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Applications of Complex Adaptive Systems Approaches to Coastal Systems
Kenneth Samuel Kingston

Abstract: This thesis investigates the application of complex adaptive systems approaches
(e.g. Artificial Neural Networks and Evolutionary Computation) to the study of coastal
hydrodynamic and morphodynamic behaviour. Traditionally, nearshore morphological coastal
system studies have developed an understanding of those physical processes occurring on both
short temporal, and small spatial scales with a large degree of success. The associated
approaches and concepts used to study the coastal system at these scales have primarily been
linear in nature. However, when these approaches to studying the coastal system are extended to
investigating larger temporal and spatial scales, which are commensurate with the aims of
coastal management, results have had less success. The lack of success in developing an
understanding of large scale coastal behaviour is to a large extent attributable to the complex
behaviour associated with the coastal system. This complexity arises as a result of both the
stochastic and chaotic nature of the coastal system. This allows small scale system
understanding to be acquired but prevents the larger scale behaviour to be predicted effectively.

This thesis presents four hydro-morphodynamic case studies to demonstrate the utility of
complex adaptive system approaches for studying coastal systems. The first two demonstrate
the application of Artificial Neural Networks, whilst the latter two illustrate the application of
Evolutionary Computation. Case Study #1 considers the nature of the discrepancy between the
observed location of wave breaking patterns over submerged sandbars and the actual sandbar
locations. Artificial Neural Networks were able to quantitatively correct the observed locations
to produce reliable estimates of the actual sand bar locations. Case Study #2 considers the
development of an approach for the discnmination of shoreline location in video images for the
production of intertidal maps of the nearshore region. In this case the system modelled by the
Artificial Neural Network 1s the nature of the discrimination model carried out by the eye in
delineating a shoreline feature between regions of sand and water. The Artificial Neural
Network approach was shown to robustly recognise a range of shoreline features at a variety of
beaches and hydrodynamic settings. Case Study #3 was the only purely hydrodynamic study
considered in the thesis. It investigated the use of Evolutionary Computation to provide means
of developing a parametric description of directional wave spectra in both reflective and non-
reflective conditions. It is shown to provide a unifying approach which produces results which
surpassed those achieved by traditional analysis approaches even though this may not strnictly
have been considered as a fully complex system. Case Study #4 is the most ambitious
application and addresses the need for data reduction as a precursor when trying to study large
scale morphodynamic data sets. It utilises Evolutionary Computation approaches to extract the
significant morphodynamic variability evidenced in both directly and remotely sampled
nearshore morphologies. Significant data reduction is achieved whilst retaining up to 90% of the
original variability in the data sets.

These case studies clearly demonstrate the ability of complex adaptive systems to be
successfully applied to coastal system studies. This success has been shown to equal and
sometimes surpass the results that may be obtained by traditional approaches. The strong
performance of Complex Adaptive System approaches is closely linked to the level of
complexity or non-linearity of the system being studied. Based on a qualitative evaluation,
Evolutionary Computation was shown to demonstrate an advantage over Artificial Neural
Networks 1n terms of the level of new insights which may be obtained. However, utility also
nceds to consider general ease of applicability and ease of implementation of the study
approach. In this sense, Artificial Neural Networks demonstrate more utility for the study of
coastal systems. The qualitative assessment approach used to evaluate the case studies in this
thesis, may be used as a guide for choosing the appropriateness of either Artificial Neural
Networks or Evolutionary Computation for future coastal system studies.
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(The purpose of this brief glossary is to provide an overview of some specific terminology
which may not commonly be used within the coastal research community)

Architecture

Chaotic behaviour

Coastal community

Coastal system

Determinism

Epoch
Generalisation

Large Scale Coastal Behaviour

Over-fitting

Perceptron

Performance function

Regularisation

A description of the number of the layers in a neural network, each

layer's transfer function, the number of neurons per layer, and the
connections between layers.

A system which displays the following traits is deemed to be chaotic;
1) Aperiodic bounded dynamics.
2) Sensitive dependence on initial conditions.

A criterion which may be used to estimate the level of complexity of a
phenomenon is the quantity of information required to define it and
the associated practical difficulty in obtaining the information.

The body of researchers; oceanographers, geomorphologists, coastal
engineers, who are primarily interested in furthering knowledge about
the coastal system. Also included are those people; coastal managers,
and policy makers, who have a vested interest in the coastal system

For the purposes of this thesis the description of a coastal system is
deemed to comprise a description of the physical behaviour of those
objects/features observed at the interface between the land and the sea.

A deterministic system is one in which there is a definite rule with no
random terms governing the dynamics of the system. Therefore
knowledge of the state of a system at any time ¢ implies the
knowledge of the state of the system at any time ¢ + z Determinism 1s
also strongly linked with the concept of causality i.e. nothing occurs
without a cause or a determining reason. Thus if a stimulus for change
is provided to a deterministic system the corresponding response is
predetermined.

The presentation of the set of training (input and/or target) vectors to a
network and the calculation of new weights and biases.

An attribute of a network whose output for a new input vector tends to
be close to outputs for similar input vectors in its training set.

The dynamics of the coastal system on temporal and spatial scales of
months to decades and kilometres. These time and length scales tend
to be commensurate with those scales which are of interest to coastal
Managers.

Over-fitting of a model occurs when the model is biased to reproduce
specific characteristics of the training data set rather than identifying
the true system behaviour of which the data set is representative.

The basic processing element of a neural network. Includes weights
and bias, a summing junction and an output transfer function.

Artificial neurons are abstractions of biological neurons.

A measure of discrepancy between network output and desired goal.
Commonly the mean squared error of the network outputs.

Involves modifying the performance function, which is normally
chosen to be the sum of squares of the network errors on the training
set, by adding some fraction of the squares of the network weights.

Monotonic S-shaped function mapping numbers in the interval (-0, )
to a finite interval such as (-1,+1) or (0,1).

A set of connected things or parts that form a whole or work together
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Chapter 1 Introduction

1.1 Introduction

“Gathering information about the sea, its chemistry, physics, and biology and their interacting
mechanisms, should come right at the top of mankind'’s list of priorities. The more we know, the
better we shall understand how far we can safely go in availing ourselves of the sea's resources

and the consequences of abusing our present powers as a dominant species and recklessly
plundering or exploiting its most fruitful regions.”™

James Lovelock, ‘Gaia. A New Look at Life on Earth’, 1995

When considering the nearshore region along our coasts, one is immediately struck by
the rich complexity of the interactions and the continuous evolution of the coupled
hydrodynamic — sediment dynamic system. The diversity of this morphodynamic
coastal system is reflected in the broad range of temporal and spatial scales of observed
behaviour. Over the past few decades there have been major advances in the general
understanding of the mechanisms governing the behaviour of the hydrodynamics of this
coastal system and to a lesser extent the nature of sediment dynamics (Komar, 1998;
Thomnton et al., 2000). Yet we are still at the infancy of unravelling the behaviour of the
morphodynamic coastal system.

A significant proportion of our acquired knowledge on coastal systems has stemmed
from a form of scientific methodology, such as that presented in figure 1.1. It follows a
cyclical path linking observation, interpretation and simulation or modelling. A starting
point for interpretation of the methodology may be taken to be that of observation. This
is the main source of evidence as to why the coastal system behaves as it does. This is
as close as we get to the true nature of the morphodynamic evolution and interactions.

Observation is typically followed by interpretation. At this point the following questions
are typically raised. Do the measurements make any sense in light of current concepts of
the system’s behaviour ? What potential additional information about the system may
be derived from the observations ? This interpretation then leads to the development of
models which try to implement any new insights and to simulate the observations which
have been previously obtained.

Modelling is a juncture when it is possible to ascertain to some degree the validity of
the interpretative stage. Direct comparison with observation allows validation of that
sample of the system’s behaviour. However, as it is only a sample, it does not guarantee
that all the system dynamics have been captured in the interpretation. Therefore there
are levels of understanding of system behaviour which may be revealed which mirror

2
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Interpretatio Modelling

Figure 1.1 Process of understanding system behaviour

the levels of behaviour of
the actual system itself. For
example, understanding the
nature of suspension events

over ripples does not lead
directly to an understanding
of rhythmic bar formation.

The extent of understanding
may be established by
extrapolating our know-
ledge outside the parameter space of the original measurements to allow comparison
with other measurements. The extent of this predictive capability 1s an intrinsic
mechanism whereby the gaps in our knowledge tend to be highlighted and suggest re-
evaluation of assumptions of system behaviour at the interpretation stage. This quite
often leads to a requirement for further observations and thus the cycle perpetuates
itself.

Much emphasis to date, has been placed on understanding small-intermediate scale
phenomenology in considerable detail. Processes and interactions occurring at small
scales [Small Scale Coastal Behaviour, SSCB O(10™ - 10") sec, O(10~ — 10") m] govern
the nature of breaking waves, boundary layer interactions and the initiation of sediment
suspension events (Battjes and Stive, 1985, Fredsee and Deigaard, 1992). Intermediate
scale processes [Medium Scale Coastal Behaviour, MSCB O(10' — 10%) sec, O(10' -
10%) m] tend to be predominant in the characterisation of nearshore waves and currents
(Dean and Dalrymple, 1993). Intuitively vanations in these waves and currents cause
spatial gradients in the local sediments fluxes resulting in changes in the overall
topography (Large Scale Coastal Behaviour, LSCB [0(10° — 10°) sec, O(10* — 10*) m])
of the nearshore region (Komar, 1998). Processes occurring at any given scale can be
seen to impact on and be affected by processes occurring at other scales through various
feedback mechanisms (Cowell and Thom, 1994).

Hence, it had been hoped that knowledge at the small and intermediate scale would
facilitate a capability of both understanding and predicting larger scale behaviour. This
has been shown not to be the case (Roelvink and Broker, 1993: Schoones and Theron,
1995). Both these references are related to the alongshore averaged behaviour of cross-
shore models. To date, this evaluation of modelling capability has not been extended in
detail to the 3-dimensional case of area morphodynamic models. However it is likely
that the best approach to understanding morphodynamics on larger scales will be based
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on processes occurring at those scales rather than extrapolation from smaller scales (De
Vniend, 1997).

Yet much of the societal driven interest in the nearshore region is not primarily related
to grain by grain changes in the beach or nuances of wave pattern formation at the
shore. Instead, interest is directed to considerations such as; maintenance of beach width
for recreational purposes, determination of appropriate infrastructure to ensure that
erosion will be alleviated or the optimal dredging regimes to maintain navigation
channels. Immediately it is obvious that much larger scales are involved. Spatially,
entire beach regions are affected and the impact of either hard or soft beach protection
schemes typically are not fully felt for a period of years to decades. At longer time
scales, if one considers the impact such phenomena as sea level rise may have at our
shorelines, it is obvious that building up an understanding of nearshore behaviour at
larger scales is of paramount importance. Therefore the major motivation for this thesis
is the desire to develop an understanding of coastal system behaviour at larger temporal
and spatial scales. The thesis seeks to elucidate techniques and approaches which will
be useful for the interpretation and modelling of such systems. To this end, this thesis
advocates a change in the underpinning philosophies that have been adopted in the
study of coastal systems to date.
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Figure 1.2 Temporal and spatial scales of coastal system behaviour
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The range of scales of behaviour presented in figure 1.2 highlight the different scales of
behaviour in the nearshore region. At any given spatial scale it is often assumed that the
morphological features are generated by the corresponding hydrodynamic processes
which exists at that scale. If this is true, there 1s a discrepancy between their temporal
scales of behaviour, as was highlighted by Ruessink (1998). This results in a much
slower response time of evolution of the morphological feature compared to the
hydrodynamic process. Thus the forcing and morphological scales may exist on
different levels as for example is the case for sand ripples in a tidal channel. The
challenge facing the nearshore research community, therefore, is not only to try to

develop an understanding of larger scale behaviour, but also to gain insight on how
different scales of behaviour are inter-related.

Two questions therefore arise. Firstly, is there any particular reason as to why insight
has been gained on relatively small scale coastal processes rather than the larger scale
processes which impact more directly on the majonty of people ? Secondly, what
alternative approaches may be considered useful to bring new insights on coastal system
behaviour in general and especially an understanding of the larger scale coastal system
behaviour ?
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1.2 Aim and objectives of the thesis

The purpose of this thesis 1s to consider alternative approaches to the general study of
complex dynamic systems and investigate how they may be applied to coastal systems.
The aim of this thesis is to identify methodologies, new to the field of nearshore
processes, that have the capability of achieving one of the following goals ...

a) produce insight into coastal systems equivalent to those achieved by traditionally
accepted analysis and modelling techniques.

b) to provide new insights into the behaviour of coastal systems, as a result of taking a

new view of the system, even though it may be possible with hindsight to achieve
similar information from traditional approaches.

c) to provide new insights into the behaviour of coastal systems, as a result of taking a
new view of the system, which are unlikely to have been achieved by other means.

Specifically, those approaches developed in the area of Complex Adaptive Systems are
considered. Complex adaptive systems are macroscopic collections of simple (and
typically non-linearly) interacting units that have the ability to evolve and adapt to a
changing environment. These systems display complex and quite often unexpected
behaviour. The motivation for adopting this approach is that in the past the various
branches of science have tended to be quite insular. This has resulted in techniques and
methodologies (mathematical, statistical, etc.) being developed which, though
applicable in a broader sense, have seen little migration outside their area of

development. However, many scientists have begun to recognise that the transposition
of approaches to problem solving in one discipline to a new discipline can lead to new
insights. An example of this is the class of analysis tools comprising of empirical
orthogonal functions and their variants (Hotelling, 1936; Barnett, 1983; Horel, 1984).
Originally developed and utilised extensively in the atmospheric sciences to develop
insight into correlations between sets of varniables, there have been several successful
applications to coastal systems (Liang ef al, 1992; Wijnberg and Terwindt, 1995;
Larson et al., 1999; Ruessink, et al., 2000; Larson et al., 2000).

The successful transposition of approaches to solving problems leads to the premise that
the success is due to underlying characteristics in the areas of study which are inherently
similar. This is an essential part of the ethos of the study of complex adaptive systems,
which expounds the consideration of systems in their entirety thereby exploiting the
underlying common characteristics between systems.

As already stated, the major task facing the nearshore research community is to develop
a better understanding of the large scale behaviour of the coastal system. Whilst this is
an admirable goal, it is felt that it 1s beyond the realms of any one thesis to address all

6
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the issues it presents. Instead a more conservative objective is deemed appropnate. The
purpose of this thesis is to examine some of the approaches adopted in the study of
complex adaptive systems and demonstrate their application to coastal systems.

Specifically the objectives of this thesis are to:

1. Present a brief overview of the current understanding of coastal system behaviour.

2. Indicate techniques, taken from the field of complex adaptive systems, which have
the potential to lead to significant insight for the study of coastal systems.

3. Give examples of applications of complex adaptive system techniques to coastal
system problems.

4. Demonstrate whether adopting complex adaptive system approaches for the study of
coastal systems leads to useful insights in understanding coastal systems

5. Address the more general question of whether there is a ‘correct’ approach to
studying coastal systems.
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1.3 Thesis Outline

Chapter 2 starts by presenting a synopsis of the extent of the Coastal system which is
considered in this thesis. Rather than giving an outline of specific processes occurring in
coastal systems, the focus of the chapter is a consideration of the generic characteristics
of coastal systems. This has the aim of indicating the broad categories of types of
knowledge acquisition necessary for the study of these systems. This is followed by a
brief overview of measurements and modelling techniques that have been adopted to
date in understanding coastal systems. Chapter 2 concludes by highlighting the areas in
which significant gaps in our knowledge of coastal systems still exist.

Chapter 3 proceeds to introduce concepts related to Complex Adaptive Systems. The
general concepts of complexity and chaotic behaviour are presented, followed by a
review of some of the more popular approaches to knowledge acquisition that permeate
this field. This chapter concludes with a summary of the argument for considering
coastal morphodynamic systems as complex adaptive systems.

The structural layouts of Chapter 4 and Chapter 5, which form the main body of the
thesis, are identical. These chapters consider a range of applications of complex
adaptive systems approaches to studying problems in coastal systems. The former
chapter considers Artificial Neural Networks and the latter Evolutionary Computation.
Each chapter initially presents a detailed overview of the operation and application of
the particular technique, before presenting two specific case studies which apply the
technique to coastal systems. Each of these case studies consists of the presentation of a
specific problem taken from coastal systems, a proposed solution utilising the relevant
complex adaptive system approach and incorporates a discussion specific to the
problem.

The specific applications chosen for this study reflect the large range of scales of
interest inherent in coastal systems. They range from an hydrodynamic problem
occurring at a specific point over the duration of a few minutes, to a combined
hydrodynamic/morphodynamic problem with alongshore length scale covering a region
of shoreline of 3 km extending over a temporal scale of 15 months. The intention 1s to
demonstrate a variety of applications utilising complex adaptive systems approaches
which may indicate routes to insight of large scale morphodynamic behaviour for future
studies.

Chapter 6 considers the applications of the complex adaptive approaches presented in
the two previous chapters. Initially attention is paid to specific ments the complex
adaptive systems approaches had for the applications considered. This is followed by a



Chapter 1 Introduction

—

discussion of more general attributes of the techniques and their merits. Chapter 7
summarises by presenting the main conclusions of the thesis.

Figure 1.3 Thesis structure outline

Figure 1.3 presents an overview of the layout of the thesis. As can be seen the chapters
do not necessarily follow sequentially. Chapters 4 and S are presented in parallel as
there is no preferred order of occurrence. Similarly their respective contents and layout
are mirrored.

To summarise, the goal of this thesis i1s to highlight the importance of taking a lateral
view of approaching the study of coastal systems and to give a range of examples where
this has proved to be worthwhile.
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2.1 Introduction to Coastal Systems

“About 20% of the world’s coast is sandy and backed by ridges, dunes or other sandy

depositional terrain. Of this, more than 70% has shown net erosion over the past decade.”
Bird, 1985
“Fifty percent of the population of the industrialised world lives within one kilometre of a coast.

This population will grow at about 1.5 percent per year over the next decade.”

Goldberg, 1994

The term coastal system covers a vast range of not only physical, but also biological and
chemical interactions along our shorelines. It would be naive to expect any one thesis to
be able to present a treatise which considers this system in its entirety with any detail.
The coastal system of interest for this thesis 1s the morphodynamic system along
sedimentary coasts. For the remainder of this thesis, references to coastal systems will
implicitly refer to this subset of the overall system.

Coastal systems consider the interaction of the hydrodynamic and sedimentological
subsystems at a variety of temporal and spatial scales in the nearshore region. Figure 2.1
summarises the cross-shore extent of this system as considered in this study. It extends
from the offshore region outside the depth limited breaker zone (as may be defined by
the depth of closure; Nicholls ef al., 1998) to the backshore area of the upper beach face
beyond the influence of the hydrodynamic regime. This is only a subset of the cross-
shore extent of the coastal region, which extend beyond the depth-limited breaker zone
and into deeper water. As morphological response times become larger with progression
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Figure 2.1 Cross-shore extent of the morphodynamic coastal system.
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offshore, the effect of neglecting this outer area is to omit consideration of a region
which will never be able achieve an equilibrium state due to hydrodynamic forcing. In
the longshore direction, consideration is given to behaviour occurring over uniform or
enclosed stretches of beach, known as littoral cells (List and Terwindt, 1995; Komar,
1998). Examples of these littoral cells are quasi-linear stretches of beach exposed to
uniform hydrodynamic forcing or pocket beaches where behaviour is bounded by
headland features. Even though the system of interest is located in the nearshore region,
consideration of the boundary conditions for this system suggest the significance of the
non-local hydrodynamic forcing system.

Rather than enumerate the various accepted physical processes which occur within the
coastal system, this chapter will focus on presenting a description of the system as a
whole. This will be followed by a summary of important observations and current
methodologies adopted for both the understanding and the modelling of the coastal
system behaviour.

12
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2.2 Characteristics of coastal systems

Coastal systems are examples of dissipative energy systems. Wave and tidal energy are
continually input and subsequently dissipated, predominantly through the process of
wave breaking. It is expected that such a system would evolve towards a state of
dynamic equilibrium under steady forcing conditions. Many researchers have attempted
to use these concepts of equilibrium states, both to characterise (Dean, 1991; Wright
and Short, 1984) and to model coastal system behaviour (Hanson, 1989; Nairn and
Southgate, 1993). It was assumed that the morphological system was trying to head
towards a state of equilibrium, but due to changes in the forcing boundary conditions,
this state was not reached. The concept of coastal systems achieving a state of
equilibrium assumes that the system is to a large extent deterministic i.e. the system is
dominated by forced behaviour. Pilkey et al., (1993) question the application of models
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