corticostriatal/callosa! cells. Thus morphological characteristics are correlated with projection 

targets, as demonstrated for other cortices (Gao and Zheng, 2004; Hattox and Nelson, 2007), 

and dendritic structure can be used as indicator of projection target, if such information is not 

available. In Morishima and Kawaguchi (2006) whole cell patch clamp recordings revealed that 

corticopontine neurons preferably exhibit bursting whereas corticostriatal/callosal neurons 

exhibit regular spiking patterns. More interestingly, using dual cell recordings they showed that 
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corticostriatal cells with similar morphology are more likely to be synaptically connected. Also, 

corticostriatal/callosal neurons are more likely to be non-recurrently connected to corticopontine 

neurons than to neurons of their own type. Hence morphologically defined sub-networks might 

exist in the rat prefrontal cortex where bursting, complex apically arborised pyramidal cells 

integrate information from corticocortical and corticostriatal networks. 

One other recent study described a distinct morphological phenotype in the prefrontal cortex of 

ferrets {Wang et al., 2006). This phenotype showed a characteristic proximal split of the apical 

dendrite and showed a higher number of dendritic apical and dendritic arborisations. Hence it 

was termed 'complex pyramidal cell', as opposed to the 'simple pyramidal cell' which is the 

main cell type found in the visual cortex. The complex pyramidal ceil was reported to be the 

major ceil type in the ferret prefrontal cortex (89%) and to be distinct in terms of connectivity 

and synaptic plasticity. In this study out of 22 reconstructed cells, 4 cells (IDs: 1. 14, 19, 20) had 

a similar early split in the apical dendrite. These cells were all classified into cluster M-a/M-c, 

together with other ceils lacldng such a feature. In Wang et ai. (2006) only few quantitative 

morphological measurements were reported, but most significant was the total length of apical 

dendrite which was reported to be -6108 ±744 pm (Suppl. Information in Wang et al., 2006). 

These values are much closer to cells in cluster M-b [apical total len = 6647 =353 pm] although 

no proximal split of apical dendrites exists. Simple cell values were reported to be 3025 ±1100 

fim (Wang et al., 2006) which agree with values obtained for cluster M-c [apical total len = 

3603 ±386 (jm]. Thus, deep layer pyramidal ccUs in the adult rat seem different from those 

observed in ferrets, although some overlap exists. Cells with proximal apical split exist, but do 

not seem to form a defined cell type, neither based on morphology nor physiology. 

Other studies have used cluster analysis successfully for unbiased morphological classification 

of cortical Lntemeurons (CauU et al., 2000; Kozioski et al., 2001; Krimeret al., 2005; Dimiitriu 

et al., 2007) and pyramidal ceils (Tsiola et al.. 2003). One recent study has employed 

hierarchical clustering to characterise deep layer pyramidal cell morphologies in the visual 

cortex of mice {Tsiola et al.. 2003). They described five main classes of pyramidal cells, where 

the typical large pyramidal cell (with apical dendrite extending to superficial layers) consfituted 

only one distinct cluster. Other cluster were formed by ceils with polarised and short dendrites, 

cells with narrow dendritic arbours, small pyramidal cells with small dendrite and soma, and 

atypically oriented pyramidal cells. The cluster containing large pyramidal cells was divided 

into two subgroups mainly due the size of their apical tufts, i.e. wide and narrow-tufted tall 

pyramidal cells. The identified groups in the curtent study relate to subgroups of tall pyramidal 

cells described by Tsiola et al, (2003). Cluster M-a possibly relates to Tsiola et al.'s nartow-

tufted pyramidal cells, whereas cluster M-b relate to tall wide-tufted pyramidal cells. Yet, Tsioia 

et al.'s wide tufted pyramidal cells seem less complex than cells found in cluster M-b, which is 
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in line with the view thai pyramidal ceU complexity (e.g. number of spines and dendrites) is 

increased in prefrontal areas, as discussed above (Elston, 2003b: Wang et al., 2006). 

Furthermore, Tsiola et al. {2003) report one cell type thai has asymmetric basal dendrites which 

they referred to as 'narrow pyramidal cells'. This cell type might correlate with cluster M-c, but 

because of the low number of cells that form cluster M-c, this conclusion is rather speculative. 

Altogether the current analysis demonstrates the existence of morphological subpopulations in 

deep layer pyramidal cells of the rat PFC. 
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4.4 Pyramidal cells in a combined feature space 

To achieve a classification of pyramidal cells in a combined feature space formed by physiology 

and morphology variables, I have performed a HCA using the first principal component of the 

electrophysiological data obtained under control condition and the first principal component 

from Ihc morphological dataset. Figure 4.26 A shows the resulting dendrogram after HCA. Here 

four very eompact cluster emerge. Figure 4.26 B shows a scatter plot of cell positions plotted in 

coordinates spanned by intrinsic (PCI Electrophysiology Control) and morphological (PCI 

Morphology) properties. I have computed single one-way ANOVAs on selected variables, using 

the EM cluster as independent variable, to determine where differences between clusters stem 

from. Table 4.6 presents results from those ANOVAs that describe some of the most significant 

differences between the obtained cluster. 
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Figure 4.26 | HCA of principal components from physiology and morphology 
A) Dendrogram depicting results from HCA of PC I from both morphology and physiology. 
B) Scalier plot of cells (•) in coordinates spanned by PCI of moiphology variables and PCi of 
control eleclrophysiology variables. Values for dopamine modulated cell parameters are added 
through oul-of-sample e.xtension of DA datasets, Dl: D, D2: A. To illustrate changes from control to 
DA modulated condition, control dala are connected through lines to their respective D1 dataset 
(solid line) and D2 datasei (dashed line). 

The most distinct cluster is cluster EM-d (red). It is identical to cluster M-b which, as discussed 

above, corresponds to bursting cells (cluster IB). The cells are well separated on both principal 

component axes from all other cells, which is in agreement with cluster analyses shown above. 

When computing one-way ANOVAs with multiple comparison tests (Tukcy-Kramcr), the two 

variables with the highest F values are the y-intercept for the square root fit to spike latency 

[h(}/ISh>)] and the number of apical ends [apical n ends\. Both arc significantly higher when 

compared to all other cluster (Table 4.6). This is in line with cluster solutions presented in 
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previous sections, where bursting cells have always been classified as separate groups in all 

datasets (i.e. control elcctrophysiology, DA modulated, and morphology). 

Non-IB cells are split into three cluster, of which the largest one contains 7 cells (EM-a, 

yellow). These cells are drawn exclusively from the previous RS/M-a citister. This cluster 

appears to be very similar in morphology to next biggest cluster EM-b (n=5. light orange) as 

seen in their very similar positioning on the morphology axis in Figure 4.26 B. Thus differences 

in intrinsic properties must explain the split into two separate clusters. When comparing this 

cluster solution with the clustering results from the sections above (Figure 4,27), it appears that 

EM-b consists of four RS and one IM cell of control condition cluster. Results from one-way 

ANOVAs give insight into where differences between EM-a and EM-b stem from. Indeed, only 

3 eiectrophysiology variables are significantly dilTerent between EM-a and EM-b, the input 

resistance [Rlin/]. and the two coefTieicnts for the square root fit to steady state ISFs [a(ISI.eq), 

b(!S}.eq)\. For example EM-a cells have a higher input resistance \R<in) = 107.8 ;::4.7 Mii], 

compared lo EM-b cells \R(m} = 83.45 ±5.6 M£i]. Since the standard deviation in these clusters 

is much smaller compared to the values from cluster RS [R(in). RS: 99.10 ±16.10 Mli] and IM 

[Riin). IM: 70.70 ±14.87 MCJ]. the current clustering seems to have found more homogenous 

groups within non-IB cells. 

3 13 15 12 22 14 20 21 17 1 9 5 16 11 19 2 IB 4 7 6 8 ID 
Cell ID 

Figure 4.27 | Comparison of all cluster solulions 
Comparison of clusler solutions for ditTerem datasels. Here IB cells show up as distinct cluster in aU 
datasels (although cell 17 has been classified as IM ceil based in control physiology variables). Non-
IB cells are more helerogeneous and possible subpopulalions based on morphology, DA modulation 
and in the combined parameter space might exist. 

Cluster EM-c is comprised of 2 IM cells (M-c) and two RS cells (M-a) in the control condition 

(morphology) cluster (Figure 4.27). In the principal components axes these cells are mainly 

separated by morphology variables from the larger cluster EM-a and EM-b, whereas 

physiological properties arc similar. Indeed variables describing the basal dendrite are those that 

show the highest significant differences, as established by separate one-way ANOVAs. The 
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basal tile perimeter [basal tile peri = 1861 ±72 fun] and the basal maximum Feret diameter 

[basal feret max = 416,8±24 ^m] is significantly larger compared to all other clusters {Table 

4.6). Standard deviations for basal tile perimeter of cluster EM-c arc smaller when compared to 

morphological cluster [basal tile perimeter, M-a 1486 ±56.27 jim, M-c 1747 ±1 17.1 [im] but not 

for the basal maximum Feret diameter [hasal maxferef, M-a:495 ±13.37 jim, M-c; 579.8 ±27.82 

fim]. Thus, cluster EM-c appears, at least for a subset of variables, more homogenous compared 

to clustering based on morphology alone. 

DA modulation projected into control parameter space 

T did not include the dopaminergic data into the current HCA. since no data was available for 

four cells. Instead, I used out-of-sample extension to plot the respective DA modulated datascts 

into the PC coordinates in Figure 4.26 B. Out-of-sample extension is simply achieved by using 

the coeflicicnts for the transformation of the control datasct into principal components, and 

apply them to the datasets obtained with dopaminergic agonists. These changes are indicated as 

horizontal lines between the control (full circles). Dl {solid line, open squares) and D2 {dashed 

line, open triangle) condition in Figure 4.26 B 

Table 4.6 I Selected ANOVAs of EM cluster 

Cluster ANOVA 

b/ISIa) 

EM-a EM-b EM-c EM-d 

-23-07 t3.0'' -35.38*3.6' -33.13*4.0'' -69.52 O . : " ' 

Ea.iS) P 

38.61 4.76C-H 

cpKolneniis 19.29 t l .7 ' ' 22 ±2.0' 19 12.3" 

basal lite 
penmeter 

JUm} 

aOStJ 

basal nie 
ferel mm 

1441 ±54' 

107.8 ±4.7" ' 

0.69 ±0.14''' 

3172 ±18-

|4ns i W ' IRfil +T2"'' 

83.45±S.6'' «7,74±6.2^ 

l .55iO.I7' 1-3410,19' 

303.7*21' 416-8 ±24' 

40.17*1.8*** 

1034 •(•5R'*' 

S6.1S*S.l"" 

l . lT i f l . lS ' ^ ' 

243,4 tlQ**-* 

27.82 

26.64 

18.25 

15.71 
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This comprehensively illustrates the changes introduced by DA agonists on physiological 

variables. Cells in cluster EM-d (IB) seem to react similarly to both Dl and D2 receptors, where 

bursting cells seem to get closer to non-IB cells on the physiology axis. This is line with the 

observed effects, described in the previous analysis of the DA datasel. where for example Dl or 

D2 stimulation reduce the rheobase current (for an upward current ramp injection) of bursting 

cells, i.e. bringing it closer to values seen in non-bursting cells (Table 4.4). 

For non-IB cells DA effects seem more variable, with Dl effects being mostly stronger (longer 

solid lines), but with some cells exhibiting very strong D2 effects (dashed lines). Here it can be 

seen that all cells forming the DA-c cluster (cells exhibiting strong D2 effects) were assigned to 

cluster EM-a (Figure 4.27). This demonstrates the possibility of a subpopulation of pyramidal 

ceils expressing high levels of D2 receptors, as discussed above (Section 4.2). 

Discussion of EM clustering 

The clustering of pyramidal cells in a combined feature space revealed two main results. Firstly, 

intrinsically bursting neurons present a very distinct cell population that differs in many 

variables to all other recorded pyramidal cells. Secondly, non-bursting cells are rather 

heterogeneous, and different datasets (as described in the sections above) lead to different 

groupings of cells. 

In IB cells the correlation between morphology and electrophysiology is very high. TTiis is 

manifest in their consistent appearance as a cluster in analyses of separate datasets (control 

electrophysiology, DA and morphology) and is confirmed through clustering in the combined 

feature space. In contrast, correlation between electrophysiology and morphology seems less 

pronounced in non-bursting cells. Here, classifying cells based on both electrophysiological and 

morphological variables might present an advantage, where clustering reveals less obvious 

correlations between physiology and morphology. 

Extensive work has been dedicated to reveal the impact of dendritic morphology on 

physiological properties of neurons. Since the groundbreaking theoretical work of Rail in the 

1950"s and 1960's (Rail. 1959; Rail et al., 1995). there is a large body of experimental and 

theoretical evidence, that dendritic morphology critically shapes synaptic inputs, affecting 

neuronal signal integration and the generation of somatic action potentials (Stuart ct al., 2000). 

in particular, the relationship between dendritic morphology and bursting has received special 

attention. The correlation between bursting and cell morphology has been described 

qualitatively by the first studies to repon bursting in deep layer pyramidal cells (Connors et al., 

1982; Chagnac-Amitai ei al., 1990: Connors and Gutnick. 1990; Larkman and Mason. 1990). 

Later Mainen & Sejnowski (1996) demonstrated how increased complexity of the dendritic tree 
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alone, can give rise to various firing patterns in biophysical model neurons, including bursting 

behaviour. Although there is more experimental evidence for the influence of dendritic structure 

on neuronal firing patterns (Kasper et al., 1994; Mel. 1994; Bastian and Nguyenkim. 2001), 

further studies have shown that a variety of mechanisms can induce bursting, even in regular 

spiking neurons, for example through appropriate dendritic stimulation (Larkum et al„ 1999; 

Williams and Stuart, 1999; Lemon and Turner, 2000). Moreover, active conductances in 

dendrites modulate transmission of synaptic signals to the soma and have critical impact on 

elicited firing patterns (Hausser ei al., 2000). Thus, not only the structure of dendrites, as 

captured in the current analysis, but also their equipment with voltage gated channels 

contributes to differences in firing patterns and ultimately input-output functions (Reyes, 2001). 

To this end, the current analysis shows that correlations between biophysical properties, input-

output functions and morphology are robust in bursting cells, but harder to detect in non-

bursting cells. In this respect, multivariate analysis including parameters from both physiology 

and morphology will most likely improve the detection of these correlations, and more 

truthfully detect similarities between cells, but given the greater variability in non-bursting cells, 

larger datascts are needed to rehably identify sub-populations in deep layer pyramidal cells of 

the rat Pf C. 
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Final Discussion and Outlook 

The current study has for the first time presented a quantitative analysis of electrophysiological 

and morphological properties of deep layer pyramidal cells in the adult rat PFC. 

The analysis showed distinct clusters of pyramidal cells in a parameter spaces spanned by 

intrinsic biophysical properties, dopaminergic modulation, morphology or in a combined feature 

space. These clusters point towards distinct subclasses within prefix)nta] deep layer pyramidal 

cells. Moreover, cluster in obtained different parameter spaces overlap which highlights the 

correlation between electrophysiology and dendritic structure. 

The most distinct subpopulation consists of intrinsically busting (IB) cells that fire repetitive 

bursts of action potentials upon low intensity stimulation. They show a low input resistance and 

fast membrane lime constant and short spike latency. 

When dopamine modulation of variables was included into the analysis IB cells showed very 

consistent DA effects. Indeed, this study has for the first time identified specific modulation of 

IB cells through DA receptors. Both DA receptor subtypes induce a shift of the input-output 

function towards lower input intensities. IB cells can further be identified based on the overall 

shape of basal and apical dendrite, with wider apical dendrites but smaller basal dendrites. 

These different area shapes might indicate sampling of different cortical information streams, 

where apical dendrites of IB cells sample inputs fi-om all superficial layers. Bursting cells in the 

PFC have been shown to integrate input from neighbouring corticocortical cells (Morishima and 

Kawaguchi. 2006). IB cells are probably identical with previously reported corticopontine and 

corticothalamic cells (Kasper et al., 1994; Hattox and Nelson, 2007), which have been shown to 

form specific sub-networks within deep layers of the cortex (Markram ct al., 1997; Morishima 

and Kawaguchi. 2006). With their extended apical dendrite IB cells probably also have 

enhanced capabilities for local dendritic computation (London and Hausser. 2005). Thus circuit 

specific action of dopamine in prefrontal networks might enable selective control of information 

flow towards thalamic and subcortical circuits depending on cognitive demands. The interaction 

between cell type specific DA modulation and dendritic function is one interesting point for 

future investigations. 

AH other recorded cells are grouped into different clusters depending on the chosen dataset. 

This denies a clear identification of subpopulations in non-bursting cells. Based on the results 

from electrophysiology non-bursting cells have been separated into regular spiking cells (RS), 

which fire regular spikes (sometimes an initial spike doublet) with varying degrees of adaptation 
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in response to current stimulation and intermediate cells (IM), which shows intermediate values 

for the membrane time constant and input resistance. Non-IB cells also display a higher 

variability in dendritic structure, with smaller apical dendrites but wider basal dendrites. Also, a 

possible subtype of non-IB cells with skewed basal dendrites might exist. 

When using both physiological and morphological parameter for cluster analysis, new cluster 

emerge in non-IB ceils, that do nol overlap with cluster solutions from physiology or 

morphology data alone. The combination of physiology and morphology variables probably has 

greater power in finding similarities between cells, since some cluster in the combined feature 

space show much reduced variance (as measured by siandard deviation). Yet, fmal conclusions 

on the "true" subpopulations cannot be drawn, due to the limited number of non bursting cells 

recorded. Non-IB cells probably correlate corticocortical and corticostriatal celts (Morishima 

and Kawaguchi, 2006; Olsuka and Kawaguchi, 2008). Their heterogeneity might provide a 

richer spectrum of computational properties, allowing more flexible processing of information 

streams. 

Non-IB cells show weak but consistent DI receptor modulation of excitability, where Dl 

activation increases gain for low intensity inputs and pushes cells towards intrinsic bistabihty. 

This Dl effect might complement DA effects synaptic mechanisms that stabilise persistent 

activity states in PFC networks (Durstewitz et al.. 2000a: Thurley et al., 2008). 

Furthermore, a subpopulation of non-IB cells may exist, which shows strong D2 receptor 

agonist response. In this subset D2 receptor activation pushes neurons away from bistability. 

Thus D2 activation could, in this subpopulation. facilitate the reversal of previous persistent 

firing states, thereby enabling clearance of respective short term memorised information 

(Durstewitz and Seamans, 2008). This is highly speculative based on the current dataset and 

more detailed analysis of non-IB type pyramidal cells and their D2 receptor mediated 

modulation is needed. 

Crilicism 

Several points of critique can be raised. The catalogue of electrophysiological stimuli was 

selected to characterise neuronal responses on different time scales and for a wide range of input 

strengths, but the set of chosen stimulation protocols used rather static somatic stimulation 

through ramps and steps. Other studios have emphasised the need for dynamic input stimuli to 

reliably describe input-output functions of cortical pyramidal cells (Chance et al., 2002; Fellous 

ct al., 2003; Bade! et al.. 2008; Thurley et al., 2008; London el al., 2008; La Camera et al., 

2008). For example Badel ct al. (2008) have used sophisticated stimulation pattems and analysis 

to analyse input-output fijnetions of neocortical pyramidal cells. They have used measurements 
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of the membrane capacitance to estimate the time dependent membrane current during ongoing 

activity. This yields an exact description of the current to membrane voltage relationship {input-

output curve) and accurately predicted spike limes when plugged into an integraie-and-fire 

neuron model. This ciu^e was coined 'dynamic input-output function' !o highlight the 

difference to conventional ramp and step stimulations (as used in the current study), that rely on 

steady state values for membrane current or voltage. These steady state values might indeed 

include large fractions of inactivated voltage gated sodium and/or potassium chaimels, due to 

the stimulation procedure. Thus for a faithful description of input-output functions, that could be 

used to parameterise biophysical models, more sophisticated techniques are advisable. Since in 

the ciurent study the focus lied on comparing different cells under similar conditions, this 

amount of detail may not be crucial for the presented results. Yet, more exact description of 

input-output fijnction might help to reveal consistent differences in non-bursting deep layer 

cortical pyramidal cells. Hence, futiu'e studies will have to address this through applying more 

realistic input patterns. 

Moreover, input-output functions were only measured through somatic stimulation which is not 

suited to quantify the influence of dendritic conductances on input-output functions. Future 

studies would need to use more advanced recording techniques, i.e. simultaneous somatic and 

dendritic patchmg (Davie el al.. 2006), to elucidate the exact biophysical and dendritic 

properties of the more diverse non-bursting pyramidal cell populations in the prefrontal cortex 

of rats. 

The current use of DA receptor agonists assumes reversible and transient effects of Dl and D2 

receptor activation. Critical for the peer reviewed publication of the current results will be the 

demonstration of washout of D2 effects and'or repetition of experiments for similar cell types 

with only Dl or D2 receptor agonist. Also, time and dose dependent effects should be included 

in future investigations of cell type specific DA effects. 

This study has demonstrated thai the combined use of dimensionality reduction through PCA 

and classification through hierarchical cluster analysis is suited to analyse a large number of 

variables that characterise a small number of cells. This statistical problem of classifying items 

based on a large feature space is commonly referred to as p » N (Hastie et al., 2009). The 

current approach presents computationally simplified method that relies on the combination of 

two rehable and well documented methods. Indeed the resuhs obtained show that combined 

PCA/HCA analysis is well suited to identify similarity in datascls with a large feature space. 

Moreover, the obtained cluster solutions seem robust against omission of single variables, as 

demonstrated by a leave-one-out type analysis. The influence of single variables in shaping 

cluster solutions seems balanced by a certain amoimt redundancy of information in the principal 

components. The principal components have here been calculated on normalised variables (z-
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score) which essentially sort variables according to covariance, thus missing one variable does 

not affect the cluster solutions strongly, if similar information is carried in other variables. 

Probably the largest limitation of the current study is the relatively small database of recorded 

cells. Final conclusions on possible subpopulations of non-IB cells cannot be drawn at this 

point. It has to be noted that whole cell patch recording in adull brain slices is considerably 

harder, compared to recording in young tissue. Furthermore, the manual reconstruction of 

neuronal cell morphology is very labour intensive. Recently, various groups have pubhshed a 

number of automated reconstruction algorithms, that should ease the reconstruction of neuronal 

morphology considerably (Cohen et al., 1994; Al-Kofahi ct al.. 2002; Evers cl al., 2005; 

Rodriguez et al.. 2008; Losavio ct al.. 2008). This should lead to a high throughput 

morphological analysis of cells based on confocal image stacks, since confocal LSM is readily 

available in most laboratories. 

Outlook 

The thorough quantitative measurement of single cell physiology and morphology in the current 

study provide the foundation for detailed biophysical models of prefrontal pyramidal cell types. 

To achieve this, scries of high resolution image stacks of labelled neurons can be acquired, 

subsequently semi-automatically traced and reconstructed. These morphologically detailed 

pyramidal ceil models can then be timed to reproduce physiological responses measured in 

vitro. Eventually this will allow investigation of single ceil computational properties in far 

greater detail. Thus the current database will further contribute to unravelling computational 

limetions of deep layer pyramidal cells in the PFC. 

Future work will also investigate how single cell properties observed in vitro might influence 

cortical network behaviour. For example, networks of pyramidal cells models and fast spiking 

intemetzrons with random variations in synaptic and intrinsic parameters have been 

implemented. These randomised networks were then subjected to different dopamine regimes. 

Preliminary results suggest that Dl dominated network states exhibit of low frequency 

oscillations and increased synchronisation between individual cells. Therein, ensembles with 

similar cross correlation patterns arise, favouring self organised weakly phase locked neuronal 

assemblies (Bartsch and Durstcwitz, 2006). Furthermore it will be interesting to investigate 

combined effects of DA on intrinsic and synaptic plasticity in network simulations (Kyle et al., 

2009), in particular with respect to recently proposed synaptic mechanisms of working memory 

(Mongilloetal. 2008). 

To conclude, the current study has shown one approach to multivariate classification of cortical 

pyramidal cells. The current analysis is by no means complete, but nevertheless provides a 
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quantitative reference frame for future investigations. In particular the combination of 

physiology, ncuromodulation and morphological characteristics has proven that prefrontal deep 

layer pyramidal cells do indeed form distinct and overlapping clusters in these different 

parameter spaces. The issue of identifying distinct subpopulations within cortical pyramidal 

cells has received increasing attention in the last decade (Elston, 2003c; Molnar and Cheung, 

2006; Borst. 2008; Brown and Hestrin. 2009a; Bernard el al.. 2009). In particular the prospect 

of identifying specific genetic markers for pyramidal cell populations (Molnar and Cheung, 

2006) raises hopes for more specific tools, such as transgenic labelling in mice, or retroviral 

infection in rats to further elucidate the complex function of cortical pyramidal cells. 
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