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I. 
STUDIES OF THE SYNTHESIS, ENVIRONMENTAL OCCURRENCE AND 

TOXICITY OF UNRESOLVED COMPLEX MIXTURES (UCMs) OF 
HYDROCARBONS 

by 
Emma Jane Wraige 

ABSTRACT 

The occurrence of unresolved complex mixtures of hydrocarbons (UCMs) in the aliphatic fraction of 
marine sediments and organisms from areas impacted by petroleum hydrocarbons is well documented 
and widely accepted as an indication of fossil fuel contamination. In contrast, the presence of an 
aromatic UCM is often ignored and environmental concentrations of aromatic UCM hydrocarbons in 
marine biota and sediments are rarely reported. The aims of this study were to establish the 
quantitative significance of aromatic UCMs in environmental samples and to assess the toxicological 
significance of both aliphatic and aromatic UCMs. 

A reproducible method was developed and validated for the analysis and quantification of petroleum 
hydrocarbons in mussel (Mytilus edulis) tissue. Emphasis was placed upon development of a method 
which minimized losses of more volatile, lower molecular weight, toxicologically significant 
hydrocarbons, without compromising recovery of higher molecular weight compounds which are 
useful for source identification in environmental monitoring schemes. Analysis of mussels from a 
small number of U. K. coastal locations indicated that aromatic hydrocarbon UCMs may form a 
significant proportion (ca 20 %) of the total hydrocarbon body burden of mussels from areas 
contaminated with petroleum hydrocarbons. Aromatic UCM hydrocarbons were not observed in 

mussels from relatively uncontaminated areas but concentrations of 430 µg g'' (dry wt tissue) were 
measured in mussels from heavily impacted areas. Aliphatic UCM concentrations ranged from 7- 
3445 µg gg' (dry wt tissue). 

For the purposes of toxicological studies, a low molecular weight model aliphatic UCM hydrocarbon, 
4-propyloctane (4-PO) was synthesised. Two low molecular weight model aromatic hydrocarbons 7- 
cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin were also synthesised using a modification of the 
Haworth synthesis. All three target compounds and synthetic intermediates were characterised by 
NMR, MSandIR. 

Exposure of M. edulis to 4-PO caused a significant reduction in mussel ciliary feeding activity 
indicating that 4-PO was indeed toxic as measured by this bioassay. The demonstrable narcotic 
activity of 4-PO is presumably related to the greater aqueous solubility of branched hydrocarbons 
compared with similar straight chain hydrocarbons. Further experiments investigating the effect of 4- 
PO over exposure periods up to 120h provided a unique and detailed insight into the relationship 
between concentration of toxicant in the gills of M. edulis and observed feeding rate. The established 
method of mussel feeding rate determination was modified in light of this relationship to produce an 

" improved rapid and reproducible screening technique. 

Both of the model aromatic UCM hydrocarbons were also found to be toxic to mussel ciliary feeding 
activity. This appears to be the first report of investigations into the toxicity of the aromatic UCM and 
suggests that previous studies have ignored an environmental burden of toxicological significance. 

Estimates of the tissue effective concentration (TEC50) for the model UCM hydrocarbons gave 
comparable values with those reported for the effect of other narcotic hydrocarbons upon mussel 
feeding rate, providing support for the theory that non-specific narcosis occurs at a relatively constant 
tissue concentration of toxicant. 

The demonstrated narcotic activity of each of the three model UCM hydrocarbons has extended the 
molecular weight range of narcotic hydrocarbons studied to date. The results presented herein suggest 
that a small proportion of low molecular weight aliphatic UCMs and perhaps a greater proportion of 
aromatic UCMs are of toxicological significance. 
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CHAPTER ONE 

Introduction 



1.1 Unresolved complex mixtures (UCMs) of hydrocarbons 

Petroleum is made up of a complex mixture of hydrocarbons and minor amounts of 

other compounds. Despite advances in analytical techniques, a substantial proportion of 

the hydrocarbons of both crude oil and some refined petroleum products remains 

unresolved and hence unidentified, even by such high resolution methods as gas 

chromatography (GC). When examined by these methods, the hydrocarbons of many 

crude oils can be shown to contain chromatographically unresolved `humps' (Figure 

1.1 a). These `humps' have been termed unresolved complex mixtures (UCMs; e. g. 

Thompson and Eglinton, 1978). 

Hydrocarbon UCMs vary in carbon number range and appearance. Analysis of an 

unweathered, undegraded crude oil by gas chromatography usually produces a 

chromatogram dominated by a well resolved distribution of n-alkanes, isoprenoids, 

alkylbenzenes, naphthalenes and phenanthrenes with little evidence of an UCM (Figure 

1.1b). However, weathering processes (e. g. microbial degradation) result in loss of the 

resolved compounds and hence a relative increase in the UCM, which is considered to be 

relatively inert to microbial degradation (Gough, 1989). Consequently, the gas 

chromatograms of biodegraded crude oils are often dominated by an UCM (Figure 

1.1a). Hydrocarbon UCMs are also a common feature of a number of refined petroleum 

products, in particular the middle and heavy distillate fractions. The UCM becomes 

enriched in these fractions as a result of post distillation refining processes. For example, 

hydrocarbon base stocks of lubricating oils consist almost entirely of UCMs (Figure 

1.1 c), with very few resolved components. The latter are removed by solvent extraction 

(unsaturated and aromatic compounds) or by `dewaxing' (n-alkanes; Wauquier, 1995). 
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Figure 1.1 Gas chromatograms of the aliphatic fraction of (a) a biodegraded crude 

oil (Tia Juana Pesado); (b) fresh crude oil (Forties) and (c) lubricating oil 
(Silkolene 150 lubricating base oil) 
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1.2 Compositional studies of hydrocarbon UCMs 

It is only since the 1950s that the compositions of hydrocarbon UCMs have been 

investigated in any detail. Although the exact structural composition of any one 

hydrocarbon UCM has not been elucidated, a number of studies have attempted to 

identify the structural components of hydrocarbon UCMs and some have proposed 

model structures (e. g. Rossini et al., 1953; Gough and Rowland, 1990,1991; Killops and 

Al-Juboori, 1990; Revill, 1992; Thomas, 1995; Revill et al., 1997; Thomas et al., 1997). 

These studies have recently been comprehensively reviewed (Revill, 1992; Thomas, 

1995) and therefore the present discussion is but a brief summary. 

Lubricating oil hydrocarbons are mainly unresolved by GC and, consequently, have 

become the most widely studied of UCMs. Early studies (e. g. Rossini et al., 1953) 

estimated the `average' molecular composition of heavy petroleum fuels by 

determination of the elemental composition and physical properties of the lubricant 

fraction of Ponca City crude oil. By comparison of the data with that of authentic 

hydrocarbons, alkylcycloalkanes (Figure 1.2, I) were proposed as the major hydrocarbon 

type in the aliphatic fraction, whilst naphthenoaromatic compounds (Figure 1.2, II) were 

identified in the aromatic fraction. This was later confirmed by mass spectrometry (MS) 

(Clerc et al., 1955). By combining mass spectral data with nuclear magnetic resonance 

(NMR) spectroscopy and infra-red (IR) analyses, Hood et al. (1959) proposed acyclic 

and monocyclic structures (Figure 1.2, III-VI respectively) for the aliphatic fractions of a 

lubricating oil. 

Since elemental analysis and spectroscopic studies provided only limited compositional 

information, a number of recent studies (Gough, 1989; Gough and Rowland, 1990; 

Killops and Al-Juboori, 1990; Revill, 1992; Thomas, 1995; Revill et al. 1997; Thomas et 
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Figure 1.2 Proposed model aliphatic UCM compounds (Hood et at, 1959; Gough 

and Rowland, 1990,1991) 
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al. 1997) have used oxidative degradation techniques in conjunction with bulk analytical 

techniques to characterise hydrocarbon UCMs isolated from lubricating oils and 

biodegraded crude oils. 

Gough and Rowland (1990) oxidised aliphatic UCM hydrocarbons isolated from a 

biodegraded crude oil and the hydrocarbon base stocks of two lubricating oils with a 

chromium trioxide/glacial acetic acid (Cr03/HAc) mixture. The oxidation products 

contained a greater proportion (ca 20 %) of resolved functionalised components than the 

unoxidised aliphatic UCM, as illustrated in Figure 1.3. The oxidation products were 

examined by electron impact (EI-MS) and chemical ionisation (CI-MS) mass 

spectrometry and the principal oxidation products identified as a homologous series of 

straight chain mono-carboxylic acids, together with smaller amounts of a, uo-dicarboxylic 

acids, y-lactones and ketones (Gough and Rowland, 1990). The relatively simple 

structures of the oxidation products and the absence of polymethyl and cyclic carboxylic 

acids was somewhat surprising, considering that most previous workers had assumed 

aliphatic UCMs to be mainly composed of highly branched and/or cyclic hydrocarbons. 

However, it should be remembered that whilst the aliphatic UCM hydrocarbons were 

almost completely oxidised, about 80 % of the oxidation products were still unresolved 

and unidentified. 

The mechanism of the CrO3/HAc oxidation (reviewed by Gough, 1989) involves 

attack by Cr03 (probably as the acid chromate) of branched hydrocarbons at the most 

substituted carbon position, for example a tertiary carbon, to produce the corresponding 

tertiary alcohol thus; 
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Figure 1.3 Gas chromatograms of (a) the aliphatic UCM before oxidation and (b) 

the aliphatic UCM oxidation products (Gough, 1989) 

UGC details; column, DB-5; Hz carrier gas; Temp. program, 50°C - 300°C @ 5° min"' hold 20 min] 

6 



R3 

CH2 
1 

R1- CH2- C- CH2 R2 

H 

tertiary alkane 

R3 
1 

CI 2 

Cr03/AcOH 

bo Rl - CH2 C- CH2 - R2 
I 

OH 

In acidic conditions the alcohol undergoes acid-catalysed dehydration to form a mixture 

of alkenes. The resulting alkenes are then subjected to further oxidation, resulting in 

formation of a number of products, usually acids and ketones, depending upon the 

degree of alkyl substitution (Gough, 1989). 

R3 
1 

CH 
Ii 

H'i-too 
_ RI- CH2 -C- CH2 - R2 

I 

OH 

O 
11 

(1) R3- C- OH 

O 
11 

(2) R2-C-OH 

O 
11 

(3) Rl -C- OH 

+ 

+ 

tertiary alcohol 

R3 
I 

(i) CH2 

R1- CH2__ C 'CH2-R2 

(j) 

(2) 

opdative cleavage 

O 
11 

Rl-CH2-C -CH2-R2 

0 
11 

Ri -CH2-C -CH2- R3 

0 
11 

+ R3 - CH2 -C- CH2 - R2 

oiithtlon products 

7 



From a consideration of the mechanism of oxidation and the UCM oxidation products, 

Gough and Rowland (1990,1991) proposed a number of aliphatic UCM compounds. 

Since straight chain monocarboxylic acids were identified as the principal resolved 

oxidation products, Gough and Rowland (1990,1991) proposed that these resulted from 

oxidation at the tertiary centre of relatively simple motioalkyl branched acylic (or 

possibly monocyclic) alkanes (e. g. Figure 1.2, VII and VIII). Further evidence to 

support the theory that some aliphatic UCMs are comprised, at least in part, of relatively 

simple monoalkyl cyclic and acyclic compounds was provided by oxidation of a number 

of the proposed model UCM compounds. Gough (1989) synthesised, amongst other 

compounds, a C25 `T-branched alkane, 7-n-hexylnonadecane (Figure 1.2, VII). 

Oxidation with CrO3/HAc yielded dodecanoic acid, nonadecan-7-one and tridecanone, 

each of which is a predicted product from oxidative cleavage adjacent to the tertiary 

centre (Figure 1.4), thereby confirming that the UCM was comprised, in part, of simple 

monoalkyl compounds such as 7-ii-hexylnonadecane. 

OH 

O Q 

a and b denote oxidation products produced via the fragmentation pathway marked 

0 

b OH 

Figure 1.4 Predicted oxidation products of 7-n-hexylnonadecane oxidised with 

CrO3fHAc 
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Gough (1989) postulated that the lack of cyclic moieties in the UCM oxidation 

products of naphthenic oils may be attributable to oxidation at ring-alkyl chain junctions, 

resulting in ring opening. Oxidation of a synthetic model cyclic UCM component 

(9-(1-cyclohexylethyl)-heptadecane (Figure 1.2, VIII) yielded only the predicted ii- 

octanoic acid as the major product, suggesting that ring opening did occur (Gough, 

1989). 

Since UCMs are known to be relatively resistant to biodegradation (hence their 

abundance in biodegraded crude oils), Gough et al. (1992) compared the rate and extent 

of biodegradation of their synthesised model compounds (e. g. Figure 1.2, VII and VIII) 

relative to that of an UCM isolated from a lubricating oil. The degree of resistance to 

biodegradation of these structurally simple model compounds was greater than straight 

chain and monomethyl branched compounds, and importantly, was comparable with the 

rate of degradation of the UCM, suggesting that such compounds are indeed reasonable 

models for some UCM components. 

Killops and Al-Juboori (1990) used a combination of lH and 13C NMR, FT-IR, UV, 

elemental analysis, EI-MS, CI-MS and chromic acid oxidation to characterise the total 

hydrocarbon fraction of a heavily biodegraded crude oil. These authors proposed that in 

this oil, in agreement with characterisation studies of other oils, the UCM was principally 

acyclic in nature but with cycloalkanes also making a significant contribution to the 

UCM. Similar precursor compounds to those postulated by Gough and Rowland 

(1990,1991) were suggested as model UCM components. 

In an attempt to reduce the structural diversity of an UCM prior to oxidation studies, 

Thomas (1995) fractionally distilled an UCM isolated from a lubricating oil hydrocarbon 

base stock into smaller UCMs. Only a slight increase in GC resolution of the distillate 
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fractions was observed compared with the undistilled oil, and oxidative degradation 

(CrO3/HAc) of each of the distillate fractions yielded similar distributions of resolved 

oxidation products to those obtained from the unfractionated UCM. This led Thomas 

(1995) to propose that the aliphatic UCM of this oil was a fairly homogenous mixture of 

branched monoalkyl acyclic and monocyclic alkanes. This author concluded that 

characterisation of the remaining unresolved oxidation products was required before any 

further conclusions could be drawn. 

Most hydrocarbon UCMs have been shown to be highly aliphatic in nature, and even 

the aromatic hydrocarbons are thought to be present mainly as alkyl substituted benzenes 

and naphthenoaromatic compounds (Rossini et al., 1953; Gough, 1989; Killops and Al- 

Juboori, 1990; Revill et a!., 1997; Thomas et a!., 1997). A few model aromatic UCM 

structures have been proposed in recent years from use of similar spectroscopic and 

degradative techniques to those applied to the characterisation of aliphatic UCMs 

(Gough, 1989; Revill et al., 1997; Thomas et al., 1997). 

Gough (1989) oxidised the aromatic UCM isolated from a lubricating oil with 

Cr03/HAc. In contrast to the oxidation of branched alkanes, which are attacked 

preferentially at tertiary carbons, the oxidation of alkylaromatics with CrO3/HAc occurs 

almost exclusively at the benzylic position thus; 

QO3IHAc ý-' 
UJ 

The principal aromatic oxidation products of the oxidised aromatic UCM were 

identified as unsubstituted or methyl substituted benzoic acids or monoaromatic ketones. 

In addition, n-monocarboxylic acids were identified as the principal aliphatic resolved 
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oxidation products. Combining these data with those from instrumental analyses such as 

EI-MS, gel permeation chromatography (GPC) and field ionisation mass spectrometry 

(FI-MS), Gough (1989) proposed alkyl substituted monoaromatic structures as one 

constituent of the aromatic UCM (Fig, 1.5, (I)). 

Revill et al. (1997) investigated the aromatic fraction of a biodegraded crude oil (Tia 

Juana Pesado, TJP) from which most of the resolved components had been removed by 

natural bacterial action. These authors conducted a number of preliminary studies using 

non-oxidative techniques followed by oxidation with CrO3/HAc or ruthenium tetroxide 

(Ru04). 

The highly aliphatic nature of the aromatic UCM of TIP was highlighted by IR 

spectroscopy, with absorptions due to CH2 and CH3 dominating the spectrum, whilst 

aromatic absorptions were weak (Revill et al., 1997). The authors proposed that ortho- 

disubstituted benzenoid structures similar to tetralin may be of importance, as indicated 

by the presence of a strong absorption at ca 730 cm'. Chromium oxide (Cr03/HAc) 

oxidation of the aromatic UCM of TIP (Revill et al., 1997) produced similar results to 

those of Gough (1989) for the aromatic UCM of a lubricating oil. Ruthenium tetroxide 

is known to attack substituted aromatic hydrocarbons at the ipso-carbons of the benzene 

ring, preserving any alkyl substituents as aliphatic carboxylic acids and oxidising the 

aromatic ring to carbon dioxide, e. g. , 

RO 

RU04 

HOOC R+ 5C02 
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Figure 1.5 Proposed model aromatic UCM structures (Gough, 1989; Revill, 1992; 

Thomas, 1995; Revill et al., 1997; Thomas et al., 1997) 
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Revill et al. (1997) noted the presence of a significant UCM in the Ru04 oxidation 

products and attributed this to the presence of branched alkyl substituents present as 

acids. Fractionation of the oxidation products and subsequent analysis of the acidic 

fraction by EI-MS and 'H NMR suggested the presence of dicarboxylic acids within the 

Ru04 oxidised UCM (Revill et al., 1997). Such compounds would be produced from 

oxidation at the ipso-carbons of tetralin type compounds, as illustrated below; 

R Ru04 HO2C R 

101 ý+ 4C02 
HO2C 

providing evidence for the presence of naphthenoaromatic compounds within the UCM, 

rather than alkylated benzenes. Mass spectrometry of the oxidised UCM also provided 

strong evidence for the presence of alicyclic moieties. Combining the spectroscopic and 

chemical oxidation data, Revill et al. (1997) proposed that naphthenoaromatic 

compounds such as those illustrated in Figure 1.5 (II, III and IV) are important 

constituents of the aromatic UCM of TJP crude oil. 

Thomas et al. (1997) applied Ru04 oxidation, with an attempt to mass balance the 

oxidation products, to a study of a number of authentic aromatic compounds, to a suite 

of aromatic UCM distillates and to a number of unresolved aromatic refinery fractions. 

Although all the steps of the mechanism of Ru04 oxidation are not fully understood, as 

mentioned previously, alkyl benzenes are known to be attacked preferentially at the ipso- 

carbon of the aromatic ring, and the alkyl substituents are preserved as aliphatic 

carboxylic acids. The aromatic ring is oxidised to carbon dioxide and the degree of 

aromaticity can be inferred from amount of carbon dioxide evolved. These authors 

coined the term 'retro-structural analysis' for the process of reconstructing the precursor 

molecule from analysis of the oxidised products. A summary of the reconstruction of 
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precursor molecules by retro-structural analysis is presented in Fig 1.6. Using this 

approach, Thomas et al. (1997) concluded that alkyl hydroaromatic groups and/or 

bridging groups were prevalent within the UCMs studied. This is also consistent with 

some of the structures proposed by Revill et al. (1997; Figure 1.5 herein). In addition, 

Thomas et al. (1997) also proposed that biphenyls and alkylphenylcyclohexanes were 

important structural moieties. 

A possibly significant advance in the characterisation of oil hydrocarbon UCMs was 

made by Thomas (1995) who used Fourier transform-ion cyclotron resonance 

spectroscopy (FT-ICR) to examine the total oxidation products, including those 

unresolved by GC (the so called UCMox). Quantitatively, the UCMOX comprises the 

major part (75% - 90%) of the oxidation products from oxidative degradation of most 

hydrocarbon UCMs (Thomas, 1995). Analysis of the total oxidation products of a 

number of aromatic refinery fractions led Thomas (1995) to identify, in addition to the 

GC resolved n-mono and dicarboxylic acids, numerous series of cycloalkyl carboxylic 

acids from the abundant molecular ions created by negative ion CI FT-ICR. The very 

high resolving power of the mass spectral technique (Hsu et aL, 1994) allowed accurate 

masses to be calculated and effectively replaced the poor GC resolution with high mass 

spectral resolution. Interpreting the GC, FT-ICR and mass balance data, using the retro- 

structural analysis approach, Thomas (1995) postulated a general model aromatic UCM 

structure (Figure 1.5, V). 

Whilst the components of any one particular UCM cannot be unequivocally 

characterised, the work described above represents the current state of knowledge 

concerning the general molecular composition of various hydrocarbon UCMs isolated 

from a number of crude oils and lubricating oils. For the purposes of the present study, 

the model compounds proposed by Gough and Rowland (1990,1991), Revill et al. 
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(1997) and Thomas et al. (1997, Figures 1.2 and 1.5 herein) are accepted as the best 

currently available data and provide, at the least, some indication of hydrocarbon UCM 

components on which to base the analytical and toxicological studies discussed in this 

thesis. 
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1.3 Sources and environmental occurrences of UCM hydrocarbons in the marine 

environment 

The annual contributions of the principal inputs of petroleum to the oceans are 

summarised in Table 1.1 (Clark, 1992). The relative importance of each input varies in 

different geographical areas according to factors such as the density of shipping and 

offshore activities and the degree of industrialisation and urbanisation in coastal areas 

(GESAMP, 1993). A comprehensive review of inputs of oil to the marine environment 

is provided by GESAMP (1993). 

Tanker disasters are the most widely publicised cause of oil pollution. However, such 

incidents contribute only about 5% of the total petroleum hydrocarbons entering the 

oceans annually. It is evident from Table 1.1 that less conspicuous chronic sources such 

as urban run-off contribute a significant proportion of the total petroleum hydrocarbon 

inputs to the marine environment. In particular, engine oil is increasingly becoming a 

contaminant of concern, because of the large volumes entering the aquatic environment 

through sewers, urban run-off and direct dumping of used engine lubricating oil into 

municipal drains (Latimer et al., 1990; GESAMP, 1993). 

Latimer et al. (1990) investigated the sources of petroleum hydrocarbons in urban 

run-off and demonstrated that the hydrocarbons at four different land use sites 

(commercial, residential, motorway and industrial) originated mainly from used engine 

oil. These authors concluded that the majority of engine oil had originated from either 

oil drops from vehicles within the driving lanes/road surfaces/parking areas, or direct 

dumping of waste engine oil into storm drains (Latimer et al., 1990). Likewise, Bomboi 

and Hernandez (1991) identified engine lubricating oils as the primary source of 

hydrocarbons in urban run-off. UCM concentrations ranging from 450 - 1926 µg I'1 
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were reported in the hydrocarbon fractions extracted from urban run-off samples, 

contributing 80 % or more of the total aliphatic hydrocarbon burden and demonstrating 

that lube oils are sometimes a significant source of UCM hydrocarbons to the marine 

environment. 

Source 

Transportation 

Total 

Tanker operations 0.158 
Tanker accidents 0.121 
Bilge and fuel oil 0.252 
Dry docking 0.004 
Non-tanker accidents 0.020 

0.555 
Fixed installations 
Coastal refineries 0.10 
Offshore production 0.05 
Marine terminals 0.03 

0.180 
Other sources 
Municipal wastes 0.70 
Industrial waste 0.20 
Urban run-off 0.12 
River run-off 0.04 
Atmospheric fall-out 0.30 
Ocean dumping 0.02 

1.380 

Natural inputs 0.250 

Total 2.3 65 

Table 1.1 Estimated world input of petroleum hydrocarbons to the oceans (106 t 

ye'; Adapted from Clark, 1992) 
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Unusually, Bomboi and Hernandez (1991) also reported the presence of an aromatic 

UCM in urban run-off. Although only the resolved polycyclic aromatic hydrocarbons in 

the aromatic fraction were measured, it is evident from visual inspection of the 

chromatogram (Figure 1.7) that the aromatic UCM constitutes a significant proportion 

of the total aromatic hydrocarbons present. However, aromatic UCMs are very rarely 

measured in sediments and biota and, given that urban run-off is perhaps the principal 

source of petroleum hydrocarbons to the marine environment, the aromatic UCM may be 

an environmental contaminant of concern, which at present is overlooked. To date 

however, the toxicological impact of UCMs of `aromatic' hydrocarbons remains 

unknown. The production and environmental fate of used lubricating oil have been 

reviewed in detail by Vazquez-Duhalt (1989) and GESAMP (1993). 

Owing to the relatively inert nature of UCM hydrocarbons, the occurrence of 

hydrocarbon UCMs in marine sediments and organisms in areas impacted by petroleum 

hydrocarbons is widely reported and well documented (e. g. Fossato and Siviero, 1974; 

Thompson and Eglinton, 1978; Risebrough et al., 1983; Shaw et al., 1986; Mason, 

1988; Aboul-Kassim and Simoneit, 1995; Macias-Zamora, 1996). Indeed, the presence 

of an UCM in the aliphatic fraction of a sediment or biota extract is widely accepted as a 

reliable indication of fossil fuel contamination. 

Examples of the typical range of UCM hydrocarbon concentrations reported in the 

literature are presented in Table 1.2. In relatively enclosed areas receiving significant 

petroleum hydrocarbon inputs (e. g. harbours), concentrations of aliphatic UCM 

is 



(a) 

time (mins) 

UGC details; columns, SE-30; Temp program, 50° 1 min, 50°-100°C @ 10° min", 100 - 290°C @ 3.5° 

min"] 

(b) 

time (mies) 

[GC details; column, SE-S4; Temp. program 100°C 1min, 100° - 290°C @ 3. S min"] 

Figure 1.7 Gas chromatograms of (a) aliphatic hydrocarbons in urban run-off and 

(b) aromatic hydrocarbons in urban run-off sampled from Principle de Vergara, 

Madrid, Spain (Bomboi and Hernandez, 1991) 
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hydrocarbons measured in mussels ranged from 100 - 4000 µg g'' dry weight mussel 

tissue (Mason, 1988), occasionally with levels as high as 13,800 µg g'1 (Aboul-Kassim 

and Simoneit, 1995). Whilst in open coastal areas, levels are slightly lower, ranging in 

general from below the limit of detection in relatively clean coastal sites (e. g. Shaw et al., 

1986) to approximately 800 gg g" in the more industrialised and heavily populated 

coastal areas (e. g. Risebrough et al., 1983). 

It is interesting to note that whilst the aliphatic UCM is routinely quantified in 

monitoring programmes as a measure of petrogenic contamination, the presence of an 

aromatic UCM is often ignored. The few literature reports of aromatic UCMs in marine 

sediments and mussels suggest that environmental concentrations of aromatic UCMs are 

comparable with those of the aliphatic UCM. This is discussed further in Chapter 2. 

1.4 The use of marine organisms as a tool for environmental monitoring of 

hydrocarbon pollutants 

Bivalve filter feeding organisms, such as mussels, actively concentrate environmental 

contaminants, including petroleum hydrocarbons, within their tissues to concentrations 

significantly greater than ambient environmental levels. Pollutants which are present in 

the water column at levels of 1 ng 1" or less are therefore significantly amplified within 

organisms. For the analyst, marine bivalves thus represent a substrate in which it is 

easier to detect and quantify environmental contaminants, reducing the need for costly 

and demanding water sampling programmes (Burns and Smith, 1981). Mussels are also 

dominant members of coastal and estuarine communities and have a wide geographical 

distribution. These attributes have resulted in the widespread use of mussels as ̀ sentinel' 

organisms or `bioindicators', to assess the spatial and temporal trends in chemical 

contamination of estuarine and coastal areas. The use of mussels as indicator organisms, 
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known as the `Mussel Watch' concept, was first established in North America in the mid 

1970s (Goldberg et a!., 1978). However, mussels are now widely used throughout the 

world in environmental monitoring programmes. The Mussel Watch concept has been 

extensively reviewed in a number of publications (e. g. NAS, 1980; Widdows and 

Donkin, 1991). 

Measurement of contaminant levels bioaccumulated within the tissues of marine 

organisms also provides an indication of the biological availability of a particular 

compound. By comparison with laboratory derived concentration-response data, the 

impact of measured pollutant levels can be estimated, providing a more meaningful 

interpretation of concentrations of environmental contaminants reported. This approach 

has been applied successfully in a number of studies (e. g. Burns et al., 1990; Widdows et 

al., 1990,1995a, b). For example, Widdows et al. (1995a) used mussels (Mytilus 

edulis) to monitor the degree of chemical contamination (petroleum hydrocarbons and 

organotins) and the associated sublethal biological effects (in terms of Scope for 

Growth) in the vicinity of the Sullom Voe oil terminal, Shetland Isles over a seven year 

period. These authors found that the spatial and temporal changes in the concentration 

of aromatic hydrocarbons within the mussels reflected the major sources of oil inputs 

(i. e. oil spillages during tanker loading operations). A significant correlation was 

reported between Scope for Growth and the concentration of polycyclic aromatic 

hydrocarbons (2 and 3 ring ; PAH) in the mussel tissues. The integration of biological 

and chemical measurements in environmental assessment studies is discussed in greater 

detail in Section 1.5 
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1.5 Responses of marine organisms to petroleum hydrocarbons 

The effects of both chronic discharges of petroleum hydrocarbons and accidental 

releases, i. e. tanker disasters, upon the marine environment have been studied with a 

wide variety of organisms and ecosystems and their biological processes. 

Comprehensive reviews are available (e. g GESAMP, 1977,1993; NAS, 1985). 

The chemical complexity of crude oils and refined petroleum products combined with 

the very low water solubility of the majority of components significantly complicates the 

ecotoxicological assessment of petroleum hydrocarbons. Traditionally, tests have 

involved exposure of test organisms to a range of concentrations of the water 

accomodated fraction (WAF) of the test product in order to determine the Lethal 

Loading (LL5o, as oil: water ratio) or Lethal Concentration (LCso) which results in 50 % 

mortality of the organisms (e. g. Peterson, 1994). A comprehensive review of this test 

procedure is given by Betton (1994). 

Water accommodated fractions are essentially the fraction of the total products that 

are present in the aqueous phase following a period of mixing (Betton, 1994). The 

toxicity of crude oils and petroleum products is generally attributed to this fraction. 

Theoretically, within an homologous series of hydrocarbons, toxicity is greatest for those 

compounds with the highest molecular weight (cf. Bobra et al., 1983). However, the 

proportion of crude oil which dissolves in seawater is relatively small compared with the 

total mass of oil. It is therefore the lower molecular weight components which are 

considered responsible for acute toxic effects, owing to their greater aqueous solubility 

and therefore greater bioavailability, enabling penetration to sites of toxic action (Bobra 

et al., 1983; GESAMP, 1993). Higher molecular weight components such as aliphatic 
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UCM hydrocarbons are considered insufficiently soluble in water to have much influence 

upon toxicity (Bobra et al., 1983; Peterson, 1994). 

The components of a WAF are principally alkylated benzenes, with smaller amounts 

of naphthalenes and n-alkanes with less than 10 carbons. However, the actual 

composition and relative concentrations of individual components varies dramatically 

according to the method of preparation (Bobra et al., 1983; Shiu et al., 1988,1990). 

Consequently, comparison of data from different workers is often difficult. Also, 

analytical data such as the results of qualitative or quantitative water or tissue analyses 

are rarely provided (Betton, 1994). The variation in LC50 values for a range of crude oils 

and refined petroleum products is illustrated in Table 1.3 (from Betton, 1994). 

Product LCso Range (mg 1'') 

Gasoline 10 - 100 

Lubricants / base oils > 1000 

Kerosene 1-10 

Gas oil/diesel 10 - 100 

Fuel oil 
Nos 1,2 10 - 100 

Nos 3,5 100 - 1000 

Nos 6 > 1000 

Crude oil 10 - 100 

Table 1.3 Summary data on ecotoxicity of petroleum products (from Betton, 1994) 

A further problem associated with this approach is the necessity for a closed test 

system to prevent losses of toxicant owing to volatilization, as the most water soluble 

components are also the most volatile (e. g. benzene, toluene and xylenes). This is 
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necessary when toxicity is expressed in terms of aqueous concentration (i. e. LCso) as the 

test organisms must be maintained in a test medium at constant concentration in order to 

relate the observed toxicity to exposure conditions (Peterson, 1994). Such experimental 

conditions may not simulate chronic exposure, since in the natural environment these 

compounds are often rapidly volatilized and may not be bioaccumulated by marine 

organisms (Betton, 1994). Similarly, there is also the difficulty of matching laboratory 

exposures qualitatively to the mixtures experienced in the field, owing to the effects of 

photo-oxidation, microbial activity and general weathering on the composition of oils 

(Bayne et al., 1982). 

Measurements of acute toxicity in terms of mortality, by determination of the LC5o or 

LL5o for crude oils, refined petroleum products and individual compounds, provides a 

relatively simple method of estimating the concentration of test materials that cause 

direct and irreversible harm to the test organism. However, acute lethal toxicity tests 

lack the sensitivity required for the early warning of biological harm, as mortality 

represents a gross biological end-point, only evident when biological harm has already 

occurred (Axiak, 1991). Consequently, the usefulness of such data for the prediction of 

the ecological impact of petroleum hydrocarbons in chronically polluted situations is 

limited. 

To address this problem, a wide range of sublethal toxicity tests have been developed, 

involving measurement of organism responses to contaminants at subcellular, cellular, 

physiological and whole organism levels. The present discussion will be limited to 

physiological responses of marine organisms. 

Physiological responses are dependent upon the bioavailability, uptake and distribution 

of contaminants within the body and can therefore be considered as representative of the 

fitness of the whole organism (GESAMP, 1995). The aim of a sublethal toxicity test is to 

determine whether exposure to a pollutant under a given set of conditions stresses the 
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individual to a point which renders it less fit for survival (Axiak, 1991). Marine molluscs 

exhibit various sublethal responses to petroleum hydrocarbons, e. g decreased feeding 

rate and absorption efficiency, and increased respiration, (Widdows et al., 1987; Bayne 

et al., 1982; Widdows and Donkin, 1992). One approach which is increasingly being 

applied in field programmes is the determination of Scope for Growth (SFG) in marine 

bivalves. 

The rate of growth is a fundamental measure of physiological fitness and provides one 

of the most sensitive measures of stress in an organism (Widdows, 1994). However, the 

direct measurement of growth in marine bivalves and many other species is difficult 

because the accurate measurement of tissue growth or weight change is impracticable on 

individuals owing to the presence of a shell, and also because a large proportion of the 

total production can be lost in the form of gametes when spawning (Widdows, 1985). 

However, the energy budget of an organism can be assessed by integration of 

physiological responses such as feeding, food absorption, respiration, excretion and 

production. This is termed `Scope for Growth' (SFG) and represents the overall 

bioenergetic status of an organism or population under specific conditions (Widdows, 

1985,1994; Widdows and Donkin, 1992; Smaal and Widdows, 1994). SFG can be 

considered a measure of the growth potential of an animal under specific conditions. 

Under pollutant-stress conditions, the energy available for growth and reproduction is 

less than under optimum conditions, and this is reflected in the SFG with values ranging 

from maximum positive values under optimum conditions, declining to negative values 

when the animal is severely stressed. 

The concept of SFG has been used to assess the sublethal biological effects of 

pollutants on a variety of marine invertebrates and has proved to be particularly useful 

when combined with analysis of chemical contaminants. To date mussels have been the 

most widely used `bio-indicator' organism. This is principally because of their 
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established role as sentinel organisms for chemical monitoring programmes (cf. Section 

1.4). However, they are also ideal organisms for biological monitoring, not only because 

they are sensitive to a wide range of pollutant levels, but are also relatively unaffected by 

transplantation and handling stress, making them amenable to both laboratory and field 

studies (Widdows and Donkin, 1992; Widdows, 1994). Mussel physiology is also well 

studied and documented. Detailed reviews of the measurement of SFG are given by 

Widdows (1985,1994) and Smaal and Widdows (1994). 

The coupling of SFG measurements to tissue residue chemistry provides a 

toxicological interpretation of contaminant concentrations in the tissues and enables 

identification of the cause of effects observed in the field (Widdows and Donkin, 1989, 

1992; Smaal and Widdows, 1994). This approach has been successfully applied in a 

number of field studies (Gilfillan et at, 1977; Widdows et a!., 1980-81,1990,1995a, b; 

Martin et at, 1984). For example, Gilfillan et at (1977) measured the long term effects 

of an oil spill on populations of the clam Mya arena from different sites in Casco Bay, 

Maine, U. S. A. Two years after the oil spill, Gilfillan and co-workers found that whilst 

there was no correlation of response with the total body burden of hydrocarbons 

(dominated by the aliphatic UCM), a significant reduction in carbon flux (effectively 

SFG) was measured which was found to correlate with elevated body burdens of low 

molecular weight aromatic hydrocarbons (including the low molecular weight aromatic 

UCM). This is one of very few studies (perhaps the only) to include the aromatic UCM 

in the toxicity assessment. 

Widdows et al. (1987) exposed mussels (Mytilus edulis) in a mesocosm study to 28 µg 

I" and 125 µg 1" of oil for 8 months and demonstrated a marked reduction in SFG of 

mussels exposed to both oil concentrations. This was attributed principally to a 

reduction in feeding rate and food absorption efficiency. Analysis of the body tissues of 

M. edulis revealed a significant correlation between the log tissue concentration of 
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aromatic hydrocarbons (as 2- and 3- ring aromatics) and SFG. A similar relationship was 

35 

s 20 

demonstrated in an eight year field study. Widdows et al. (1995a) monitored the 

temporal and spatial variation in environmental contamination by petroleum 

hydrocarbons and the associated sublethal biological effects in the vicinity of the North 

Sea oil terminal at Sullom Voe in the Shetlands over the period 1982-1989. The results 

again demonstrated a significant negative correlation between SFG and the log 

hydrocarbon concentration of 2- and 3- ring aromatic hydrocarbons in the mussels 

tissues. This relationship is illustrated below in Figure 1.8. 
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Figure 1.8 Relationship between mean Scope for Growth (SFG) and the log 

concentration of 2- and 3-ring hydrocarbons in the tissues of Mytilus edulis 

collected from sites in Shetland during the period 1982-1989 (Widdows et al., 

1995a) 
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The examples described above (Gilfillan el a!., 1977; Widdows el al., 1995a) relate to 

environmental situations where petroleum hydrocarbons are the dominant environmental 

contaminant. However, more commonly, hundreds of environmental contaminants may 

be present, significantly complicating the toxicological interpretation of tissue residues. 

Analysis and interpretation of the combined measurement of Scope for Growth and 

chemical contaminants in the mussels can be considered a two stage process; (i) the 

detection and quantification of environmental quality, and (ii) the toxicological 

interpretation and identification of the causes of the observed deleterious effects. This is 

summarised in Figure 1.9. 

prediction of effect 

scope for growth 

mussel 

water + food filtration -0-consumption -} absorption 

pseudofaeces faeces respiration 
excretion 

" bioconcentration mechanisms 

water concentration J -ý tissue concentration -ý effects 

diagnosis of cause 

Figure 1.9 Scope for Growth (SFG) as part of the individual energy budget, in an 

ecotoxicological framework (Smaal and Widdows, 1994) 
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Laboratory and mesocosm-derived tissue concentration-physiological response 

relationships are clearly essential to provide the information necessary for toxicological 

interpretation of chemical and biological measurements in the field (Donkin and 

Widdows, 1992). This is illustrated in a study by Widdows ei al., (1995b). These 

authors measured the SFG and extent of chemical contamination (2- and 3- ring 

hydrocarbons, alkyltins, `polar organics', organochlorines and metals) at a number of 

coastal and offshore sites in the North Sea, extending from Shetland to the Thames 

Estuary . At approximately half the sites which showed a marked reduction in SFG, the 

reduction could be explained using experimentally derived tissue concentration-response 

relationships. However, at a number of sites, there was a significant `unexplained 

component' to the SFG values. A tentative correlation was identified between the 

unexplained toxicity and concentrations of organochlorines in mussels. However, the 

authors concluded that as the effects of organochlorines on SFG have not yet been 

quantified, no firm conclusions could be drawn from this (Widdows et al., 1995b). 

Considering their quantitative importance, the derivation of concentration-response data 

for aliphatic and aromatic UCM hydrocarbons may also provide a useful explanation for 

a proportion of the `unexplained toxicity'. However, owing to the lack of knowledge of 

UCM molecular composition until very recently, this has not been possible. 

Whilst it is possible to derive tissue concentration-physiological response data for a 

small number of contaminants e. g. tributyltin compounds(Widdows and Page, 1991) and 

selected hydrocarbons (Widdows et al., 1987; Donkin et al., 1989,1991), it is clearly 

impossible to derive individual concentration-response data for each of the thousands of 

chemicals that enter the environment annually. One approach to overcome this is the use 

of quantitative structure-activity relationships (QSARs) to predict the toxicological 

properties of organic compounds from their chemical and structural properties (Donkin 

et al., 1989,1991; Donkin and Widdows, 1990; Donkin, 1994; Widdows and Donkin, 
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1992). The use of quantitative structure-activity relationships is discussed in Section 1.6. 

Comprehensive reviews on the integration of chemical and biological monitoring 

methods are provided by Widdows and Donkin (1989,1991,1992). 

1.6 The use of Quantitative Structure-Activity Relationships in the prediction of 

aquatic toxicity 

Owing to the large number of contaminants entering the marine environment annually 

(estimates are that over 100,000 substances are in commercial use and this number is 

continually increasing; Dearden et al., 1994), many ecotoxicological effect assessments 

are made on the basis of estimation techniques known as Quantitative Structure-Activity 

Relationships (QSARs). QSARs attempt to relate statistically the biological activity of a 

chemical to the physico-chemical properties (Cronin and Dearden, 1995). Numerous 

reviews are available on the use of QSARs in the prediction of aquatic toxicology (e. g. 

Nirmalakhandan and Speece, 1988; Donkin and Widdows, 1990; Donlon, 1994; Cronin 

and Dearden, 1995) and consequently the present discussion will provide only a brief 

overview of the subject. 

The hydrophobicity of a compound has been widely recognized to be of fundamental 

importance to its toxicity since the nineteenth century when Overton (1897, cited by 

Cronin and Dearden, 1995) and Meyer (1899, cited by Cronin and Dearden, 1995) 

reported correlations between the olive oil-water partition coefficient and narcotic 

potency of a number of simple organic compounds (reviewed by Donkin and Widdows, 

1990; Donkin, 1994; Cronin and Dearden, 1995). 

Linear QSARs between a biological response and a single molecular descriptor for 

hydrophobicity have since been reported by many investigators (e. g. Konemann, 1981; 

Veith et al., 1983; Hermens et al., 1984,1985; de Wolf et al., 1988; Van Leeuwen et al., 
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1991). For example, Konemann (1981) established a QSAR for the 14 day LC5o (lethal 

exposure concentration for 50 % of the population) in the guppy for fifty unreactive 

industrial organic chemicals (aliphatic and aromatic (chloro) hydrocarbons, glycol 

derivatives and related compounds). This author compared correlations of lethality (in 

terms of concentration in the aqueous phase to which the organism is exposed) with 

several expressions of hydrophobicity (octanol-water partition coefficient, solubility data, 

HPLC retention indices and molecular connectivity indices) and concluded that the 

octanol-water partition coefficient (log Kow, defined as; Kow = Co/C, V where Co and Cw 

are the concentrations of the solute in n-octanol phase and aqueous phase respectively, 

when the system is at equilibrium [usually measured at 25°C]) was the best measure of 

hydrophobicity and could be used to account for a very large part of the variation in 

observed toxicity for compounds with log ICow values in the range 2-6. Comparable 

relationships have been described by Veith et al. (1983) and Hermens et al. (1984) and 

are widely accepted as characteristic QSARs for unreactive non-ionisable organic 

compounds whose mode of toxic action is termed non-specific narcosis. Figure 1.10 

illustrates this relationship. 

Whilst log Kow is the most common physicochemical descriptor used in narcosis 

QSARs, successful QSARs have also been obtained with water solubility (e. g. Abernethy 

et al., 1986) and parameters such as connectivity indices which can be related to 

hydrophobicity (e. g Govers et al., 1984). 

Narcosis is defined as a non-specific reversible disturbance of the functioning of the 

membrane, caused by the accumulation of pollutants in hydrophobic phases within the 

organism. The disturbance of membrane function results in decreased activity and a 

diminished ability to react to stimuli, and can ultimately lead to death (van Wezel and 

Opperhuizen, 1995). The exact mechanism of narcosis and the site of toxic action 

remain unknown. However, the favoured sites of toxic action are either the lipid bilayer 
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Figure 1.10 QSAR for 50 organic pollutants to the guppy (Poecilia reticulata) 

[log 11LCso = 0.8711og K0 - 4.87 n=50 r=0.988 s=0.237; Konemann, 1981) 

of the cell membrane or a specific protein within the membrane. 

The lipid or membrane perturbation theory originates from the early studies of Meyer 

and Overton who demonstrated a correlation between the narcotic potency of a 

substance and the olive oil/water partition coefficient. This work led to the proposal that 

narcosis results from membrane perturbation, induced as the toxicant/narcotic chemical 

partitions into the lipid membrane. Perturbation of the membrane is believed to affect 

functioning of nerve action, resulting in a diminished nervous response. Ferguson (1939) 

noted that because a partition process is involved and the narcotic chemical is not 

irreversibly bound, the toxic action of narcotic chemicals is caused by the physical 
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presence of the chemical at the target site. Consequently, Ferguson (1939) suggested 

that chemical activity, as opposed to exposure concentration, was a better index of 

toxicity. Chemical activity in the aqueous phase was approximated by dividing the 

concentration in water necessary to produce an effect (e. g. LCso) by solubility. In this 

way it was demonstrated that toxicity as expressed by chemical activity varied 

significantly less than when expressed by exposure concentration. Equal activity (when 

expressed as a fraction of chemical solubility) for different toxicants at a specific 

toxicological end-point also implies approximately equal concentrations of toxicant at the 

site of toxic action, as activity in the organism is proportional to concentration in the 

organism (van Wezel and Opperhuizen, 1995). Several studies have since demonstrated 

that the body burden of toxicant in an organism at a specific toxicological end-point (e. g. 

lethality, loss of equilibrium in fish, reduced feeding rates) is relatively constant (McCarty 

et al., 1992a; Mackay and Hughes, 1984; Donkin et al., 1989,1991). 

The `constant concentration' theory was modified by Mullins (1954) who proposed that 

narcosis was more closely related to molar volume than molar concentration, such that 

when the volume fraction of chemical in the membrane reached a critical volume, 

narcosis occurred. Mullins (1954) introduced a correction for molecular size, noting that 

chemicals of larger molar volume are more potent because at equal molar concentration 

they occupy a larger volume fraction. Several studies have provided evidence in favour 

of the critical volume theory. For example, Seeman (1972) estimated both anaesthetic 

potency (via haemolytic activity) and molar concentration of. 70 organic chemicals in the 

membrane phase of erythrocytes. Although a relatively constant concentration of 

narcotic in the membrane was associated with haemolytic activity, the relationship was 

improved by correlating the effect concentration to the product concentration in the 

membrane and molecular volume of the chemical (Seeman, 1972). 
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Abernethy et al. (1988) estimated the volume fraction occupied by a toxicant at the site 

of action by multiplying LC5o, log Kow and molar volume. Data sets describing the 

toxicity of narcotic chemicals to several species (Fathead Minnow, Golden Orfe, 

Daphnia and Artemia) were employed. These authors suggested that acute lethality to 

aquatic animals occurrs when the volume fraction of narcotic toxicant in membranes 

reached approximately 0.6 %. A similar approach was applied by Warne et al. (1991). 

These authors compared the critical concentration and critical volume hypotheses using a 

data set describing the sub-lethal toxicity of a range of narcotic chemicals to marine 

bacteria. Values for both the critical concentration (CC) and volume fraction (VF) of 

toxicant were calculated (using toxicity data, molar volumes and log Kow values) and 

then plotted against log Kow. The slopes of the regression equations for both CC and 

VF were not significantly different from each other. However, the slopes of both 

equations were significantly different to zero, indicating that both the hypotheses (CC 

and VF) were equally unsuccessful in modeling narcotic toxicity (Warne et al., 1991). 

Warne ei al. (1991) suggested that observed results may be attributed to the use of Kow 

values which may overestimate the actual target tissue partition coefficient (cf. 

Abernethy et al., 1988). Equations were re-calculated using Kpw 

(dimyristoylphosphatidylcholine (DMSP)-water partition coefficient), as it was suggested 

that the phospholipid DMSP would more closely resemble the cell membrane 

composition than octanol. The authors reported that the resulting equation for VF had a 

gradient not significantly different from zero, whilst the slope of CC was. This was 

interpreted as providing support for the critical volume theory. 

An alternative theory for the mechanism of narcosis is the protein receptor theory, 

based upon the hypothesis that one or more proteins serve as narcotic receptor sites. 

This theory has been advocated principally by Franks and Lieb (1984,1987,1990, 

1994). These authors compared correlations between the narcotic potency of different 
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chemicals and their solvent-water partition coefficients using various solvents. A good 

correlation was reported when partition coefficients were measured using an organic 

solvent with both polar and apolar characteristics such as n-octanol, whilst a non-polar 

solvent such as n-hexadecane gave poor correlations. It was concluded that the site of 

action must be a single amphiphillic pocket such as a protein (Franks and Lieb, 1984). 

However lipid bilayers also have both polar and non-polar regions. Franks and Lieb 

(1983) isolated an enzyme, luciferase from the Firefly Photyinus pyralis. The purified 

(99%) enzyme was incubated with different concentrations of the substrate luciferin, 

together with various narcotics. Luciferase was demonstrated to be competitively 

inhibited by narcotic chemicals at approximately the same 50 % concentration that 

narcoses animals (Franks and Lieb, 1984). Franks and Lieb (1984) proposed that the 

narcotic chemicals had bound to the pocket in which luciferin normally binds, thereby 

preventing the substrate from binding with luciferase, analogous to the `lock and key' 

hypothesis for enzyme catalysis. However, to date no suitable protein receptor in the 

nervous system of any organism has been identified. This theory has been reviewed by 

Franks and Lieb (1990,1994). 

It must be noted that the `critical volume' theory discussed previously is equally 

applicable to both a protein or lipid site of action. More detailed discussions regarding 

the theories and mechanism of narcosis are found in Seeman (1972), Miller (1985), 

Franks and Lieb (1990) and van Wezel and Opperhuizen (1995). 

Non-specific narcosis is considered to be a minimum or `baseline' effect, as many 

reactive chemicals are more toxic than predicted from non-specific QSARs owing to 

additional modes of toxic action. McKim et al. (1987) and Bradbury et al. (1991) 

exposed immobilized trout to a range of aquatic pollutants and recorded a variety of 

physical responses. After statistical analyses, they identified seven common modes of 

toxic action, which were named Fish Acute Toxicity Syndromes (FATS). These were 
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nonpolar narcosis, polar narcosis, uncoupling of oxidative phosphorylation, respiratory 

membrane irritation, respiratory blockers, acetylcholinerase inhibition and central 

nervous syndrome seizure. With the exception of non-polar narcosis, these modes of 

action represent chemicals with toxicities greater than baseline (non-polar) narcosis. A 

review of the classification of modes of toxic action of organic chemicals is given by 

Verhaar et al. (1992). 

The strong log Kow influence in toxicity can be explained by the well documented 

correlation of bioconcentration with log Kow (Hermens et al., 1985). The octanol-water 

partition coefficient effectively mimics partitioning of organic compounds into lipid and, 

as such, numerous linear relationships between the bioconcentration factor of a 

contaminant (BCF, defined as the ratio of compound concentration in the organism to 

concentration in water at equilibrium) and octanol-water partition co-efficient have been 

established (e. g. Hawker and Connell, 1986). This is illustrated in Figure 1.11. Such 

linear relationships have been shown to apply for organic compounds with log Kow 

values in the range 2-6. For compounds with log Kow values greater than 6, measured 

BCF factors are generally lower than predicted (Hawker and Connell, 1986). These 

authors attributed the deviation from linearity for the more hydrophobic compounds (log 

Kow > 6) to the lengthy time periods required to establish equilibrium, suggesting that 

for very hydrophobic compounds, a steady-state body burden may not be achieved in the 

lifetime of the organism (i. e. for compounds with log Kow > 8). 

An alternative hypothesis for the deviation from linearity for the more hydrophobic 

compounds is that the octanol-water partition coefficient may be a poor model for lipid- 

water partitioning for larger molecules. Gobas et al. (1988) demonstrated that for 

compounds with log Kow values in the range 1-5.5, membrane-water and octanol- 

water partition coefficients are approximately equal and linearly related. However, 
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Figure 1.11 Correlation of log BCF with log K... for organic chemicals (McKim 

and Schmeider, 1990) 

compounds with log Kow values greater than 5.5 partitioned less into lipid membranes 

than octanol. The relationship between lipophilicity and partitioning is extensively 

reviewed by Dearden (1985). Bioaccumulation QSARs are also critically reviewed by 

Donkin and Widdows (1990) and Donkin (1994). 

Traditionally, toxicity has been expressed in terms of the aqueous exposure 

concentration of toxicant. However, as noted by Friant and Henry (1985), expressions 

of toxicity in terms of the organism toxicant concentration have the advantage of 

eliminating variations due to bioavailability and kinetics of toxicant uptake. Despite a 
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number of early studies (e. g. Ferguson, 1939) which examined the toxicological residues 

at pharmacological endpoints, the concept of expressing toxicity in terms of organism 

concentrations (critical body residue, CBR or body burden, BB) has largely been 

neglected until recently. 

Rogerson et al. (1983) and Bobra et al. (1983) deduced from aqueous concentration 

based toxicity data that the lethal body burden associated with ciliate protozoa and 

Daphnia exposed to various hydrocarbons was relatively constant, but unquantified. 

Similarly, Mackay and Hughes (1984) demonstrated that narcosis in goldfish (as 

measured by loss of equilibrium) occurred at a mean body burden of 4.4 mmol kg''. 

McCarty (1986,1987a, b) evaluated the use of previously established QSARs between 

toxicity and log Kow, and bioconcentration factor (BCF) and log Kow to estimate the 

internal concentrations of narcotic organic chemicals at specific biological endpoints. 

This author recalculated a series of QSAR regression equations relating aqueous based 

expressions of toxicity with log Kow using a geometric mean functional regression 

procedure. These equations were combined with a bioconcentration relationship and 

manipulated to develop a modified toxicity/bioconcentration relationship. The internal 

toxic residue was then obtained by multiplying the calculated LC5o value by its respective 

BCF. The relationships obtained are summarised in Figure 1.12. This diagram illustrates 

a fundamental toxicological principle that, although some organic chemicals have a 

potency difference of 4-5 orders of magnitude when expressed in terms of molar 

concentration of the exposure water, they are essentially of equal potency when 

measured as the organism toxicant concentration at steady state equilibrium (McCarty, 

1986). In other words, differences in aqueous based expressions of the toxicity of 

narcotic organic chemicals are a function of the hydrophobicity and therefore of the 

kinetics of uptake of a chemical. 
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Figure 1.12 Relationship between toxicity, bioconcentration (Log KB) and 

octanol/water partition coefficient (log Kow) for some narcotic chemicals 

(McCarty, 1987a, b) 

McCarty et al. (1992a) applied a similar approach to a data set for the acute toxicity of 

a variety of hydrophobic narcotic chemicals examined by the U. S Environmental 

Protection Agency (Duluth) in tests with juvenile Fathead Minnows. These authors 

applied a one-compartment first order kinetics (1CFOK) model to the data set, in 

combination with established BCF/Kow QSAR relationships to develop a relationship 

between Kow and both threshold acute toxicity (LCso) and whole body toxicant residue. 

Although this approach has a number of sources of error such as uncertainty in the 

accuracy of log Kow values and errors in the regression analysis, these problems were 

acknowledged by the authors and their approach put forward as an ̀ initial exploratory 

analysis'. McCarty et al. (1992a) estimated the lethal body residue for neutral narcotic 



organics to be in the range 2.2 - 8.3 rrmol kg 1. Comparison of the predicted range of 

lethal body burdens with the few available measured lethal residues in fish reported 

showed reasonable agreement. These authors concluded that the utility of their approach 

would be increased if it could be determined that certain residue levels are associated 

with different biological response endpoints. McKim and Schmeider (1990), reviewing 

the work of McCarty and other workers noted that for non-specific narcotic QSARs, the 

acute and chronic toxicity regressions are parallel and suggested that the sensitivity and 

perhaps the accuracy of critical residue estimates could be enhanced by incorporating 

sublethal or chronic endpoints into such studies. 

To date, there are relatively few body residue data for sublethal toxicological endpoints. 

Donkin et al. (1989,1991) investigated the effect of a number of hydrocarbons and 

substituted hydrocarbons on the feeding rate of the mussel(Mytilus edulis) and measured 

the toxicant burden in the animals at the end of each feeding rate determination. These 

authors demonstrated that the tissue concentration required to produce a 50 % reduction 

in feeding rate (TECso) was relatively constant (0.1 - 0.3 mmol kg''), irrespective of 

compound structure or physico-chemical properties for compounds in the log Kow range 

2.5 - 5. This is illustrated in Figure 1.13. The relationships between hydrophobicity and, 

toxicity and body residues reported by Donkin et al. (1989,1991) are identical to those 

proposed by McCarty et al. (1986,1987a, b; Figure 1.12 herein). However, whilst 

McCarty (1986,1987a, b) estimated internal concentrations of toxicant, Donkin et al. 

(1989,1991) have actually measured tissue concentrations of toxicant at the 

toxicological end-point, thereby providing further support to the equipotency of non- 

specific narcotics at the site of action and demonstrating that non-specific narcotic 
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the log of their bioconcentration factor into the mussel (Mytilus edulis), and the log 

of the concentration of these compounds in water (nmol 1") and mussel tissue 

(mmol kg' wet wt. ) which reduce feeding rate by 50%. The symbols on the figure 
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substituted alkanes; BCF (O) aromatics, (M) alkanes and substituted alkanes. The 

dashed lines indicate the approximate position of the toxicity cut-off (from Donkin 

et aA, 1989,1991) 

QSARs developed from aqueous exposure concentration data largely reflect differences 

between bioconcentration factors (Donkin et al., 1989). 

Donkin et al. (1989,1991) also found that compounds with log Kow values greater 

than 5 were non-toxic to mussel feeding rate. The observation of a `cut-off' in toxicity 

for compounds with log Kow values greater than approximately 5-6 is commonly 

reported (e. g. Konemann, 1981; Hermens et al., 1984) and is an established 

characteristic of QSARs with hydrophobic chemicals (Franks and Lieb, 1990; Lipnick, 

1990). Since non-specific narcotic QSARs developed from aqueous concentration data 

largely reflect differences between bioconcentration of toxicants, deviations from 
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linearity (such as the `cut-off in toxicity) may be partly attributed to kinetic factors, i. e. 

the experimental exposure time is shorter than required for sufficient bioaccumulation of 

toxicant into the organism (Lipnick, 1990). However, Donkin et al. (1989,1991) 

demonstrated that a cut-off in toxicity occurred, despite efficient accumulation of the 

compounds tested, as compounds with log Kow values greater than 5-6 were 

bioaccumulated within the mussels to much greater concentrations than the TECso values 

for those compounds which were toxic, with no measurable effect upon feeding rate. 

For the hydrocarbons studied, these workers suggested that whilst log Kow was a good 

predictor of toxicity and bioconcentration, aqueous solubility was a better indicator of 

the cut-off point than log Kow (Donkin et al., 1991). Donkin et al. (1991) proposed that 

a cut-off in toxicity occurs for compounds with aqueous solubilities less than 70 gg 1"'. 

This equates to a cut-off in toxicity for n-alkanes greater than n-Clo (n-CI1 was found to 

be non-toxic) and at approximately pyrene for aromatic hydrocarbons (Donkin et al., 

1989,1991). Several explanations have been proposed for the observed cut-off effect. 

Most commonly, it is attributed to the low solubility of larger hydrophobic molecules. 

Despite the fact that such compounds have a high partition coefficient, their aqueous 

solubility is so low that insufficient toxicant accumulates at the site of action to induce a 

response (Veith et al., 1984; Donkin et al., 1989). Alternatively Abernethy et al. (1988) 

postulated that a cut-off in acute toxicity occurs with molecules of molar volumes 300 

cm3 mol"' or greater. Haydon et al. (1977) argued that `large' compounds (higher 

homologues) cannot be accommodated in the small hydrophobic regions of the lipid 

bilayer unless there is an energetically unfavourable distortion of the lipid bilayer. 

As discussed previously, Gobas et al., (1988) suggested that log Kow is a poor model 

for lipid water partitioning of large molecules, owing to the rapidly declining solubility of 

hydrophobic compounds (log Kow > 5) in lipid membranes. It seems plausible, therefore, 

that the narcotic cut-off occurs as a result of rapidly declining aqueous solubility 
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combined with declining membrane solubility preventing a compound from achieving a 

sufficient concentration at the site of toxic action to produce narcosis (Abernethy et al., 

1988; Donkin et al., 1991). 

As the majority of studies tend to focus upon compounds with log Kow values less than 

5, further work with compounds near the toxicity cut-off is required before the toxicity 

cut-off for narcotic chemicals can be more accurately defined and firm conclusions 

drawn. However, data available tends to suggest that aqueous solubility may be the 

most suitable descriptor for delineating the cut-off effect (Donkin et al., 1989,1991). 

Whilst toxicity studies concerned with the effects of single compounds are extremely 

useful in identifying modes of action and establishing concentration-response curves, 

contaminated organisms typically contain complex mixtures of a wide range of 

chemicals. Consequently, consideration must be given to the joint toxicity of mixtures of 

chemicals to marine organisms. 

Several studies (e. g. Hermens et al., 1984,1985; Deneer et al., 1988) have 

demonstrated that narcotic toxicants are concentration additive when present as a 

mixture. In other words, the toxicity of a mixture of compounds acting by the same 

mechanism (in this instance non-specific narcosis) may be calculated by expressing the 

concentration of each individual compound as a fraction of the effective concentration. 

Each component of the mixture is expressed as a ̀ Toxic Unit' (TU) thus; 

TUsuti = 
Cw 

+ 
Cw, 

+..... 
Cw 

LCso, LC502 LC50s (McCarty et al., 1992b) 

Deneer et al. (1988) investigated the joint toxicity of a mixture of 50 narcotic chemicals 

towards Daphnia magna and found that the observed toxicity was accurately predicted 

using the concentration addition model. These authors investigated the toxicity of 
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mixtures of narcotics in which some of the components were present in concentrations 

well below their no-effect concentration, and concluded that in a mixture of narcotic 

chemicals, any compound will, according to concentration and hydrophobicity, 

contribute to the toxicity of the mixture, even if it is present at a very low concentration 

(Deneer et al., 1988). 

To date, no systematic studies have been published examining mixture toxicity in terms 

of body burden. However, considering that a number of single component toxicity 

studies have demonstrated that narcotic effects occur at a relatively constant body 

burden of toxicant, it is hypothesized that tissue concentrations of toxicants are also 

additive. Each molecule of narcotic toxicant is functionally equivalent at the site of toxic 

action, thereby producing the same toxicological response when equal numbers of 

molecules reach the site of toxic action. It is anticipated that mixtures of equivalent 

toxicants would be expected to act in the same manner as an equi-molar amount of any 

of the individual components (McCarty, 1986). 

As mentioned previously (Section 1.5), the QSAR approach may be useful in the 

toxicological interpretation of tissue residues, with the ultimate aim of identifying those 

compounds present in a mixture of contaminants which may cause a deleterious 

response. For example, Gilfillan et al. (1977) showed that although there was no 

correlation between physiological stress and total hydrocarbon concentration, there was 

an excellent correlation between the concentration of low molecular weight aromatic 

hydrocarbons in the tissues and SFG. Consideration of the QSAR established by Donkin 

et al. (1989,1991) provides an explanation for the results of Gilfillan et al. (1977), as the 

majority of the total hydrocarbon body burden will be dominated by aliphatic 

hydrocarbons > C10, which are non-toxic, owing to their low aqueous solubility. 

However, the low molecular weight aromatic hydrocarbons are of sufficient solubility to 

act as non-specific narcotics, hence the correlation with physiological stress. 
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1.7 The present study 

The presence of an hydrocarbon UCM in the `aliphatic' fraction of petroleum 

hydrocarbon contaminated sediments and biota is routinely reported and widely accepted 

as a measure of petrogenic contamination (see Section 1.3), but the toxicological 

significance of such UCM hydrocarbons remains largely uninvestigated. The presence of 

an `aromatic' UCM in environmental samples is commonly ignored and again, the 

environmental impact of aromatic hydrocarbon UCMs remains unknown. 

One reason for the paucity of studies concerning the environmental impact of UCM 

hydrocarbons may be the lack of knowledge regarding its molecular composition. 

However, recent attempts to characterise hydrocarbon UCMs isolated from several 

lubricating oils and crude oils have led to the proposal of a number of model UCM 

structures (see Section 1.2). Simple `T'-branched structures have been identified as a 

component of the aliphatic UCM, whilst alkyl substituted monoaromatic hydrocarbons 

have been suggested as possible components of the aromatic UCM (Figures 1.2 and 1.5). 

As aromatic hydrocarbons are generally more water soluble than aliphatic 

hydrocarbons, it is probable that a proportion of the aromatic UCM hydrocarbons will 

have demonstrable narcotic potency. However, first the quantitative significance of the 

aromatic UCM in environmental samples needs to be established. Therefore an 

important aim of the present study was to measure both the aliphatic and aromatic UCM 

concentrations in mussels from a small number of coastal sites, in order to form a 

preliminary assessment of `typical' aromatic hydrocarbon UCM concentrations in 

mussels. A further aim was then to assess the environmental impact of both aliphatic and 

aromatic UCM hydrocarbons by investigating the toxicity of a number of low molecular 

weight model UCM hydrocarbons to mussel ciliary feeding activity. 
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Chapter 2 reports aliphatic and aromatic hydrocarbon concentrations (resolved and 

unresolved) measured in marine mussels sampled from a small number of U. K. coastal 

sites 

Chapter 3 details the synthesis and characterisation of a low molecular weight model 

aliphatic UCM hydrocarbon and two model aromatic UCM hydrocarbons 

Chapter 4 Describes a number of studies investigating the sublethal effects of the 

synthetic low molecular weight model aliphatic UCM hydrocarbon 

Chapter 5 investigates the effect of the two model aromatic UCM hydrocarbons on 

mussel ciliary feeding activity 

Chapter 6 provides full experimental and instrumental details 

Chapter 7 presents conclusions and suggests areas for future work 
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CHAPTER TWO 

Aromatic and Aliphatic hydrocarbon UCM concentrations present in 
mussels from U. K. coastal sites 



2.1 Introduction 

The occurrence of UCMs in the aliphatic hydrocarbon fractions of marine sediments and 

organisms from areas impacted by petroleum hydrocarbons is well documented. Although 

generally considered to be of little direct toxicological significance, the aliphatic UCM is 

nonetheless widely accepted as a reliable indicator of fossil fuel contamination (e. g. 

Thompson and Eglinton, 1978; Risebrough et al., 1983; Mason, 1988; Macias-Zamora, 

1996; cf. Section 1.3). In contrast, and as illustrated in Table 1.2, the presence of an 

aromatic UCM is often ignored and environmental concentrations of aromatic UCM 

hydrocarbons in marine sediments and biota are rarely reported. 

The paucity of reported aromatic hydrocarbon UCM concentrations is most probably due 

to the requirement for environmental monitoring schemes to focus upon those compounds 

which are of known ecological and toxicological concern. Currently, the US Environmental 

Protection Agency (EPA) priority pollutant list (consisting of over 150 organic compounds) 

includes only nineteen petroleum-type hydrocarbons, including sixteen polycyclic aromatic 

hydrocarbons (PAH), and the volatile aromatic hydrocarbons benzene, toluene and xylene. 

Many PAH, especially the higher molecular weight four- and five-ring PAH, have 

carcinogenic and/or mutagenic potential (White, 1986; Pahlman and Pelkonen, 1987). Such 

compounds are typically present in sediments and biota at concentrations in the ng g' dry 

weight range. As a consequence, use of the most sensitive analytical techniques, such as 

selected ion-monitoring GC-MS, is required for accurate quantification of individual PAH in 

environmental samples. However, this usually precludes the detection of aromatic UCMs. 

Some of the shortcomings of the EPA-approved methods in oil spill impact assessments are 

discussed by Sauer and Boehm (1991). These authors note that the determination of only 

the nineteen priority pollutant volatile aromatic and polyaromatic hydrocarbons in 
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environmental samples affected by oil does not provide sufficient data to permit appropriate 

interpretation of the environmental impact of spilled oil. Many of the four- and five-ring 

EPA-listed PAH are very minor constituents of most crude or refined oils, whilst alkylated 

PAH such as C1-C4 naphthalenes and phenanthrenes, although not listed in regulatory 

methods, are more abundant than the parental PAH. Furthermore, many alkylated PAH 

appear to be more toxic than their parent compounds (Sauer and Boehm, 1991). 

Sauer and Boehm (1991) advocate the determination of a number of alkylated PAH 

(C1"C4 naphthalenes, phenanthrenes, dibenzothiophenes and chrysenes) in addition to the 

EPA listed PAH. Analysis of alkylated PAHs is also valuable for identifying spilled oil, for 

distinguishing between different sources of hydrocarbons in the environment and providing 

information on the extent of oil weathering and degradation in the environment (Douglas et 

al., 1996). 

Whilst the carcinogenic properties of PAH molecules are clearly of concern, other 

mechanisms of toxic action by which petroleum hydrocarbons may act should not be 

forgotten in environmental assessments. As described previously in Sections 1.5 and 1.6, 

many low molecular weight hydrocarbons (up to three rings) are non-specific narcotic 

toxicants to marine organisms such as mussels. Widdows et al. (1987,1995a, b) have 

demonstrated a significant negative correlation between Scope for Growth (SFG) in mussels 

and the concentration of two- and three-ring aromatic hydrocarbons bioaccumulated by the 

organisms. SFG is a fundamental measure of the ecological fitness of a population (cf. 

Section 1.5) but monitoring only the EPA priority pollutants, or indeed a selected number of 

alkylated PAH present in mussels, would not provide sufficient data to enable a meaningful 

toxicological interpretation. The use of combined chemical and biological monitoring 

schemes with `bio-indicator' organisms such as mussels, as advocated by Widdows and co- 
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workers enables a more meaningful toxicological interpretation of environmental 

concentrations of petroleum hydrocarbons and other contaminants. However, it is important 

that existing environmental monitoring requirements continue to be re-examined and 

updated in the light of new biological and toxicological data. 

The few reports of aromatic hydrocarbon UCMs that can be found in the literature 

indicate that these compounds are present in petroleum hydrocarbon impacted sediments and 

biota in much greater amounts than PAH, and indeed, appear to dominate the aromatic 

hydrocarbon body burden of petroleum hydrocarbon impacted sediments and biota. For 

example, Boehm et al. (1982) reported concentrations of aromatic UCM hydrocarbons in 

Mytilus edulis at approximately 900 pg g" wet weight, whilst individual PAH, (e. g. 

naphthalene, phenanthrene and alkylated phenanthrenes) were present at concentrations of 

0.1 - 0.9 Pgg'1. 

Until recently, the molecular composition of aromatic UCMs was unknown and thus the 

environmental impact of aromatic UCM hydrocarbons uninvestigated. The recent proposal 

of `average' model structures for aromatic UCM components (Revill et al., 1997; Thomas 

et al, 1997; cf. Section 1.2) may now enable some of the toxicological impacts of aromatic 

UCM hydrocarbons to be studied. Given the solubility and associated toxicity of a number 

of resolved low molecular weight aromatic hydrocarbons (Donkin et al., 1989,1991) it 

seems very likely that a proportion of the lower molecular weight aromatic UCM 

components would be of sufficient aqueous solubility to be considered as non-specific 

narcotics (cf. Section 1.6). 

A number of recent reports have also highlighted the importance of including hydrocarbon 

oxidation products in environmental monitoring programmes (Burns et al., 1990; Burns, 

1993a). For example, Burns et al. (1990) sampled mussels along a contamination gradient 
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in Hamilton Harbour, Bermuda, and measured concentrations of aromatic and polar 

hydrocarbons bioaccumulated by the mussels. By integrating the data with a parallel 

biological measurement programme (Widdows et al., 1990), these authors demonstrated 

that the polar oxidation products of hydrocarbons were accumulated by mussels in quantities 

sufficient to induce a significant reduction in the SFG. In a recent study, Thomas et al. 

(1995) demonstrated that whilst the aliphatic UCM isolated from a lubricating oil was non- 

toxic to mussel feeding rate, oxidation of the aliphatic UCM (using a chemical oxidation 

technique which produced compounds somewhat analogous to those produced by microbial 

degradation) resulted in the formation of products of sufficient aqueous solubility to act as 

narcotic toxicants. Similar oxidation products are thought to be present in used engine 

lubricating oils, owing to the high temperatures to which the oil is exposed during operation 

of the engine. Used engine oil enters the marine environment in large quantities each year 

(Vazquez-Duhalt, 1989; cf. Section 1.3) and UCM oxidation products may also be 

contaminants of environmental concern (Burns, 1993 a). 

The analysis of petroleum hydrocarbons in environmental matrices is complicated by the 

broad range of volatilities, molecular weights and polarities of compounds present in fossil 

fuels and their related degradation products. There is no standard method for the 

quantification of such contaminants in marine ecosystems and consequently, a range of 

analytical methodologies are employed (Farrington et al., 1988; Burns, 1993b). Although 

determinations of hydrocarbons in the marine environment are usually based upon common 

analytical steps, i. e. organic solvent extraction, column chromatographic separation and 

hydrocarbon detection and identification; variations in equipment and solvents used in the 

extraction step and columns used in chromatographic separations have led to large variations 

in reported environmental hydrocarbon concentrations (Awad, 1981). For example, the 
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International Council for the Exploration of the Sea (ICES) conducted an intercomparison 

exercise on the determination of petroleum hydrocarbons in mussel homogenate (Farrington 

et al., 1988). Subsamples of mussel homogenate prepared from Mytilus edulis sampled near 

a municipal sewer outfall were randomly distributed to approximately 50 laboratories world- 

wide. No particular analytical method was specified, owing to considerable controversy 

about which parameters to measure in assessing petroleum contamination. However, the 

use of UV-fluorescence spectroscopy, HPLC, GC or GC-MS for measurement of 

hydrocarbons after extraction and isolation was suggested. The results demonstrated a large 

variation in hydrocarbon concentrations reported by different laboratories. Relative standard 

deviations for reported data for ri-alkanes, pristane and phytane determined by GC ranged 

from ± 67 to ± 104 %, with similar results noted for PAH. Intralaboratory variation was 

somewhat less, with precision of measurements in one laboratory for 5-8 subsamples of 

tissue homogenate ranging from ± 5-50 % relative standard deviation, depending on the 

parameter or compound being measured (Farrington et aL, 1988). Farrington et al. (1988) 

concluded that results from different laboratories should be compared with caution, and 

highlighted the need for a certified reference material. 

A standard reference mussel homogenate (SRM 1974 [Organics in Mussel (Mytilus 

edulis)]) has since been prepared (Wise et al., 1991), and provides certificated 

concentrations for only nine PAH based on the combination of measurements by GC-MS 

and reversed phase HPLC combined with fluorescence detection. However, such a limited 

range of analytes, covering a fairly narrow range in terms of volatility and polarity is 

insufficient for the needs of the present study. 
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2.2 Aims of the present study 

Owing to the lack of reported data on environmental concentrations of aromatic UCMs, 

the aim of the work described in this Chapter was to provide a preliminary assessment of 

concentrations of aromatic UCMs bioaccumulated by mussels collected from U. K. coastal 

sites. The lower molecular weight compounds are most toxic to marine organisms owing to 

their greater aqueous solubility (cf. Sections 1.5 and 1.6). However, these compounds are 

often lost or poorly recovered in analytical schemes because of their volatility (Farrington et 

al., 1988; All, 1994). Emphasis in the present study was therefore on optimum recovery of 

the lower molecular weight compounds. To achieve this, the study initially focused upon 

validation of a suitable analytical method. Once a suitable method was established, it was 

used to isolate and measure the aliphatic and aromatic UCM concentrations in mussels 

sampled from a small number of coastal locations around the U. K. 
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2.3 Development and validation of a method for the quantification of aliphatic and 

aromatic unresolved complex mixtures (UCMs) in mussel tissue 

To ensure maximum recovery of lower molecular weight compounds during analysis of the 

field samples, a number of extraction methods were compared. This was achieved by 

spiking a range of standards into mussel homogenate and measuring the percentage recovery 

of the spike. Although a Standard Reference Material (SRM) validated for the measurement 

of trace organic contaminants is commercially available, SRM was not used for method 

validation in the present study because the range of compounds for which certificated values 

were provided in the SRM was too limited. The standard reference material (SRM 1974) 

provides certificated values for only nine PAH, the lowest molecular weight compound 

being phenanthrene. As the focus of the present study was to optimize recovery of the toxic 

lower molecular weight compounds, with much greater volatilities than phenanthrene i. e. 

alkylbenzenes, naphthalenes, and < C12 alkanes, it was decided that use of the SRM mussel 

tissue would not provide the information necessary. Instead, a number of compounds 

covering a range of volatilities and polarities were spiked into mussel homogenate, and the 

percentage recovery of each compound, as obtained by a number of different extraction 

methods, compared. 

A further aim of the method development was to extend the analytical method to identify 

and measure accurately polar hydrocarbon oxidation products bioaccumulated within 

mussels by GC-MS. Previously, Burns et al. (1990) used only UV-fluorescence, a semi- 

quantitative technique to identify the presence of significant quantities of polar hydrocarbon 

oxidation products in mussels sampled from Hamilton Harbour, Bermuda. 
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The following sections detail the authentic reference compounds used and discuss 

optimisation of each stage in the analytical scheme. Full experimental details are provided in 

Section 6.3. 

2.3.1 Sample pre-treatment 

Wet mussel tissue contains a significant amount of water which can complicate the 

extraction procedure and this must be removed from the sample prior to analysis. Typically 

this is achieved either by drying the sample in an oven or a freeze dryer. Alternatively, the 

wet tissue may be ground with anhydrous sodium sulphate prior to extraction. 

The influence of sample pre-treatment upon the recovery of analytes of interest has been 

noted by a number of authors (e. g. Awad, 1981; Farrington et al., 1988). For example, 

Farrington et aL (1988), when comparing hydrocarbon concentrations reported in the ICES 

intercomparison exercise noted that hydrocarbon concentrations reported for freeze dried 

mussel tissue were approximately half the concentrations reported for wet tissue 

homogenate. These authors attributed this result to the loss of volatile aromatic 

hydrocarbons such as alkylated benzenes, naphthalene and alkyl naphthalenes during the 

freeze drying process. Such compounds may also be lost during oven drying. Therefore in 

the present study, mussel tissue was extracted as wet homogenate, in order to maximise 

recovery of the lower molecular weight compounds. 

2.3.2 Authentic compounds used for method validation 

A variety of aliphatic, aromatic and polar compounds were chosen. Where available, 

compounds with structural moieties similar to those believed to be present within the UCM 

were chosen. The purity of each compound was monitored by GC and in each instance 
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found to be greater than 98 %. A list of compounds is presented in Table 2.1. A gas 

chromatogram of a mixture of the compounds is presented in Figure 2.1. 

Compounds were dissolved in acetone and spiked into wet mussel homogenate, mixed 

thoroughly and left to equilibrate for 18 hours prior to extraction. Unfortunately, spiking 

standards into mussel homogenate in this manner probably does not represent all the ways in 

which contaminants are naturally sorbed into tissues. The latter can possibly best be 

simulated by incorporation into biological tissues through feeding or exposure studies, but 

such experiments are time consuming and can rarely be justified on the basis of determining 

extraction efficiency alone (Wells, 1993). Consequently, spiking of standards into mussel 

tissue followed by thorough mixing and an equilibration period prior to extraction was the 

best approximation to true incorporation of contaminants into mussel tissue that could be 

practicably achieved in the present study. 

2.3.3 Sample concentration 

The concentration/solvent removal step in any analytical method is a potential source of 

large losses and consequent variability in the recovery of analytes, particularly of the lower 

molecular weight, more volatile compounds. For example, low boiling point hydrocarbons 

such as naphthalene or n-decane can be lost selectively during solvent removal by rotary 

evaporation (Grob and Muller, 1987). 

As these compounds are of considerable toxicological significance, the concentration step 

must be carefully controlled to ensure minimal loss. Ali (1994) reviewed numerous sample 

concentration methods and apparatus, and developed an optimized procedure for sample 

concentration using a micro-Kuderna Danish (K. D. ) apparatus to 
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Compound 

4-propyloctane 

7-hexylnonadecane 

phenyldecane 

5-ethyltetralin ron 

2-ethylnaphthalene 
O 

oroooý 

1,3-diphenylhexane 

0 4-pentylbiphenyl C>- 

phenanthrene O 
OO 

pyrene 

Table 2.1 Aliphatic and aromatic compounds used in method validation... cont'd over 
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Compound 

CH; 0 

acetophenone 

6 

0 

9-fluorenone O 

C02H 

benzoic acid O 

C 2H 

cyclohexanecarboxylic acid 

CH 

9-anthracenecarboxylic acid 
Co 0 

HOZCwý 

hexanedioic acid C02H 

OH 

1-naphthol 
ob 

OH 

9-hydroxyfluorene 
ala 

Table 2.1 cont'd. Polar compounds used in method validation 
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time (mins) 

UGC details; HP-1(12m x 0.2mm 1. d) column; He carrier gas; 40- 300°C@ 5°C min", hold 10 mins .J 

Figure 2.1 Gas chromatogram of the mixture of authentic compounds used for 

method validation (acids present as trimethylsilyl esters; 1-naphthol and 9- 

hydroxyfluorene present as trimethylsilyl ethers) 

Key, Peak Compound 

a 4-propyloctane 
b 7-hexylnonadecane 
c phenyldecane 
d 5-ethyltetralin 
e 2-ethylnaphthalene 
f 1,3-diphenylhexane 
g 4-pentylbiphenyl 
h phenanthrene 
i pyrene 
i acetophenone 
k 9-fluorenone 
l benzoic acid 
m cyclohexanecarboxylic acid 
n 9-anthracenecarboxylic acid 
o hexanedioic acid 
p 1-naphthol 
q 9-hydroxyfluorene 

59 



produce reproducible recoveries of a wide range of volatile compounds, (e. g 90 % for 

d$-naphthalene; Ali, 1994), compared with severe losses by rotary evaporation. 

Solvent removal by controlled evaporation using the K. D. concentrator was therefore the 

method of choice. However, as the sample volume was much larger in this study (ca 250 

ml) than that of the optimised procedure (40 ml) of Ali (1994) it was necessary to compare 

the efficiency of several sample concentration techniques. These were macro-K. D. 

concentrator, rotary evaporation and rotary evaporation to a small volume (ca 35 ml) 

followed by controlled evaporation using the micro-K. D. concentrator. The methods were 

compared by spiking the standards (Table 2.1) into 250 ml dichloromethane (DCM) and 

concentrating the solution to a final volume of 0.5 ml. Percentage recoveries were then 

determined by GC. Füll experimental details are provided in Section 6.4.3. Percentage 

recovery of the standards (mean ± relative standard deviation, rsd n=6) as obtained by each 

method are presented in Table 2.2. 

No concentration of the sample was achieved after 48 h using the macro-K. D., although 

the optimised procedure described for the micro-K. D. apparatus was followed (cf. Ali, 

1994). The use of this apparatus was clearly unsuitable. 

Rotary evaporation gave reasonable recoveries for the majority of compounds (60.5% - 

94.1 %). However, for the more volatile compounds 4-propyloctane, phenyldecane, 

5-ethyltetralin and 2-ethylnaphthalene, the relative standard deviations are typically greater 

than 10 %. As illustrated in Table 2.2, recovery values were increased, and the variability in 

the percentage recoveries of the more volatile compounds reduced, by carefully controlling 

the final stages of concentration with the use of the micro-K. D. apparatus. Recovery values 

for the aliphatic and aromatic hydrocarbons by each sample concentration method were 

compared using a one-tailed t-test. This indicated that, with the exception of pyrene, 

60 



RECOVERY 

Compound amount Rotary Rotary evap macro K. D 

spiked * evaporation + micro K. D 

aliphatic 

4-propyloctane 4 µg 60.5 (19.5) 80.5 (7.3) 

7-hexylnonadecane 3 pg 91.9 (4.2) 100.2 (4.6) 

aromatic 

phenyldecane 3 pg 68.4 (6.7) 86.7 (7.3) 

5-ethyltetralin 6 pg 68.1 (13.1) 88.6 (5.6) 

2-ethylnaphthalene 3 µg 73.8 (10.5) 89.5 (8.3) 

1,3-diphenylhexane 3 µg 79.5 (9.3) 94.3 (4.8) no 

4-pentylbiphenyl 3 µg 86.7 (4.7) 95.5 (3.3) concentration 

phenanthrene 2 pg 88.4 (4.6) 97.0 (4.0) achievable 

pyrene 3µg 94.1 (4.7) 97.3 (3.8) after 48 h 

polar 

acetophenone 4 pg 74.3 (7.5) 95.2 (5.4) 

9-fluorenone 5 µg 88.3 (9.2) 100.9 (6.0) 

benzoic acid 2 pg 77.1 (11.6) 93.4 (8.5) 

cyclohexanecarboxylic acid 2 pg 77.6 (17.2) 92.2 (4.7) 

9-anthracenecarboxylic acid 2 µg 81.6 (7.8) 97.1 (5.1) 

hexanedioic acid 3 pg 75.1 (11.9) 92.3 (11.1) 

1-naphthol 2µg 74.1 (15.3) 95.9 (6.6) 

9-hydroxyfluorenone 2 µg 82.6 (9.2) 95.1 (5.1) 

values given as mean % recovery (figure in brackets is relative standard deviation, n=6) 

* amount spiked into 250 ml DCM 

Table 2.2 Comparison of sample concentration methods 
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compound recoveries were significantly increased (99 % confidence limit) by the use of a 

micro-K. D. apparatus for the final stages of sample concentration when compared with 

rotary evaporation alone. Percentage recoveries were more variable for the polar 

compounds. However all recoveries were significantly increased at the 95 % confidence 

level by the use of the micro-K. D. apparatus. All solvent removal/sample concentration was 

therefore carried out by the method of rotary evaporation followed by micro-K. D. A 

summary of the raw data statistical test is provided in Appendix A. 1 

2.3.4 Extraction methods 

Extraction techniques vary according to the requirements of the analyst and laboratory 

facilities available. Currently, the most commonly used techniques are Soxhlet, ultrasonic, 

blending, column percolation and more recently, supercritical fluid extraction. A comparison 

of these methods for the extraction of trace organic contaminants from sediments and 

biological tissue samples is presented in Table 2.3. The relative merits of each extraction 

method have been reviewed by Wells (1993). 

Soxhlet extraction, usually using a fairly polar solvent system such as DCM is the most 

commonly used technique for the extraction of trace organic contaminants from sediments 

and biota, since this is a simple, yet efficient, method of extraction for the majority of 

compounds of interest. More recently, supercritical fluid extraction has become the method 

of choice where available. However, this extraction method was not available for the present 

study. 

Donkin and Evans (1984) developed a steam distillation method specifically for the 

determination of lower molecular weight hydrocarbons in mussels. These authors reported 

recoveries in excess of 80 % for petroleum hydrocarbons in the volatility range encompassed 
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Method Advantages Disadvantages 

Soxhlet Multiple systems possible Relatively large volumes of 
with banks of 6 or 12 solvent used; loss of some 

Supercritical fluid 
extraction 

Blender/ultrasonication 

Soxhlets; extraction is 
automatic once set up; hot 
extraction to improve 
recovery 

Relatively fast, depending 
on the temperature and 
pressure; uses non-toxic 
solvents; parallel 
extractions are possible; can 
be semi-automated; well 
controlled, reproducible 
conditions 

volatiles unless efficient 
condensers are used; 
solvent penetration limited 
if the sample is not 
completely wetted; 
thermally labile compounds 
may decompose; solvent 
and extraction purity must 
be checked; thimbles 
require extraction before 
use 

SFE gas and modifier purity 
must be checked; high 
grade SF essential; limited 

size of extraction vessel; 
care on recovery from 
extraction vessel; losses can 
occur; blockages through 
restrictors 

Simple, inexpensive to 
purchase and operate; 
applicable to a wide range 
of biological tissue and 
sediments; ambient 
temperature 

Labour intensive; difficult 
to automate; may not 
extract contaminants bound 
to tissue or sediment; 
separation of extract and 
matrix debris necessary; 
filters may clog; limited size 
of sample 

Column percolation Large sample size can be Very large volumes of 
extracted; cold extraction solvent used; high solvent 
can be used in parallel; low blank; labour intensive 
equipment cost 

Table 2.3 Comparison of the main methods of extraction of sediment and biological 

tissue for trace organic contaminants (from Wells, 1993) 
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by toluene to pyrene. However, recoveries of less volatile (>C2o) aliphatic hydrocarbons 

were less satisfactory (ca 40 %). Although the focus of the present study was to chose a 

method with minimal losses of lower molecular weight hydrocarbons, it was hoped to 

achieve this without compromising the recovery of larger molecules; therefore an alternative 

method was sought. 

A number of different extraction methods were compared in this study and are described in 

the following sections. Since emphasis was on maximising the recovery of the more volatile 

lower molecular weight hydrocarbons, the micro-K. D apparatus was employed to minimize 

losses during solvent removal. Careful consideration was given therefore to the choice of 

solvents for extraction, as the K. D. apparatus is only suitable for use with low boiling point 

solvents such as DCM (bpt. 40°C) or n-pentane (bpt. 35°C-36°C). 

2.3.4.1 Soxhlet extraction (DCM. "Methanol) 

Initial extractions were carried out by Soxhlet extraction using DCM: methanol (1: 1). It was 

thought that this would prove efficient for the extraction of a wide range of compounds of 

different polarities. `Spiked' tissue samples were ground with anhydrous sodium sulphate 

and Soxhlet extracted using DCM: methanol (1: 1, v/v) solvent system for 24 h. As methanol 

is an unsuitable solvent for sample concentration using the Kuderna-Danish apparatus (bpt. 

64.7°C), the extract was washed with acidified water immediately following soxhlet 

extraction to remove the methanol, and the total organic extract (TOE) dried over 

anhydrous sodium sulphate. The sample was then concentrated by controlled evaporation 

(rotary evaporation followed by micro Kuderna-Danish) and the solvent in which the TOE 

was dissolved, changed from DCM to n-hexane under a gentle stream of nitrogen. 

Experimental details are given in Section 6.3.4. 
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A gas chromatogram of the total organic extract (TOE) obtained (after derivatisation with 

BSTFA to yield the trimethylsilyl (TMS) derivatives) is illustrated in Figure 2.2. The 

percentage recovery for each compound, as measured by GC (cf. Section 6.3.7) is given in 

Table 2.4. Values are presented as the mean of six determinations, the standard deviation is 

given in brackets. Recoveries for the lower molecular weight, more volatile compounds are 

very low and quite variable. For example, 4-propyloctane (4-PO), a branched C11 alkane, 

has a recovery value of 18.8%, with a relative standard deviation of 22%. Recoveries of the 

polar compounds are also lower than expected and this is probably attributable to the water- 

washing stage where the polar compounds may have preferentially partitioned into the 

aqueous phase despite acidification of the water in order to minimize this. 

As a result of the unsatisfactory recoveries obtained by this method, the use of methanol 

in the extraction procedure was eliminated, and Soxhlet extraction using only DCM was 

investigated. 

2.3.4.2 Soxhlet extraction (DCM) 

`Spiked' tissue samples were ground with anhydrous sodium sulphate and Soxhlet 

extracted with DCM for 24 h. The extract obtained was concentrated by controlled 

evaporation and the solvent system in which the extract was dissolved changed from DCM 

to 11-hexane under a gentle stream of nitrogen (cf. Section 6.3.4.2). 

The percentage recovery for each standard is given in Table 2.5. A gas chromatogram of 

the TOE (as TMS derivatives) obtained is presented in Figure 2.3. It is evident that 

recoveries of the lower molecular weight compounds are considerably higher than recoveries 
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time (mint) 

UGC details; HP-I (I2m x 0.2mm l. d) column; He carrier gas; 40- 300°C@ 5°C min", hold 10 mies J. 

Figure 2.2 Gas chromatogram of the total organic extract of spiked mussel 
homogenate obtained by DCM: MeOH Sozhlet extraction (acids as trimethylsilyl 

esters and alcohols as trimethylsilyl ethers). 

Key, Peak Compound 

a 4-propyloctane 
b 7-hexylnonadecane 
c phenyldecane 
d 5-ethyltetralin 
e 2-ethylnaphthalene 
f 1,3-diphenylhexane 
g 4-pentylbiphenyl 
h phenanthrene 
i pyrene 
i acetophenone 
k 9-fluorenone 
l benzoic acid 
m cyclohexanecarboxylic acid 
n 9-antIiracenecarboxylic acid 
0 hexanedioic acid 
p 1-naphthol 
q 9-hydroxyfluorene 

Peaks not labelled are naturally occurring lipids 
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peak compound amount 'mean RSD 

spiked* % recovery 
aliphatic 

a 4-propyloctane I µg 18.8 (4.1) 22.0 

b 7-hexylnonadecane I µg 88.8 (4.1) 4.7 

aromatic 

c phenyldecane 3 gg 56.4 (4.3) 7.6 

d 5-ethyltetralin 2 µg 68.2 (3.5) 5.2 

e 2-ethylnaphthalene 2 pg 69.8 (3.8) 5.4 

f 1,3-diphenylhexane 1 pg 71.2 (1.8) 2.5 

g 4-pentylbiphenyl 3 µg 77.5 (2.3) 3.0 

h phenanthrene 3 pg 82.2 (2.2) 2.6 

i pyrene 3 µg 92.0 (2.8) 3.0 

polar 
j acetophenone 4 µg 67.0 (3.4) 5.1 

k 9-fluorenone 4 pg 80.1 (5.8) 7.3 

1 benzoic acid 2 pg 29.0 (5.0) 17.3 

m cyclohexanecarboxylic acid 2 pg 32.1 (3.2) 9.9 

n 9-anthracenecarboxylic acid 2 pg 58.0 (4.4) 7.6 

o hexanedioic acid 1 µg n. d - 

p 1-naphthol 2 pg 45.6 (3.2) 7.1 

q 9-hydroxyfluorene 1 pg 41.1 (3.1) 7.6 

'values given as mean of six replicates, standard deviation in brackets 

n. d = not detected 

RSD = relative standard deviation 

* amount spiked into approximately 50 g wet weight tissue homogenate 

Table 2.4 Relative extraction efficiency (Le. percentage recovery of spiked compound) 

of Soxhlet extraction using DCM: Methanol 
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Figure 2.3 Gas chromatogram of the total organic extract of spiked mussel 

homogenate obtained by DCM Soxhlet extraction (acids present as trimethylsilyl 

esters; 1-naphthol and 9-hydroxyfluorene present as trimethylsilyl ethers) 

Key, Peak Compound 

a 4-propyloctane 
b 7-hexylnonadecane 
c phenyldecane 
d 5-ethyltetralin 
e 2-ethylnaphthalene 
f 1,3-diphenylhexane 
g 4-pentylbiphenyl 
h phenanthrene 
i pyrene 
j acetophenone 
k 9-fluorenone 
( benzoic acid 
m cyclohexanecarboxylic acid 
n 9-anthracenecarboxylic acid 
o hexanedioic acid 
p 1-naphthol 
q 9-hydroxyiluorene 
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peak compound amount 
spiked* 

mean' 
% recovery 

RSD 

aliphatic 

a 4-propyloctane I µg 39.7 (5.7) 14.4 

b 7-hexylnonadecane I pg 94.4 (2.9) 3.1 

aromatic 

c phenyldecane 3 µg 58.8 (5.3) 9.0 

d 5-ethyltetralin 2µg 68.7 (1.7) 2.4 

e 2-ethylnaphthalene 2 pg 69.5 (2.5) 3.6 

f 1,3-diphenylhexane 1 µg 80.3 (2.7) 3.4 

g 4-pentylbiphenyl 3 jig 82.9 (3.4) 4.1 

h phenanthrene 3 pg 83.9 (2.3) 2.7 

i pyrene 3 Vg 91.5 (4.8) 5.2 

polar 
j acetophenone 4 pg 69.8 (2.6) 3.7 

k 9-fluorenone 4 Vg 80.4 (4.6) 5.8 

benzoic acid 2 pg 70.6 (4.8) 6.8 

m cyclohexanecarboxylic acid 2 pg 70.9 (5.1) 7.2 

n 9-anthracenecarboxylic acid 2 pg 74.5 (3.8) 5.1 

o hexanedioic acid I µg n. d - 

p 1-naphthol 2 pg 71.5 (2.6) 3.6 

q 9-hydroxyfluorene 1 µg 68.7 (5.4) 7.8 

1 values given as mean of six replicates, standard deviation in brackets 

n. d = not detected 

RSD = relative standard deviation 

* amount spiked into approximately 50 g wet weight tissue homogenate 

Table 2.5 Relative extraction efficiency (i. e. percentage recovery of spiked compound) 

of Soxhlet extraction using DCM 
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obtained with the previous method (DCM: methanol), again suggesting that major losses of 

compounds were occurring during the water washing stage. For the majority of compounds, 

recoveries are good and correspond to values reported in the literature for similar 

compounds (ca 70-90 %). However, there are still large losses of the volatile compounds 

such as 4-propyloctane, phenyldecane, 5-ethyltetralin and 2-ethylnaphthalene (e. g. 39.7 % 

recovery for 4-propyloctane). This may be attributed to the necessity of changing the polar 

solvent system in which the extract is dissolved (DCM) to a non-polar solvent (e. g. 

n-hexane) prior to fractionation by column chromatography. The evaporation of DCM is 

usually carried out under a gentle stream of nitrogen. However, the process has two inherent 

problems. Firstly it is difficult to ascertain at what point all of the DCM has been removed, 

and, secondly, as illustrated here, the more volatile compounds are subject to significant and 

variable losses under the nitrogen stream. To overcome this problem, it is desirable to use a 

method which would yield the TOE in a non-polar solvent and thus eliminate the need for a 

`solvent exchange' step. 

Rhead et al. (1971) used a two phase extraction method (Dole and Meinhertz, 1960) 

using a ternary n-heptane: propan-2-ol: water mixture to successfully extract lipids from wet 

sediment samples. As this method yields the analytes of interest in a non-polar solvent 

(n-heptane), it appears to be particularly suited to the requirements of the present study. 

2.3.4.3 Two-phase extraction method (pentane: propan-2-o1: H20) 

The method of Rhead et al. (1971) was modified in a number of ways. The original 

method involves sonication of the acidified tissue sample in a n-heptane: propan-2-ol 

mixture. Addition of a n-heptane: water mixture results in the formation of two phases, an 

aqueous layer and an organic layer containing the analytes of interest. In order to obtain the 
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TOE in a more volatile solvent which could be removed by controlled evaporation (micro- 

K. D. ), n-pentane was substituted in place of n-heptane. It was also necessary to adjust the 

volume of each solvent added to produce an organic phase composed almost entirely of n- 

pentane. Figure 2.4 illustrates the approximate phase relations as a function of composition 

of the ternary system used. The relative volumes of the three liquid components determines 

the phase relationship at any one point. The curved line shows the transition from a one- 

phase to a two-phase system. Mixtures represented by points in the area below the curve 

form two phases with compositions indicated by intersections of the straight tie line 

containing the given point and the curved saturation line. 

Dole and Meinhertz (1960) advocated a solvent composition close to the centre of the 

triangle, as below this area pure ternary systems separate more slowly, and in the presence 

of biological materials the systems tend to form stubborn emulsions. However, using a 

solvent composition close to the centre of the triangle would yield the TOE in an 

n-pentane/propan-2-ol mixture. This is undesirable as propan-2-ol is a polar solvent with a 

high boiling point (82°C) unsuitable for use in the K. D. apparatus. 

From the phase diagram it was predicted that a solvent ratio of 1: 10: 9 (propan-2-ol: n- 

pentane: water) would yield an organic phase of greater than 98 % pentane, which could be 

concentrated using controlled evaporation (micro-K. D). The initial ratio of propan-2-ol: n- 

pentane (4: 1) was used (Rhead et al., 1971) to ensure maximum extraction efficiency and 

the volumes of n-pentane and water adjusted to produce the desired solvent ratio. As 

predicted, an emulsion did form initially after the addition of the n-pentane/water mixture, 

however this was overcome by centrifugation to yield clean separation of the two phases. 

Full experimental details are given in Section 6.3.4.3. 
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Figure 2.4 An approximate mapping of the phase relations (as a function of 

composition) of the ternary system n-pentane: 2-propanol: water. Adapted from 

Rhead et aL(1971) 

A gas chromatogram of the TOE (as TMS derivatives) is presented in Figure 2.5. 

Percentage recoveries for each compound are listed in Table 2.6. Recovery values obtained 

using the two-phase extraction method for the aliphatic and aromatic hydrocarbons (with the 

exception of 7-hexylnonadecane and pyrene) are significantly greater (P=0.05; t-test, one 

tailed) than the recovery values obtained by DCM soxhlet extraction. However, no 

significant increase was observed for the polar compounds with the use of the two-phase 

extraction method. 

Figure 2.6 compares the percentage recoveries (plotted as mean ± 95 % confidence 

intervals) as obtained by each extraction method. It is evident that, for the lower molecular 

weight hydrocarbons, the highest recovery values are obtained using the two-phase 

extraction method. With regards to the less volatile compounds, recovery values are similar 

for both Soxhlet extraction using DCM and the two-phase extraction method. 
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Figure 2.5 Gas chromatogram of the total organic extract of spiked mussel 

homogenate obtained by the two phase extraction method (acids present as 

trimethylsilyl esters; 1-naphthol and 9-hydroxyfluorene present as trimethylsilyl 

ethers) 

Key, Peak Compound 

a 4-propyloctane 
b 7-hexylnonadecane 
c phenyldecane 
d 5-ethyltetralin 
e 2-ethylnaphthalene 
f 1,3-diphenylhexane 
g 4-pentylbiphenyl 
h phenanthrene 
i pyrene 
j acetophenone 
k 9-fluorenone 
l benzoic acid 
m cyclohexanecarboxylic acid 
n 9-anthracenecarboxylic acid 
o hexanedioic acid 
p 1-naphthol 
q 9-hydroxyfluorene 

73 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 

time (rains) 
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peak compound amount 
spiked* 

mean' 
% recovery 

RSD 

aliphatic 

a 4-propyloctane 1 pg 57.7 (3.4) 6.0 

b 7-hexylnonadecane 1 pg 93.8 (2.8) 3.0 

aromatic 

c phenyldecane 3 pg 70.9 (2.1) 3.0 

d 5-ethyltetralin 2 pg 74.5 (1.7) 2.3 

e 2-ethylnaphthalene 2 Vg 75.0 (1.9) 2.5 

f 1,3-diphenylhexane 1 µg 88.6 (1.8) 2.0 

g 4-pentylbiphenyl 3 pg 87.5 (1.8) 2.0 

h phenanthrene 3 pg 90.5 (2.1) 2.3 

i pyrene 3 pg 94.1 (3.7) 3.9 

polar 

j acetophenone 4 pg 62.5 (4.6) 7.4 

k 9-fluorenone 4 pg 94.9 (3.1) 3.3 

1 benzoic acid 2 pg 70.3 (4.1) 5.9 

m cyclohexanecarboxylic acid 2 µg 66.8 (6.0) 8.9 

n 9-anthracenecarboxylic acid 2 Vg 71.6 (5.0) 7.0 

o hexanedioic acid 1 pg n. d - 

p 1-naphthol 2 pg 67.7 (5.3) 7.8 

q 9-hydroxyfluorene 1 µg 68.4 (6.7) 9.8 

' values given as mean of 6 replicates, standard deviation in brackets 

n. d = not detected 

RSD = relative standard deviation 

* amount spiked into approximately 50 g wet weight tissue homogenate 

Table 2.6 Relative extraction efficiency (i. e percentage recovery of spiked compound) 

of two-phase extraction method 
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The extraction method using DCM: methanol yielded the lowest, least reproducible values 

for all compounds. As mentioned previously, this is most likely owing to the water washing 

stage. Recoveries of the polar compounds used in this study are greater than 70 % when 

extracted by DCM Soxhlet, suggesting that DCM is a sufficiently polar solvent for the 

extraction of polar compounds of this type and the use of methanol is not necessary. None 

of the methods were successful in extracting hexanedioic acid (adipic acid). However such a 

short chain dicarboxylic acid will most probably partition into the aqueous phase of an 

extraction mixture and could be determined separately (e. g. Eglinton et at, 1987). 

From these results, the two-phase extraction method is clearly the method of choice owing 

to the high, reproducible recoveries obtained for hydrocarbons over a broad range of 

volatilities. 

2.3.5 Fractionation 

Fractionation of the total organic extract (TOE) obtained from the extraction of mussel 

tissue is necessary in order to remove the high levels of naturally occurring lipids which 

mask the presence of any petroleum hydrocarbons present. This is commonly achieved 

using silica-alumina open column chromatography to yield `aliphatic', `aromatic' and ̀ polar' 

fractions. The majority of the naturally occurring compounds elute in the polar fraction, the 

petroleum hydrocarbons elute in the aliphatic and aromatic fractions. 

The term `aliphatic' for the first fraction eluted from column chromatography is purely 

operational as it usually contains not only aliphatic hydrocarbons but a variable proportion of 

mono-aromatic hydrocarbons, the relative amounts depending upon the volume of eluent 

used. Consequently, aliphatic UCMs routinely quantified by GC in the majority of 

monitoring studies may also include mono-aromatic hydrocarbons. Aromatic hydrocarbons 
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have greater aqueous solubilities than aliphatic hydrocarbons of comparable molecular 

weight and are more toxic to marine organisms. It is desirable, therefore, to separate, as 

completely as possible, the aliphatic and mono-aromatic hydrocarbons in order to assess the 

contribution of each group of compounds to the total ̀ toxic hydrocarbon body burden'. 

Recently, Thomas (1995) has demonstrated that the aromatic UCM is composed 

principally of mono- and di-aromatic alkyl substituted compounds (cf. Section 1.2). This is 

in agreement with the results of a study by Killops and Readman (1985) who fractionated a 

number"of sediment extracts into aromatic hydrocarbon fractions according to the number of 

double bond equivalents. These authors found that the bulk of the aromatic UCM was 

present in the mono- (four double bond equivalents) and di-aromatic ring fractions. Since it 

is these smaller aromatic compounds (i. e mono- and di-aromatic compounds) that are 

generally the most toxic to mussels (e. g. Donkin et al., 1989,1991), it is important to 

determine the composition of the aromatic UCM present within mussels. Current chemical- 

biological monitoring programmes' (Widdows et al., 1990,1995ab; discussed in Section 

1.5) focus upon the two- and three-ring aromatic hydrocarbons as the toxicologically 

important fractions and tend to ignore the presence of mono-aromatic hydrocarbons, 

grouping these compounds in the `non-toxic aliphatic' fraction. Thus, many current 

monitoring schemes fail to quantify what could be the largest group of aromatic 

hydrocarbons present. In order to investigate this, various column chromatographic 

methods were compared herein to obtain the best separation of aliphatic and mono-aromatic 

compounds. The aromatic fraction obtained from column chromatography was then further 

fractionated into mono-, di- and tri-aromatic fractions by HPLC in order to assess the 

contribution of each group of hydrocarbons to the total aromatic body burden. 
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Fractionation of organic extracts by column chromatography is a well established 

technique and, as such, the aim of the work described in this section was only to optimise 

separation of the aliphatic/mono-aromatic hydrocarbon fractions of mussel extracts. This 

can be achieved by varying the ratio of sample to adsorbent and/or activity of the 

chromatographic adsorbents used. Typically, the sample to be fractionated is applied to the 

top of a silica/alumina column and the column sequentially eluted with solvents of increasing 

polarity (e. g. n-hexane, DCM, methanol) to obtain aliphatic, aromatic and polar fractions 

respectively. In the present study, n-pentane was used to obtain the first fraction (aliphatic), 

because of its suitability for use in the K. D. apparatus. 

Mussel TOE containing the authentic reference compounds was fractionated using a silica 

: alumina (5% water deactivated and 1.5% deactivated respectively) column (1: 100, 

sample: adsorbent ratio). The aliphatic fraction (F1) was obtained by elution with n-pentane 

(1.5 column volumes). Elution with n-pentane: DCM (1: 1, v/v; 2 column volumes) yielded 

the aromatic (F2) fraction. Polar fractions were obtained by elution with DCM (F3) and 

DCM: methanol (F4), (full experimental details are given in Section 6.3.5). Solvent was 

removed by controlled evaporation and samples analysed by GC and GC-MS. Examination 

of the Fl fraction indicated that no separation of aliphatic and mono-aromatic compounds 

had been achieved. Phenyldecane, 5-ethyltetralin and a proportion of 2-ethylnaphthalene 

had eluted from the column in the F, or `aliphatic' fraction. This may be attributed to the 

fact that the TOEs of mussel tissue contain large amounts of naturally occurring lipids which 

increase the polarity of the sample, thereby reducing the separation of the non-polar aliphatic 

and aromatic components. 

The sample to adsorbent ratio was increased to 1: 200 (5% deactivated silica/1.5% 

deactivated alumina, 1: 1) in an attempt to improve the separation. However, although the 
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separation improved slightly, a significant amount of the mono-aromatic standards still 

eluted in the Fl fraction. Increasing the sample: adsorbent ratio further is impractical with 

respect to the size of column and quantity of adsorbent required. Consequently, the effect of 

increasing the activity of the adsorbents was investigated. Silica deactivated by 5% with 

water was replaced with fully activated silica (activated at 180°C, 18 h, cf. Section 6.1). An 

excellent, clean separation was obtained as illustrated in Figure 2.7a and b. 

The aromatic fraction was further fractionated into mono-, di- and tri-aromatic ring groups 

by normal phase HPLC, using a slight modification of the method of Killops and Readman 

(1985; cf. Section 6.3.6) in order to assess the composition (in terms of number of aromatic 

rings) of the aromatic UCM and the contribution of the aromatic UCM to the total `toxic 

hydrocarbon' body burden. 

Analysis of the polar fractions F3 and F4 by GC revealed significant variation and losses on 

the recovery of the more polar compounds from the column. Whilst acetophenone and 

9-fluorenone were present in the F3 fraction, the amounts were highly variable and subject to 

interference from the naturally occurring lipids present. With respect to the more polar acids 

and alcohols, results were erratic and compounds were often not recovered from the 

column. As the focus of this study was primarily upon aliphatic and aromatic hydrocarbons, 

the problems associated with fractionation of the polar compounds were not pursued 

further. However, analysis of polar compounds present in mussel tissue is clearly an 

interesting area for future work. 
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time (rains) 
[GC details; HP-1(12m x 0.2 mm i. d. ) column. He carrier gas; 40'C-300°C @ 5°C min'', hold 10 mins] 

Figure 2.7a Gas chromatogram of F1 fraction obtained from optimised fractionation 

procedure 

time (mins) 
UGC details; HP-1(12m x 0.2 mm l. d. ) column. He carrier gas; 40°C-300°C @ 5°C min's, hold 10 mins] 

Figure 2.7b Gas chromatogram of F2 fraction obtained from optimised fractionation 

procedure 
Internal standards; A; 4-propyloctane: B; 7-hexylnonadecane: C; d1z-tetralin: 
D: dirl -methylnaphthalene-deo; E; d, o- phenanthrene 
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2.3.6 Recovery of a low molecular weight UCM spiked into mussel tissue 

In order to further validate the method developed for UCM recovery, mussel homogenate 

was spiked with a lubricating oil (Mobil Velocite) and percentage recovery of the UCM in 

both the aliphatic and aromatic fractions measured. This oil was chosen as it consists (>55 

%) of a low molecular weight UCM (Figure 2.8). 

Mussel tissue was spiked with a solution of the oil and a range of internal standards 

(4-propyloctane, 7-hexylnonadecane, d12-tetralin, d1o-l-methylnaphthalene and 

d, o-phenanthrene). The tissue was extracted by the two-phase extraction method and 

fractionated according to the optimised method. 

n-C13 

Figure 2.8 Gas chromatogram of Mobil Velocite oil 
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Chromatograms of the F1 and F2 fractions are presented in Figures 2.9a and b, 

respectively. Percentage recoveries of both the internal standards spiked into the mussel 

tissue and recovery of the UCM (as F1+F2) are given in Table 2.7. Recoveries of both the 

internal standards and the low MW UCM were approximately 70 %. This is reasonable 

given that the UCM has a low MW range (ca n-C11 - n-C18) and is therefore relatively 

volatile. 

2.3.7 Quantification of analytes 

Quantification of both authentic compounds and resolved and unresolved hydrocarbon 

concentrations in mussel tissue was performed by GC-MS using Chemstation (Hewlett 

Packard) software). Full details are presented in Section 6.3.9 

recovery 
(duplicate 

determinations) 
UCM (as F1 + F2) 70.1 

80.5 

4-propyloctane 48.1 
64.7 

7-hexylnonadecane 90.3 
97.1 

d12-tetralin 65.8 
76.0 

dlo-1 -methylnaphthalene 70.1 
74.7 

dlo-phenanthrene 82.6 
90.8 

Table 2.7 Percentage recovery of low MW UCM and internal standards spiked into 

mussel tissue. 
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Figure 2.9a Gas chromatogram of F, (aliphatic) fraction of mussel tissue spiked with 

Mobil Velocite 

Figure 2.9b Gas chromatogram of F2 (aromatic) fraction of mussel tissue spiked with 

Mobil Velocite 

Internal standards; A: 4-propyloctane: B; 7-hexylnonadecane: C; d12-tetralin: 

D: dir-I -methylnaphthalene-d, a E: dfo- phenanthrene 
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2.3.8 Conclusions 

A reproducible method has been developed and validated for the analysis and quantification 

of petroleum hydrocarbons in mussel tissue. By carefully controlling the final stages of 

sample concentration using the micro-Kuderna Danish apparatus the recovery of low 

molecular weight aliphatic and aromatic hydrocarbons has been significantly increased when 

compared with rotary evaporation, the most commonly employed method of sample 

concentration. In addition, the loss of low molecular weight analytes of interest has been 

minimized by the development of an extraction method which yields the analytes of interest 

in a non-polar solvent, thereby eliminating the need for changing the solvent prior to 

fractionation. This method enables good recoveries of the low molecular weight, 

toxicologically more significant hydrocarbons without compromising recovery of higher 

molecular weight hydrocarbons which are useful compounds in environmental monitoring 

schemes for assessing the source of petroleum hydrocarbons. 

In the following section, the optimised method was used to measure the aromatic and 

I 
aliphatic hydrocarbon burdens of mussels (M. edulis) from a small number of coastal sites 

around the U. K. 
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2.4 Hydrocarbon unresolved complex mixtures (UCMs) in mussels (Mytilus edulis) 

from U. K. coastal sites 

The method developed and validated in the previous section (Section 2.3) was used to 

isolate and measure both the aliphatic and aromatic UCMs in mussels from a small number 

of impacted sites in coastal locations around the U. K. The aim of the work described herein 

was not to establish a comprehensive inventory of aromatic UCMs (as that would involve a 

routine monitoring programme) but simply to establish whether oil-polluted mussels contain 

an aromatic UCM burden. 

2.4.1 Sample sites 

Sample sites along the North East coast of the U. K. were selected because this area has 

been extensively studied in an integrated biological (SFG in mussels) and chemical (aromatic 

hydrocarbons, organotins, organochlorines and metals) monitoring program (Widdows et 

al., 1995b). 

The sites were chosen to encompass both open water coastal sites and more enclosed 

locations such as harbours. A mussel population from the Mersey Estuary was also 

sampled as this area is known to be heavily contaminated with oil (Readman et al., 1986; 

Davies and Wolff, 1990). Mussels from a location known to be relatively free from 

petroleum hydrocarbon contamination (Whitsand Bay, Cornwall; P. Donkin, personal 

communication, 1995) were also sampled and analysed. A map indicating the location of the 

sample sites is presented in Figure 2.10. Approximately 50 mussels were collected from 

each site and packed in ice boxes for transportation back to the laboratory. 
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Figure 2.10 Location of sample sites 
(not drawn to scale) 
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2.4.2 Experimental details 

Soft tissue was dissected from the shells over ice to minimize losses of volatile analytes. 

The mussel tissue was then homogenised and stored in solvent rinsed, foil lined glass jars at 

-20 
°C prior to analysis. Immediately prior to extraction, tissue samples were spiked with 

the following internal standards; 4-propyloctane (42 µg, synthesised); 7-hexylnonadecane 

(69 pg, synthesised); d12-tetralin (34 µg, Aldrich); d1o-l-methylnaphthalene (63 pg, Aldrich); 

dlo-phenanthrene (61 pg; Aldrich). 

Full details of the methods employed are provided in Section 6.3. In summary, 

approximately 30 g wet weight mussel tissue was extracted using the optimised two-phase 

extraction method discussed previously (Section 2.3.4.3). A procedural blank was carried 

out in parallel with each extraction. This involved spiking internal standards into an acidified 

n-pentane: propan-2-ol mixture, followed by extraction and sample concentration in the usual 

manner. Procedural blanks were monitored by GC. 

The total organic extract (TOE) obtained was concentrated to ca 1 ml (controlled 

evaporation) and total extractable lipid (TEL) determined by gently evaporating 20 µ1 of 

TOE to dryness under a stream of nitrogen. TEL determinations were carried out in 

duplicate and a mean TEL value calculated. Dry weight of mussel tissue was determined for 

each sample by drying approximately 6g mussel tissue for 48 h at 40°C. Wet to dry weight 

conversion factors were then calculated from the difference in mass. Dry weight 

determinations were performed in duplicate. Samples were fractionated by open column 

chromatography (cf. Section 2.3.5) and fractions Fl and F2 analysed by GC and GC-MS. 

The `aromatic' fraction (F2) was then further fractionated by normal phase HPLC using the 

method of Killops and Readman, (1985) to obtain mono-, di- and tri-aromatic fractions and 

each fraction again analysed by GC and GC-MS. Quantification of the total resolved and 
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total unresolved components in each fraction was made using an average response factor of 

the internal standards in each fraction. The area of the unresolved hydrocarbons was 

calculated by subtraction of the total area of resolved peaks from the total area of the 

resolved + unresolved peaks as described in Section 6.3.8. 

2.4.3 Results and Discussion 

The aim of the present study was to make a preliminary assessment of the distribution of 

aromatic UCMs in mussels around the U. K. coast. Gas chromatograms of the ̀ aliphatic" 

(Fl) and `aromatic" (F2) mussel fractions for each site are presented in Figures 2.11 - 2.15. 

The presence of an UCM in both the `aliphatic' (F1) and `aromatic' (F2) fractions is evident 

in mussels from all sample sites with the exception of those from Whitsand Bay. The 

concentrations of total resolved and unresolved hydrocarbons measured in both the aliphatic 

and aromatic fractions for each site are presented in Table 2.8. For ease of comparison all 

concentrations are expressed in terms of dry weight of tissue. This is the most common way 

of expressing similar results in the majority of published literature, and therefore allows easy 

comparison with the latter. However, it must be noted that the results and those in the 

literature should be compared with a certain degree of caution as differences in the analytical 

methodology employed can result in a wide variation in reported hydrocarbon 

concentrations (Awad, 1981: Farrington et al., 1988). Concentrations in terms of wet 

tissue weight and total extractable lipid are provided in Appendices B. 1 and B. 2. 

As shown in Table 2.8, total hydrocarbon concentrations measured in this study range 

from 16 pg g' dry weight tissue (Whitsand Bay), representative of a relatively 

uncontaminated site, up to ca 4000 pg g" dry weight tissue (Whitby Harbour). These 

' The terms ̀aliphatic' and ̀ aromatic are operationally defined according to the fractionation procedure 
employed herein (See Section 2.3.5) 
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time (rains) 
[GC details; HP-1(12m x 0.2mm i. d, ) column. He carrier gas ; 40°C - 300°C @ 5°C min" hold 10mins] 

Figure 2.11a Gas chromatogram of aliphatic fraction of mussels (M. edulis) from New 
Brighton (Mersey estuary) 

S. 00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 6S. 00 70.00 

time (mins) 
[GC details; HRl (12m x 0.2mm i. d, ) column. He carrier gas ; 40°C - 300°C @ S°C min'1 hold lOmins] 

Figure 2.11b Gas chromatogram of aromatic fraction of mussels (M. edulis) from 
New Brighton (Mersey estuary) 

Internal standards; a; 4-propyloctane: b; 7-hexylnonadecane: c; d, 2-tetralin: 
d: dir! -methylnaphthalene-dlo; e; d, r phenanthrene 
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time (rains) 
UGC details; HP-1(12m x 0.2mm i. d, ) column. He carrier gas.; 40°C - 300°C @ 5°C min'1 hold IOmins] 

Figure 2.12a Gas chromatogram of aliphatic fraction of mussels (M. edulis) from 
Cleethorpes 
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unidentified point source contaminants 

). uv au. vu J. . vu ýu. uu tý. vv 31.10 35.00 40.00 45.00 50.00 55.00 60.00 65. On on nn 
time (rains) 

UGC details; HP-1(12m x 0.2mm 1. d, ) column. He carrier gas ; 40°C - 300°C @ S°C min'' hold IOmins] 

Figure 2.12b Gas chromatogram of aromatic fraction of mussels (Al. edulis) from 
Cleethorpes 

Internal standards; a; 4-propyloctane: b; 7-hexylnonadecane: c; tetralin-d, 2: 
d: 1-methylnaphthalene-djo; e; phenanthrene-deo 
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5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 

time (mins) 
[GC details; HP-1(12m x 0.2mm i. d, ) column. He carrier gas.; 40°C - 300°C @ 5°C min's hold 10mins] 

Figure 2.13a Gas chromatogram of aliphatic fraction of mussels (M. edulis) from 
Teesmouth 

d 

\ 
e long chain alke es 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 

time (minn) 
[GC details; HP-I (12m x 0.2mm 1. d, ) column. He carrier gas.; 40°C - 300°C @ S°C mfn' hold 10mins] 

Figure 2.13b Gas chromatogram of aromatic fraction of mussels (Al. edulis) from 
Teesmouth 

Internal standards; a; 4 propyloctane: b; 7-hexylnonadecane: c; df2-tetralin: 

d: dirl -methylnaphthalene-dla; e; dir phenanthrene 
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time (mins) 
[GC details; HP-](12m x 0.2mm i. d, ) column. He carrier gas.; 40°C - 300°C @ S°C mini-' hold 10mins] 

Figure 2.14a Gas chromatogram of aliphatic fraction of mussels (M. edulis) from 
Whitby harbour 

time (rains) 
UGC details; HP-](]2m x 0.2mm i. d. ) column. He carrier gas.; 40°C - 300°C @ 5°C min-1 hold 10mins] 

Figure 2.14b Gas chromatogram of aromatic fraction of mussels (M. edulis) from 
Whitby harbour 

Internal standards; a; 4-propyloctane: b; 7-hexylnonadecane: c; d, 2-tetralin: 
d: dir! -methylnaphthalene-dlo; e; dlo- phenanthrene 
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time (rains) 

[GC details; HP-1(12n; x 0.2mm i. d, ) column. He carrier gas.; 40°C - 300°C @ S°C min's hold l0mins] 

Figure 2.15a Gas chromatogram of aliphatic fraction of mussels (M. edulis) from 
Whitsand Bay, Cornwall 

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 40.00 
time (rains) 

[GC details; HP-1(12m x 0.2mm i. d, ) column. He carrier gas ; 40°C - 300°C @ 5°C min"' hold l Omins] 

Figure 2.15b Gas chromatogram of aromatic fraction of mussels (Al. edulis) from 
Whitsand Bay, Cornwall 
Internal standards; a; 4-propyloctane: b; 7-hexylnonadecane: c; d12-tetralin: 

d: dio-1-methylnaphthalene-dfo; e; dlo- phenanthrene 
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values are within the typical range of values reported in the literature. For example, Mason 

(1988) reported petroleum hydrocarbon concentrations in mussels around the Cape 

Pennisula (South Africa) ranging from 10 - 100 pg g" dry weight tissue at relatively 

unpolluted sites with concentrations as high as 5000 pg g" dry tissue weight at sample sites 

inside Cape Town Harbour. 

The total hydrocarbon concentrations reported in Table 2.8 includes both hydrocarbons 

from fossil fuels and also hydrocarbons of biogenic origin such as a number of alkanes and 

alkenes of algal origin. Concentrations of biogenic alkanes/alkenes in marine sediments are 

typically in the range of <1 jig g'' to approximately 10 pg g''. Total hydrocarbon 

concentrations higher than this are generally attributed to petroleum inputs (Volkman et al., 

1992). Similar total hydrocarbon concentrations are reported for mussels from sampling 

locations considered to be relatively free from petroleum hydrocarbon contamination (e. g. 

Mason, 1988). The compositional features used to distinguish between natural and 

anthropogenic sources of hydrocarbons are reviewed by Volkman et al. (1992). For 

example, as discussed previously (Section 1.3), the presence of an UCM in a water, 

sediment or biota sample is used as a reliable indication of fossil fuel contamination. 

The relative contributions of resolved and unresolved, aliphatic and aromatic resolved 

compounds to the total hydrocarbon body burden in mussels from each sample site are 

illustrated in Figure 2.16. It is apparent that, with the exception of mussels from Whitsand 

Bay, the aliphatic UCM constitutes the largest proportion of the total hydrocarbon body 

burden, typically 64-85 %, indicating that these sites are impacted by petroleum 

hydrocarbons. The distributions of hydrocarbons in each of the aliphatic and aromatic 

fractions analysed are discussed below. 
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(a) New Brighton 

(b) Teesmouth 

aliphatic aromatic 
UCM 

resolved 
66% 5% 

aliphatic aromatic 

resolvcd 
UCM 

3% 26% 

(c) Cleethorpes 

(d) Whitby Harbour 

aliphatic 
IJCM 

R 5% 

aliphatic aromatic aromatic 

resolvcd IJCM resolvcd 
0 3% 11% 1 /0 

(e) Whitsand ('clean' reference site) 

Figure 2.16 The relative contributions of resolved and unresolved aliphatic and 

aromatic hydrocarbons to the total hydrocarbon body burden of mussels (M. edulis) 
from selected U. K. coastal sites 
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2.4.3.1 Aliphatic hydrocarbons 

It can be seen from Table 2.8 that mussels sampled from Whitby Harbour contained much 

higher concentrations (> 3000 µg g"1 dry weight tissue) of aliphatic UCM hydrocarbons than 

any of the other sites. This is presumably owing to the large inputs of petroleum 

hydrocarbons from a number of different sources, including diesel and engine oil from 

boating activity, urban run-off and the disposal of used petroleum products such as engine 

lube oil into a relatively enclosed area. The gas chromatogram of the Fl fraction of mussels 

from Whitby harbour reveals the presence of a series of n-alkanes ranging from n-C12 to n- 

C31. As n-alkanes are rapidly removed from the environment by microbial action (cf. Section 

1.1) the presence of such compounds in this fraction may suggest a relatively recent input of 

petroleum hydrocarbons into the harbour. Alternatively, the presence of a series of n- 

alkanes may simply reflect a chronic input such as diesel from boating activity. 

Quantitatively, however, the resolved aliphatic components represent only 3% of the total 

hydrocarbon burden in mussels from Whitby Harbour, whilst the aliphatic UCM dominates 

the hydrocarbon burden (85 % of total hydrocarbons). 

Concentrations of aliphatic UCM hydrocarbons in mussels from both Teesmouth and 

Cleethorpes are approximately 10 - 12 times lower than those found in mussels from Whitby 

Harbour. This is surprising, as Teesmouth is a heavily industrialised area. The sampling 

location is also situated close to a major shipping route and is therefore subject to chronic 

inputs of oil from passing shipping traffic. Similarly, Cleethorpes is a heavily urbanised area 

and is situated close to Grimsby, an extremely busy fishing port. Inputs of petroleum 

hydrocarbons to both sites were therefore anticipated to be fairly high. However, both 

Teesmouth and Cleethorpes are open coastal sites and consequently receive more diffuse 

inputs of petroleum hydrocarbons relative to an enclosed area such as Whitby Harbour. 
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Elevated levels of petroleum hydrocarbons in harbours have been reported previously by a 

number of authors (e. g. Mason, 1988; Burns et al., 1990). For example, Burns et al. 

(1990) reported petroleum hydrocarbon levels seven times higher in mussels sampled from a 

Bermudan harbour compared with mussels from a nearby ccastal site. 

Aliphatic UCM concentrations measured in mussels from New Brighton (Mersey estuary) 

were in the range 408 - 739 µg g'' dry weight, higher than concentrations measured in 

mussels from Teesmouth and Cleethorpes. A number of authors have previously identified 

this area as one of relatively high petroleum contamination (Readman et al., 1986; Davies 

and Wolff, 1990). Several oil refineries are situated on the banks of the River Mersey, and 

therefore tanker loading operations will most probably result in chronic inputs of oil to the 

river. In addition, this is a heavily populated area, and consequently a significant source of 

hydrocarbons will be via urban run-off (cf. Section 1.3). 

The presence of an UCM in the aliphatic fraction of mussels from Whitsand Bay is barely 

discernible above the baseline of the chromatogram (Figure 2.15), suggesting little or no 

petroleum hydrocarbon contamination at Whitsand. The resolved peaks present in this 

fraction were identified by mass spectrometry (by comparison of spectra with those in the 

NBS 54 K library) as n-dodecane (n-C12), 1-tridecene and n-heptadecane (n-C17). As these 

peaks are absent from the procedural blank, but also present in the aliphatic fractions of the 

other samples, these hydrocarbons are most probably of algal origin. 

By optimising the analytical method to ensure maximum recovery of the low molecular 

weight, more volatile hydrocarbons (Section 2.3), it has been possible to assess a wide 

molecular weight range of environmental aliphatic UCMs bioaccumulated by mussels. 

Clearly, as can be seen from Figures 2.11 a to 2.14a low molecular weight UCMs from ca 

n-C12 are present in environmental samples. A small fraction of the low molecular weight 
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aliphatic UCM may be of toxicological significance, and this is investigated further in 

Chapter 4. 

2.4.3.2 Aromatic hydrocarbons 

The gas chromatograms of aromatic fractions from all of the petroleum hydrocarbon 

impacted sites (Whitby Harbour, Cleethorpes, Teesmouth, New Brighton) are also 

dominated by an UCM (Figures 2.11b - 2.14b) suggesting that the presence of an aromatic 

UCM in marine biota such as mussels is also a characteristic feature of petroleum 

hydrocarbon contamination. As discussed previously in Section 2.1, the presence of an 

aromatic UCM in environmental samples is seldom reported, owing to the use of selected 

ion monitoring GC-MS to focus upon those compounds which are known to be 

toxicologically significant, (e. g. PAH and alkylated PAH). However, as illustrated in Figure 

2.16, the results presented herein show that the aromatic UCM may also be considered a 

quantitatively important environmental burden, constituting approximately 20 % of the total 

hydrocarbon body burden in mussels from the petroleum hydrocarbon contaminated sites. 

The highest concentrations of aromatic hydrocarbons are present in mussels from Whitby 

harbour (ca 400 pg g"' dry weight tissue), whilst mussels sampled from the other petroleum 

hydrocarbon impacted sites (New Brighton, Cleethorpes and Teesmouth) all contained 

approximately 100 pg g' dry weight tissue aromatic UCM hydrocarbons. No aromatic 

UCM was observed in mussels from Whitsand Bay. 

The concentrations of aromatic UCMs reported in Table 2.8 are comparable with the few 

existing reports of aromatic UCMs in environmental samples. For example, Risebrough et 

al. (1983) analysed mussels from a range of sampling locations in the Ebro Delta 

(Catalonian coast, Spain) and reported concentrations of aromatic UCMs in the range 
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0.44-66µg g-1 dry weight tissue. Mason (1988) analysed the hydrocarbon body burden of 

mussels from several locations on the West coast of South Africa and reported aromatic 

UCM concentrations of 489 µg g'1 dry weight tissue in mussels near a sewage outlet. This 

author also reported concentrations of aromatic UCMs in mussels from the entrance to Cape 

Town Harbour of approximately 7000 pg g'' dry weight. 

The aromatic UCM therefore appears to be a quantitatively important environmental 

burden. Concentrations of resolved PAH compounds, more routinely quantified in 

environmental monitoring programmes are much lower than the unresolved aromatic 

hydrocarbon concentrations reported herein, and are typically present in the range of 

approximately 1- 10 µg g'' (dry wt) in mussels from impacted sites. To illustrate this, the 

concentrations of naphthalene and alkylnaphthalenes in the most severely impacted mussels 

(Whitby Harbour) were measured. Ion chromatograms for m/z 128,142,156 and 170 

(naphthalene, methylnaphthalenes, dimethylnaphthalenes and trimethylnaphthalenes) are 

presented in Figure 2.17. The measured concentrations of each compound are provided in 

Table 2.9. Clearly, concentrations of resolved aromatic hydrocarbons are significantly lower 

(approximately 1 pg g"1 dry weight for the total naphthalene and alkylnaphthalenes) than 

concentrations of di-aromatic UCM hydrocarbons (approximately 75 Vg g''), highlighting 

the aromatic UCM as a quantitatively important environmental burden. Indeed the presence 

of naphthalene and alkylnaphthalenes are masked in the total ion chromatogram by the 

aromatic UCM. Resolved hydrocarbons in each of the aromatic fractions were identified as 

predominantly long chain alkenes by the presence of a series of ions characteristic of these 

compounds (m/z 41,55,69,81,90). Long chain alkenes of microalgal origin have 

previously been reported in both marine sediments and marine biota (Rowland and Robson, 
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Figure 2.17 Ion chromatograms showing naphthalene and alkylnaphthalenes present 

in the aromatic fraction of mussels (M. edulis) from Whitby harbour 

[GC details; HP-1(12m x 0.2mm i. d) column; He carrier gas; 40- 300°C@ S°C min's, hold 10 mins .1 
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Compound Concentration 

( µg g'i dry weight tissue) 

naphthalene 0.02 
0.03 

methylnaphthalenes 0.05 
0.07 

dimethylnaphthalenes 0.12 
0.13 

trimethylnaphthalenes 0.34 
0.35 

di-aromatic UCM 89.9 
58.7 

Table 2.9 Concentrations of naphthalene and alkylnaphthalenes present in the 

`aromatic' fraction (F2) of mussels (M. edulis) from Whitby Harbour ( the 

concentration of di-aromatic unresolved hydrocarbons is provided for comparison) 

1990; Volkman et al., 1992). In addition, a number of point source contaminants were 

identified in several of the fractions. Mussels from Whitby Harbour contained 

octamethylsiloxane and decamethylcyclopentasiloxane, identified by comparison of their 

mass spectra with those of the authentic compounds (Van den Heuvel et al., 1972). These 

compounds were not present in the procedural blank and their source remains unknown. 

Both Teesmouth and Cleethorpes samples also contained a series of apparently 

anthropogenic compounds, but these could not be identified. 
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UCM concentration in 

(µg g" dry weight) 

mussel tissue 

SAMPLE SITE mono- di-aromatic tri-aromatic >3 ring 
aromatic 

New Brighton 69.8 12.7 n. d. n. d. 
111.2 4.1 

(91%) (9%) 

Cleethorpes 94.0 18.0 1.4 n. d. 
79.8 6.8 5.4 

(85%) (12%) (3%) 

Teesmouth 36.9 12.8 2.0 n. d. 
28.3 3.4 5.0 

(74%) (18%) (8 %) 

Whitby Harbour 385.8 89.9 29.5 n. d. 
336.8 58.7 11.7 

(79 %) (16 %) (5 %) 

Whitsand Bay n. d. n. d. n. d. n. d. 

n. d, " not detected 

Table 2.10 UCM concentrations in mono-aromatic, di-aromatic and tri-aromatic 

fractions of mussels (M. edulis) from U. K. coastal sites 
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To examine the bulk composition of aromatic UCM hydrocarbons bioaccumulated by 

mussels, aromatic fractions were further fractionated by normal phase HPLC according to 

ring size, and then examined by GC. The concentration of unresolved hydrocarbons in each 

ring fraction is given in Table 2.10. Gas chromatograms of the mono-, di- and tri-aromatic 

hydrocarbon fractions of mussels from Whitby harbour are presented in Figure 2.18. It is 

evident from Table 2.10 that the bulk of unresolved aromatic hydrocarbons in the mussels 

sampled are mono-aromatic in nature. This is in agreement with Killops and Readman 

(1985) who fractionated a number of sediment extracts in the same manner and found the 

majority of the aromatic UCM to be present in the mono-aromatic fraction. 

As discussed in Section 1.6, a `cut-off' in toxicity for non-specific narcotics has been 

identified which is thought to be governed by the aqueous solubility of compounds. For 

example, aromatic hydrocarbons greater than three rings can be accumulated by mussels 

without inhibiting ciliary feeding activity (Donkin et al., 1989,1991). The present study has 

demonstrated that the bulk of the aromatic UCM is comprised of mono- and di-aromatic 

hydrocarbons. It is probable that a proportion of these components will be of sufficient 

aqueous solubility to be classed as non-specific narcotics. To date, the toxicity of the 

aromatic UCM remains uninvestigated, most probably owing to the relatively unknown 

composition of the aromatic UCM. However, as discussed in Section 1.2, a number of 

model aromatic hydrocarbon structures have recently been proposed (Figure 1.5), thus 

enabling the toxicity of the aromatic UCM to be studied. The toxicity of a number of model 

aromatic compounds is investigated in Chapter 5. 
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time (mins) 

time (mins) 

time (mins) 

Figure 2.18 Gas chromatograms of mono-, di- and tri-aromatic fractions of mussels 
(M. edulis) from Whitby harbour 
Internal standards, c; d, 2 tetralin: d; d104-methylnaphthalene: e; d10- phenanthrene 
[GC details; HP-](12m x 0.2mm 1. d) column; He carrier gas; 40 - 300°C@ 5°C min", hold 10 mins .J 
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2.4.6 Conclusions 

The work described in this Chapter has clearly demonstrated that aromatic hydrocarbon 

UCMs form a significant proportion of the total hydrocarbon body burden of mussels from 

petroleum hydrocarbon-contaminated areas (11 - 26%). In the samples examined a large 

proportion of aromatic UCMs bioaccumulated by mussels consists of mono-aromatic (74 - 

91%, with lesser amounts of di-aromatic (9 - 16%) hydrocarbons. Given the toxicological 

properties of a number of resolved aromatic hydrocarbons (cf. Section 1.5) it is likely that a 

proportion of the aromatic UCM hydrocarbons bioaccumulated by mussels is toxic. Thus, 

existing methodologies may have failed to provide a measure of an environmentally 

important burden. 
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CHAPTER THREE 
Synthesis of model aliphatic and aromatic UCM hydrocarbons 



3.1 Introduction 

It has been clear for some time that the pollutant hydrocarbon burden of marine 

organisms such as bivalve molluscs is often dominated by UCM hydrocarbons (reviewed 

in Section 1.3) including both aliphatic hydrocarbons and, as demonstrated in Chapter 2, 

aromatic UCM components. However, the unknown molecular composition of 

hydrocarbon UCMs has limited the number of toxicological studies of these 

quantitatively important fractions. The recent proposal of `average' or model 

hydrocarbon structures for both aliphatic and aromatic UCMs based on spectroscopic 

and oxidative degradation of lubricating oils and crude oils (Gough, 1989; Gough and 

Rowland, 1990,1991; Killops and Al-Juboori, 1990; Revill, 1992; Thomas, 1995; Revill 

et a!., 1997; Thomas el al., 1997) now affords the possibility of conducting such 

toxicological studies, once the pure compounds are made available. Proposed model 

compounds include so-called ̀T-branched' alkanes for aliphatic UCMs and substituted 

naphthalenes for the aromatic UCMs, as illustrated in Figures 1.2 and 1.5, respectively 

(cf. Section 1.2). However, these compounds are not available from commercial sources 

and only small amounts of one or two relevant compounds have been synthesised 

previously (Gough, 1989). The aim of the present study was therefore to synthesise 

suitable quantities of selected, pure, well-characterised model aliphatic and aromatic 

UCM hydrocarbons for toxicological tests on the mussel Mytilus edulis. Individual test 

compounds were selected on the basis of both UCM characterisation data (cf. Gough, 

1989; Thomas, 1995) and the known toxicity of simpler hydrocarbons (cf. Donkin et al., 

1989,1991). 
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3.2 Synthesis of a low molecular weight model aliphatic UCM compound; 4- 

propyloctane 

The model aliphatic UCM hydrocarbon chosen as the target for synthesis and 

toxicological testing was the `T-branched' alkane, 4-propyloctane, illustrated in Figure 

3.1. This compound fits the structural requirements of what has been shown by a 

number of characterisation and biodegradation studies (e. g. Gough, 1989; Gough and 

Rowland, 1990,1991) to be an important fraction of several lube and crude oil UCMs. 

Figure 3.1 A low MW aliphatic UCM model compound, 4-propyloctane (4-PO) 

As discussed in Chapter 1, compounds with log Kow values greater than 5-6 are 

considered to be non-toxic (with respect to the mechanism of non-specific narcosis). For 

straight chain hydrocarbons, a cut-off in toxicity has been identified between n-decane 

(Clo) and n-undecane (C11) (Donkin et al., 1989,1991). Larger n-alkanes than n-decane 

are non-toxic, most probably because of their limited aqueous solubility, which prevents 

sufficient bioaccumulation at the site of toxic action, as reviewed in Section 1.6. 

However, branched compounds usually have greater aqueous solubility than their 

straight chain analogues (e. g. Leo, 1993, Hansch and Leo, 1995). Consequently, a 

proportion of the `T-branched' alkanes identified as aliphatic UCM components may 

have sufficient solubility to have a narcotic effect upon mussels. Demonstrable 

toxicological activity of a branched C11 compound such as 4-propyloctane compared to 

non-toxic n-undecane would effectively extend the molecular weight range of known 

toxic action. In other words, aliphatic UCM hydrocarbons may be more toxic than 
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previously reported because their branched structures will increase their aqueous 

solubilities. Demonstration of such phenomena first requires synthesis of the pure 

compounds. 

3.2.1 Synthetic scheme for 4-propyloctane (4-PO) 

The overall reaction scheme for the preparation of 4-propyloctane (4-PO) is 

summarised in Figure 3.2. The synthesis involved coupling of 1-bromopropane to 

ethylpentanoate via a Grignard reaction to produce 4-propyloctan-4-ol. Dehydration of 

the alcohol to a mixture of three alkenes, followed by hydrogenation, yielded the target 

alkane. This method has proved to be successful for a previous synthesis of a Cis model 

UCM hydrocarbon, 7-n-hexylnonadecane (Gough, 1989). Particular emphasis was 

placed on ensuring adequate purity of the final product since the toxicity of the alkane 

was to be determined. Therefore, the intermediates at each stage of the synthesis were 

purified and fully characterised. Full experimental details are given in Section 6.4. 

CH3(CH2)2Br + Mg -º CH3(CH2)2MgBr 

OH 

2CH3(CH2)2MgBr + E`° 

NH4CI4H O 
0 

4-propyloctan-4-ol 

113p04 

4-propyloctenes 
(isomeric mixture) 

x=/Pco=. (H2o) 

ý\ 
4-propyloctane 

Figure 3.2 Reaction scheme for the synthesis of 4-propyloctane 
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3.2.2 Synthesis of 4-propyloctan-4-ol 

2CH3(CH2)2MgBr + Ný,, O 
OH 

o 

NU4CI/tt2o 

1-Bromopropane was converted to the corresponding Grignard reagent, 

propylmagnesium bromide, then coupled to ethylpentanoate via a Grignard reaction. 

Vacuum distillation of the crude products yielded 4-propyloctan-4-ol (purity > 98 % by 

GC, Figure 3.3) in moderate yield (44 %). 

The electron impact mass spectrum of the alcohol (Figure 3.4) showed ions 

characteristic of the fragmentation of tertiary alcohols (m/a 129, [M+'-C3H7]'; m/i 115, 

[M1-C4H9]+) with preferential fragmentation at the tertiary centre (Kemp, 1991). The 

presence of the hydroxy group was confirmed by infra-red spectroscopy (IR) (Figure 

3.5); the broad absorbance at 3400 cm' is characteristic of a hydrogen-bonded hydroxyl 

group. Examination of the alcohol by 13C nuclear magnetic resonance spectroscopy 

(NMR; Figure 3.6a) showed a total of 8 resonances, all aliphatic type carbons. Analysis 

via the DEPT sequence (Distortionless Enhancement by Polarisation Transfer) which 

allows differentiation between CH, CH2 and CH3 carbons, revealed 2 methyl (2 of the 

methyl groups are presumably co-resonating) and 5 methylene peaks, and by difference, 

a single quaternary carbon, providing further confirmation of the branching position 

(Figure 3.6b). The 'H NMR spectrum (Figure 3.7) consisted of a triplet (6 0.8,9H) due 

to the three methyl groups and a multiplet (81.2,15 H, which includes the hydrogen of 

the hydroxy group). A summary of the 13C NMR spectral assignments is provided in 

Appendix C. 1. 
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(a) 13Carbon NMR 
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Figure 3.6. "Carbon and DEPT NMR spectra of 4-propyloctan-4-ol 
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Figure 3.7 1H NMR spectrum of 4-propyloctan-4-ol 
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3.2.3 Synthesis of isomeric mixture of 4-propyloctenes 

OH 

and 

(I) III) 

The alcohol was dehydrated in the presence of orthophosphoric acid (H3PO4), to an 

isomeric mixture of three alkenes (4-propyloct-4-ene (I) and E/Z 4-propyloct-3-enes 

(II)) by acid catalysed dehydration. A gas chromatogram of the reaction products is 

presented in Figure 3.8. Analysis of the reaction products by gas chromatography-mass 

spectrometry (Figure 3.9) revealed two peaks, both showing molecular ions at m/z 154 

and an ion fragment m/z 111 [M' -C3H7]+ together with the ion series C. H2n. 1 [m/z 41, 

55,69] which is usually prominent in the spectra of unsaturated aliphatic hydrocarbons 

(McLafferty and Turecek, 1993). Closer examination of the peak eluting at ca 8 minutes 

indicates a shoulder to the peak, suggesting co-elution of two compounds. These were 

tentatively identified as the E and Z isomers of 4-propyloct-3-ene. However, owing to 

virtually identical mass spectra unequivocal assignment of each isomer was not possible. 
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(F/L isomers) 

(U) 

time (rains) 

[GC details, HP-1 column. He carrier gas. Temp. Program; 40°C - 300°C @ S°C min's, hold 10 mins] 

Figure 3.8 Gas chromatogram of isomeric mixture of 4-propyloctenes 
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Figure 3.9 Mass spectra of isomeric mixture of 4-proplyoctenes. (a) and (b) are 

tentatively identified as co-eluting E/Z 4-propyloct-3-enes and (c) as 4-propyloct-4- 

ene. 
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3.2.4 Synthesis of 4-propyloctane 

H2/Pt02. (H20) 

ýý 
The mixture of alkenes was hydrogenated to 4-propyloctane by bubbling hydrogen gas 

gently through a solution of the alkenes in hexane, in the presence of a small amount of 

Adams catalyst (monohydrate). Column chromatography (Ag/silica) yielded the desired 

pure product (> 99 % by GC, Figure 3.10; yield 85%) which was then examined by GC- 

MS and NMR. 

The mass spectrum (Figure 3.11) showed the molecular ion (m/z 156) and fragment 

ions (C4H9+/C4Hio+ [m/z 99/98], C3H7+/C3H8+ [m/z 112/113]) derived from a -cleavage 

about the tertiary centre, confirming the branch position at C-4. The doublet odd: even 

ions are typical of branched alkanes and are thought to arise from secondary transfer 

involving a cyclic intermediate (McCarthy et al., 1968) 

13C NMR (Figure 3.12a) in conjunction with the DEPT sequence (Figure 3.12b) 

indicated the presence of 8 aliphatic resonances; 2 methyl carbons, 5 methylene and 1 

methine carbon as expected, which in conjunction with the MS data confirmed synthesis 

of the target compound, 4-propyloctane. 13C-NMR spectral data (chemical 

shift/intensity/multiplicity) and assignments are presented in Appendix C. 2. The 'H- 

NMR spectrum of 4-propyloctane together with assignments is presented in Figure 3.13. 
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[GC details; HP-1 column. He carrier gas. Temp. Program; 40'C - 300°C @ 5°C min 1, hold 10 mins] 

Figure 3.10 Gas chromatogram of 4-propyloctane 

m/z 

Figure 3.11 Mass spectrum of 4-propyloctane 
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Figure 3.12 13 Carbon and DEPT NMR spectra of 4-propyloctane 
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Figure 3.13 'H NMR spectra of 4-propyloctane 
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3.2.5 Conclusion 

The proposed model aliphatic UCM alkane, 4-propyloctane has been obtained in good 

purity (>99%) in sufficient quantity (838 mg) for future toxicological tests on the mussel 

Mytilus edulis as detailed in Chapter 4. 

3.3 Synthesis of model aromatic UCM compounds 

The model aromatic UCM hydrocarbons chosen for synthesis and toxicity testing were 

the alkyl tetralins, 7-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin (Figure 3.14 

structures I and II, respectively). Such compounds have recently been proposed as 

`average' aromatic UCM components on the basis of degradative oxidation studies and 

ultra high resolution mass spectral (FT-ICR) studies of crude oils and oil refinery 

fractions (Thomas, 1995; Thomas ei al., 1997; reviewed in Section 1.2). As with the 

aliphatic UCM components, these compounds are not available from commercial 

sources. Little is known about the solubility or the toxicity of hydrocarbons of this type, 

but it has been demonstrated in Chapter 2 that mussels in impacted sites contain 

significant levels of aromatic UCMs, with concentrations typically in the range 100 - 600 

µg g" dry weight tissue, although values as high as 3500 pg g" have been measured in 

heavily contaminated areas such as harbours (Mason, 1988). 

An estimate of the physical behaviour of the alkyl tetralins chosen for synthesis can be 

computed from methods for octanol/water partition coefficient (Kow) estimation (e. g. 

Hansch and Leo, 1995 and references therein). 
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IH 

Figure 3.14. Model aromatic UCM compounds; 7-cyclohexyltetralin (I) and 7- 

cyclohexyl-1-propyltetralin (H) 

3.3.1 Estimation of octanoVwater partition coefficients 

A number of methods for the estimation of octanol/water partition coefficients have 

been developed. These include the use of substituent/fragment constants, estimation via 

atomic contribution and/or surface area, a method based on calculated molecular 

properties and also the use of solvatochromic parameters. Detailed reviews of the 

application and use of each individual estimation method are available in a number of 

publications (Leo et al., 1971; Leo and Hansch, 1979; Lyman 1990; Leo, 1993; Hansch 

and Leo, 1995). Estimation of log Kow via the fragment method of Leo and Hansch 

(1979) is the most widely used and well developed method and appeared most suitable 

for the needs of the present study. 

The method involves the use of empirically derived atomic or group fragment constants 

(fl and structural factors (F). All calculations are carried out in terms of log Kow. Thus; 

Log Kow = sum of fragments (f) + factors (F) 

A comparable method also involving the use of fragment constants has been reported by 

Nys and Rekker (1973,1974), but more fragment constants are available for the Leo 

method and the `rules of fragmentation' for the solute of interest are less ambiguous than 
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those of Nys and Rekker (1973) where the fragmentation of the solute is operator- 

defined (Lyman, 1990; Leo, 1993). 

Fragment values (0 used in this study are taken from Lyman (1990). Different factors 

are considered, taking into account molecular flexibility, unsaturation, branching, 

halogenation and interaction with H-polar fragments. It must be noted that for 

hydrophobic compounds with large log K. ow values, (greater than 6), errors in the 

estimation of log Kow for a particular compound may be large. Hansch and Leo (1980, 

cited by Lyman, 1990) note that estimates of log Kow greater than 6 may be 

overestimates of the measured log Kow value by perhaps one or more log units. 

However, as the compounds of interest in this study have yet to be synthesised and there 

are no log Kow values for similar/comparable compounds reported in the literature (Leo 

et al., 1971; Leo and Hansch, 1979) an estimate of log Kow by Leo's fragment method 

will, at the least, provide an indication of the log Kow of the alkyltetralins and guide the 

choice of particular alkyltetralin model aromatic UCM components to be synthesised. A 

summary of the rules employed in Leo's fragment method and the calculations employed 

herein are presented in Appendix D. 1. 

Estimates of the log Kow and aqueous solubility of the model aromatic UCM 

compounds to be synthesised were also calculated using several established computer 

programs. Log Ko values were calculated using the MedChem ClogP program, which 

calculates log Kow via the fragment method discussed above and the Syracuse 

Corporation Software (SRC). MicroQSAR and SRC software were used to obtain 

estimates of the aqueous solubility data (values provided by Prof. J. Dearden, Liverpool 

John Moores University). All estimated log Kow values, as obtained by the various 

methods are summarised in Table 3.1 No indication of the error in the estimates 

obtained using ClogP and SRC software was available and consequently, the accuracy of 

these values is unknown. However, all of the estimates of log Kow obtained for the 
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model aromatic UCM compounds by the various different estimation methods were 

similar, but, as noted previously, estimates of log Kow greater than 6 may be significantly 

overestimated. The measured values of log Kow used to derive fragment constants are 

themselves mainly compounds with log Kow values less than 5-6, owing to the inherent 

difficulties in accurately measuring the octanol/water partition coefficients of highly 

hydrophobic compounds (i. e. log Kow > 6). 

Compound log Kow Aqueous solubility 

estimate CIogP SRC microQSAR SRC 
(this 

study) 

µg (40 6.61 6.33 6.77 151 µg 1" 60 

7.73 7.91 8.17 3 µg 1" 2 µg 1-1 

Table 3.1 Estimates of log Kow and aqueous solubility for model aromatic UCM 

compounds (provided by Prof. J. Dearden, Liverpool John Moores University) 

3.3.2 Synthetic scheme for alkyltetralins 

Two model aromatic UCM compounds, 7-cyclohexyltetralin and 7-cyclohexyl-l- 

propyltetralin (Figure 3.14) were synthesised using a modification of the Haworth 

synthesis (March, 1985; Vogel, 1989, Figure 3.15). This synthetic pathway has been 
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extensively studied previously and is commonly used for the synthesis of a wide range of 

aromatic hydrocarbons. 

Typically, the Haworth synthesis involves formation of a keto acid from an aromatic 

hydrocarbon reactant using the Friedel-Crafts acylation reaction. The keto acid is then 

reduced by the Clemmensen reduction and the reduced acid converted to a cyclic ketone 

using polyphosphoric acid (PPA). The cyclized intermediate may then be converted into 

a polycyclic hydroaromatic or aromatic compound by standard procedures such as 

dehydrogenation using, for example, palladium or platinum with a charcoal catalyst 

(Berliner, 1949). Alkyl substituents may be added by means of a Grignard reaction with 

the cyclized ketone. 

The synthetic route for both compounds was the same for the first three stages, to the 

cyclic ketone (7-cyclohexyl-l-tetralone). For the `base' compound 7-cyclohexyltetralin, 

the keto group was reduced to an alkyl group, whilst the second model compound, 7- 

cyclohexyl-l-propyltetralin was synthesised by addition of a propyl chain to the tetralone 

using a Grignard reaction. Dehydration of the alcohol product with phosphoric acid 

followed by catalytic hydrogenation yielded the target alkyltetralin. 
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3.3.3 Attempted synthesis of 4-phenyl(4'-cyclohexyl)butanoic acid. Friedel-Crafts 

alkylation of phenylcyclohexane using y-butyrolactone 

H 

O 

ý/ O\ Ala3 
IN- 

4-phenyl(4'-cyclohexyl)butanoic acid 

The conventional route for the step-wise synthesis of aromatic hydrocarbons via the 

Haworth synthesis involves coupling of an aromatic hydrocarbon and an aliphatic dibasic 

acid by a Friedel-Crafts acylation reaction. However, a number of authors have reported 

syntheses utilizing lactones in Freidel-Crafts alkylation reactions, (Mosby, 1952; Truce 

and Olsen, 1952, Eisenbraun et al., 1971). This synthetic route has the advantage of 

producing an acid (Figure 3.15, II) as opposed to the keto-acid (Figure 3.15, I), thereby 

eliminating one stage in the synthetic route. 

Mosby (1952) reported a successful condensation of y-valerolactone with each of the 

isomeric xylenes in the synthesis of various polymethylnaphthalenes. Good yields of pure 

xylylvalearic acids were obtained if the reaction mixture was hydrolysed immediately 

after production of hydrogen chloride had ceased. However, varying amounts of 

trimethyl-l-tetralone were obtained if the reaction mixture was heated longer than 

necessary or allowed to stand. Mosby (1952) suggested that additional aluminium 

chloride may cause cyclization at this stage but this was not investigated. 

Truce and Olsen (1952) also reported successful condensation reactions using lactones. 

These authors reported the condensation of y-butyrolactone with benzene in the presence 

of aluminium chloride and demonstrated that by varying the molar ratio of aluminium 
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chloride/lactone, either a mixture of y-phenylbutyric acid and y-tetralone or simply y- 

tetralone as the sole product (66 % yield) could be obtained. 

These studies suggest that Friedel-Crafts alkylation reactions using lactones may 

provide a quicker and shorter synthetic route than the conventional acylation route using 

aliphatic anhydrides. 

In contrast, in a study to assess and re-examine the stepwise synthesis of a number of 

polyalkylnaphthalenes, Eisenbraun et al. (1971) compared the acylation route with 

alkylation syntheses utilizing lactones. Variable results were reported for reactions 

involving either y-butyrolactone or y-valerolactone. For example, mixtures of acids in 

varying yields (23% - 81% according to reaction conditions) were produced. 

Pronounced isomerization was also evident (i. e. 7% m-xylene was present in the 

recovered p-xylene in the reaction of y-butyrolactone and p-xylene). These results were 

attributed to the difference in reactivity and stability of intermediate species generated 

from lactones by aluminium chloride and the authors concluded that although Friedel- 

Crafts alkylation of an aromatic hydrocarbon with a y-lactone is a shorter route than the 

acid anhydride acylation, the latter, in certain cases is to be preferred. 

With respect to the current synthesis, the presence of a cyclohexyl group on the 

benzene ring should promote the substitution reaction rate to a greater extent when 

compared with benzene owing to the activating inductive effect. Consequently, the 

coupling of phenylcyclohexane and y-butyrolactone via a Freidel-Crafts alkylation 

reaction was investigated. 

Initially, alkylation of phenylcyclohexane with y-butyrolactone using excess 

phenylcyclohexane as a solvent was investigated. However, only a very low yield (4 %) 

of the target acid was obtained. The total reaction products were dominated by three 

compounds which were tentatively identified as dimers of phenylcyclohexane and 
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4-phenylbutyric acid. A gas chromatogram of the total reaction products is presented in 

Figure 3.16, together with mass spectra of the principal reaction products (Figure 3.17). 

Several further attempts in which the order of addition of reactants was varied yielded 

similar results. 

The synthesis was repeated using nitrobenzene as a solvent. It was thought that this 

would moderate the activity of the aluminium chloride and possibly suppress any 

undesirable side reaction (J. Braven, pers comm). Analysis of the total organic reaction 

products by GC-MS indicated that using nitrobenzene as a solvent had indeed 

suppressed the side reactions. However yields of the desired acid were still very low 

(13 %). In light of these various unsuccessful attempts to alkylate phenylcyclohexane 

using y-butyrolactone, it was decided to follow the more conventional route of Friedel- 

Crafts acylation using succinic anhydride. 
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[GC details; HP-1 column. He carrier gas. Temp. program; 40°C - 300°C @ 5° min-. hold 10 Heins] 

Figure 3.16 Gas chromatogram of total organic reaction products (derivatised 
with BSTFA) from alkylation of phenylcyclohexane using y-butyrolactone 

(a) Peak A 

m/i 
Figure 3.17 Mass spectra of principal components of the total organic reaction 
products (derivatised with BSTFA) from alkylation of phenylcyclohexane using y- 
butyrolactone Cont'd over 
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(b) Peak B 

(c) Peak C 

(d) Peak D 

242 

Figure 3.17 Cont'd Mass spectra of principal components of the total organic 

reaction products (derivatised with BSTFA) from alkylation of phenylcyclohexane 

using y-butyrolactone 
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3.3.4 Synthesis of 3-benzoyl(4'-cyclohexyl)propanoic acid. Freidel-Crafts acylation 

using succinic anhydride. 

0H 

OO 

OO AIQ3 
+Cl -º 

3-benzoyl(4'-cycloheayl)propanoic acid 

Comprehensive reviews of Friedel-Crafts acylations using succinic anhydride are 

provided by Berliner (1949) and Olah (1963). These authors discuss experimental 

conditions and notes that, along with the usual requirements for anhydrous conditions of 

the aluminium chloride and reagents, the choice of solvent in which the reaction is 

carried out is also important as this often determines the yield, and, in some reactions, 

the position of substitution. For example, nitrobenzene, a commonly used solvent in such 

reactions, forms a complex with the aluminium chloride, promoting para-substitutions 

owing to the steric bulk of the complex which hinders ortho- substitution. 

Acylations of benzene and toluene generally employ excess of the compound to be 

acylated as the solvent. However, nitrobenzene is the solvent of choice in the majority of 

acylations of larger aromatic hydrocarbons. The formation of a complex between 

nitrobenzene and aluminium chloride also modifies the destructive action of aluminium 

chloride on many aromatic hydrocarbons (Berliner, 1949; Olah, 1963). 
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3.3.4.1 Nitrobenzene as a solvent 

Succinic anhydride was coupled to phenylcyclohexane by means of a Friedel-Crafts 

acylation reaction using aluminium chloride as a catalyst (Section 6.5.2.1). Nitrobenzene 

was employed as the solvent. The crude reaction products were steam distilled twice to 

ensure maximum removal of nitrobenzene. Recrystallisation of the crude keto-acid 

(ethanol-water) yielded pure 3-benzoyl(4'-cyclohexyl)propanoic acid in good yield (63 % 

by GC). The pure keto-acid was characterised by MS, NMR (13C and 1H) and IR. 

3.3.4.2.1,1,2,2- Tetrachloroethane as a solvent 

The use of tetrachloroethane as a solvent in the acylation of alkylated benzenes is 

recommended by Barnett and Sanders, (1933, cited by Berliner, 1949). The most 

obvious advantage of using tetrachloroethane in preference to nitrobenzene is the ease of 

solvent removal. Nitrobenzene is particularly difficult to remove from the reaction 

products owing to the high boiling point of the solvent (210-211°C). In comparison, 

tetrachloroethane has a lower boiling point (147°C), and can be removed more quickly 

and more efficiently by steam distillation. 

The synthesis was thus repeated with 1,1,2,2-tetrachloroethane as the solvent. Pure 

keto-acid (>99 % by GC) was obtained in good yield (85 %) and fully characterised by 

GC-MS, NMR and IR (see below). 

As predicted from the boiling points, 1,1,2,2-tetrachloroethane (bpt. 147°C) was 

removed much more rapidly and efficiently from the crude reaction products than 

nitrobenzene (bpt. 210-211°C). Consequently, 1,1,2,2-tetrachlorochloroethane was the 

solvent of choice for further syntheses. 
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A gas chromatogram of the synthetic 3-benzoyl(4'-cyclohexyl)propanoic acid (as the 

trimethyl silyl ester, TMS) is presented in Figure 3.18. 

The electron impact mass spectrum of the TMS ester (Figure 3.19) showed the presence 

of the molecular ion (m/z 332; 4%) supported by M'- CH3 at m/z 317, typical of TMS 

esters. Benzylic cleavage of the molecule, as illustrated in Figure 3.19 yields a base peak 

ion, m/z 187. 

The presence of both the keto- and carboxylic acid groups was confirmed by infra-red 

(IR) spectroscopy of the free acid. The IR spectrum (Figure 3.20) showed absorptions 

at 1709 cm' and 1679 cm', corresponding to the C=O stretches of the carboxylic acid 

and keto group, respectively. Conjugation of the double bond of the keto group with the 

adjacent aromatic ring resulted in absorption at a lower frequency (1679 cm7 1) than the 

unconjugated carboxylic acid group (1709 caf). A broad absorption band centered 

around 3400 crn" corresponds to the O-H stretch of the carboxylic acid group. 

Absorptions due to CH2, CH3 (aliphatic) were present at 2924 caf 1 and 2853 cm7 

whilst a much weaker absorption band corresponding to the aromatic vC-H was evident 

at 3038 cml. 

The 13C NMR spectrum (Figure 3.21 a) showed a total of 12 resonances for the 16 

carbon atoms; two carbonyl (d, a), four aromatic (e, f, g, h) and 6 aliphatic (b, c, i, j, k, l). 

These were assigned by comparison of experimental chemical shift values with published 

tables (Prestch, 1989). The carbonyl carbons (C=O and CO2H) exhibit distinctive 

chemical shifts at 178 ppm (keto group, d), and 197 ppm (CO2H, a). The ipso- carbons 

of the aromatic ring are evident at 154 ppm, (e) and 134 ppm, (h). The deshielding effect 

of the carbonyl carbon (d) adjacent to carbon (e) is apparent in the higher frequency 

chemical shift of (e) relative to carbon (h). The remaining four aromatic carbons 

resonate at 128 ppm and 127 ppm (f, g). Six aliphatic carbons are present. The tertiary 
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[GC details; DB-S column. H2 carrier gas. Temp. program; 40°C - 300°C @ 5° min'1, hold 10 mini] 

Figure 3.18. Gas chromatogram of 3-benzoyl(4'-cyclohexyl)propanoic acid, (as 
TMS ester) 

niz 
Figure 3.19 Mass spectrum of the TMS ester of 3-benzoyl(4'-cyclohexyl)propanoic 
acid 
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Figure 3.20 Infra red spectrum of 3-benzoyl(4'-cyclohexyl)propanoic acid 
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(a) 13 C NMR 

(b) DEPT sequence 
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Figure 3.21.13 Carbon and DEPT NMR spectra of 3-benzoyl(4'-cycloheayl)- 
propanoic acid 
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Figure 3.22 'H NMR spectrum of 3-benzoyl(4'-cycloheayl)propanoic acid 
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carbon in the cyclohexyl ring is evident at 44 ppm. With respect to the remaining 

carbons, the methylene carbons labelled (j) and (k) have been assigned on the basis of the 

intensity of the signals at 34 ppm and 26 ppm, whilst the methylene carbons of the 

butanoic side chain are evident at 33 ppm and 28 ppm. The remaining methylene carbon 

of the cyclohexyl ring (1) is present at 25 ppm. As unequivocal assignment of each 

individual carbon is not possible from the data, signals in the spectra (Figure 3.21 a, b) 

are labelled in groups with all possible assignments. 

Analysis via the DEPT sequence supports these assignments (Figure 3.21b), revealing 

the presence of five resonances due to methylene carbons (b, cj, k, 1), three methine (f, g, i) 

and four quaternary carbons (a, d, e, h). 

The proton NMR spectrum (Figure 3.22) contains two doublets (7.9 ppm and 7.3 ppm, 

J8 Hz) corresponding to the aromatic protons (0 and (g). A coupling constant (J) of 8 

Hz is characteristic of ortho protons, confirming the presence of a disubstituted benzene. 

The methylene protons of the acid side chain (b, c) are evident as two triplets (3.3 ppm 

and 2.8 ppm, J6 Hz). A broad multiplet at 2.5 ppm corresponds to carbon (i) of the 

cyclohexyl group. The deshielding influence of the adjacent aromatic ring causing this 

proton to have a higher chemical shift than the other protons of the cyclohexyl ring 

which are present as two multiplets at 1.8 ppm and 1.3 ppm because of the axial and 

equatorial protons. 
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3.3.5 Synthesis of 4-phenyl(4'-cyclohexyl)butanoic acid 

OH OH 

O 0 

N2H4/KOH 
-40. 

4-phenyl(4'-cyclohexyl)butanoic acid 

There are various methods of reducing the carbonyl group of aldehydes and ketones. 

The most widely used methods are the Clemmensen reduction and the Wolff-Kischner 

reduction. The Clenunensen reduction involves heating the ketone or aldehyde with zinc 

amalgam and aqueous hydrochloric acid (Vedejes, 1975). However, this method is 

unsuitable for high molecular weight substrates owing to their low solubility in the 

reactants, and the formation of side products such as pinacols (March, 1985; Vogel, 

1989). The Wolff-Kischner reduction involves heating the substrate with hydrazine 

hydrate and a base (usually potassium hydroxide). The Huang-Minlon modification of 

this method (Huang-Mnlon, 1946,1949) has now completely replaced the original 

procedure (March, 1983; Vogel, 1989). Consequently 3-benzoyl(4'- 

cyclohexyl)propanoic acid was reduced to 4-phenyl(4-cyclohexyl)butanoic acid using the 

Huang-Minlon modification (Durham el al., 1963). 

Examination of the crude reaction products by GC indicated no further purification 

steps were necessary at this stage (purity > 98 % by GQ. A gas chromatogram of 

4-phenyl(4'-cyclohexyl)butanoic acid (as the TMS ester) is presented in Figure 3.23. 

A mass spectrum of the TMS ester of 4-phenyl(4'-cyclohexyl)butanoic acid is presented 

in Figure 3.24. The molecular ion (M-) is evident at m1z 318. Diagnostic peaks at Mlz 

186 (base peak) and m1z 117 have probably resulted from y4i rearrangement followed by 
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[GC details, DB-5 column. H., carrier gas. Temp. program: 4VC - 300*C @ 5* min", hold 10 mins] 

Figure 3.23. Gas chromatogram of 4-phenyl(4'-cyclohexyl)butanoic acid, (as TMS 

ester) 

1 

HVZ 
Figure 3.24 Mass spectrum of the TMS ester of 4-phenyl(4'-cyclohexyl)butanoic 
acid 
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O-cleavage, which is a common fragmentations in compounds containing an unsaturated 

functionality, i. e. the carbonyl group. This arrangement is commonly known as the 

McLafferty re-arrangement (McLafferty and Ture6eck, 1983). 

Examination of the product by IR spectroscopy (Figure 3.25) indicated that reduction of 

the keto group had indeed occurred. The carbonyl absorption at 1679 cm" was absent, 

leaving only a single absorption at 1708 cm" corresponding to vC=O of the carboxylic 

acid group. 

Further confirmation of the reduction of the keto acid was provided by 13C NMR. 

The spectrum is presented in Figure 3.26a and shows a total of 10 resonances. Most 

notable is the absence of the downfield carbonyl carbon (d) which was present in the 13C 

spectrum of the keto acid (Figure 3.21). The chemical shift of the ipso carbon (e) has 

also moved upfield to 148 ppm (compared with 154 ppm in the keto acid) as it is no 

longer experiencing a deshielding effect from an adjacent carbonyl carbon. In the 

aliphatic region of the spectrum there are only 5 resonances instead of the expected 

seven. The methine carbon of the cyclohexyl ring is easily distinguished using the DEPT 

sequence as the signal at 44 ppm. However, overlap of the resonances of the methylene 

carbons of the cyclohexyl ring with the methylene carbons of the side chain has resulted 

in four resonances instead of the expected six. An additional 2-D NMR experiment (13C 

1H correlation) confirmed overlap of several of the methylene resonances and allowed 

the signals in the 13C spectrum (Figure 3.26) to be assigned. 

The 1H spectrum together with assignments is presented in Figure 3.27. The singlet in 

the aromatic region of the spectrum represents protons (f )and (g), whilst the protons of 

the butanoic acid side chain are clearly seen as two triplets at 2.6 ppm and 2.3 ppm ((b) 

and (d)) and a quintet at 1.9 ppm (c). A broad multiplet at 2.4 ppm is due to the proton 
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Figure 3.25 Infra-red spectrum of 4-phenyl(4-cyclohexyl)butanoic acid 
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(b) DEPT sequence 
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Figure 3.26 13 Carbon and DEPT NMR spectra of 4-phenyl(41-cyclohexyl)butanoic 

acid 
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Figure 3.27 lH NMR spectrum of 4-phenyl(4'-cyclohexyl)butanoic acid 
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(i) of the cyclohexyl ring whilst the remaining protons of the cyclohexyl ring are seen as 

two multiplets at 1.8 ppm and 1.4 ppm. 

3.3.6 Synthesis of 7-cyclohexyl-l-tetralone 

OH 

O 

PPA 0 

7-cycloheayl-l-tetralone 

4-Phenyl(4'-cyclohexyl)butanoic acid was cyclised with hot polyphosphoric acid using 

the method of Snyder and Webber (1955). Base extraction of the crude reaction 

products provided pure (>98 % by GQ 7-cyclohexyl-l-tetralone in good yield (88 %). 

A gas chromatogram of 7-cyclohexyl-l-tetralone is presented in Figure 3.28. The 

mass spectrum (Figure 3.29) showed an intense molecular ion (Nl"*, Mlz 228), and 

diagnostic ion fragments m1z 200 [M"- CO]; m1z 185 [M+*-C2H30] and m1z 172 [M"- 

56, possibly loss Of C2H4 from M% CO via a retro-Diels-Alder reaction ]. 

13 C NMR spectroscopy revealed the presence of 13 resonances which were assigned in 

conjunction with the DEPT sequence. The spectra, together with assignments are 

presented in Figure 3.30. The carbonyl carbon (a) is evident furthest downfield at 198 

ppm, whilst the aromatic carbons are present as five resonances between 120 ppm and 
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[GCdetalls; DB-5 column. H., carrier gas. Temp program, 40*C-300*C@5*C mid'. hold 10mins] 

Figure 3.28 Gas chromatogram of 7-cyclohexyl-l-tetralone 
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Figure 3.29 Mass spectrum of 7-cyclohexyl-l-tetralone 



Ca) 13C 

(b) DEPT 

g, i j 

torm 

Figure 3.30 13 Carbon and DEPT NMR spectra of 7-cyclohexyl-l-tetralone 
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150 ppm. By comparison with the DEPT spectrum (Figure 3.30 b), the quaternary 

carbons (e, fh) are identified as the resonances at 146 ppm and 141 ppm. Thus the 

signals at 132 ppm, 128 ppm and 124 pprn correspond to the remaining aromatic carbons 

(g, ij). The methine carbon of the cyclohexyl moiety (k) is also identifiable from the 

DEPT spectrum as the signal at 44 ppm, whilst the remaining methylene carbons of the 

tetralone and cyclohexyl groups are represented by six resonances between 20 ppm and 

40 ppm. Carbons (1) and (m) are assigned to the two most intense signals at 34 ppm and 

36 ppm, whilst the highest frequency methylene carbon resonance is tentatively assigned 

to carbon (b), adjacent to the carbonyl group. It is anticipated that this carbon will 

experience a large deshielding effect from the adjacent carbonyl group. Similarly, (d) is 

assigned to the signal at 29 pprn owing to its position next to the aromatic ring. 

The lH NMR spectrum is presented in Figure 3.31 together vvith assignments. The 

aromatic protons are evident in the region 7-8 ppm. A singlet corresponding to proton 

is found at 7.9 ppm, whilst (i) and 6) are evident as two doublets at 7.3 ppm and 7.1 

ppm. The aliphatic region of the spectrum shows two triplets at 2.8 ppm and 2.6 ppm 

corresponding to protons (b) and (d) respectively. It is assumed that (b) will be further 

downfield owing to its position next to the carbonyl group. The quintet at 2.1 ppm 

corresponds to protons (c), owing to coupling with neighbouring protons (d) and (b). 

The broad multiplet at 2.5 ppm represents the proton (k), present further downfield than 

the remaining cyclohexyl protons because of the deshielding effect of the adjacent 

aromatic ring. The two multiplets centering at 1.8 ppm and 1.4 ppm correspond to the 

remaining protons of the cyclohexyl moiety. 

The IR spectrum of 7-cyclohexyl-l-tetralone (Figure 3.32) confirms the presence of the 

C=O group in the molecule, with a characteristic absorption at 1680 cnf 1. 
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Figure 3.32 Infra-red spectrum of 7-cydohexyl-l-tetralone 
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3.3.7 Synthesis of 7-cyclohexyltetralin 

N2Ha/KOH 
-" 

cxccJ O 

7-cyclohexyltetralin 

Reduction of the tetralone via the Huang-Minlon modification of the Wolff-Kischner 

reaction - (cf. Durham el al., 1963) yielded the first of the two target compounds, 

7-cyclohexyltetralin. The crude reaction products were purified by column 

chromatography to yield pure (> 99 % by GC, Figure 3.33) 7-cyclohexyltetralin in good 

yield (87 %). The mass spectrum of 7-cyclohexyltetralin (Figure 3.34) showed an 

intense molecular ion (mlz 214,100%) and a fragment ion at m1z 171 [M*- 43]. 

The 13 C-NMR and DEPT spectra of 7-cyclohexyltetralin are presented in Figure 3.35 

(a) and (b) respectively. The 13C spectrum showed a total of 13 resonances; 6 aromatic 

carbons, of which the CH and quaternary carbons were distinguished by the DEPT 

sequence, and 7 aliphatic resonances. The methine carbon (k) of the cyclohexyl group 

was assigned via the DEPT sequence, whilst carbons (1) and (m) were assigned 

according to the intensity of the signals. The two resonances at 29 ppm have been 

assigned to carbons (a) and (d) of the ring structure, as these carbons are adjacent to the 

aromatic ring and will therefore experience a degree of deshielding, resulting in a higher 

chemical shift than the remaining methylene carbons. 

The 'H-NMR spectrum of 7-cyclohexyltetralin is presented in Figure 3.36. The 

aromatic protons are evident at 6.9 ppm, whilst in the aliphatic region of the spectrum, 

protons (a) and (d) are farthest downfield at 2.7 ppm. The proton (k) of the cyclohexyl 

group is shifted downfield relative to the other protons of the cyclohexyl group owing to 
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Figure 3.33 Gas chromatogram of 7-cyclohexyltetralin 
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3.34 Mass spectrum of 7-cyclohexyltetralin 
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Figure 3.35 (a) 13 Carbon and (b) DEPT NMR spectra of 7-cyclohexyltetralin 

156 

_ uo too 50 



ro 
m 
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it's position adjacent to the aromatic ring. The remaining protons (l, m, n, b, c) are 

represented by two multiplets at 1.7 ppm and 1.4 ppm. 

Examination of the product by IR confirmed successful reduction of the keto- group, 

as illustrated in Figure 3.37 by the absence of a strong absorption at approximately 1680 

cm''. 

3.3.8 Synthesis of 7-cyclohexyl-l-propyltetralin 

Synthesis of 7-cyclohexyl-l-propyltetralin followed an identical synthetic pathway as 

for 7-cyclohexyltetralin to yield 7-cyclohexyl-l-tetralone (Sections 3.3.4 - 3.3.6), a 

propyl chain was then introduced via a Grignard. reaction to yield 7-cyclohexyl-1- 

hydroxy-1-propyltetralin. The alcohol was dehydrated to an isomeric n-dxture of alkenes 

which were subsequently hydrogenated to the target alkane 7-cyclohexyl-1- 

propyltetralin. The reaction scheme is illustrated in Figure 3.15. 

3.3.9 Synthesis of 7-cyclohexy-l-hydroxy-l-propyltetralin 

CH3(CH2)2MgBr 
10- 

Et2o 

OH 

1-bromopropane was coupled to 7-cyclohexyl-l-tetralone via a Grignard reaction. 

Examination of the crude reaction products by GC-MS (sample derivatised with BSTFA 

at 60*C for 30 minutes) revealed the presence of three major reaction products (Figure 
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Figure 3.37 Infra-red spectrum of 7-cyclohexyltetralin 
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3.38). These compounds were tentatively identified by mass spectrometry (Figure 3.39) 

as the target alcohol (peak A; 65 % of total reaction products); identified by diagnostic 

ions m1z 301 (M*' 
- C3H7); m1z 343 (M+* - H); m1z 254 (M+* -OTMS), vvith smaller 

amounts (12 % of total reaction products) of 7-cyclohexyl-l-hydroxytetralin (peak B); 

m1z 301 (M+'-H), m1z 212 (M* - OHTMS) and a third compound which was tentatively 

identified as the underivatised. target alcohol (peak C, 20 % of total reaction products), 

owing to the presence of an ion at m1z 254 corresponding to the loss of water (M+'-H20) 

which is a characteristic fragmentation pattern for alcohols, and an ion at nilz 211 [(M+'- 

H20)-C3H7]. It appears that possibly owing to the position of the hydroxyl group of the 

alcohol, not all of the alcohol had been derivatised. The sterically hindered nature of the 

hydroxy group would also account for the sharp chromatographic peak of the 

underivatised alcohol. 

7-Cyclohexyl-l-hydroxytetralin (peak B) has been formed by reduction, a commonly 

occurring side reaction in Grignard reactions with hindered ketones (March, 1985). The 

reaction involves reduction of the carbonyl carbon to an alcohol by the Grignard reagent, 

which itself undergoes elimination to produce an olefin, thus; 

H 
h3AIrd. 

M&X + -c- 

0 

Separation of the crude reaction products by vacuum distillation is precluded, owing to 

the similar boiling points of each of the products (as indicated by the close elution of the 

three compounds by gas chromatography). Consequently, the crude reaction products 

were dehydrated to a n-tixture of alkenes without a'clean up' stage. 
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[GC details., HP-1 column, He carriergas. Temp program 4CM -300*C @ 5* min". hold 10 mins] 

Figure 3.38 Gas chromatogram of total reaction products from Grignard reaction 

of 7-cyclohexyl-l-tetralone with propylmagnesium bromide (derivatised with 
BSTFA) 
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Figure 3.39 Mass spectra of products of Grignard reaction of 7-cyclohexyl-l- 

tetralone with propy1magnesium bromide (derivatised with BSTFA) 
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3.3.10 Synthesis of (E/Z)7-cyclohexyl-l-propenyltetralin (1) and 7-cyclohexyl-l- 

propyl-3,4-dihydronaphthalene (11) 

F 
g 

1::::: 

OH 

& 

I II 

The crude alcohol mixture (Section 3.3.9) was dehydrated to an isomeric mixture of 

the related alkenes (the target alkenes, (E/Z) 7-cyclohexyl-l-propenyltetralin (1) and 

7-cyclohexyl-l-propyl-3,4-dihydronaphthalene (11) and also unwanted 7-cyclohexyl-3,4- 

dihydronaphthalene via acid catalysed dehydration. Analysis of the crude reaction 

products by GC-MS identified two principal reaction products as shown in Figure 3.40. 

Peak A was identified by mass spectrometry (Figure 3.41) as the alkene 7-cyclohexyl- 

3,4-dihydronaphthalene, the dehydration product of 7-cyclohexyl-l-hydroxytetralin by 

the presence of a molecular ion, m1z 212, with diagnostic ions; m1z 210 (W* - 2); m1z 

169, (W. 
- C3H7); MIZ 129 (M"- 83). Dehydration of 7-cyclohexyl-l-hydroxy-l- 

propyltetralin could result in the formation of the isomers (E/Z) 7-cyclohexyl-l- 

propenyltetralin (1) and 7-cyclohexyl- I -propyl-3,4-dihydronaphthalene (II). Peaks B and 

C had virtually identical spectra and were identified as the target isomeric alkenes by the 

presence of a molecular ion m1z 254 and diagnostic ions; m1z 252 (base peak, M+* - 2), 

m1z 223 presumably arising through loss of the propyl chain from the (Nr*- 2) ion and 

m1z 171 (M*-83). The isomers could not be distinguished further owing to virtually 

identical mass spectra. However, it is likely that 7-cyclohexyl-l-propyl-3,4- 

dihydronaphthalene will be the dominant product as this places the double bond in the 

alicyclic moiety, the more stable of the two positions. The absence of a third major 
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Figure 3.40 Gas chromatogram of acid dehydration products of the reaction of a 

mixture of 7-cyclohexyl-l-hydroxy-l-propyltetralin and 7-cyclohexyl-l- 

hydroxytetralin with orthophosphoric acid 
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Figure 3.41 Mass spectra of acid dehydration reaction products of the reaction of 

a mixture of 7-cycloheryi-l-hydroxy-l-propyltetralin and 7-cyclohexyl-l- 

hydroxytetralin with orthophosphoric acid 
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reaction product lends support to the tentative identification of peak C in the crude 

Grignard reaction products (Figure 3.38 and 3.39) as the underivatised alcohol 7- 

cyclohexyl- I -hydroxy- I -propyltetralin. 

The alkene mixture was purified by column chromatography (silica column, hexane as 

eluent), followed by isolation of the target alkenes by Ag/silica TLC (Rf = 0.09 - 0.1). 

Purity as determined by GC was 98 %. 

3.3.11 Synthesis of 7-cyclohexyl-i-propyltetralin 

-- 
H2__4> 

o', 

o, 

OJC9 
7-cyclohexyl-i-Propyltetralin 

The pure isomeric mixture of alkenes (7-cyclohexyl-l-propenyltetralin and 7- 

cyclohexyl-l-propyl-3,4-dihydronaphthalene) were hydrogenated to the target compound 

7-cyclohexyl-l-propyltetralin by gentle bubbling of hydrogen gas through a solution of 

the alkenes in the presence of Adams catalyst (monohydrate). A gas chromatogram of 

the 7-cyclohexyl-l-propyltetralin is presented in Figure 3.42. The mass spectrum 

showed the molecular ion ( M", m1z 256) and an ion at m1z 213 (M+* - 43) corresponding 

to cleavage at the tertiary centre and corresponding loss of the propyl chain (Figure 

3.43). Analysis of the compound by 13C 
, DEPT and 1H NMR confirmed synthesis of 

the target alkane. The 13 C NMR spectrum (Figure 3.44a) revealed the presence of 17 

resonances which were assigned in conjunction with analysis via the DEPT sequence 
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[GC details, HP-1 column, He carrier gas. Temp program 40*C - 300*C @ 5* min", hold 10 mins/ 

Figure 3.42 Gas chromatogram of 7-cyclohexyl-l-propyltetralin 

m/i 

Figure 3.43 Mass spectrum of 7-cyclohexyl-l-propyltetralin 
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Figure 3.44 13 Carbon (a) and DEPT (b) NMR spectra of 7-cyclohexyl-l- 

propyltetralin 
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Figure 3.45 lH NMR spectrum of 7-cyclohexyl-l-propyltetralin 
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(Figure 3.44 b). The three quaternary carbons (h, m, k) were present at 145 ppm. 141 

ppm and 134 ppm; whilst the remaining aromatic carbons (ij, l) were evident at 128 ppm, 

127 ppm and 123 ppm. Analysis via the DEPT sequence enabled identification of the 

methine carbons (d) and (q) and also the methyl carbon (a). The remaining eight 

methylene carbon resonances could not be unequivocally assigned to individual carbon 

atoms and are simply grouped together. 

The 'H-NMR spectrum is presented in Figure 3.45. The aromatic protons are evident 

at 6.9 ppm, whilst in the aliphatic region of the spectrum, the triplet at 0.9 ppm 

corresponds to the protons of the methyl group (a). The majority of the aliphatic 

protons (b, c, e, fg, o, p, q, ) are represented by the multiplet from 1.3 - 1.7 ppm. The 

signals at 2.7 ppm and 2.4 ppm are tentatively assigned to protons d and q respectively. 

These protons are all situated adjacent to the aromatic ring and this is anticipated to 

result in higher frequency shifts for these protons owing to the deshielding effect of the 

arom ic nng. 

3.3-12 Conclusions 

The model aromatic UCM compounds 7-cyclohexyltetralin and 7-cyclohexyl-l- 

propyltetralin have been successfully synthesised in sufficient quantity and purity (> 99 % 

and > 97 %, respectively) for future toxicological tests using the mussel Mytilus edulis as 

detailed in Chapter 5. 
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CHAPTER FOUR 

The effect of a model aliphatic low molecular weight UCM compound 

(4-propyloctane) upon mussel feeding rate 



4.1 Introduction 

Despite the high concentrations of hydrocarbon UCMs in many sediments and aquatic 

organisms (cf. Table 1.2), the toxicological significance of UCM hydrocarbons remains 

largely uninvestigated. It is however, widely assumed that aliphatic UCM hydrocarbons 

are non-toxic owing to their relatively low aqueous solubility (e. g. Gilfillan et at, 1977; 

Bobra et al., 1983; Thomas et al., 1995). In Chapter 2, the presence of hydrocarbon 

UCMs in mussels extending from a molecular weight range of approximately n-C12 

upwards was demonstrated. A proportion of these low molecular weight aliphatic 

hydrocarbon UCMs may be of some toxicological significance and this clearly requires 

further investigation. 

A reduction in the Scope for Growth of mussels (Mytilus edulis) exposed to petroleum 

hydrocarbons has been demonstrated to occur primarily because of a reduction in mussel 

feeding rate (Widdows et al., 1987; cf. Section 1.5). The responsiveness of mussel 

ciliary feeding activity to a number of aliphatic and aromatic hydrocarbons has been 

reported previously by Donkin el al. (1989,1991) who described a Quantitative 

Structure-Activity Relationship (QSAR) for the effects of various hydrocarbons upon 

mussel feeding rate. These authors demonstrated that hydrocarbons with aqueous 

solubilities greater than 70 gg 1-1 were toxic, and that the total body burden of toxicant 

required to produce a 50% reduction in mussel feeding rate was relatively constant. A 

ccut-ofr in toxicity was identified whereby those compounds with aqueous solubilities 

less than 70 gg I-' failed to induce a significant reduction in feeding rate (cf. Section 1.6) 

despite greater bioaccumulation into the mussels than the more soluble, toxic 

compounds. For the aliphatic hydrocarbons tested, this 'cut-off in toxicity was found to 

occur between n-decane and n-undecane. However, no components representative of 

UCMs were tested. 
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Currently available evidence, based on spectroscopic and degradative studies reviewed 

in Section 1.2, suggests that a large proportion of aliphatic UCM hydrocarbons are 

comprised of relatively simple 'T'-branched acyclic and monocyclic alkanes. Since 

branched alkanes have a greater aqueous solubility than the equivalent straight chain 

compounds (Verscheuren, 1983; Leo, 1993) a proportion of the low molecular weight 

aliphatic UCM hydrocarbons may be of some toxicological significance. 

The aim of the present work was to apply the mussel toxicological assay developed by 

Donkin el aL (1989,1991) to investigate the toxicity of a model 'T-branched' low 

molecular weight (CI 1) aliphatic UCM hydrocarbon, 4-propyloctane (4-PO; Figure 4.1). 

4-propyloctane is predicted to have a water solubility of 297 Vg I" [@ 25'C in 

freshwater; estimated using Syracuse Research Corporation software (SRC)] and a log 

Kow value in the range 5.67-6.38 (estimated by SRC and MedChern software, 

respectively). [For comparison, n-decane has a log Kow 5.98 and an aqueous solubility 

of 52 pg 1-1 and is toxic to mussel (Mytilus edulis) feeding rate, whilst n-undecane has a 

log Kow 6.1 and an aqueous solubility of 4 gg I" and is non-toxic (Donkin et at, 199 1)]. 

On the basis of these physico-chemical properties, 4-propyloctane would therefore be 

expected to exhibit a measurable effect on mussel ciliary feeding activity, according to 

the QSAR established by Donkin ef al. (1989,1991). 

-1 

Figure 4.1.4-propyloctane (4-PO) 
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4.2 Experimental details 

A series of five experiments were carried out to investigate the effect of 4-PO upon 

mussel ciliary feeding activity. Initially, a concentration-response experiment was 

conducted to ascertain if exposure of M edulis to 4-PO resulted in a reduction in mussel 

ciliary feeding activity (Experiment 1). This having been demonstrated, a series of 

experiments investigating the effect of 4-PO upon mussel feeding rate over different 

exposure periods up to 120 h were then conducted (Experiments 11 - V). The aim of 

these latter experiments over longer exposure periods was to investigate the influence of 

bioaccumulation kinetics upon mussel feeding rate. In addition to investigating the effect 

of 4-PO upon mussel feeding rate, in Experiment V, a Neutral Red Retention assay 

(Lowe et aL, 1995) was conducted in parallel with the feeding rate determinations, to 

examine the effect of 4-PO at the sub-cellular level. 

To allow the results obtained herein to be compared with those of Donkin el al. (1989, 

1991), the toxicity of butylcyclohexane to mussel ciliary feeding activity over a 96 h 

exposure period was also investigated herein (Experiment VI). 

4.2.1 Test materials 

4-propyloctane (4-PO) was synthesised, purified and characterised as described in 

Section 3.2. Purity, as determined by GC, was greater than 99 %. Butylcyclohexane 

(BCH) was obtained from Aldrich. Purity, as determined by GC, was greater than 99 %. 

4.2.2 Preparation of toxicant solutions 

Toxicant solutions were prepared using seawater which had been filtered to exclude 

particles greater than 45 gm diameter. Test compounds were dissolved in a minimal 

volume of a carrier solvent (acetone), to aid their dispersion in seawater. Acetone has 

been shown to have no detectable effect upon mussel feeding rate at concentrations less 
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than 0.005 % v/v (Donkin el al., 1989). Toxicant solutions were mixed for at least two 

hours prior to use in order to ensure thorough mixing of toxicant and seawater. 

'Control' solutions were prepared by adding acetone to filtered seawater in the same 

manner. 

4.2.3 Collection and maintenance of mussels 

Mussels (Mytilus edulis) of between 35 mm and 40 mm. shell length were collected 

from the intertidal zone at Exmouth, Devon. The animals were cleaned of epibionts and 

held in open flow tanks in recirculating seawater. The animals were allowed seven days 

to acclimatise to laboratory conditions prior to use in experiments. Full details are given 

in Section 6.5.3. 

4.2.4 Exposure of mussels 

In general, the procedure employed by Donkin et aL (1991) was followed. 

Modifications applied to individual experiments are described in the following sections. 

Mussels (shell length 40 mm ±2 mm), were exposed to 20 1 toxicant solution in a glass 

round bottom vessel. A control exposure vessel containing mussels exposed to 20 1 of 

the control solution (seawater + 0.001% v/v acetone) was assembled in parallel with 

each 'toxicant' vessel. Mussels were fed continuously with an algal culture (Isochrysis 

galbana) by means of a peristaltic pump. Gentle water movement was maintained with a 

Teflon stirrer, contained within a glass dish to prevent contact with the animals. 

4.2.5 Measurement of feeding rate 

Mussel feeding rates were determined by measuring the rate at which algal cells were 

cleared from suspension in a static test system (cf. Coughlan, 1969). The procedure 

employed by Donkin ef aL (1991) was followed. This involved transfer, following the 

174 



required exposure period, of 16 mussels into individual glass beakers, each containing 21 

of toxicant solution. Gentle water movement was maintained using a magnetic stirrer 

and mussels were placed such that the inhalant siphon was facing directly into the 

current. An additional beaker plus stirrer containing only the test solution (no mussel) 

was used as a control. A 30 minute acclimatisation period was allowed for the mussels 

to open their shells and resume feeding. A pre-determined volume of algal culture was 

then added to each beaker to give a concentration of 12000 - 14000 cells ral". After a5 

minute mixing period, a 20 ml aliquot was removed from each beaker and cell numbers 

were counted in triplicate using a model D Coulter counter set to measure particles 

greater than 3 prn diameter. Further 20 ml aliquots were sampled every twenty minutes 

for a total period of 80 minutes. Clearance rates were calculated using the maximum 

decline in cell concentration over a 40 minute period (Equation 4.1). Feeding rates are 

expressed in litres per hour, (I h"). 

feeding rate a h-) v *60 
t 

where; v= volume of water in beaker 

t= time period of measurement 

M, = cell count at to (incan of triplicate measurements) 

M2 = cell count at tj (mean of triplicate measurements) 

Equation 4.1 Calculation of mussel feeding rate 

4.2.6 Chemical analysis of mussel tissue 

Soft tissue was dissected from the mussel shells and stored at -17*C in solvent-rinsed 

glass jars prior to analysis. Tissues were extracted by steam distillation using the method 

of Donkin and Evans (1984). The internal standards 4-methyinonane and n-undecane 
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were added to the mussel homogenate immediately prior to extraction. Tissue extracts 

were analysed by GC. Recoveries of 4-PO and BCH were 94.1 ± 0.5% and 93.2 ± 

0.5%, respectively (mean ± rsd, n=3) as determined by spike experiments. 

4.2.7 Initial studies into the effect of 4-PO upon mussel feeding rate. A dose- 

response experiment 

Experiment 1: 24 h concentration-response experiment 

A preliminary experiment was conducted to investigate whether a reduction in feeding 

rate occurred upon exposure of mussels to a solution of 4-PO. The method of Donkin 

el al. (1991) was followed. Groups of 16 mussels were exposed to a range of 

concentrations of 4-PO (nominal aqueous exposure concentrations 8 gg 1"', 14 Vg "', 28 

pg 1-1 and 60 pg 1") for a 24 h exposure period as describod in Section 4.2.4. Feeding 

rate measurements were conducted at the end of the 24 h exposure period (cf. Section 

4.2.5). A control vessel was set up in parallel with each exposure concentration. 

Experiment 11: 72 h concentration-response experiment 

A second 'preliminary' experiment was conducted by extending the time period for 

which mussels were exposed to 4-PO from 24 h to 72 h at aqueous concentrations of 

14gg I'l and 28 gg I'l. Animals were returned to the exposure vessels after completion 

of the 24 h feeding rate measurements and the exposure time extended to 72 h. Toxicant 

solutions were changed every 24 h to maintain the toxicant concentrations and reduce 

the build up of excretory products in the exposure vessels. Mussel feeding rates were 

then determined after 72 h exposure. 
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4.2.8 Investigations into the effect of 4-PO upon mussel feeding rate over a 96 h 

exposure period. Relationship to bioaccumulation 

Experiment 111: 96 h exposure 

To examine the effect of 4-PO upon mussel feeding rate over a 96 h exposure period, 

mussels were exposed to a solution of 4-PO (nominal aqueous exposure concentration; 

23 gg 1-1). Mussel feeding rates and tissue concentrations of toxicant were measured 

every 24 h. The gill tissue was dissected out separately from the remaining soft body 

tissue and the concentration of 4-PO in the gill tissues, (the presumed site of toxic action 

for feeding rate reduction) and the remaining body tissues measured separately. 

In order to measure both feeding rate and the body burden of 4-PO every 24 h, a 

number of modifications to the method used previously for experiments I and 11 were 

required. First, the total number of animals required for the experiment was increased 

from 16 to 32, to provide enough animals to allow for removal of four for tissue analysis 

each day, whilst still providing sufficient animals to allow accurate determination of 

feeding rate (16 animals required). 

Mussels were exposed to a seawater solution of 4-PO (23 gg 1") in the manner 

described in Section 4.2.4. After 24 h, sixteen animals were removed and placed 

individually in beakers containing 21 toxicant solution and their feeding rates measured in 

the usual manner (cf. Section 4.2.5). In order to maintain constancy in dosing, the 

animals not used for feeding rate measurements were also dosed with fresh toxicant 

solution during the feeding rate determination period, at a concentration equal to that 

received by the animals used for feeding rate measurements. 

After the feeding rate measurements were completed, four animals were removed for 

tissue analysis and the remaining twelve mussels returned to the exposure vessel. These 

animals were dosed with fresh toxicant solution for a further 24 h and the procedure then 

repeated. A control vessel containing 32 animals was assembled and measurements 
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made in parallel with the toxicant vessel. For logistical reasons, the feeding rate of the 

control animals was only measured at the start of the exposure and subsequently every 

48 h. 

Experiment IV: 96 h exposure (replicate experiment) 

The entire experiment was repeated to investigate if the trend in mussel feeding rate 

observed was a 'typical' response. 

4.2.9 The effect of 4-PO on mussels at both the physiological and cellular level over 

120 h exposure period: Experiment V 

In addition to investigating the effect of 4-PO upon mussel feeding rate at the 

physiological level, an experiment was conducted in which the effect of 4-PO upon 

edulis was studied both at the physiological level and at the sub-cellular level, using a 

Neutral Red Retention assay (Lowe ef al., 1995). The latter was carried out in 

collaboration with D. Lowe, Plymouth Marine Laboratory. 

Mussels were exposed to 4-PO (455 pg 1"') over a 120 h exposure period. The 

experimental procedure was as for the previous experiments (III and IV), using 32 

mussels in each exposure vessel. Every 24 h, sixteen animals were removed for feeding 

rate measurements. Once completed, four animals were retained and the remaining 

animals returned to the exposure vessel. Blood samples were taken from each of the 

four animals for Neutral Red retention time measurements and the soft tissue dissected 

from the shells for tissue analysis. Gill tissue was dissected out separately from the 

remaining issue. 
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4.2.10 The effect of butylcyclohexane upon mussel feeding rate over a 96 h 

exposure period: Experiment VI 

To enable a comparison of the results obtained in the present study with those of 

Donkin et at (1989,1991). Butylcyclohexane (BCH; 90ptg 1-1), a compound used to 

establish the original QSAR describing the effect of hydrocarbons upon mussel feeding 

rate, was studied over a 96 h exposure period. 

An identical test procedure to that described for previous experiments (III and IV) was 

employed whereby 32 mussels were exposed to a seawater solution of BCH (90 pg 1"'). 

Every 24 h, mussel feeding rate was measured using sixteen animals. Four animals were 

removed for tissue analysis and the remaining animals returned to the exposure vessel. A 

control vessel was set up in parallel with the exposure vessel. The concentration of BCH 

in the gill tissue was determined separately to the remaining soft body tissue. 
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4.3 Results 

4.3.1 Experiment 1: 24 h concentration-response experiments 

The aim of Experiment I was to investigate if exposure of M. edulis to 4-PO resulted 

in a measurable reduction in mussel ciliary feeding activity. The effect of a range of 

concentrations of 4-PO upon mussel feeding rate was investigated (cf. Section 4.2.7). 

The results obtained from Experiment I are summarised in Table 4.1. Feeding rates for 

both the 'control' and 'toxicant' animals are expressed as the mean ± standard deviation 

(n=16). Feeding rate is also expressed as a percentage of the control value (using a 

C pooled' value of all the control feeding rates). Expressing results in this manner 

effectively elimýinates the influence of other environmental variables, and the results 

describe a reduction in feeding rate which is attributable to exposure to the test 

compound. A concentration (nominal aqueous exposure).; response curve for the effect 

of 4-PO upon mussel feeding rate over 24 h exposure is presented in Figure 4.2. The 

data in Table 4.1 and Figure 4.2 show that exposure to 4-PO resulted in a greater than 

50 % reduction in mussel feeding rate at concentrations of 28 gg I" and above. The 

present study has therefore demonstrated that the branched C, I compound, 4-PO is toxic 

to mussel ciliary feeding activity. 

Nominal water Feeding rate of Feeding rate of Mean feeding rate 
conc. of 4-PO control animals exposed animals as a% of pooled 

Otg I-) (I h-') (I h -1) control value 
nrean ± sd (n=16) meanIsd(n=16) 

8 2.81 ± 0.3 2.48 0.5 89 

14 3.02 ± 0.8 1.80 0.6 65 

28 2.47 ± 0.4 1.06 0.4 38 

60 2.81 ± 0.3 0.95 0.4 34 

pooled control 2.77 ± 0.6 

Table 4.1 The effect of 4-PO upon mussel feeding rate, 24 h exposure (Expt. 1) 
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Figure 4.2 Concentration-response curve for the effect of 4-PO upon mussel 

feeding rate (24 h exposure, Experiment 1) mean feeding rate ± standard deviation (n=16). 

Control values pooled, n =48 

4.3.2 Experiment 11: 72 h concentration-response experiment 

To investigate the influence of increased exposure time to 4-PO a second preliminary 

experiment was conducted in which the exposure time was extended from 24 h to 72 h. 

Narcotic effects have been demonstrated to occur at relatively constant body burdens of 

toxicant (e. g. Donkin and Widdows, 1986; McCarty, 1986; Van Hoogen and 

Opperhuizen, 1988; Donkin et aL, 1989,1991; cf. Section 1.5). Variations in aqueous 

based expressions of toxicity are generally attributed to differences in the kinetics of 

uptake of the chemicals tested. In other words, prior to the attaitunent of a steady-state, 

the toxicity of slower accumulating chemicals increases with increasing exposure time 
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(Donkin et al., 1989). The exposure time was thus increased from 24 h to 72 h, in order 

to allow greater accumulation of toxicant into the organisms which, it was hypothesised, 

would result in a larger reduction in mussel feeding rate. The results of experiment II are 

presented in Table 4.2 and are also illustrated in Figure 4.3. For comparison, mussel 

feeding rates after both 24 h and 72 h exposure to 4-PO are plotted in Figure 4.3. 

Interestingly, as illustrated in Figure 4.3, no further decrease in feeding rate was found 

after 72 h exposures, despite continued exposure to the toxicant. In fact, mussels 

exposed to both the 14 Vg I" and 28 gg 1-1 toxicant solutions showed an increase 

(Students t-test, P=0.05) in feeding rates after 72 h compared with 24 h exposures 

(Table 4.2). All raw data and summary statistics are included in Appendix E. 1. 

There are a number of possible explanations for the observed results. First, despite 

increased exposure time the animals exposed for 72 h rnay not have bioaccumulated any 

more toxicant than those exposed for 24 h. This could arise because either a steady-state 

had been reached between the concentration of toxicant in the organism and surrounding 

water, or the mussels may not have been actively filtering seawater during the 'extended' 

exposure period (mussels are known to close their shells and stop feeding in particularly 

contaminated waters). Since the same animals were used to measure the feeding rate 

after both 24 h and 72 h exposure measurement of the total body burden of toxicant at 

24 h was precluded. Consequently, the attainment of a steady state of toxicant in the 

mussels could not be investigated. However, it is unlikely that equilibrium has been 

achieved after 24 h, as 4-PO is not anticipated to be sufficiently soluble for this (cf. 

Hawker and Connell, 1986). The valves of the animals were open and the animals were 

presumed to be actively filtering each day. A further possibility was that the animals 

became desensitised to the effects of the toxicant with increasing exposure time. In 

order to examine this phenomenon further, the influence of exposure time upon the 

toxicity of 4-PO to mussel feeding rate was investigated (Experiments III - V). 
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Figure 4.3 Concentration-response curve for the effect of 4-PO upon mussel 

feeding rate (24 h and 72 h exposure, Experiments I and 11) valuesplotted as mean ± s. d 

(n=16) 

Nominal water Feeding rate of Feeding rate of Mean feeding rate 
conc. of 4-PO control animals exposed animals as a% of pooled 

(Pg 1-) (111-1) (111-1) control value 
nrean I sd (n=l 6) nrean ± sd (n=16) 

14 2.83 ± 0.4 2.33 ± 0.6 82 

28 2.85 ± 0.5 1.53 ± 0.7 54 

pooled control 2.84 ± 0.4 

Table 4.2 The effect of 4-PO upon mussel feeding rate (72 h exposure, Experiment 

111) 
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4.3.3 Experiment III - VI 

To examine the relationship between body burden of toxicant and mussel feeding rate, a 

series of experiments were conducted to investigate the effect of 4-PO upon mussel 

feeding rate over 96 h- 120 h exposure periods. The measured feeding rates for both 

the control and toxicant animals from each experiment are summarised in Tables 4.3 - 

4.5. The variation in mussel feeding rates with time is illustrated in Figures 4.4. Values 

are presented as mean ± 95 % confidence intervals (n=16). All raw data and summary 

statistics are presented in Appendices E. 2 - E. 4. For logistical reasons, the feeding rate 

of the control animals was only measured at the start of the exposure and subsequently 

every 48 h. Analysis of the feeding rates of the control animals by ANOVA (P=0.05) 

indicated no significant differences between the values for the entire exposure period for 

each experiment. Consequently, for each individual experiment the control values have 

been pooled to provide a single value for the feeding rate. This value is used when 

feeding rates are expressed as a percentage of the control. 

Exposure time Feeding rate Feeding rate Feeding rate 
(h) control animals exposed animals expressed as a% 

(111-1) (111-1) of pooled control 
0 2.59 ± 0.2 2.59 ± 0.2 100 

24 2.28± 0.2 88 

48 2.75 ± 0.2 1.79 ± 0.2 69 

72 1.93 ± 0.2 74 

96 2.42 ± 0.2 1.90 ± 0.2 73 

I pooled'control 2.59 ± 0.1 

values given as mean. ± 95 Vo con dence intervals (n=16) if, 

Table 4.3 Feeding rate of mussels (M. edulis) exposed to 4-PO (23 pg 1-1) over a 96h 

exposure period. Experiment III (April 1994) 
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Exposure time (h) Feeding rate Feeding rate of Feeding rate 

control animals exposed animals expressed as % of 

(111-1) (111-1) pooled control 

0 2.53 ± 0.3 2.53 ± 0.3 100 

24 2.17 ± 0.2 85 

48 2.57 ± 0.2 2.20 ± 0.2 86 

72 2.59 ± 0.2 102 

96 2.54 ± 0.1 2.46 ± 0.3 96 

Pooled'control 2.55 ± 0.1 

values given as mean ± 95 ? /6 confidence intervals (n=16) 

Table 4.4 Feeding rate of mussels (M. edulis) exposed to 4-PO (23 Ftg 1-1) over a 96h 

exposure period. Experiment IV (November 1994) 

Exposure time (h) Feeding rate Feeding rate Feeding rate 

control animals exposed animals expressed as a% 

(I h-) (111-1) of pooled control 

0 2.56 ± 0.2 2.56 ± 0.2 100 

24 1.61 ± 0.3 58 

48 2.82 ± 0.2 1.70 ± 0.3 61 

72 1.33 ± 0.3 48 

96 2.90 ± 0.2 1.83 ± 0.4 66 

120 2.83 ± 0.2 1.68 ± 0.4 61 

Pooled'control 2.77 ± 0.1 

valuesgiven as mean: k 95 % confidence intervals (n=16, except 120h where n=12) 

Table 4.5 Feeding rate of mussels (M. edulis) exposed to 4-PO (45 tLg 1-1) over a 
120h exposure period. Experiment V (July 1994) 
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Figure 4.4 The variation in mussel feeding rate upon exposure to 4-PO over 96 h- 

120 h values expressed as mean ± 95 % confidence intervals 

186 

20 40 60 80 100 

exposure time (h) 

20 40 60 80 100 

exposure time (h) 

20 40 60 80 100 120 

exposure time (h) 



Comparison (ANOVA, P=0.05) of the feeding rates of mussels in Experiment III 

exposed to 4-PO for the exposure period 24h - 96h indicated a statistically significant 

difference between the feeding rates. After 24h exposure to 4-PO there was no 

significant difference between the exposed and control mussels feeding rates (West, 

P=0.05). However, after 48h, mussels exposed to 4-PO have a significantly lower 

feeding rate than the control animals (t-test, P=0.05). Analysis of the feeding rates of the 

exposed animals for 48h, 72h and 96h exposure reveals no significant difference 

(ANOVA, P=0.05). These results suggest that the overall trend is a reduction in mussel 

feeding rate from Oh to 48h, after which there is no further decrease and the feeding rate 

remains relatively constant for the remainder of the exposure period (48h - 96h). 

Analysis of the feeding rates of the exposed animals in Experiment IV showed no 

significant difference between mussel feeding rates over the entire exposure period from 

0h to 96 h (ANOVA, P=0.05). The lack of toxic response in Experiment IV was 

surprising, as a significant reduction in mussel feeding rate was observed in Experiment 

III after 48 h. Both experiments used identical exposure conditions. 

In experiment V, mussels were dosed with a higher concentration of toxicant (ca x. 2). 

A significant reduction in mussel feeding rate was observed after 24h in the exposed 

animals (t-test, P=0.05). There is no significant difference between the feeding rates of 

mussels exposed to 4-PO between 24h - 120h exposure. The overall trend in mussel 

feeding rate in Experiment V is therefore similar to that observed in Experiment III. In 

both experiments the feeding rate of mussels exposed to 4-PO has decreased initially 

until a point is reached at which no further reduction in mussel feeding rate is observed. 

The feeding rate then remains effectively constant for the remainder of the exposure 

period. Feeding rate has reached a steady rate in Experiment V more rapidly than in 

experiment III (24h vs 48h), presumably owing to the higher aqueous exposure 

concentration of toxicant employed in Experiment V. 
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To enable a comparison of the results obtained in the present study with those of 

Donkin et al. (1989,199 1; illustrated in Figure 1.13), a compound used to establish the 

original QSAR for the effect of hydrocarbons upon feeding rate was studied over a 96 h 

exposure period. Butylcyclohexane (BCH; 90 Vg 1") was chosen as the test compound 

(Experiment VI). The feeding rates of both those mussels exposed to BCH and the 

control mussels are summarised in Table 4.6 and illustrated in Figure 4.5. After 24h, 

there is a significant reduction in the feeding rate of the animals exposed to BCH (t-test, 

P=0.05). From 24h to 96h there is no significant difference between the feeding rates of 

the exposed animals (ANOVA, P=0.05). Thus, a similar trend in feeding rate reduction 

is observed in the animals exposed to BCH as observed in mussels upon exposure to the 

4-PO. This implies that the trend observed in mussel feeding rate over time in the 

present study is a common response for mussels upon exposure to all non-specific 

narcotic toxicants. 

Exposure time (h) Feeding rate Feeding rate Feeding rate 
control animals exposed animals expressed as a% 

(111-1) (1 h-) of pooled control 
0 2.96 ± 0.3 2.96 ± 0.3 100 

24 1.11 ± 0.2 38 

48 2.93 ± 0.3 1.3 8±0.3 47 

72 1.20± 0.2 41 

96 2.82 ± 0.3 1.11 ± 0.3 38 

I pooled'control 2.92 ± 0.2 

values given as mean ± 95 % confidence intervals (n = 16) 

Table 4.6 Feeding rate of mussels (M. e(lulis) exposed to butY]cyclohexane (90 P9 

1-1) over a 96 h exposure period (Experiment VI) 
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Figure 4.5 The variation in mussel feeding rate upon exposure to butylcyclohexane 

over a 96 h exposure period. Experiment VI 
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The concentrations of 4-PO measured in both the gill tissue and the total body burden of 

4-PO over the duration of experiments III-V are summarised in Tables 4.7 - 4-9. 

Concentrations are expressed both in mg kg-1 and mmol kg". Expressing the body 

burden of toxicant in terms of the number of moles of toxicant allows an understanding 

of the mechanism of toxicity at a molecular level. However, the objective of this work 

is ultimately to interpret the toxicological significance of a complex mixture of 

contaminants bioaccumulated by marine organisms, and a mass-based approach is 

therefore a necessity (cf. Donkin el al., 1991). This data is represented graphically in 

Figures 4.6 and 4.7. 

Exposure Conc. of 4-PO in gill Total body burden of 4- Feeding rate 
time tissue PO as % of 

control 
h mg kg-1 mmol kg" mg kg-1 mmol kg 

00000 100 

24 13.5 0.086 4.0 0.026 88 

48 19.5 0.125 8.5 0.054 69 

72 23.1 0.148 13.2 0.085 74 

96 22.1 0.141 15.2 0.097 73 

Table 4.7 Summary of tissue concentrations of 4-PO bioaccumulated by mussels 
(M. edulis) following 96 It exposure to 23 ftg 1-1 4-PO. Experiment III (April 1994) 
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Exposure Cone. of 4-PO in gill tissue Total body burden of 4-PO Feeding 
time (h) rate as % 

of control 
mg kg-' mmol kg-' mg kg-' mutol kg-' 

00 0 0 0 100 

24 11.6 0.074 1.9 0.012 85 

48 14.3 0.092 4.3 0.027 86 

72 15.0 0.096 5.3 0.034 102 

96 15.9 0.102 7.0 0.045 96 

Table 4.8 Summary of tissue concentrations of 4-PO bioaccumulated by mussels 

(M. edulis) following 96 h exposure to 23 Itg 1-1 4-PO. Experiment IV (November 

1994) 

Exposure Feeding 
time Conc. Of 4-PO in gill tissue Total body burden of 4-PO rate as 
(h) % of 

control 
mg kg-, mmol kg-1 mg kg-1 mmol kg-1 

0 0 0 0 0 100 

24 27.8 ± 0.8 0.178 ± 0.005 9.1 0.2 0.058 ± 0.001 58 

48 41.7 ± 1.7 0.267 ± 0.011 13.3 0.6 0.085 ± 0.004 61 

72 42.5 ± 2.6 0.272 ± 0.017 21.4 ± 0.9 0.137 ± 0.006 48 

96 43.6+-2.6 0.279 ± 0.016 30.0 ± 0.5 0.192 ± 0.003 66 

120 44.8 ± 1.5 0.287 ± 0.009 32.9 ± 0.4 0.211 ± 0.002 61 

values as mean ± range (n =2) 

Table 4.9 Summary of tissue concentrations of 4-PO bioaccumulated by mussels 
(M. edulis) following 120h exposure to 45 pg 1-1 4-PO. Experiment V (July 1994) 
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Figure 4.6 Bioaccumulation of 4-PO into the gill tissue of the mussel (M. edulis) 
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As can be seen from Figures 4.6 and 4.7, a similar trend in bioaccumulation patterns is 

observed in each experiment. As Figure 4.6 illustrates, the concentration of 4-PO in the 

gills of M. edulis increases from Oh to approximately 40h (dependent upon experiment), 

after which time, the concentration of 4-PO remains relatively constant. This suggests 

that an equilibrium between the concentration of 4-PO in the gill tissue and surrounding 

seawater has been reached sometime after this point. In contrast, the total body burden 

of 4-PO (Figure 4.7) increases linearly for the entire exposure period, indicating 

equilibrium between the mussels as a whole and the surrounding seawater has not been 

attained in the 96h-120h exposure periods employed in the present study. 

Comparing the body burden results for Experiments III and IV provides an explanation 

for the differences in observed feeding rates between the two experiments. Despite 

exposure to the same aqueous exposure concentration of 4-PO in both Experiments III 

and IV, as illustrated in Figure 4.6a, less toxicant was bioaccumulated into the mussel 

tissues in Experiment IV than Experiment 111. Insufficient bioaccumulation of toxicant at 

the site of toxic action is the most probable explanation for the lack of a significant 

reduction in feeding rate of the exposed mussels in Experiment IV. Despite exposure to 

the same aqueous concentration of toxicant, the mussels in Experiment III have a higher 

tissue concentration of toxicant than those in Experiment IV. The reason why less 

toxicant has been bioaccumulated by the mussels in Experiment IV remains unknown. It 

is also interesting to note that the concentration of 4-PO in the gill tissue at steady state 

in the mussels from Experiment IV is lower (approximately 15 mg kg" or 0.09 mmol 

kg") than the concentration of 4-PO in the gill tissue at steady state of mussels from 

experiment III (approximately 21 mg kg" or 0.14 mmol kg"). One difference between 

the two Experiments is that Experiment III was conducted in the spring (April) whilst 

Experiment IV was conducted in the autumn (November). A seasonal difference in the 

biochemical composition of the mussels in Experiments III and IV may account for the 
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observed differences in bioaccumulation of toxicant. Wriability in measured lethal body 

burdens of toxicant within individual organisms in an experiment is commonly attributed 

to the variable lipid content of the individuals, as hydrophobic organic chemicals 

accumulate in the lipid phases of the organism. For example, van Wezel el al. (1995) 

examined intraspecies variation in lethal body burdens of narcotic compounds by 

exposing groups of Fathead Minnows (Pintel)hales I)romelas) to various concentrations 

of chlorobenzenes. The lethal body burdens reported ranged over approximately one 

order of magnitude. However, these authors found that about 50 % of this variability 

could be attributed to the variable lipid content of the individuals. 

Zandee el aL (1980) investigated the seasonal variation in lipid composition of Mytilus 

edulis and reported that whilst there is a seasonal fluctuation in the lipid content of the 

whole organism, there was relatively little variation in the lipid level of the gill tissue 

throughout the entire year. Interestingly, the concentration of 4-PO in the gill tissue at 

steady state is different in each experiment (21 mg kg-', 15 mg kg"l and 43 mg kg*l for 

Experiments 111, IV and V respectively). Experiment V was conducted in summer (July). 

Each experiment (111, IV and V) has therefore been conducted at a different time of the 

year. However, as discussed previously, the lipid content of the gill tissue remains 

relatively constant throughout the year (Zandee el al., 1980). It seems unlikely 

therefore, that a slight fluctuation in lipid levels of the gill tissue could account for the 

variation in gill concentrations of 4-PO at steady state observed in the present studies. 

Unfortunately, as lipid determinations were not conducted in the present study, this 

hypothesis can neither be confirmed or excluded and may prove an interesting area of 

study for future work. The varying concentrations at which 4-PO reaches steady state 

in the gill tissue of the organism is more probably a function of the aqueous exposure 

concentration of toxicant, with higher aqueous exposure concentrations leading to higher 

bioconcentration. A concentration dependence of the bioconcentration factor (BCF) has 
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been reported by several authors (e. g. Oliver and Niimi, 1985; Francke, 1996) and is 

presumably caused by saturation of processes that control absorption, distribution or 

elimination (Barron, 1990). 

A similar trend in bioaccumulation of BCH into the mussels was observed in 

experiment VI to that observed with 4-PO in experiments III-V. Measured gill 

concentrations and total body burdens of BCH over the 96h exposure period are 

surnmarised in Table 4.10 and illustrated in Figure 4.8. 

Feeding 
Exposure Cone. of BCH in gill tissue Total body burden of BCH rate as 

time % of 
(h) mg kg-' minol kg" mg kg" mmol kg" pooled 

control 

00 100 

24 97.1 ± 13.4 0.694 ± 0.06 29.3 ± 1.5 0.209 ± 0.01 38 

48 120.7 ± 8.4 0.862 ± 0.06 45.4 ± 4.4 0.324 ± 0.03 47 

72 125.0 ± 15.0 0.893 ± 0.11 60.7 ± 2.3 0.433 ± 0.02 41 

96 128.0 ± 8.7 0.914 ± 0.06 74.1 ± 10.9 0.529 ± 0.08 38 

values as mean ± range (n=2) 

Table 4.10 Summary of tissue concentrations of butylcyclohexane bioaccumulated 

by mussels (M. edulis) over a 96 h exposure period. Experiment VI 
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Figure 4.8 Bioaccumulation of BCH by the mussel (M. edulis) over a 96h exposure 
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To complement the feeding rate experiments, the effect of 4-PO at the sub-cellular level 

was also investigated in Experiment V. A number of studies (Lowe el al., 1992,1995; 

Lowe and Pipe, 1994; Moore et al., 1996) have proposed that changes in cell function 

and sub-cellular organelles may be particularly sensitive early warning markers of 

contamýinant-induced stress. Exposure to a wide range of contaminants including metals, 

PCBs and PAHs has been demonstrated to result in increased permeability and fragility 

of lysosomal membranes. Damage to lysosomes may be measured by the capacity of 

lysosomes to take up and retain Neutral Red dye over time. The 'healthy' cells take up 

and retain Neutral Red dye for longer periods than the damaged cells. The progress of 

dye uptake into the lysosomes and subsequent leakage back into the cytosol may be 

visualised through a microscope and quantified using time as the determinant of effect 

(Lowe et al., 1995). By measuring the response of M. edidis to 4-PO at both the 

physiological level (feeding rate) and sub-cellular level (Neutral Red retention assay), 

Experiment V also provided an opportunity to compare the relative sensitivities of these 

two toxic end-points. The results of the Neutral Red retention assay are presented in 

Table 4.11. The variation in Neutral Red retention time of mussel lysosomes with 

exposure time is illustrated in Figure 4.9 

Owing to the limitations of the experimental design, with regards to the number of 

animals which could be used for each exposure, it was only possible to use four animals 

for the Neutral Red retention assay. As a consequence of the small sample size, the 95 

% confidence intervals are large, and the accuracy of the mean values is uncertain. No 

statistical analysis was performed on this data. However, the overall trend appears to 

indicate a decrease in the lysosomal retention time of Neutral Red dye with increasing 

exposure time. 
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Exposure time (h) lysosonie neutral red retention Retention time as a 

time (mins) % of control 
Control Exposed 

0 150 ± 37 150 ± 37 100 

24 102 ± 39 77 

48 114 ± 34 90 ± 45 79 

72 60 ± 18 54 

96 114 ± 34 48 ± 14 44 

120 132 ± 14 78 ± 23 59 

values given as mean ± 95% confidence intervals (n =4) 

Table 4.11 The lysosomal retention time of Neutral Red dye by mussels (M. ellulis) 

exposed to 4-PO (45 pg 1-1) over a 120 h exposure period. Experiment V 
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Figure 4.9 The retention time of Neutral Red dye by lysosomes of mussels (M. 

edulis) exposed to 4-PO (45 pg I-) over a 120 h exposure period. Experiment V 

values plotted as mean ± 95 % confildence intervals (n =4) 
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4.4 Discussion 

The aim of this work was to examine the effect of a low molecular weight model 

aliphatic UCM compound upon mussel ciliary feeding activity. Previous studies (Donkin 

et aL, 1989,1991) have demonstrated that most test compounds with aqueous 

solubilities greater than 70 pg I" were toxic to mussel ciliary feeding activity when 

bioaccumulated to similar tissue concentrations (15-40 mg kg*l or 0.1 - 0.3 mmol kg" 

wet weight tissue). Compounds with lower aqueous solubilities were less toxic, having 

little or no effect upon mussel feeding rate, despite bioaccutnulation of these compounds 

within the mussel. 

The work described herein has investigated the effects of 4-PO, a low molecular weight 

model aliphatic UCM hydrocarbon, upon mussel feeding rate, and demonstrated that 

exposure to 4-PO can indeed cause a significant reduction in mussel ciliary feeding 

activity. In other words, whilst the straight chain C11 alkane, n-undecane, is non-toxic 

(presumably owing to its low aqueous solubility; 14 gg I"), the branched C11 compound, 

4-PO, is of sufficient aqueous solubility (estimated, 297 pg 1-1) to have narcotic potency 

and cause a reduction in mussel feeding rate. Tile present study has therefore 

demonstrated that the molecular weight range of 'narcotic' hydrocarbons is effectively 

extended by consideration of branched hydrocarbons, owing to their relatively higher 

aqueous solubilities than straight chain hydrocarbons of comparable chain length. These 

results suggest therefore, that, a small proportion of the low molecular weight aliphatic 

UCM hydrocarbons may have some toxicological significance. 

The work described in Chapter 2 has demonstrated the presence of low molecular 

weight UCM hydrocarbons with molecular weight ranges from It-CI2 upwards in 

mussels. It could be argued therefore, that 4-PO is not a truly representative as a model 

UCM compound because of its relatively low molecular weight. However, to date, there 

are very few studies which have specifically examined the narcotic potency of the more 
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hydrophobic organic compounds considered to be within the toxicity 'cut-off region'. 

The majority of studies tend to focus upon less hydrophobic compounds of known 

toxicity (typically compounds with log K. <5). The toxicity 'cut-ofr therefore needs to 

be more clearly and accurately defined. Indeed, there is still a lack of agreement as to the 

best molecular descriptor (e. g. log K,,,,, aqueous solubility, molar volume) with which to 

delineate the toxicity 'cut-off' point. There are no comparable studies which have 

examined either the toxicity, or physical properties such as aqueous solubility, log Kow 

values of hydrocarbons with branched and cyclic moieties similar to those considered to 

constitute the aliphatic hydrocarbon UCM. Consequently, as n-undecane has previously 

been demonstrated to be non-toxic (Donkin el til., 1991), in investigating the effect of a 

'T'-branched compound, a Cil compound is clearly a lop 
., 
ical choice with which to begin 

investigations into the toxicity of the aliphatic UCM. The work described in this Chapter 

is therefore presented as an 'initial exploratory analysis' using 4-PO as a model UCM 

compound. 

Unfortunately, no firm conclusions can be drawn regarding the toxicity of the aliphatic 

UCM as the narcotic cut-off effect still needs to be defined more accurately. Indeed, it 

may be that a precise delineation is unattainable. The results obtained for 4-PO suggest 

that a proportion of the low molecular weight aliphatic UCM may be toxic and it may be 

of value to investigate further the effect of branched and cyclic moieties (such as those 

proposed as UCM components) upon the physical properties and toxicity of such 

hydrocarbons. A very recent study by Widdows el aL (1997) investigating the effects of 

various pollutants on the scope for growth (SFG) of mussels (Mytilus galloprovincialis) 

has reported a statistically significant negative correlation between SFG and the size of 

the UCM and the alkanes C15 to C30. This is the only report to date in the literature 

reporting a link between the aliphatic UCM and toxic effects. These authors reported no 

significant correlation between SFG and the sum of 12 PAHs (> 3-ring) and attributed 
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this to the non-narcotic nature of PAH molecules of this size as demonstrated by Donkin 

et aL (1989,199 1). Whilst this study is encouraging, in that it suggests that a proportion 

of the UCM hydrocarbons may exert toxic effects on the ciliary activity of the gills 

(feeding rate is the principal component of SFG affected by hydrocarbons), it is unclear 

how these authors fractionated the total organic extracts of the mussels. Thus, a 

proportion of what has been classed as 'petroleum hydrocarbons' may also include 

smaller aromatic hydrocarbons which are known to exert a narcotic effect upon mussel 

ciliary feeding activity. 

Comparing the results from Experiments 111, IV, V and VI illustrates an overall trend in 

the variation of mussel feeding rate with exposure time. With the exception of 

experiment IV (in which no significant reduction in feeding rate was observed over the 

entire exposure period, possibly due to bioaccumulation of insufficient toxicant at the site 

of toxic action), the feeding rate has initially decreased upon exposure to 4-PO. 

However, within the experimental period, the feeding rate reaches a minimum at which it 

remains constant for the remainder of the exposure period. This is illustrated in Figure 

4.4, which presents the variation in feeding rate of the mussels exposed to 4-PO over the 

exposure period for each individual experiment. 

This trend in mussel feeding rate can be explained by examination of the gill tissue 

residue data. As illustrated in Figures 4.6 and 4.8a, the concentration of toxicant 

increases within the gill tissue initially until the concentration reaches a plateau. In other 

words, within the duration of the experiment, steady-state equilibrium between the 

concentration of toxicant in the gill tissue and the external exposure water is reached. 

Comparing the bioaccumulation of toxicant into the gill tissue over the exposure period, 

with variation in mussel feeding rate, suggests a direct relationship between the 

concentration of toxicant in the gill tissue and mussel feeding rate. The 'plateau' in the 

reduction in mussel feeding rate coincides approximately with the attainment of steady 
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state equilibrium in the gill tissue. In other words, once the concentration of 4-PO in the 

gill tissue has reached a steady state, no further reduction in mussel feeding rate is 

observed. A comparison of the feeding rate and gill tissue data from Experiment III 

illustrates this point (Figure 4.10). In contrast to the bioaccumulation pattern of toxicant 

into the gill tissue, the total body burden of 4-PO increases linearly throughout the entire 

exposure period (Figures 4.7 and 4.8b), indicating there is no clear relationship between 

total body burden of toxicant and mussel feeding rate over time. 

A reduction in mussel feeding rate is caused by reduced pumping of the lateral cilia of 

the gill (Axiak and George, 1987). The cilia are under neuronal control (Paparo, 1972) 

and therefore the mechanism of feeding rate reduction in response to hydrocarbon 

exposure is consistent with a non-specific mode of narcotic action (Donkin et al, 1989). 
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Figure 4.10 The relationship between mussel feeding rate and concentration of 4- 

PO in the gill tissue (data from Experiment 1111) 
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The relationship between gill tissue concentration of toxicant and mussel feeding rate 

demonstrated in the present study is therefore, perhaps, unsurprising. 

Widdows el al. (1987) studied the physiological responses (feeding rate, absorption 

efficiency, respiration rate, ammonia excretion and nitrogen quotient) over a 60 day 

'recovery period' (i. e. transfer to clean water) of the mussel M edulis, following eight 

months exposure to the WAF of a diesel oil. These authors measured the concentration 

of aromatic hydrocarbons (2- and 3-ring) in the whole organism, and also in the gill 

tissue and digestive gland and noted that the loss of aromatic hydrocarbons from the gill 

tissue during the 'recovery period' was reflected in a comparable recovery in mussel 

feeding rate. The results presented herein, therefore, confirm the results of Widdows el 

aL (1987) but provide a more detailed examination of the relationship between a toxic 

response and the concentration of toxicant at the site of toxic action than has been 

demonstrated previously. 

An estimate of the TEC5o (tissue concentration required to reduce mussel feeding rate 

by 50 %) was obtained by combining the data from each experiment. Donkin et al. 

(1989,1991) obtained TEC50 estimates by applying the relationship; y= (x+ 0 loglo x, 

fitted by least squares linear regression to their concentration-response data. The data 

obtained in the present study was treated in the same manner to obtain an estimate of the 

gill TEC50. The concentration (gill)-response data for 4-PO is presented in Figure 4.11. 

Summary statistics for the regression analysis are provided in Appendix E. 6. The gill 

TEC5o obtained was 56 mg kg-1 (46 - 69 mg kg" lower and upper 95 % confidence 

limits; or in molar terms, TEC50 = 0.365 mmol kg"', 0.292 - 0.445 mmol kg") 

To compare the results obtained in the present study with those of the established 

QSAR of Donkin et al. (1989) an estimate of the TECso for 4-PO in terms of the total 

body burden of toxicant was also obtained by the same method. The relationship 
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Figure 4.11 Relationship between mussel feeding rate and concentration of 4-PO 

in the gill tissue (combined data from Experiments III-V) 

between total body burden of 4-PO and mussel feeding rate is presented in Figure 4.12. 

The TEC5o obtained was 59 mg kg*l (44 - 79 mg kg" lower and upper 95 % confidence 

intervals; or, in molar terms, TEC50 0.376 mmol kg", 0.280 - 0.505 mmol kg"). The 

TEC50 for 4-PO calculated using the total body burden concentration of 4-PO is 

effectively the same as that obtained using the gill tissue concentration. The similarity of 

these values is most probably coincidental. Consideration of the relationship between 

mussel feeding rate and both the gill and total body burden concentrations of 4-PO 

provides an explanation for this statement. As illustrated in Figures 4.11 and 4.12, whilst 

there is a general decrease in mussel feeding rate with increasing body burden of 

toxicant, there is a much clearer relationship between the gill concentration of 4-PO and 

mussel feeding rate. 
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Figure 4.12 Relationship between total body burden of 4-PO and mussel feeding 

rate (combined data from Experiments III-V) 

The gill is the major site of uptake of chemicals from the water phase by aquatic animals 

(Hayton and Barron, 1990). Exchange at the gills is presumed to be fundamentally a 

result of diffusion across the epithelium separating water and blood (Barber el al., 1988) 

and is relatively rapid, as illustrated in the present study. In very simplistic terms, initial 

uptake of pollutant by the gills is followed by a slightly less rapid transfer to the 

circulatory fluid, followed by much slower transfer to and accumulation in, storage lipid 

reserves. Long term exposure results in accumulation of pollutant in lipid reserves until 

equilibrium or saturation of storage capacity is reached (Farrington, 1991). The continual 

increase of the total body burden of toxicant throughout the experimental exposure 

period as observed in the present study, reflects the bioaccumulation of toxicant into the 

storage lipids. The total body burden measured at exposure times typically greater than 

48 h (i. e. once a steady state has been reached in the gill tissue) in the present study does 
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not therefore, reflect bioaccumulation at the site of toxic action (i. e. the gills), but will be 

increasingly influenced by the concentration of toxicant in the remaining body tissues, 

particularly the storage lipids of the organism with increasing exposure time. If toxicant 

response is related to the total body burden at exposure times exceeding that at which a 

steady state of toxicant has been reached in the gill tissue (the presumed site of toxic 

action), then the sensitivity of the estimate of the tissue concentration of toxicant 

required to induce a specific response e. g. a 50 % reduction in mussel feeding rate is 

lowered (Le. a higher TEC5o estimate is obtained). 

The ultimate aim of tissue concentration-response studies such as the work described 

herein is to extrapolate laboratory derived concentration-response relationships to 

interpretation of field residue data. For such purposes it is impracticable to relate 

toxicant response to gill tissue data, as it is the whole body residue which is usually 

measured in field studies. Consequently, in order to improve the sensitivity of the 

TEC50 estimate for 4-PO, the total body burden TEC50was re-calculated using only the 

total body burden data from exposures up to attainment of steady state in the gill tissue 

(i. e. 24 h and 48 h data). As shown in Figure 4.13, the relationship between body 

burden of toxicant and mussel feeding rate is clearly improved by using only the data 

from exposures up to attainment of steady state in the gill tissue (24 h and 48 h data). 

The TEC50 estimate obtained was 25 mg kg" (16 - 40 mg kg" lower and upper 95 

confidence intervals; or in molar terms, TEC5o = 0.163 mmol kg", 0.110 - 0.253 mmol 

kg"). This value is a much lower and therefore more sensitive estimate of the TEC5o for 

4-PO than the estimate calculated using all the body burden data. Ideally the most 

sensitive TEC5o estimate is required for the purposes of interpretation of field residue 

data if the impact of complex tissue residues is not to be underestimated, i. e. laboratory 

derived concentration-response relationships (for feeding rate experiments) should be 

established over relatively short exposure periods, (e. g. 24 - 48 h). 

207 



co 

E 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

)2.84 

0.8 1.2 

logio total body burden of 4-PO (mg kjý' wct wt) 

Figure 4.13 Relationship between total body burden of 4-PO and mussel feeding 

rate (24-48 h data only) (combined data from Experiments III-V) 

The much lower TEC5o value obtained using only the 24 h and 48 h data illustrates the 

point discussed earlier that the similarity of the gill and total body burden TEC5o 

estimates is purely coincidental. In contrast to the differing TEC5o values calculated for 

total body burden of toxicant, the gill TECso value calculated using only the 24 h and 48 

h data was similar to that obtained using all data up to 120 h exposure (51 mg kg"; 35 - 

74 mg kg" lower and upper confidence limits; Appendix E. 6.4). 

As discussed previously (Section 1.5), narcotic effects are considered to occur at a 

relatively constant tissue concentration of toxicant, regardless of compound (for those 

compounds below the toxicity cut-off). A summary of the estimated physical properties 

and measured biological response ofM editlis to the test compound 4-PO is presented in 

Table 4.12, together with a summary of the data from some previously studied aliphatic 

hydrocarbons (Donkin et al., 199 1). 
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In the present study, the effect of butylcyclohexane (BCH; Experiment IV) upon mussel 

feeding rate over a 96 h exposure period was also investigated. The purpose of this 

experiment was to act as a reference compound to enable a comparison of the results 

reported by Donkin et aL (199 1) with those obtained herein. 

No TEC5o was calculated for BCH as the concentration of BCH reached a steady state 

in less than 24 h. Consequently, all the data obtained was over a very narrow range in 

concentration terms, and it was felt that this was insufficient for an accurate regression 

analYsis. An 'estimate' of the TEC50 for BCH (30 mg kg-' or 0.2 mmol kg") was made 

by visual inspection of the data obtained (Table 4.10). This value is slightly lower than 

that reported by Donkin el aL (40 mg kg"; 1991), however, these authors typically used 

exposure times of 48 - 72 h. The difference between the two TECMý estimates is, 

therefore, small. 

Overall, the values obtained in the present study (25 - 59 mg kg*', 0.171 - 0.3 80 nunol 

kg" wet weight tissue) are comparable with the TEC50values reported by Donkin et al. 

(1991) [15-40 mg kg", 0.15 - 0.30 mmol kg" wet weight tissue] for those compounds 

with demonstrable narcotic activity. In the present study, the TEC5o value of 0.380 

mmo kg'l was obtained using exposure times up 120 h. When the TEC50 for 4-PO is 

calculated using only the 24 h and 48 h data a lower, and therefore more sensitive TEC5o 

estimate is obtained (0.163 mmol kg-1). This can be explained in terms of the influence of 

exposure time, as previously discussed. The influence of exposure time is also evident in 

the results of Donkin el al. (1989,1991). These workers reported TEC50 estimates for 

aromatic hydrocarbons in the range 0.10 - 0.24 mmol kg" whilst for aliphatic 

hydrocarbons the TEC5o values reported were typically in the range 0.27 - 0.43 mmol 

kg". Donkin et al. (1991) suggested that the apparently higher toxicity of the aromatic 

hydrocarbons may be due, in part, to the different exposure times used in the two series 

of experiments (1.7 h for two/three ring aromatics, 48 h- 72 h for aliphatics). Pawlisz 
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and Peters (1993) tested the hypothesis of equipotency of narcotic compounds by 

exposing Daphnia to a range of narcotic compounds and measuring the lethal body 

burden of toxicant. These authors reported that the effective internal concentration 

increased with duration of exposure and ambient concentration but offered no 

explanation for their results. The results presented herein suggest that the reported 

variation in TEC5o values according to exposure time is a result of prolonged exposure of 

the organism to the toxicant such that the site of toxic action has reached a steady state, 

whilst bioaccumulation into discrete compartments such as storage lipids is continuing. 

The relationship between mussel feeding rate and concentration of toxicant in the gill 

tissue demonstrated herein in the experiments with 4-PO is also apparent in Experiment 

VI when BCH was used as the toxicant. This shows that the relationship is true for 

other narcotic hydrocarbons. In addition, the overall finding that, at least for exposures 

up to and including 120 h, toxic response as measured by mussel ciliary feeding activity 

is consistent with body burden of toxicant (gill tissue concentration in this instance) 

implies that metabolic activation to more toxic products or sequestration processes 

which act as detoxifying mechanisms are not important in the gill. This finding is 

particularly important for the interpretation of field tissue residue data, enabling direct 

interpretation of the measured body burden of contaminants in field samples in 

toxicological terms. 

Although the 'recovery' in mussel feeding rate (the increase in mussel feeding rate from 

24 h to 72 h) observed in the initial dose-response experiments (Experiments I and 11) 

remains unexplained, the time series experiments (III - VI) conducted as a result of these 

observations has enabled a more detailed analysis of the relationship between the 

measured body burden of toxicant and toxic response than has been previously reported. 

Whilst numerous studies have reported toxicant body burden data for toxicity tests in 

which lethality is the end-point and established that a relatively constant body burden of 
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narcotic toxicant is associated with LCso estimates (typically 2-8 mmol kg7l), comparison 

of the tissue residue data reported herein with other studies of a similar nature is limited 

by the sparse amount of reported tissue residue data for sub-lethal toxicity studies. A few 

studies (Call et al., 1985; McCarty, 1986; Mortimer and Connell, 1995) have estimated 

the toxicant concentration in test organisms in chronic toxicity studies and reported a 

relatively constant body burden of approximately 0.6 mmol kg". However differences 

between test species (i. e. differences in lipid content) and also the sub-lethal response 

measured will influence the critical tissue residue reported. With the exception of 

Donkin et al. (1989,199 1) there are no comparable studies reported, which have used a 

QSAR approach to study the sublethal responses of mussels to non-specific narcotic 

toxicants. The TEC5o values obtained in the present study are in good agreement with 

those reported by Donkin et al. (1989,1991) and lend support to the theory of a 

constant body burden of toxicant to produce a given narcotic response. By examining 

the tissue toxicant concentration not only in terms of the total body burden, but also the 

concentration of toxicant at the presumed site of toxic action, the present study has 

provided a detailed and unique insight into the relationship between the concentration of 

toxicant in the mussel and the observed ciliary feeding rate. The relationship between the 

concentration of toxicant in the gill tissue and mussel ciliary feeding activity 

demonstrated in the present study demonstrates that the sensitivity of TECso estimates 

obtained in this manner is increased if the exposure time is kept relatively short. 

4.9 Conclusions 

The work described herein has investigated the effects of a model low molecular weight 

aliphatic UCM hydrocarbon, 4-propyloctane (4-PO) and demonstrated that exposure to 

4-PO can cause a significant reduction in mussel ciliary feeding activity. The work has 

also demonstrated that the molecular weight range of narcotic hydrocarbons is effectively 
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extended by consideration of branched hydrocarbons, because of their relatively higher 

aqueous solubility than straight chain hydrocarbons of comparable chain length. Whilst 

no firm conclusions can be drawn from the present study regarding the toxicity of the 

aliphatic UCM, the results suggests that a small proportion of the low molecular weight 

aliphatic UCM may be of some toxicological significance. However, it is probable that 

the aromatic UCM will prove to be of greater toxicological significance than the aliphatic 

UCM, owing to the relatively greater solubility of aromatic hydrocarbons compared with 

aliphatic hydrocarbons of comparable chain length. This is investigated in Chapter 5. 

Further work into the effects of branched and cyclic moieties upon the solubility and 

narcotic potency of aliphatic hydrocarbons is required before any further conclusions can 

be reached. The present study has also elegantly demonstrated the relationship between 

the concentration of toxicant in the gill tissue, the presumed site of toxic action, and the 

observed reduction of mussel ciliary feeding activity upon exposure to narcotic toxicants 

such as 4-PO and butylcyclohexane. 
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CHAPTER FIVE 

Con centratio n-response studies of the effect of two low molecular weight model 

aromatic UCM hydrocarbons upon mussel feeding rate 



5.1 Introduction 

The environmental impact of aromatic hydrocarbon UCMs is currently unknown and 

uninvestigated. In Chapter 2 it was demonstrated that despite the paucity of reported 

aromatic UCM concentrations in environmental samples prior to this study, aromatic 

hydrocarbon UCMs may form a quantitatively significant component of the 

hydrocarbon body burden in petroleum hydrocarbon contaminated mussels. Aromatic 

hydrocarbons typically have greater aqueous solubilities than aliphatic hydrocarbons 

of comparable molecular weight (McAuliffe, 1966; Verscheuren, 1983) and therefore 

it is anticipated that the aromatic UCM may be of greater toxicological significance 

than the less soluble aliphatic UCM hydrocarbons. For example, Gilfillan el al. (1977) 

measured the long term effects of an oil spill on populations of the clam Mya arenia 

from different sites in Casco Bay, Maine. Two years after the spill there was no 

correlation of toxic response (measured in terms of carbon flux, which is effectively 

Scope for Growth) with the total body burden of hydrocarbons (dominated by the 

aliphatic UCM), but a significant reduction in carbon flux was found to correlate with 

elevated body burdens of low molecular weight aromatic hydrocarbons (presumably 

including the low molecular weight aromatic UCM). Apart from this, few reports 

have investigated the toxicity of this quantitatively important environmental burden. 

As discussed previously (Sections 1.6 and 4.1), Donkin et al. (1989,1991) established 

a QSAR for the effect of various hydrocarbons upon mussel feeding rate and reported 

a 'cut-off in toxicity for hydrocarbons with aqueous solubilities less than 70 ýtg 

Whilst existing knowledge on narcotic 'cut-off effects is limited, the present study has 

already demonstrated that the molecular weight range of narcotic chemicals may 

effectively be extended by consideration of branched alkanes such as the 'T-branched' 

alkanes proposed as components of the aliphatic UCM (Sections 4.3-4.4). The recent 
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proposal of 'average' model structures for aromatic UCM hydrocarbons (Figure 1.5; 

Revill et al., 1997; Thomas et al., 1997; cf. Section 1.2) now enables some of the 

toxicological properties of aromatic UCM hydrocarbons to be studied. 

Given the solubility and associated toxicity of a number of resolved low molecular 

weight aromatic hydrocarbons (Donkin et aL, 1989,1991) it seems likely that a 

proportion of the lower molecular weight aromatic UCM would be of sufficient 

aqueous solubility to be considered as non-specific narcotic toxicants. Unfortunately, 

the methods commonly used to predict aqueous solubility or log Kow of a particular 

compound are so-called 'additive-constitutive' (cf. Section 3.3.1) or regression 

methods. Given that the data used to derive both fragment contributions for chemical 

groups and regression equations are derived from experimentally measured values of a 

limited set of chemicals, the applicability of such models is not universal (Gombar and 

Enslein, 1996), and in the present study, the structures of the model aromatic UCM 

hydrocarbons proposed by Revill et aL (1997) and Thomas et aL (1997) are 

considerably more complex than the simple hydrocarbons used to establish and validate 

such predictive models. Consequently, the accuracy of any solubility or octanol-water 

partition coefficient (log Kow) predictions obtained for the model aromatic UCM 

hydrocarbons by such methods is uncertain. Whilst an estimate of the physico- 

chemical properties of a particular compound is of use in guiding the choice of test 

compound (discussed previously in Section 3.3), values obtained in this manner cannot 

currently be used to predict the toxicity of compounds of the type proposed as 'model' 

aromatic UCM hydrocarbons. An alternative approach is to test the toxicity of a 

number of hydrocarbons with structures similar to those proposed as 'average' 

structural components of aromatic UCMs. This may provide an indication of the 

'toxic potential' of the aromatic UCM. 
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The aim of the present study was to employ an approach similar to that used 

previously for the model aliphatic UCM hydrocarbon, 4-propyloctane (Section 4.3.1) 

to investigate whether two synthetic model aromatic hydrocarbons, 7- 

cyclohexyltetralin (7-CHT; Figure 5.1,1) and 7-cyclohexyl- I -propyltetralin (7-C- I -PT; 

Figure 5.1,11) are toxic to mussel ciliary feeding activity. Estimates of the log Kow and 

aqueous solubilities of these compounds were obtained using MedChern and SRC 

software packages (values kindly provided by Prof J. Dearden, John Moores 

University, Liverpool), and are summarised in Table 5.1. 

I 

Figure 5.1 Model aromatic UCM compounds 7-cyclobexyltetralin (7-CHT, 1) 

and 7-cyclohexyl-l-propyltetraliii (7-C-1-PT, 11) 

Consideration of the physico-chemical properties of these two compounds in relation 

to the QSAR for the effect of non-specific narcotics upon mussel ciliary feeding 

activity (Donkin el aL, 1989,1991) suggests that 7-cylohexyltetralin may be toxic to 

mussel feeding rate, but that 7-cyclohexyl-l-propyltetralin would not be hydrophilic 

enough to act as a non-specific narcotic toxicant (cf. Section 1.6). However, values of 
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log Kow greater than 6 may be overestimated by as much as one log unit (Brooke el 

aL, '1986; Lyman, 1990; Chessels et aL, 199 1). 

Given the trend in mussel feeding rate demonstrated previously in experiments with 

4-PO (Section 4.3 - 4.6), concentration-response experiments in the present study 

were conducted over an exposure period of 24 h, with the aim of establishing toxicity 

to mussel ciliary feeding activity. The test procedure was modified slightly from that 

employed in the study with 4-PO (Section 4.2) in order to make the procedure simpler 

and faster. 

Compound log Kow Aqueous solubility 
(Pg I-) 

estimate cIOgP SRC microQSAR SRC 
(this study, 

cf. 
Appendix 

D. 1) 

6.61 6.33 6.77 152 60 

7.73 7.91 8.17 32 

Table 5.1 Estimates of log Kow and aqueous solubility for model aromatic UCM 

compounds (provided by Prof. J. Dearden, Liverpool John Moores University) 
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5.2 Experimental details 

The procedure of Donkin et aL (1989,1991) employed in the present study to 

investigate the effect of 4-PO upon mussel feeding (Section 4.2) was modified. The 

initial procedure used large volumes of seawater for exposure of the animals and 

measurements of feeding rates. Preparation of toxicant solutions was lengthy, 

expensive and arduous. By using smaller animals, it was hoped that the volume of 

water used would be reduced and time saved. In addition, the use of smaller animals 

enables a steady state (in terms of total body burden of toxicant) to be reached faster 

than with larger animals, thereby reducing the experimental exposure period required 

to obtain a significant body burden of toxicant. A similar approach has recently been 

successfully used by Widdows et aL (1996). 

As demonstrated in Section 4.3, mussel feeding rate is related to the concentration of 

toxicant in the gill tissue. Once the concentration of toxicant has reached a steady 

state in the gill tissue, no further decrease is observed in mussel feeding rate despite 

continued bioaccumulation of toxicant into the remaining body tissues. Thus, if 

toxicant response is related to the total body burden at exposure times exceeding that 

at which steady state of toxicant has been reached in the gill tissue, the sensitivity of 

the estimate of the tissue concentration required to induce a specific response such as a 

50 % reduction in feeding rate (TEC5o) is lowered. Consequently, for the purposes of 

the work described herein, exposure was kept constant at 24 h for each compound 

tested. It was estimated that a steady state would have been reached in the gill tissue 

by this point (based on the results of experiments with 4-PO, Chapter 4). 

Prior to conducting toxicity tests with the two synthetic model UCM hydrocarbons 

(7-CHT and 7-C-1-PT) a 'pilot' study was conducted using butylcyclohexane (BCH) 

as the toxicant. The toxicity of BCH has been investigated in previous feeding rate 
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studies (Section 4.3 this study; Donkin et al., 1989,1991). Incorporation of this 

experiment meant that results obtained herein could again be compared with previous 

studies (cf. Chapter 4). In addition, the use of a widely available, fairly cheap 

compound such as BCH enabled any flaw in the experimental protocol to be addressed 

without wasting valuable synthetic test compounds. 

5.2.1 Test materials 

7-Cyclohexyltetralin (7-CHT) and 7-cyclohexyl-l-propyltetralin (7-C-1-PT) were 

synthesised, purified and characterised as described in Section 3.3. GC purity was 

greater than 99 % and 97 %, respectively. Butylcyclohexane (BCH) was obtained 

from Aldrich (purity >99 %). 

5.2.2 Preparation of toxicant solutions 

Toxicant solutions were prepared by adding the test compound, in an acetone carrier, 

to filtered seawater as described in Section 4.2.2. 

5.2.3 Exposure of animals 

Seven mussels (Mytilus edulis) of shell length 12 mm ± Imm, were exposed to 1.4 1 

of toxicant solution in a glass beaker. For each concentration of toxicant studied, two 

replicate exposure vessels, each containing seven mussels were set up. For each 

compound studied (i. e. each concentration-response experiment), two control 

exposure vessels containing seven mussels exposed to 1.4 1 of the control solution 

(seawater + 0.001 % acetone) were assembled. Mussels were fed continuously with 

an algal culture (Isochrysis galhana) by means of a peristaltic pump. Gentle water 

219 



movement was maintained using a Teflon stirrer bar (10 mm), The exposure period 

was 24 h. 

5.2.4 Measurement of feeding rate 

Mussel feeding rates were determined by measuring the rate at which algal cells were 

cleared from suspension in a static system (cf. Coughlan, 1969). Following a 24 h 

exposure period, mussels were transferred individually into glass beakers, each 

containing 200 ml toxicant solution. Gentle water movement was maintained using a 

magnetic stirrer and mussels were placed such that the inhalant siphon was facing 

directly into the current. An additional beaker plus stirrer containing only the test 

solution (no mussel) was used as a control. A 30 minute acclimatisation period was 

allowed for the mussels to open their shells and resume feeding. A pre-determined 

volume of algal culture was then added to each beaker to give a concentration of 

12000 - 14000 cells ml". After a five minute mixing period, a 20 ml aliquot was 

removed from each beaker and cell numbers were counted in triplicate using a model D 

Coulter Counter set to measure particles greater than 3 [im diameter. A further 20 ml 

aliquot was removed after 15 minutes and cell numbers determined using the Coulter 

counter. Feeding rates were calculated as described previously (Equation 4.1) using 

the decline in cell numbers over the 15 minute period. 

5.2.5 Chemical analYsis of mussel tissue 

Soft tissue was dissected from the mussel shells and stored at -17'C in solvent rinsed 

glass vials prior to analysis. Tissues were extracted by alkaline digestion (NaOH) 

followed by extraction with hexane (x 3). An internal standard was spiked into the 

mussel tissue immediately prior to extraction. 7-CHT was used as the internal 
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standard for analyses of 7-C-l-PT and vice versa. Tissue extracts were analysed by 

GC-MS. Full experimental details are given in Section 6.6.6. 

5.3 Results 

5.3.1 Concentration-response experiment for the effect of butylcyclohexane 

(BCH) upon mussel feeding rate over a 24 h exposure period. A 'pilot study' 

A summary of the effects of BCH upon mussel feeding rates and total body burdens 

of BCH obtained is presented in Table 5.2. Concentration-response curves for the 

effect of BCH upon mussel feeding rate over a 24 h exposure period expressed in 

terms of both nominal aqueous exposure concentration and total body burden of 

toxicant are shown in Figures 5.2 and 5.3. A reduction in mussel feeding rate upon 

exposure to BCH is clearly evident. 

Nominal aqueous total body burden mussel feeding mussel feeding 
concentration (mg kg-1 wet wt) rate rate expressed as a 

Otg I-) (I h-1) % of the control 
mean ± sd (n=7) feeding rate 

0 (control) 0 0.43 ± 0.06 (n=14) 100 

25 34.5 0.37 ± 0.05 86 

25 35.9 0.31 ± 0.07 72 

50 59.8 0.22 ± 0.05 51 

50 57.7 0.22 ± 0.07 51 

100 117.6 0.18 ± 0.04 42 

100 113.1 0.11 ± 0.03 26 

200 196.8 0.08 ± 0.03 19 

200 197.6 0.06 ± 0.02 14 

Table 5.2 The effect of butylcycloliexa-ne (BCH) upon mussel feeding rate over a 
24 h exposure period 
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Mussel feeding rates measured for replicate experiments at each concentration were 

compared using a t-test (P=0.05, two-tailed). With the exception of the feeding rates 

obtained at a nominal aqueous exposure concentration of 100 gg I", there were no 

significant differences between replicate experiments. Consequently, for the purposes 

of estimating an EC5o value, data from replicate experiments in which there were no 

significant differences between the two replicates, was pooled. A summary of the 

pooled data is presented in Table 5.3. A TEC50 value for the effect of BCH upon 

mussel feeding rate was then obtained by applying the relationship y= cc + Plogio x, 

fitted by linear least squares regression to data in Table 5.3. Figure 5.4 illustrates the 

concentration (tissue)-response data. A summary of the regression statistics is 

presented in Appendix F. 1. 
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Figure 5.2 Concentration (aqueous)-response curve for the effect of 
butylcyclohexane (BCH) upon mussel feeding rate over a 24 h exposure period 
values plotted as mean j: s. d. (n=7) 
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Figure 5.3 Concentration (tissue)-response curve for the effect of 

butylcyclohexane (BCH) upon mussel feeding rate over a 24 It exposure period 

values plotted as mean ± s. d (n = 7) 

Nominal aqueous total body burden mussel feeding, mussel feeding 
concentration of of toxicant rate rate expressed as a 

BCH (mg kg-1 wet wt) (111-1) percentage of 
(ftg I-) (n=2) mean± sd (n=14) control feeding 

except * where n=7 rate 
0 (control) 0 0.43 ± 0.06 100 

25 35.2 0.34 ± 0.07 79 

50 58.7 0.22 ± 0.06 51 

100 115.3 0.18 ± 0.04* 42 

100 115.3 0.11 ± 0.03* 26 

200 197.2 0.07 ± 0.03 16 

Table 5.3 A summary of the pooled concentration-response data for the effect of 

butylcyclohexane (BCH) upon mussel feeding rate 
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Figure 5.4 Concentration (tissue)-response curve for the effect of BCH upon 

mussel feeding rate over a 24 h exposure period 

valuesplotted as mean ±s. d. (n=]4 except where n=7 (See Table 5.3)) 

A TEC50 estimate of 72 mg kg" wet tissue weight (52.2 - 98.5 mg kg7'; upper and 

lower 95 % confidence limits) was obtained. This gives a TEC5o value of 0.514 mmol 

kg" (0.373 - 0.703 mmol kg-', 95 % confidence limits). Comparison of this value with 

that obtained byDonkin et aL (1991; 40 mg kg"' or 0.29 mrnol kg" wet weight tissue) 

indicates that the TEC50 value obtained in the present study is slightly higher. 

Unfortunately, Donkin and co-workers did not cite the 95 % confidence intervals for 

their BCH TECso and thus the errors of this estimate are unknown. The crude TEC5o 

estimate for BCH made during studies of 4-PO in the present study (Section 4.3) was 

comparable with that of Donkin et aL (1991) at approximately 40 mg kg7l. These 

variations in TEC5o values may be due to differences in the lipid content of the mussels 

used in each study. In addition, given the relationship between the concentration of 
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toxicant in the gill tissue and mussel feeding rate demonstrated in Section 4.3, it is 

probable that the slightly higher TEC5o estimate obtained in the present study occurred 

because the concentration of BCH in the gill tissue had reached a steady state early 

within the 24 h exposure period. The feeding rate of the mussels would therefore have 

reached a constant value, but the total body burden of BCH was still increasing, 

leading, as discussed previously, to a less accurate TEC50 estimate. The difference 

between the TEC5o estimates of Donkin et aL (1991) and the present study are, in any 

case very small. Previous studies relating total body burden of toxicant to toxic 

response (e. g. McCarty, 1986,1987ab; McCarty et aL, 1992a; Mortimer and Connell, 

1995) have considered differences of less than one order of magnitude to be 

approximately constant. Thus the TEC50 value obtained by the present 'modified' 

method of feeding rate measurement can be considered entirely reasonable and shows 

that the revised method is applicable to toxicity measurements in mussels whilst at the 

same time representing a significant saving in time and cost. The revised method was 

therefore applied to the study of the two synthetic model compounds. 

5.3.2 Concentration-response experiments for the effect of two model aromatic 

UCM compounds, 7-cyclohexyltetralin (7-CHT) and 7-cyclohexyl-l- 

propyltetralin (7-C-1-PT) upon mussel feeding rate over a 24 h exposure 

period 

A summary of the effects of both aromatic UCM model compounds upon mussel 

feeding rate and tissue concentrations of toxicant measured in experiments with 7- 

CHT and 7-C-l-PT are presented in Tables 5.4 and 5.5 respectively. Concentration- 
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Nominal aqueous total body burden mussel feeding mussel feeding 
concentration (mg kg-1 wet wt) rate rate expressed as a 

(Itg (I h-1) % of the control 
mean A: sd (n=7) feeding rate 

0 (control) 0 0.49± 0.04 (n=14) 100 

12 22.9 0.30 ± 0.05 61 

25.3 0.33 ± 0.05 67 

25 40.7 0.25 ± 0.06 51 

42.4 0.21 ± 0.06 43 

50 79.6 0.15 ± 0.07 31 

80.5 0.18 ± 0.07 37 

100 152.5 0.12 ± 0.05 24 

149.6 0.09 ± 0.04 18 

Table 5.3 The effect of 7-cyclohexyltetralin (7-CHT) upon mussel feeding rate 

over a 24 h exposure period 

Nominal aqueous total body burden mussel feeding mussel feeding 
concentration (mg kg-' wet wt) rate rate expressed as a 

(ILg I-) (I h-') % of the control 
mean I sd (n=7) feeding rate 

0 (control) 0 0.47 ± 0.04 (n= 14) 

12 23.7 0.51 ± 0.06 108 

20.6 0.48 ± 0.05 102 

25 44.8 0.37 ± 0.05 79 

43.6 0.34 ± 0.04 72 

50 120.9 0.27 ± 0.08 57 

129.7 0.28 ± 0.07 60 

100 215.4 0.16 ± 0.11 34 

212.1 0.16 ± 0.07 34 

Table 5.5 The effect of 7-cyclohexyl-I-propyltetralin (7-C-1-PT) upon mussel 
feeding rate over a 24 h exposure period 
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Figure 5.5 Concentration (aqueous)-response curve for the effect of 

7-cyclohexyltetralin (7-CHT) upon inussel feeding rate over 24 11 

(values plotted as mean ± sd, n=7) 
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Figure 5.6 Concentration (tissue)-response curve for the effect of 

7-cyclohexyltetralin (7-CHT) upon mussel feeding rate over 24 h 

(values plotted as mean ± sd, n= 7) 
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Figure 5.7 Concentration (aqueous) - response curve for the effect of 

7-cyclohexyl-l-propyltetralin (7-C-1-PT) upon mussel feeding rate over a 24 h 

exposure period 
(values plotted as mean ± sd, n= 7) 
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Figure 5.8 A concentration (tissue) - response curve for the effect of 

7-cyclohexyl- I -pro pyltetral in (7-C-1-PT) upon mussel feeding rate over a 24 h 

exposureperiod (values plotted as mean -± sd, n= 7) 
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response curves for the effect of both model aromatic UCM compounds upon mussel 

feeding rate over a 24 h exposure period (expressed in terms of both aqueous exposure 

concentration and total body burden of toxicant) are presented in Figures 5.5 - 5.8. 

Values are plotted as mean feeding rate ± standard deviation (n=7). It is apparent 

from these graphs that both 7-CHT and 7-C-l-PT have a narcotic effect upon mussel 

ciliary feeding activity. 

Comparison of the feeding rates of replicate exposure concentrations within each 

individual experiment revealed no significant differences between the two replicates. 

Consequently, replicate data for each exposure concentration was pooled prior to 

estimation of the TEC5o value for each test compound. Summaries of the pooled data 

for both 7-CHT and I -P-7-CHT are presented in Tables 5.6 and 5.7. TEC5o estimates 

for the effect of each model aromatic UCM compound upon mussel feeding rate were 

obtained in an identical manner to that described previously for BCH (Section 5.3.1) 

and are presented in Table 5.8. Figures 5.9 and 5.10 illustrate the concentration 

(tissue)-response curves used in the calculation of TECso estimates. 

Nominal aqueous total body burden mussel feeding mussel feeding 
concentration of of toxicant rate rate expressed as a 

7-CHT (mg kg-1 wet wt) (111-1) % of the control 
(ftg I-) (mean, n=2) mcan: h sd (n=14) feeding rate 

0 (control) 0 0,49 ± 0.04 100 

12 24.13 0.32 ± 0.05 65 

25 41.53 0.23 ± 0.06 51 

50 80.08 0.17 ± 0.07 35 

100 151.03 0.10 ± 0.05 20 

Table 5.6 Summary of the concentration-response data for the effect of 

7-cyclohexyltetralin (7-CHT) upon mussel feeding rate, 24 h exposure 
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nominal aqueous total body burden mussel feeding mussel feeding 
concentration of of toxicant rate rate expressed as a 

7-C-1-PT (mg kg-1 wet wt) (111-1) % of the control 
Otg I-) (mean, n=2) mean ± sd (n=14) feeding rate 

0 (control) 0 0.47 ± 0.04 100 

12 22.1 0.50 ± 0.05 106 

25 44.2 0.36 ± 0.05 77 

50 125.3 0.28 ± 0.07 60 

100 213.8 0.16 ± 0.09 34 

Table 5.7 A summary of the concentration (tissue)-response data for the effect of 
7-cyclohexyl-l-propyltetralin (7-C-1-PT) upon mussel feeding rate, 24 h exposure 

TEC5o mg kg-1 Lower 95 % Upper 95 % 
Test compound (MMOI kg-, confidence limit confidence limit 

wet Wt tissue) 

7-cyclohexyltetralin 

7-cyclohexyl- I- 

41.1 42.1 mg kg" 46.2 mg kg" 

(0.206) (0.196 mmol kg") (0.216 mmol kg"') 

138 9 1.0 mg kg" 204.2 mg kg»' 

propyltetralin (0.539) (0.355 mmol kg") (0.797 mmol kg") 

Table 5.8 TEC50 values for the effect of the model aromatic UCM hydrocarbons 

7-CHT and 7-C-1-PT upon mussel ciliary feeding activity 
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Figure 5.9 Concentration (tissue)-response curve for the effect of 

7-cyclohexyltetralin (7-CHT) upon mussel feeding rate over a 24 h exposure 

period (values plotted as mean ± sd, n=14) 
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Figure 5.10 Concentration (tissue)-response curve for the effect of 7-cyclohexyl- 

1-propyltetralin (7-C-1-PT) upon mussel feeding rate over a 24 h exposure period 

(values plotted as mean ± sd, n =14) 
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5.4 Discussion 

The aim of the present study was to investigate whether hydrocarbons with structures 

similar to those proposed as 'average' model structures of aromatic UCM 

hydrocarbons (Revill et aL, 1997; Thomas et al., 1997) have a narcotic effect upon 

mussel ciliary feeding activity. 

A further aim was to modify the established method of mussel feeding rate 

determination, in order to develop a simple and reproducible technique to rapidly 

assess if compounds are toxic or non-toxic, thus enabling further research to be 

directed towards those compounds of greatest toxicological interest. This was 

achieved by using mussels of a smaller size (12 mm, shell length) compared with the 

animals used in previous studies (40 mm shell length, Chapter 4, present study; Donkin 

et al., 1989,1991). The use of smaller animals enabled the total volume of seawater 

necessary for an experiment to be reduced. This effectively reduced the time, space and 

quantities of test chemicals required. 

The study has shown that both of the model aromatic UCM hydrocarbons tested 

were toxic to mussel ciliary feeding activity. At nominal aqueous exposure 

concentrations of greater than 25 gg 1"' and approximately 75 pg 1-1 for 7- 

cyclohexyltetralin and I-propyl-7-cyclohexyltetralin respectively a reduction in mussel 

feeding rate of greater than 50 % was observed. 

A comparison of the TEC50 values and physico-chemical data obtained in the present 

study with those reported for a number of aromatic hydrocarbons by Donkin et aL 

(1989,1991) is presented in Table 5.9. The narcotic action of 7-cyclohexyl-1- 

propyltetralin upon mussel feeding rate demonstrated herein is surprising if the 

predicted log K,,, and aqueous solubility values are accurate. According to the 
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established QSAR (Donkin et aL, 1989,1991) for the effect of hydrocarbons upon 

mussel feeding rate, a highly hydrophobic compound such as 7-cyclohexyl-l- 

propyltetralin (log Kow 7.96-8.17, aqueous solubility, 3 pg I'; mean of two estimates) 

would be considered non-toxic because of a low aqueous solubility. As illustrated in 

Table 5.9, I-phenyldecane, tested by Donkin el aL (1991) is of comparable 

hydrophobicity to 7-cyclohexyl-l-propyltetralin but exposure of M edulis to I- 

phenyldecane failed to produce a response. As discussed previously, errors in the 

estimated log Kow and aqueous solubility values may be large, and the true log Kow 

value for 7-cyclohexyl-l-propyltetralin may be much lower and the compound may 

have sufficient aqueous solubility to induce narcosis. 

As both model aromatic UCM hydrocarbons were toxic, the present work has clearly 

shown that the aromatic UCM, an environmental burden previously ignored by the 

majority of workers, is of some toxicological significance and should prove to be an 

interesting area for further investigation. Clearly, an area of future work should be to 

measure accurately the aqueous solubilities of the two hydrocarbons tested. 

Interestingly, a comparison of the toxicity of aromatic hydrocarbons of similar carbon 

number, [e. g. I-phenyldecane (C16), pyrene (C16) and fluoranthene (C16)], tested by 

Donkin el aL (1989,1991), with those studied in the present study [7-CHT (C16), 7- 

C-I-PT, (C19)] suggests that the narcotic cut-off has been effectively extended by 

consideration of hydrocarbons of the type tested herein. Donkin et aL (1989,1991) 

reported no measurable effect upon mussel feeding rate for either fluoranthene or 

I phenyldecane, and no consistent response for pyrene and suggested that the results 

obtained for fluoranthene and pyrene were anomalous (these compounds being of 

relatively high aqueous solubility; 263 pg 1-1 and 135 Rg I', respectively). The authors 

suggested that the apparent lack of toxicity might be due to sequestration or some 
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other mechanism which reduced the concentration available at the active site (Donkin 

et aL, 1991). However, the lack of narcotic action observed for I-phenyldecane 

(aqueous solubility 5 pg I-) was considered to be indicative of a narcotic cut-off. The 

present study has clearly demonstrated that 7-cyclohexyltetralin (C16) has a narcotic 

effect upon mussel feeding rate. This suggests that alicyclic moieties such as those 

present on 7-cyclohexyltetralin increase the solubility of the hydrocarbon sufficiently 

(when compared with acyclic moieties of a comparable size) to induce a narcotic 

effect. Indeed, the C19 hydrocarbon tested in this study (7-cyclohexyl-l-propyltetralin) 

has also been demonstrated to be of sufficient aqueous solubility to be considered a 

narcotic toxicant, effectively extending the molecular weight range of narcotic 

chemicals. Further work is now required to attempt to define the narcotic cut-off 

more accurately, in order to be able to predict the narcotic effects of aromatic UCM 

hydrocarbons bioaccumulated within marine organisms such as mussels. 

5.5 Conclusions 

The work described herein has demonstrated that exposure to either of the two 

synthetic model aromatic UCM hydrocarbons can cause a significant reduction in 

mussel feeding rate. To the best of the author's knowledge, this is the first study to 

investigate the toxicity of model aromatic UCM hydrocarbons. The aromatic UCM is 

a quantitatively significant, but rarely reported, environmental burden in petroleum 

hydrocarbon contaminated mussels (cf. Section 2.4). The demonstrable narcotic 

activity of the two hydrocarbons studied herein, suggests that the aromatic UCM is not 

only a quantitatively significant environmental burden, but a proportion of the low 

molecular weight aromatic UCM hydrocarbons may also be toxicologically significant 

and should not be ignored in future environmental monitoring programmes. Clearly, 
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further work is required to define the narcotic cut-off and determine what proportion 

of aromatic hydrocarbon UCMs bioaccumulated by marine mussels is toxic. 
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CHAPTER SIX 

Experimental details 



6.1 General Laboratory Procedures 

All glassware was soaked in a 5% solution of Decon 90Tm, rinsed thoroughly with hot 

tap water, followed by a final rinse in distilled water and oven dried (I I O'C). After 

drying, the glassware was covered with aluminium foil. Immediately prior to use all 

glassware was rinsed (x 3) with clean solvent. 

All solvents were BPLC or glass distilled grade (Rathburn Chemicals Ltd., 

Walkerburn, U. K. ). Solvent purity was routinely monitored by rotary evaporation 

(Buchi, 40'C, 100ml), transfer to a vial, evaporation to approximately 0.5ml and analysis 

of an aliquot (0.5 pl) by gas chromatography (GC). Deionised water (Milli-Q grade) 

was further purified by extraction with DCM (x 3). 

Silica gel (Aldrich, 100 mesh) and aluminium oxide (BDH, grade 1, neutral, 150 mesh) 

adsorbents used for chromatographic separations were Soxhlet extracted (DCM, 24 h) 

prior to use. Adsorbents of the required activity were prepared by activation (silica, 

24 h, 120'C; aluminiurn oxide, 12h, 450'Q, followed by cooling in a dessicator prior to 

de-activation by addition of water (pre-extracted Milli-Q) and mechanical shaking 

(3-5 h) to ensure homogenisation. Once prepared, adsorbents were stored in a 

dessicator and used within 24 h. Typically, aluminium oxide was deactivated to 1.5 % 

(w/w) and silica was deactivated to 5% (w/w). In the instances when fully activated 

silica was employed, the silica was removed from the oven, cooled in a dessicator and 

used immediately. 

Anhydrous sodium sulphate, cotton wool, anti-bumping granules and Soxhlet thimbles 

were Soxhlet extracted (DCM, 24 h) prior to use. Sodium hydroxide pellets were 

sonicated (10 mins x 3) in DCM, and hydrochloric acid was extracted with DCM (x 3). 

237 



6.2 Instrumental details 

6.2.1 Gas chromatography (GQ 

Instrument Carlo Erba 5300 Mega series gas chromatograph 
Column DB-5 fused silica capillary column, 25 mx0.32 mm. i. d. 

Q&W inc. ) 
Injector On-column 

Carrier gas Hydrogen, flow rate 2 ml min"' 
Oven temperature 
programme I 

40'- 3000 @ 5' min-', held @ 300T for 10 minutes 

Column performance was qualitatively monitored daily by injection of an alkane 

mixture. All chromatograms were recorded using a Shimadzu C-R4A chromatopac 

integrator. 

6.2.2 Gas chromatography - mass spectrometry (GC-MS) 

GC details; 

Instrument Hewlett Packard MSD GC-MS 

Column HP-1 Ultra, fused silica column. 12 mx0.2 mm i. d. (Hewlett 
Packard) 

Injector Auto splitless injection (250T) 

Carrier gas Helium (40 kPa head pressure) 

Oven temperature 
programme 

40-300T @ 5T min-', hold @ 300T 10 minutes i 

Mass spectrometer operating conditions; 

lon source temperature 250'C 

lonisation energy 70 eV 

Mass range 35-600 Daltons 
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6.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) 

13 C and 'H-NMR spectra of samples in deuterated chloroform (trimethylsilane 

reference) were recorded using a Jeol EX270 MHz high resolution FT-NMR 

spectrometer. 

6.2.4 Infra red spectroscopy (IR) 

Infra-red spectra were recorded as liquid films (NaCl disks) using a BrOcker IFSS 

spectrometer, resolution 4 ctn"', 32 sample scans, 4000 - 400 wave numbers. 

6.3 Determination of aliphatic and aromatic UCM hydrocarbon concentrations in 

mussels from U. K. coastal sites 

6.3.1 Sample collection 

Mussels (Mytilus edulis) were collected from the various sampling locations (cf. 

Section 2.4.1, Figure 2.10), wrapped in solvent rinsed aluminium foil and immediately 

transported back to the laboratory in Plymouth packed in dry ice. Soft tissue was then 

dissected from the shell over ice to minimize losses of volatile analytes, homogenised and 

stored in clean, solvent rinsed glass jars at -20' C until required. 

6.3.2 Authentic compounds/deuterated internal standards 

Authentic 5-ethyltetralin, 2-ethylnaphthalene and 1,3-diphenylhexane were provided by 

Dr M. Hodges, (BP Research and Engineering). Samples of n-phenyldecane, 

4-pentylbiphenyl, phenanthrene, pyrene, acetophenone, 9-fluorenone, benzoic acid, 

239 



cyclohexanecarboxylic acid, 9-anthracenecarboxylic acid, hexanedioic acid, I-naphthol 

and 9-hydroxyfluorene were purchased from Aldrich Ltd. 7-n-hexyInonadecane was 

available from previous synthetic studies in this laboratory (Gough, 1989). 

4-propyloctane was synthesised in the present study (cf. Section 6.4). Purity of all 

compounds was greater than 98 % (determined by GQ. 

Deuterated standards (dio-l-methyinaphthalene, d12-tetralin and djo-phenanthrene) were 

obtained from Aldrich Ltd. Purity of all deuterated standards was greater than 98 % 

(determined by GQ. 

6.3.3 Sample concentration 

For the recovery experiments described in Section 2.3.3, authentic compounds were 

spiked into 250 ml DCM and concentrated to a final volume of 0.5 ml by either rotary 

evaporation, macro-Kuderna Danish (K. D. ) or a combination of rotary evaporation and 

micro-K. D. 

6.3.3.1 Rotary evaporation + micro-K. D. (controlled evaporation) 

The sample was concentrated to a volume of ca 35 ml by rotary evaporation. 

Following rotary evaporation, the sample was transferred to the micro-K. D. apparatus 

(Supelco). An anti-bumping granule was added and the apparatus (with the exception of 

the receiving vessel) lagged in cotton wool and foil for insulation. The apparatus was 

then held in a water bath maintained at 52'C, with the receiving vessel fully immersed in 

water. Solvent volume was reduced to the required volume (typically I ml) and 

transferred quantitatively to a clean vial. The K. D. concentrator is illustrated in Figure 

6.1. 
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7- 

I cm = 40 mm actual K-D size 

7 

I=snyder column; 2= micro condenser, 112 mm; 3= flask, 40 ml; 4=receiving vessel, 2 

m 5= boiling chip; 6=water bath; 7=laboratory stand; 8--thermometer; 9=aluminium foil 

and cotton wool wrap 

Figure 6.1 The micro-Kuderna Danish apparatus (Ali, 1994) 
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6.3.3.2 Macro-K. D. 

The procedure employed was as described above in Section 6.3.3.1, but a macro-K. D. 

apparatus (250 ml volume capacity) was used and use of the rotary evaporator was 

omitted. 

6.3.4 Extraction methods 

To measure the recovery of the authentic compounds from the mussel tissue 

homogenate using the various extraction methods described below, authentic reference 

compounds dissolved in acetone were spiked into wet mussel homogenate. The tissue 

was then mixed thoroughly and left at 4'C for 4h to allow partitioning of the analytes 

into the mussel tissue. 

6.3.4.1 Soxhlet extraction (DCM: metlianol) 

Wet mussel homogenate (ca 40 g) was ground with anhydrous sodium sulphate, placed 

in a pre-extracted Soxhlet thimble and Soxhlet extracted using DCM: methanol (1: 1, v/v; 

24 h). The extract was then transferred to a separating funnel and extracted (x 3) with 

acidified pre-extracted water (pH 1, conc. HCI). 

The aqueous phase was then washed (x 4) with 20 ml aliquots of DCM. The organic 

layers were combined and dried (18 h) over anhydrous sodium sulphate. The solution 

was then filtered and the solvent removed by controlled evaporation (cf. Section 6.3.3.1) 

to a volume of approximately I ml. The solvent system was then changed from DCM to 

n-hexane under a gentle stream of nitrogen to provide the sample in a non-polar solvent 

for fractionation purposes. The total organic extract (TOE) was analysed by GC. 
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6.3.4.2 Soxhlet extraction (DCM) 

Wet mussel homogenate (ca 40 g) was ground with anhydrous sodium sulphate, placed 

in a pre-extracted Soxhlet thimble and extracted (Soxhlet, DCM, 24 h). The TOE was 

dried over anhydrous sodium sulphate (18 h) and the solvent removed by controlled 

evaporation to a final volume of approximately I ml, as described previously (Section 

6.3.3.1). The solvent system was then changed from DCM to n-hexane under a gentle 

stream of nitrogen and the sample analysed by GC. 

6.3.4.3 Two-phase extraction method 

The method used was a modification of that described by Rhead el al (1971). Wet 

mussel tissue (ca 40 g) was acidified to pH I (conc. HCI) and 15 ml of a mixture of 

n-pentane: 2-propanol (1: 4, v/v, added). The resulting mixture was sonicated for 40 

nýnutes. A further 120 ml of ii-pentane and 117 ml of pre-extracted water were then 

added. The mixture was gently shaken for 5 minutes, followed by centrifugation at 2000 

rpm for 20 minutes. The upper (n-pentane) layer was transferred to a stoppered conical 

flask and the lower aqueous layer decanted and retained. The procedure was repeated 

(x 2) and the n-pentane layers combined and dried over anhydrous sodium sulphate (18 

h). The sample was concentrated to I ml by controlled evaporation (Section 6.3.3.1) 

and analysed by GC. 

6.3.5 Fractionation of mussel TOE by open column chromatography 

The total organic extract was fractionated into 'aliphatic', 'aromatic' and 'polar' 

fractions using a glass column (700 mm x 20 mm) packed with a n-pentane slurry of 

silica (60 - 100 mesh; fully activated, 20 g) under aluminiurn oxide (grade 1, neutral, 1.5 

% deactivated, 20 g). A sample to adsorbent ratio of 1: 200 (w/w) was employed. The 

243 



sample was applied to the top of the column and sequential elution of the column with 

solvents of increasing polarity yielded the desired fractions: 

F, ('aliphatic'); 1.5 column volumes n-pentane 

F2 ('aromatic'); 2 column volumes n-pentane: DCM (1: 1, v/v) 

F3 ('polar'); 2 column volumes DCM 

F4 ('polar'); 2 column volumes methanol 

Fractions F, and F2 were concentrated by controlled evaporation (Section 6.3.3.1) and 

analysed by GC. 

6.3.6 Normal phase HPLC separation of aromatic fractions of mussel extract 

A ring size separation of the 'aromatic' fraction obtained by open column 

chromatography (Section 6.3.5) was obtained using normal phase HPLC with a 

cyano/arnino bonded phase according to a slight modification of the method of Killops 

and Readman (1985). 

BPLC instrumental details were as follows; 

Pumps Merck-Hitachi L 6200A intelligent pump and L-6000 
LC pump 

Detector UVNIS spectrophotometer at 254 nm 
Columns Two 25 cm x 25 mm i. d. Partisil 5Vm. PAC columns 

(Cyano: amino (1: 2) bonded phase, Whatman) 
connected in series. A guard column was also fitted 

Mobile phase/solvent 100 % n-hexane to 100 % DCM in 30 minutes, flow 

gradient rate 1.5 ml min-' 

A mixture of authentic aromatic hydrocarbons (5-ethyltetralin, 2-ethylnaphthalene and 

phenanthrene) was examined daily to monitor fractionation reproducibility. Fractions 

were collected as follows; 

Cut 1 0-9 mins cmono-aromatic' hydrocarbons 

2 9-13 mins 'di-aromatic' hydrocarbons 
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11-15 mins 'tri-aromatic' hydrocarbons 

4 15-30 mins > 3- ring PAHs 

Each fraction was concentrated under a gentle stream of nitrogen to approximately 

100pl and analysed by GC. 

6.3.7 Quantification of authentic compounds in method validation 

Quantification of authentic compounds for method validation was performed using 

either GC or GC-MS. 

The percentage recovery of authentic compounds spiked into mussel tissue was 

calculated from external standard calibration graphs. A standard mixture containing the 

relevant authentic compounds (cf. Table 2.1) was prepared. Aliquots of this standard 

mixture were removed and accurately diluted to produce a concentration range covering 

that necessary for analysis of the 'spiked' samples. The peak areas obtained for each 

compound, using a Shimadzu CR4-A recording integrator, were plotted against the 

known concentration in the mixture to produce a calibration graph for each compound 

(R 2 ý: 0.998). The peak area of the 'spiked' authentic compound was then measured and 

the concentration read from the relevant calibration graph. 

Analyses by GC were all performed using the same syringe, thoroughly rinsed between 

samples to avoid cross contamination. GC-MS analyses employed auto-injection. 

6.3.8 Quantirication of total unresolved and resolved hydrocarbons 

Samples were analysed by GC-MS (instrumental details in Section 6.2.2) and 

quantification performed using the Chemstation TM (Hewlett Packard) software. 
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Integration parameters were as follows; 

total hydrocarbons (resolved + unresolved); 

threshold = -22 

peak width 0.074 

area reject 0 

AREASUM on, 3.00 mins 

AREASUM off, 61.5 mins 

resolvedpeaks; 

threshold = 18.9 - 20 

peak width 0.074 

area reject 0 

The total resolved peaks were then subtracted from the total hydrocarbons to give a 

value for the area of the unresolved component. Concentrations of resolved and 

unresolved hydrocarbons were calculated using an average response factor, calculated 

from the internal standards over the appropriate molecular weight range. 

6.3.9 Reproducibility of integration software 

To measure the reproducibility of the integration package used, five replicate samples 

of Mobil Velocite oil were analysed by GC-MS and the total peak area of both the 

resolved and unresolved hydrocarbons measured. The results are presented in Table 6.1, 

with the mean and relative standard deviation (RSD) of five analyses given. RSD values 

are 0.7 % and 0.6 % for the resolved and unresolved hydrocarbons respectively. 
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Injection area of 
resolved 

components 
(as % of total 

peak'area) 

area of UCM 
components (as % of 

total peak area) 

1 44.2% 55.8% 

2 44.5% 55.6% 

3 45.0% 55.0% 

4 44.8% 55.2% 

5 44.3% 55.2% 

mean 44.6% 55.4% 

rsd 0.7% 0.6% 

Table 6.1 Precision and reproducibility of the ChemstationTM integration software 

used for quantification 
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6.4 Synthesis of model aliphatic and aromatic hydrocarbons. 

6.4.1 Synthesis of 4-propyloctane (4-PO) 

Synthesis of 4-propyloctane followed the scheme outlined in Figure 3.2, involving the 

Grignard coupling of propyl magnesium bromide to ethyl pentanoate. A similar synthetic 

scheme was successfully employed in a previous study to synthesis a higher molecular 

weight 'T-branched' alkane, 7-hexylnonadecane (Gough, 1989). The purity and 

authenticity of all starting materials was confirmed by GC-MS and IR. 

6.4.1.1 Synthesis of 4-propyloctan-4-ol 

As Grignard reagents are extremely moisture sensitive, great care was taken to ensure 

exclusion of any moisture from the glassware and reagents. Glassware was oven dried 

(120T, 18 h), assembled whilst hot and immediately placed under a stream of nitrogen. 

Magnesium ribbon was also oven dried prior to use. Sodium-dried diethyl ether was 

used and all other reagents were dried over anhydrous sodium sulphate. Whilst in use, 

the reaction glassware was protected from moisture with calcium chloride drying tubes. 

Magnesium turnings (2.4 g, 0.1 mol) were placed in a round bottom flask with 

approximately 30 ml dry diethyl ether. I-Bromopropane (10.5 ml, 0.115 mol) was 

dissolved in diethyl ether (20 ml, Na-dried) and approximately 5 ml. of this mixture added 

to the magnesium turnings in the round bottom flask. The mixture was gently heated and 

magnetically stirred until the formation of a cloudy precipitate was observed. The 

remainder of the bromopropane-diethyl ether mixture was then added dropwise to the 

reaction mixture over a 30 minute period, with constant stirring. The reaction mixture 

was gently refluxed for a further 30 minutes. 

Once the reaction mixture had cooled, ethylpentanoate (6.7 H, 0.045 mol) dissolved in 

diethyl ether was added dropwise with stirring to maintain a gently refluxing solution and 
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then heated gently under reflux for a further 30 minutes. When cool, the reaction 

mixture was poured onto ice (28 g) and saturated ammonium chloride solution (50 ml) 

and mixed well. Extraction with diethyl ether (3 x 20 ml) followed by rotary evaporation 

to remove the solvent, yielded the crude reaction products (clear yellow oil). 

Crude reaction products were purified by vacuum distillation at 10 mm Hg. Pure 4- 

propyloctane was collected at 107'C (@ 10 mm Hg). The purified alcohol was then 

analysed by GC and characterised by NIS and NMR ('H, 13 C and DEPT). 

GC purity: > 99 % 

Yield: 44 % 

MS: nilz 154 (M+, -H20,3%); 129 (M+* 
- 

C3H7ý 100 %); 115 (M+*-C4H9,75 %) 

13 C-NMR: (ppm), 74.3,41.6,38.9,25.6,23.3,16.6,14.6,14.0 

'H-NMR: (ppm) t, 0.8 (9H); ni, 1.1- 1.3 (15H) 

Spectral assignments are illustrated in Figures 3.4 - 3.7. 

6.4.1.2 Synthesis of 4-propyloctenes 

4-propyloctan-4-ol was dehydrated to an isomeric mixture of 4-propyloctenes by acid 

catalysed dehydration (Vogel, 1989). 

4-propyloctan-4-ol (1.49 g, 0.0075 mol) was refluxed with orthophosphoric acid (I ml, 

0.017 mol) for 15 minutes. The mixture was then transferred to a separating funnel and 

approximately 5 ml saturated sodium chloride solution added to neutralise any residual 

acid. The organic reaction products were obtained by extraction with diethyl ether (3 x2 

ml), dried over anhydrous sodium sulphate and the solvent removed by rotary 

evaporation. The crude alkenes were purified by column chromatography on fully 

activated silica, and eluted with hexane. Fully activated silica was employed to dehydrate 

any remaining alcohol to the target alkenes. The pure alkenes were analysed by GC and 

fully characterised by MS. 
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Yield: 89 

GC purity: > 99 % 

MS; nilz 154 (M+', 30%); 41,55,65 

Spectral assignments are illustrated in Figure 3.9. 

6.4.1.3 Synthesis of 4-propyloctane 

The alkene isomeric mixture (900 mg, 0.0058 mol) was dissolved in ii-hexane (10 ml). 

Adams Catalyst (20 mg, Pt02. H20) and a few drops of glacial acetic acid were added 

and hydrogen gas bubbled gently through the solution for 2.5 h. The progress of the 

reaction was monitored by analysis of aliquots of reaction mixture by GC. 

Once complete, the reaction mixture was filtered through a plug of defatted cotton 

wool to remove the catalyst, and the solvent removed by rotary evaporation. The crude 

reaction products were purified by argentation-silica column chromatography, (silica, 5% 

deactivated w/w + 10% w/w AgN03) and eluted with ii-hexane. The pure alkane, 

4-propyloctane was analysed by GC and characterised by MS and NMR (1H, "C and 

DEPT). 

GC purity: > 99 % 

Yield: 92 % 

MS: nilz 156 (M+*, 3 %); 112 (M+*- C3H8,46%); 114 (M+*- C3H6,10%); 57 (C4H9,100 

%); 43 (C3H7,55%) 

"C-NMR: (ppm), 3 6.8,3 6.1,3 3.4,28.9,23.2,19., 14.5,14.2 

'H-NMR: (ppm) ni, 0.8 - 0.9 (9H); m, 1.2 - 1.4 (15H) 

Spectral assignments are illustrated in Figures 3.11 - 3.13. 
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6.4.2 Synthesis of the model aromatic hydrocarbons 7-cyclohexyltetralin and 

7-cyclohexyl-l-propyltetralin 

Synthesis of 7-cyclohexyltetralin and 7-cyclohexyl- I -propyltetralin was achieved using 

a modification of the Haworth synthesis (Vogel, 1989). This synthetic pathway has 

been extensively studied and is commonly used for the synthesis of a wide range of 

aromatic hydrocarbons. The synthetic route employed for both alkyltetralins is the same 

for the first three stages, to the cyclic ketone (7-cyclohexyl-l-tetralone). The keto group 

was then reduced to an alkyl group to produce 7-cyclohexyltetralin, whilst the second 

model compound, 7-cyclohexyl-l-propytetralin was synthesised by addition of a propyl 

chain to the tetralone using a Grignard reaction. The reaction scheme is illustrated in 

Figure 3.15. 

6.4.2.1 Synthesis of 3-benzoyl(4'-cycloliexyl)propanoic acid 

Nitrobenzene (40 ml), phenylcyclohexane (16.8 ml, 0.1 mol) and succinic anhydride 

(12 g, 0.1 mol) were placed in a round bottom flask fitted with a mechanical stirrer. The 

mixture was gently heated and stirred until the succinic anhydride had completely 

dissolved. After cooling to ca 50'C, aluminium chloride was added gradually to the flask 

with vigorous stirring, allowing each portion of aluminium chloride to dissolve before 

addition of the next. Addition of aluminum chloride to the reaction mixture yielded an 

orange solution, which darkened to a deep red colour upon addition of further aluminium 

chloride, with evolution of hydrogen chloride gas. Once evolution of hydrogen chloride 

had ceased, the reaction mixture was hydrolysed by pouring the contents of the flask 

onto ice (20 g) and hydrochloric acid (50 ml). Nitrobenzene was removed from the 

reaction mixture by steam distillation. After the initial steam distillation (3 h, 35 ml 

nitrobenzene collected), the flask was cooled and the crude keto-acid obtained by 

vacuum filtration. The crude product was then dissolved in 150 ml sodium carbonate 

251 



solution and a second steam distillation carried out to remove residual traces of 

nitrobenzene (1.5 h, 5 ml nitrobenzene collected). The hot alkaline solution was treated 

with Ig decolourising carbon, stirred for 2-3 minutes and filtered through a heated filter 

funnel. The filtrate was allowed to cool (ca 50'C) and dilute hydrochloric acid (2: 1 v/v, 

H20; conc. HCI) added slowly with vigorous stirring until effervescence ceased. The 

reaction mixture was left overnight to crystallise (cream coloured solid) and the crude 

keto-acid subsequently obtained by vacuum filtration, the solid was rinsed with dilute 

hydrochloric acid followed by Milli-Q water. Recrystallisation from ethanol: water (1: 1, 

v/v) yielded pure 3-benzoyl(4'-cyclohexyl)propanoic acid (63 %) which was 

characterised by MS, lH and 13 C NMR and IR. 

MS: nilz 3 32 (M", 4%); 317 (M+' - CH3,27 %); 187 (benzylic cleavage, 100 %) 

IR: 3400 cm-' (v 0-H); 1709 cm", 1679 cm" (vC=0) 

"C-NMR: (ppm), 197.5,178.8,154.0,134.2,128.2 , 127.1,44.7,34.1,33.0,28.1 , 

26.7,26.0 

'H-NMR: (ppm) d 7.9; d 7.3; t 3.2; t 2.7; br ni 2.5; ni 1.8 m 1.4 

Spectral assignments are illustrated in Figures 3.18 - 3.21. 

Experiment 2 

The procedure described above was followed but with replacement of nitrobenzene 

with 1,1,2,2-tetrachloroethane. Pure keto acid was obtained in higher yield (85 %) and 

characterised by GC-MS, IR and NMR. 
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6.4.2.2 Synthesis of 4-plienyl(41-cycloliexyl)butaiioic acid 

Potassium hydroxide (6 g) was dissolved in diethylene glycol (40 ml) by gentle heating 

and stirring. 3-Benzoyl(4'-cyclohexyl)butanoic acid (12.5 g) was added to the flask 

together with hydrazine hydrate (3.6 ml; 98 %). The solution was heated under reflux 

for I h. The apparatus was then re-arranged for distillation and excess hydrazine hydrate 

and water removed by distillation until the temperature of the reaction mixture reached 

180'C. The mixture was then refluxed for a further 4 h, the temperature of the reaction 

mixture was maintained at approximately 250T. Afler cooling, the reactants were 

poured into a beaker containing ice and carefully acidified whilst stirring continuously to 

ensure conversion of all the potassium salt to free acid. The crude acid was left to 

solidify (18 h), yielding a brown, waxy solid. The crude acid was then redissolved over 

hot water, allowed to cool slightly and extracted with diethyl ether (2 x 25 ml). The 

ether solution was treated with approximately Ig decolourising carbon for five minutes, 

the solution filtered and the sample treated with a further Ig decolourising carbon 

followed by hot filtration to yield a yellow solution. The diethyl ether was removed 

under vacuum to yield the acid as a brown oil which solidified overnight. The acid, 

(91%, yield) was characterised by GC-MS, IR and NMR. 

GC purity; 98 % 

MS: m1z 318 (M+', 20 %); 303 (M+, - CH3,27 %); 186 (benzylic cleavage, 100 %); 117 

(COOSi(Me)3,92 %) 

IR: br 3015 crdl vOH; 1708 cm" vC=0; 2925 cm-', 2854 cnf 1, vC-H 

13 C-NMR: (ppm) 180.3,145.8,138.4,128.4,126.8,44.1,34.5) 33.4,27.1,26.9 

'H-NMR: (ppm) d 7.1; t 2.6; hr ni 2.4; t 2.3; q 1.9; ni 1.8; m 1.4 

Spectral assignments are illustrated in Figures 3.24 - 3.27 
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6.4.2.3 Synthesis of 7-cyclohexyl-l-tetralone 

Polyphosphoric acid (PPA, 26.4 g) was heated to 90T on a hotplate. 4-cyclohexyl(4'- 

phenyl)butanoic acid (10.8 g), heated to 70'C was added to the PPA and stirred 

vigorously for 3 minutes. A further 22 g of PPA was then added to the reaction mixture 

and heated with stirring for 4 minutes. The reaction mixture was then cooled (ca 60'C) 

and crushed ice added with stirring to hydrolyse the mixture. A thick brown oil 

separated from the reaction mixture. Diethyl ether (50 ml) was added and the mixture 

transferred to a separating funnel. The ether layer was removed and the aqueous layer 

extracted with diethylether (2 x 50 ml). The organic layers were combined and washed 

first with 2x 50 ml Milli-Q grade water, followed by 2x 50 ml sodium carbonate 

solution and finally Milli-Q grade water until the washings were pH neutral. The organic 

fraction was dried over anhydrous sodium sulphate and the ether removed by rotary 

evaporation to yield the tetralone (88% yield). Examination of the crude products by 

GC revealed no further purification was necessary (> 99 % pure). 7-Cyclohexyl-1- 

tetralone was characterised by GC-MS and NMR. 

MS; m1z 228 (M", 100 %); 200 (W*-CO, 30 %); 185 (M+'- CH30,53 %); 172 

13 C-NMR; (ppm) 198.6,146.4,141.9,132.2,128.7,124.9,44.0,39.1,34.2,29.2,26.7, 

25.9,23.2 

'H-NMR; (ppm) s 7.9; d 7.3; d 7.1; t 3.8; t 3.6; ni 2.5; quintet 2.1; m 1.8; ni 1.4 

Spectral assignments are illustrated in Figures 3.29 - 3.32. 

6.4.2.4 Synthesis of 7-cyclohexyltetralin 

Potassium hydroxide (2 g) was dissolved in 30 ml diethylene glycol by gentle heating 

and stirring. 7-cyclohexyl-l-tetralone (3 g, 0.013 mol) and hydrazine hydrate (0.64 ml; 

98 %) were then added to the flask and the solution heated under reflux for I h. The 

apparatus was re-arranged for distillation and the excess hydrazine hydrate and water 
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removed by distillation until the temperature reached 195T. The mixture was then 

refluxed for a further 4h at approximately 2400C. After cooling, the reactants were 

poured onto ice and carefully acidified to Congo Red (HCI), stirring thoroughly to 

ensure conversion of all the potassium salt to the free acid. The reaction products were 

extracted (x 3) with diethyl ether and the organic layers combined, Solvent was removed 

under vacuum and the crude reaction products purified by column chromatography 

(silica column eluting with hexane) to yield the pure alkane, 7-cyclohexyltetralin (> 99 

%; 87 % yield). Confirmation of synthesis of the desired product was confirmed by MS, 

IR and NMR. 

MS: m1z 214 (M+', 100 %); 171; 145; 158; 129 

"C NMR; (ppm) 145.2,136.8,134,5,129.0,127.4,124.0,44.2,34.6,29.5,26.9, 

26.2,23.3 

'H-NMR; (ppm) quintet 6.9; d 2.7; br in 2.4; in 1.7; in 1.4 

Spectral assignments are illustrated in Figures 3.34 - 3.37. 

6.4.2.5 Synthesis of 7-cyclohexyl-l-liydroxy-l-propyltetralin 

As Grignard reactions are extremely moisture sensitive, every precaution was taken to 

ensure exclusion of moisture from the apparatus and reagents. The glassware was oven 

dried (120'C, 18 h) and assembled whilst hot. Calcium chloride guard tubes were fitted 

to the condenser and dropping funnel and the reaction was carried out under a blanket of 

nitrogen. All reagents were dried over anhydrous sodium sulphate and fresh magnesium 

turnings were oven dried (120"C, 18 h) and used immediately. 

Magnesium turnings (2.4 g, 0.1 mol) were added to a round bottom flask containing 30 

ml diethyl ether (Na-dried). I-Bromopropane (10.5 ml, 0.115 mol) was dissolved in 
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diethyl ether (20 ml, Na-dried) in a dropping funnel, and 5 ml of this mixture added, with 

stirring to the flask. After a few minutes the solution become cloudy and the remaining 

bromopropane-ether mixture was added gradually over a period of 20 minutes. The 

mixture was gently heated under reflux for a further 30 minutes, The reaction mixture 

was then cooled and 7-cyclohexyl- I -tetral one (9 g, 0.04 mol), dissolved in diethyl ether 

(20 ml, Na-dried) added gradually with stirring. The mixture was then refluxed for 30 

minutes. The mixture was cooled (ice bath) and hydrolysed by pouring onto ice (28 g) 

and saturated ammonium chloride solution (20 ml). The crude organic reaction products 

were obtained by extraction into diethyl ether (3 x 20 ml) followed by solvent removal 

under vacuum (Bucchi, 40OC; 8.52g). The crude reaction products were examined by 

GC and GC-MS. No further purification step was carried out at this stage owing to the 

nature of the products (cf. Section 3.3.9). 

GC purity; 85 % 

Yield: -52 

MS: nilz 343 (M+, - H, 100 %); 301; 254 

Spectral assignments are illustrated in Figure 3.39. 

6.4.2.6 Synthesis of 7-cyclohexyl-l-propenyltetralin and 7-cyclohexyl-i-propyl-3,4- 

dihydronaphthalene 

The alcohol mixture obtained from the Grignard reaction (6.95 g) was refluxed with 

orthophosphoric acid (10 ml) for 1.5 h. The mixture was then transferred to a 

separating funnel and extracted with diethyl ether (2 x 20 ml). The ether extracts were 

combined and washed with saturated sodium chloride solution until the aqueous 

washings were a neutral pH. Solvent was then removed under vacuum to yield the crude 

reaction products. The crude reaction products were purified by open column 

chromatography, using fully activated silica and eluted with n-hexane. Approximately 
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100 mg of the target alkenes were isolated from the unwanted 7-cyclohexyl-3,4- 

dihydronaphthalene using argentation thin layer chromatography (TLC). Ag' TLC plates 

(0.25 mm thickness) were prepared according to the method of Aitzenmuller and 

Goncalves (1990). Alkene mixture (20 mg) was spotted onto each plate, and the plates 

developed with n-pentane in foil covered TLC tanks. Plates were sprayed with 

Rhodamine 6G and visualised under UV light. The upper band (Rf 0.09 - 0.1) was 

carefully scraped from the plate and the target alkenes eluted from the silica with n- 

pentane. 

GC purity: 98 % 

MS: m1z 254(M", 62 %); 252 (M+'- 2,100 %); 223 

Spectral assignments are illustrated in Figure 3.41. 

6.4.2.7 Synthesis of 7-cyclohexyl-l-propyltetralin 

The pure alkene isomeric mixture (68 mg) was dissolved in approximately 10 ml 

n-hexane to which a few drops of glacial acetic acid and Adams catalyst (Pt02. H20) 

were added (ca 50 g). Hydrogen gas was bubbled gently through the solution. An 

aliquot of reaction mixture was taken after 20 minutes to monitor the progress of 

reaction by GC. After 1.5 ha second aliquot was taken, and analysis by GC indicated 

that the reaction was complete. The reaction mixture was filtered through a cotton wool 

plug to remove catalyst and the solvent removed under a stream of nitrogen. The crude 

alkane mixture was examined by GC and GC-MS. To remove residual traces of alkene, 

the reaction products were eluted through an Ag+ silica column with n-pentane. Solvent 

was removed under a gentle steam of nitrogen and the pure target compound, 7- 

cyclohexyl- I -propyltetralin (91 % yield; 97 % GC purity) characterised by NIS and NMR 

(13 C, DEPT, 1H). 

MS: m1z 256 (M+,, 12 %); 213 
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13 C-NMR: (ppm) 145.2,141.4,134.4,128.9,127.0,123.8,44.3,39.3,37.4,34.6,34.5, 

29.4,27.4,27.0,26.2,20.7,19.8,14.3, 

'H-NMR: (ppm) quintet 6.9, br m 2.7, br ni 2.4, ni 1.3 - 1.7, t 0.9 

Spectral assignments are illustrated in Figures 3.43 - 3.45. 

6.5 Investigations into the effect of 4-propyloctane upon mussel feeding rate 

Toxicity experiments, including the preparation of test solutions and exposure of 

mussels were conducted in a constant temperature room (I 5*C). 

6.5.1 Test compounds 

4-propyloctane was synthesised (Section 6.4). Butylcyclohexane was purchased from 

Aldrich Chemical Company. Purity of test compounds as monitored by GC were; 4- 

propyloctane > 99 %; butylcyclohexane >99% 

The internal standards 4-methylnonane and n-undecane were obtained from Sigma 

Chemical Company. 

6.5.2 Collection and maintenance of mussels (Mytilus edulis) 

Mussels of between 35 mm and 45 mm shell length were collected from the intertidal 

zone at Exmouth, Devon. U. K. Mussels were cleaned of epibionts and held in open- 

flow polythene tanks in recirculating seawater (3 M3 volume) at 33 V., salinity with an 

artificially produced tidal regime which aerially exposed the mussels for two periods of 

2.5 h each day. Mussels were fed continuously with an algal culture of Isochrysis 

galbana. The temperature of the system was maintained at 15 T. The animals were 

allowed seven days to acclimate to laboratory conditions prior to use in experiments. 
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6.5.3 Preparation of toxicant solutions 

Test compounds were dissolved in acetone which acted as a solvent carrier to aid 

dispersion of the test compounds in seawater. A previous study (Donkin et al., 1989) 

has demonstrated that at the concentrations used herein (0.001 % v/v) acetone has no 

effect upon mussel feeding rate. 

All test solutions were prepared using Eddystone Filtered Seawater (EFSW) filtered to 

exclude particles with diameters greater than 45 pm. Glass aspirators of 20 1 capacity 

were filled with 20 1 EFSW at 15*C and the contents magnetically stirred (35 mrn Teflon 

coated follower) until a vortex was produced. An aliquot of the test compound 

dissolved in acetone was added to the aspirator using a glass syringe, discharging the 

solution directly into the seawater. Any emulsion formed by the test solution was held 

in the vortex until the material dissolved. Acetone was added to 'control' aspirators in 

the same way. The aspirators were stoppered and contents stirred for a minimum of 2h 

before use. 

6.5.4 Exposure of mussels to toxicant 

The method of Donkin et aL (199 1) was followed. Groups of mussels were held in 

round-bottomed reaction vessels containing 20 1 test compound solution in EFSW. 

Gentle water movement was maintained by means of a magnetic stirrer, restrained 

within a glass dish to prevent contact with the mussels. The tops of the vessels were 

covered with perforated aluminium foil. The mussels were fed continuously with an 

algal culture (Isochrysis galbana) added by means of a peristaltic pump. 'Control' 

exposure vessels were assembled in an identical manner, substituting toxicant solution 

with 'control' solution (seawater + 0.001% v/v acetone). Test solutions in the exposure 

vessels were changed every 24 h. 
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6.5.5 Measurement of mussel feeding rate 

Following the required exposure period, sixteen mussels were transferred to individual 

glass beakers, each containing 21 test solution. Each beaker also contained a magnetic 

stirrer bar to maintain gentle water movement. Mussels were placed away from the 

stirrer bar and positioned such that their inhalant siphon was facing into the current. A 

thirty minute period was allowed for the mussels to open their valves and resume 

pumping. A beaker containing only test solution and a stirrer bar (no mussel) was also 

set up as a control. 

A pre-determined volume of algal culture was then added to each beaker to give a cell 

concentration of 12000 - 14000 cells ml". After a five minute mixing period, a 20 ml 

aliquot was removed from each beaker and cell numbers counted in triplicate using a 

model D Coulter Counter set to measure particles greater than 3 prn in diameter. 

Further 20 ml aliquots were removed, and the cell count measured every 20 minutes for 

an 80 minute period. Mussel feeding rates (I h") were then calculated for each 20 minute 

period and every 40 minute period using Equation 6.1. The maximum feeding rate over 

a 40 minute period for an individual was used as the feeding rate for that animal. 

feeding rate (7 h-) v 60 
Illm 111M )*( 

I- 2) 

whcre; v= volumc of watcr in bcaker 

t= time period of measurement 

Af, = cell count at to (mean of triplicate measurements) 

M2 = cell count at tj (mean of triplicate measurements) 

Equation 6.1 Calculation of mussel feeding rate 
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6.5.6 Neutral Red retention assay 

The method of Lowe et al. (1995) was followed. Mussel valves were prised apart 

with a scalpel and 0.5 ml of haemolymph was withdrawn from the anterior adductor 

mussel into a 2.5 ml hypodermic syringe fitted with a 25 gauge needle and containing 

0.5 ml physiological saline. Once the haernolympth sample was obtained, the 

hypodermic needle was discarded to reduce shearing forces during the subsequent 

expulsion of the syringe contents into a2 ml siliconised Eppendorf tube held in ice 

water. 

A stock solution of Neutral Red was made by dissolving 20 mg of dye (C. I. 50040) in 

I ml of dimethylsulphoxide (DMSO). A working solution was then prepared by diluting 

10 [d of the stock solution with 5 ml of a mussel physiological saline. 

A 50 gI aliquot of the cell suspension was dispensed onto a 26 x 76 mm microscope 

slide and suspended on a rack in a humidity chamber consisting of a shallow insulated 

vessel containing water ice (incubation temperature IOT) for 15 minutes to allow the 

cells to attach. The excess solution was then carefully decanted and 40 Rl of the neutral 

red working solution added to the area containing the attached cells. A 22 x 22 mm 

coverslip was then applied. After 15 minutes incubation the preparation was examined 

again and thereafter at 30 minute intervals to determine the time at which the dye that 

had been taken up by individual lysosomes (turning them red) had leached out into the 

cytosol. The test was terminated at 180 minutes. 

6.5.7 Tissue Analysis 

Soft mussel tissue was dissected from the shells over ice to minimize losses of analytes, 

homogenised and stored in solvent rinsed glass jars at -20'C prior to analysis. Tissue 

was extracted by steam distillation (Donkin and Evans, 1984). Internal standards (4- 
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methylnonane and n-undecane) were spiked into wet mussel homogenate immediately 

prior to extraction. 

Mussel homogenate (typically 6 g) was added to a round bottom flask containing 10 ml 

iso-hexane, 10 ml sodium hydroxide (4 mol) and 400 ml solvent extracted water. A 

12.5 ml capacity Dean and Stark water estimator and condenser were fitted to the flask 

and the aqueous homogenate heated at 80 ± 5'C for 2 h. Hydrochloric acid (50 ml, 0.68 

mol) was added via the condenser, followed by 50 ml distilled water to reduce the pH 

of the homogenate to approximately 7. The heat was then increased, and the mixture 

distilled for a further 2 h. After cooling, the extract was transferred to a stoppered tube 

and stored at -20'C for several hours to freeze out any water present. The extract was 

then transferred to a solvent rinsed vial and analysed by GC. 

Recovery of 4-PO and BCH spiked into mussel homogenate and subsequently 

extracted by the above steam distillation method were found to be 94.1 ± 0.05 % and 

93.2 %±0.5 %, respectively (mean ± rsd, n=3). 

6.6 Investigations into the toxicity of model aromatic UCM hydrocarbons upon 

mussel feeding rate 

6.6.1 Test compounds 

As no suitable test compounds were available commercially, two model aromatic UCM 

compounds were synthesised using a modification of the Haworth synthesis (Section 

6.4.2). Butylcyclohexane was purchased from Aldrich Chemical Company. Purity of 

test compounds as monitored by GC were; Butylcyclohexane > 99 %; 

7-cyclohexyltetralin > 99 %; 7-cyclohexyl- I -propyltetralin > 97 % 
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6.6.2 Collection and maintenance of mussels 

Mussels of between 10 and 20 mm shell length were collected from Whitsand Bay, 

Cornwall. This is known to be a relatively uncontaminated site with respect to 

petroleum hydrocarbon contamination (P. Donkin, pers. comm. ). Animals were cleaned 

and held in tanks of recirculating seawater at 15'C, as described in Section 6.5.2. 

6.6.3 Preparation of toxicant solutions 

Toxicant solutions were prepared by adding solutions of the toxicant in acetone to 

filtered seawater as described in Section 6.6.3. Control solutions were prepared using 

acetone only (0.00 1% v/v). 

6.6.4 Exposure of animals 

Groups of seven mussels, shell length 12 mm ±I mm were exposed to 1.4 1 toxicant 

solution in a glass beaker. Gentle water movement was maintained using a Teflon stirrer 

bar (10 mm) taking care to position the animals as far away from the stirrer bar as 

possible. The animals were fed with an algal culture (Isochrysis galbana). Exposure 

time was 24 h. A control vessel containing filtered seawater plus acetone was 

assembled in parallel with each set of measurements. For each exposure concentration, 

two separate exposure experiments were conducted. 

6.6.5 Measurement of mussel feeding rate 

Animals were transferred from the exposure vessel into individual 250 ml glass beakers, 

each containing 200 ml toxicant solution. The animals were allowed an acclimatisation 

period of 30 minutes to open their valves and resume pumping prior to the addition of 

algae. Algal culture (volume pre-determined to give a cell concentration of 12000 - 
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15000 cells mrl) was then added to each beaker and the water gently stirred to ensure 

an even distribution of algae within each beaker. An aliquot (20 ml) of water was then 

taken from each beaker and the cell count determined in triplicate per aliquot using a 

Coulter Counter set to measure particles greater than 3 prn in diameter. A further 

aliquot was taken after 15 minutes and the decline in cell concentration over the 15 

minute period calculated using Equation 6.1. 

6.6.6 Tissue analysis 

Soft tissue was dissected from the shell over ice to minimize losses by volatilization, 

homogenised and stored in solvent rinsed vials at -20 T prior to analysis. 

7-cyclohexyltetralin was used as an internal standard for determination of 7-cyclohexyl- 

1-propyltetralin in mussel tissue and vice versa. Internal standards were spiked into 

mussel homogenate immediately prior to analysis. Mussel tissue from experiments with 

the alkyltetralins was extracted by the procedure described below. Mussel tissue from 

experiments with butylcyclohexane as the toxicant were extracted by steam distillation 

as described previously in Section 6.5.7. 

Wet mussel tissue was placed in a stoppered centrifuge tube with 5 ml of sodium 

hydroxide (3 M) and heated in a water bath at 60'C for 20 minutes. After cooling, 10 

ml n-hexane was added to the tube which was then stoppered and the mixture was 

vigorously shaken (5 minutes) followed by centrifugation (2000 rpm, 10 minutes). The 

n-hexane layer was then transferred to a stoppered conical flask and dried over 

anhydrous sodium sulphate. After drying, solvent was removed from the extracts by 

rotary evaporation until ca I ml remained, followed by transfer of the extract to a clean 

vial and the remaining solvent removed under a gentle stream of nitrogen. Extracts were 

analysed by GC-MS. 
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Recoveries of 7-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin from mussel tissue 

as determined by spike recovery experiments was 89 %±3% and 92 ±4%, 

respectively. 
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CHAPTERSEVEN 
Conclusions and suggestions for future work 



7.1 Conclusions 

The occurrence of unresolved complex mixtures (UCMs) of hydrocarbons in the 

aliphatic fractions of marine sediments and organisms is well documented and widely 

used as a reliable indication of petroleum hydrocarbon contamination. However, the 

presence of an unresolved complex mixture in the aromatic fraction is often ignored 

and seldom reported. The toxicological significance of both aliphatic and aromatic 

UCM hydrocarbons is largely unknown and uninvestigated. 

The overall objectives of the current study were therefore first, to establish the 

quantitative significance of aromatic UCM hydrocarbons in environmental samples, 

and then to assess the environmental significance of both aliphatic and aromatic 

UCMs. More specifically, the aims were: to establish whether oil-polluted mussels 

contain an aromatic UCM burden, to synthesise suitable quantities of selected, pure, 

well characterised model aliphatic and aromatic UCM hydrocarbons for toxicological 

testing and, finally, to investigate the toxicity of the synthetic model UCM 

hydrocarbons. 

A reproducible analytical method was developed to investigate the quantitative 

significance of aromatic UCM hydrocarbons in petroleum hydrocarbon contaminated 

mussels. Emphasis was placed upon good recoveries of tbe low molecular weight, 

'. toxicologically significant hydrocarbons, without cornpron-ýising the recovery of higher 

molecular weight hydrocarbons which are useful compounds in environmental 

monitoring schemes. The use of a n-kro-Kuderna Danish apparatus to careffilly 

control the final stages of sample concentration significantly increased the recovery of 

low molecular weight aliphatic and aromatic hydrocarbons when compared with the 

traditional method of rotary evaporation (t-test, P=0.05). In addition, the use of a two 

phase extraction method which yielded the total organic extract (TOE) in non-polar n- 
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pentane also minimized the losses of volatile low molecular weight hydrocarbons by 

eliminating the need for a solvent 'change over' step, prior to fractionation of the 

TOE. 

The optimised method was used to measure the aliphatic and aromatic hydrocarbon 

burdens of mussels (Mytilus edulis) from a small number of coastal sites around the 

U. K. The results indicate that aromatic hydrocarbon UCMs may form a significant 

proportion of the total hydrocarbon body burden of mussels from petroleum 

hydrocarbon contaminated areas. In the samples analysed, the aromatic UCM 

represents approximately 20 % of the total hydrocarbon body burden and dominates 

the aromatic hydrocarbon fraction. Concentrations measured ranged from 

unobservable in relatively uncontanýnatecl areas, up to 430 pg g" dry weight tissue in 

the most heavily contaminated site, Whitby harbour. In contrast, naphthalene and 

alkyInaphthalenes, which are resolved aromatic hydrocarbons routinely measured in 

monitoring programmes, are present at concentrations less than I pg g" dry weight 

tissue in the mussels from Whitby harbour. Aromatic UCM concentrations measured 

in replicate in mussels from open coastal sites (New Brighton, Cleethorpes, 

Teesmouth) range from 86 - 133 pg g" dry weight. 

Further fractionation of the aromatic UCM by normal phase HPLC indicates that the 

. aromatic UCMs bioaccumulated by mussels consist predominantly of mono-aromatic 

hydrocarbons with smaller amounts of di-aromatics. 

The presence of aromatic UCM hydrocarbons in marine organisms has rarely been 

reported before, probably because routine monitoring programmes focus upon GC 

resolved compounds of known toxicological significance. However, since the present 

study has demonstrated that aromatic UCMs are bioaccumulated by mussels in 
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quantitatively significant amounts, existing methodologies may have failed to provide a 

measure of an environmentally important burden. 

in addition, aliphatic hydrocarbon UCMs were present at concentrations ranging 

from 3445 pg g" dry weight tissue in mussels from Whitby harbour, to approximately 

7 pg g-' dry weight tissue in mussels from Whitsand Bay (the 'clean' site). In mussels 

sampled from open coastal sites (Cleethorpes, Teesmouth and New Brighton) aliphatic 

UCM concentrations ranged from 231 - 573 pg g" dry weight tissue. 

In order that the toxicity of UCM hydrocarbons could be investigated, a number of 

'model' UCM hydrocarbons were synthesised. A low molecular weight model aliphatic 

UCM hydrocarbon 4-propyloctane (4-PO) was synthesised by coupling 

1-bromopropane to ethylpentanoate via a Grignard reaction. Dehydration of the 

resultant tertiary alcohol followed by catalytic hydrogenation yielded the pure (> 99%) 

target alkane, 4-PO. 

The synthetic 4-PO, which is a C11 alkane, had a demonstrable narcotic effect, 

causing a reduction in mussel ciliary feeding activity. Previous studies have suggested 

that a 'cut-off in toxicity occurs for ii-alkanes larger than n-decane (Clo) but no 

branched model UCM hydrocarbons were tested (Donkin ef aL, 1991). The present 

work therefore demonstrates that the molecular weight range for narcotic 

. 
hydrocarbons is effectively extended by consideration of branched hydrocarbons such 

as those of which the aliphatic UCM is believed to be composed. This is presumably 

because of their higher aqueous solubilities compared to straight chain hydrocarbons of 

comparable carbon number. This result suggests that a small proportion of aliphatic 

UCMs may have some toxicological significance, particularly the lower molecular 

weight fractions. Further work is required to establish how much of the aliphatic 

UCM is of toxicological importance. Two low molecular weight model aromatic 
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UCM hydrocarbons, 7-cyclohexyltetralin (7-CHT, purity > 99% by GQ and 7- 

cyclohexyl-l-propyltetralin (7-C-1-PT; purity 97 % by GQ were synthesised using a 

modification of the Haworth synthesis. The synthetic route for both compounds was 

the same for the first three stages, to the cyclic ketone (7-cyclohexyl- I -tetralone). The 

'base' compound, 7-cyclohexyltetralin was then synthesised by reduction of the keto 

group to an alkyl group, whilst the second model compound 7-cyclohexyl-l- 

propyltetralin was synthesised by addition of a propyl chain to the tetralone using a 

Grignard reaction. Dehydration of the alcohol product followed by catalytic 

hydrogenation yielded the target alkyltetralin. 

Both 7-cyclohexyltetralin and 7-cyclohexyl-l-propyltetralin (which areC16 and C19 

hydrocarbons, respectively) were found to reduce mussel ciliary feeding activity. 

Previously, Donkin et aL (1989,1991) have reported that a C16 hydrocarbon, 

(1-phenyldecane) had no measurable effect upon mussel feeding rate (presumably 

owing to its low aqueous solubility). Thus the toxicity 'cut-off for aromatic 

hydrocarbons has also been extended, presumably because the model aromatic UCM 

hydrocarbons are of sufficient aqueous solubility to act as non-specific narcotics. To 

the best of the author's knowledge, this is the first study to investigate the toxicity of 

aromatic UCM hydrocarbons. Given the quantitative significance of the aromatic 

-. UCM, the results reported herein suggest that aromatic UCM hydrocarbons are not 

only a quantitatively important environmental burden, but are also of some 

toxicological significance. 

The effective tissue concentrations required to produce a 50 % reduction in mussel 

feeding rate (TEC5o) for 4-propyloctane, 7-cyclohexyltetralin and 7-cyclohexyl-l- 

propyltetralin were similar and comparable with reported TEC5o values for the 

detrimental effects of other hydrocarbons upon mussel feeding rate (- 16 - 94 mg kg" 
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wet weight tissue or 0.1 - 0.6 mmol kg7l; Donkin el aL, 1989,1991). The range 

(which is small given the differences in experimental exposure times in the present and 

published studies) is consistent with the theory that narcotic effects occur at a 

relatively constant body burden of toxicant. 

Whilst numerous studies have reported toxicant body burden data for toxicity tests in 

which lethality is the end-point and established that a relatively constant body burden 

of narcotic toxicant is associated with LC5o estimates (typically 2-8 mmol' kg"), 

comparison of the tissue residue data reported herein for sublethal toxicity studies is 

limited by the few studies published (Call el al., 1985; McCarty ef aL, 1986; Mortimer 

and Connell, 1995). Indeed, not only is there a paucity of tissue residue data for sub- 

lethal toxicological studies, but the majority of tissue residue data actually reported for 

sub-lethal endpoints is often estimated using the aqueous exposure concentration of 

toxicant and a calculated bioconcentration factor. Consequently, errors associated 

with these values may be large and comparison with data reported herein not 

particularly meaningful. With the exception of the reports of Donkin el aL (1989, 

1991), no comparable studies appear to have used a QSAR approach to study the 

sublethal responses of mussels to non-specific narcotic toxicants and in which the body 

burden of toxicant has been measured. 

By separately examining the concentration of toxicants in the total body and in the 

gill tissue (the presumed site of toxic action for a reduction in mussel ciliary feeding 

activity), the present study has provided a detailed and unique insight into the 

relationship between concentration of toxicant in the mussel and the observed mussel 

feeding rate. A clear relationship between the concentration of toxicant in the gill 

tissue and mussel feeding rate has been demonstrated. However, the relationship 

between mussel feeding rate and total body burden of toxicant (cf. Donkin el aL, 1989, 

270 



1991) breaks down with increasing experimental exposure time. Once a steady state 

for toxicant concentration has been reached in the gills of the mussel, bioaccumulation 

of toxicant into other discrete compartments, such as lipid-rich organs, results in an 

increasing body burden of toxicant but no further decrease in mussel feeding rate is 

observed. Thus, with increased exposure times, estimated TECso values for mussel 

feeding rate may be erroneously high. 

One of the aims of establishing laboratory derived concentration-response 

relationships and the QSAR approach employed in the present study is to allow 

biological effects to be predicted from concentrations of contaminants measured in 

mussels collected in the field (Widdows and Donkin, 1992). For such purposes, the 

estimate of compound toxicity should be as accurate as possible. It is clear from the 

present study that in order for this to be achieved mussel feeding rate experiments 

should be kept relatively short (< 48 h). 

In light of the above findings, the established method of determining mussel feeding 

rate determination was modified to produce a more rapid, simple and reproducible 

technique with which to assess the toxicity of compounds. Using butylcyclohexane as 

a reference, the modified procedure was shown to produce results comparable with 

those obtained by established procedures (Donkin et al., 199 1). 

Overall, the research presented herein has demonstrated that aliphatic UCM and 

aromatic UCM hydrocarbons are quantitatively significant environmental 

contaminants, and that a proportion of the low molecular weight aliphatic UCM and 

probably a greater proportion of the aromatic UCM hydrocarbons are toxicologically 

significant. It is suggested that for meaningful environmental assessments of 
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anthropogenic hydrocarbon pollution to be made, quantification of UCM components 

should be included in standard methods. 

7.2 Future work 

Future work discussed below includes suggestions for further toxicological studies 

and improvements to the analytical methodology employed in the present study. 

Whilst the analytical method developed for the analysis of aliphatic and aromatic 

hydrocarbons in mussel tissue has proved to be reproducible, the accurate 

quantification of polar compounds was less successful and requires further 

development. The importance of including polar hydrocarbon oxidation products in 

environmental monitoring schemes has been highlighted recently by Bums (1993a). 

Polar hydrocarbon oxidation products, formed by processes of photo-chemical 

oxidation and biological metabolism are bioaccumulated within marine organisms and 

in some instances are present at concentrations significant enough to contribute to the 

overall estimate of the toxic level of hydrocarbon contaminants (Bums et aL, 1990; 

Widdows el aL, 1990). 

An improvement to the analytical methodology used in Chapter 2 would be the 

replacement of the open column chromatography 'clean-up' step with the use of solid 

.. phase extraction (SPE) to separate polar from non-polar compounds. The non-polar 

fraction obtained from this procedure could then be fractionated into aliphatic, mono-, 

di- and tri-aromatic fractions by preparative normal phase BPLC. The polar 

compounds could then be eluted from the SPE cartridge and analysed. This would 

remove the problem encountered in the present study of irreproducible recovery of 

polar compounds from a silica column. A potential problem in the detection and 

quantification of polar hydrocarbons in mussel tissue is the presence of higher 
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concentrations of naturally occurring polar lipids which may -,, nask the presence of any 

polar compounds of interest. The inclusion of a gel filtration step (e. g. Sephadex) 

would enable separation of the higher molecular mass, naturally occurring lipids from 

smaller anthropogenic polar compounds of toxicological interest. Further separation 

and identification of the polar oxidation products could then be conducted using LC- 

MS-MS. No quantitative methods for the analysis of polar hydrocarbon oxidation 

products in mussel tissue have, as yet, been reported. However, there is currently 

considerable interest in the application of LC-MS-MS for the analysis of polar organic 

compounds in water samples (K. Thomas, pers. comm. ) 

The present study has demonstrated that the narcotic 'cut-off is effectively extended 

by consideration of branched hydrocarbons such as the Cn 'T-branched' hydrocarbon, 

4-propyloctane. However, to what extent the molecular weight range of narcotic 

hydrocarbons is extended remains unknown. Synthesis of a larger 'T-branched' 

alkane, e. g. a C15 hydrocarbon, followed by toxicological testing and measurement of 

its aqueous solubility may answer the question to a limited extent. Given that the 

majority of aliphatic UCM hydrocarbons are of much greater molecular size than 

4-propyloctane and therefore most probably of little toxicological significance it is 

likely that only a very small proportion of aliphatic hydrocarbon UCMs are of any 

', toxicological significance. Whilst concentrations of 'toxic' aliphatic UCM 

hydrocarbons may not be sufficient to be thought of as toxicologically significant when 

considered on their own they may contribute to the toxic burden as a whole. A 

number of studies have demonstrated that narcotic toxicants are concentration additive 

when present as a mixture (e. g. Hermens ef al., 1984,1985; Deneer el al., 1988; Cf. 

Section 1.6). For example, Deneer el aL (1988) demonstrated that compounds present 

in very low concentrations, well below their gno toxic-effect. ' levels contribute to the 
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joint toxicity of a mixture. To test this hypothesis a 'mini' low molecular weight UCM 

could be simulated by synthesising all the isomers of a branched aliphatic hydrocarbon, 

(for example C11 has 8 isomers, and there are 19 possible isomers for a C16 compound; 

C. A. Lewis, pers comm). The toxicity of the resulting 'mixture' could then be tested 

upon mussel feeding rate and the results compared with those obtained for single 

compound tests. 

As discussed in Chapter 5, the accuracy of estimates of aqueous solubility or octanol- 

water partition coefficient obtained using established prediction methods is uncertain 

and errors may be large. Although there is lack of agreement as to the best molecular 

descriptor with which to delineate the narcotic 'cut-ofl', aqueous solubility appears to 

be a better predictor than the octanol-water partition coefficient or molar volume (cf. 

Abernethy et al., 1986; Donkin el aL, 1989,1991). Before any further conclusions 

can be made regarding what proportion of both aliphatic and aromatic hydrocarbon 

UCMs are toxic, it is desirable to obtain accurate aqueous solubility data for the model 

UCM compounds synthesised and tested. The use of the 'generator' column method 

(Wasik et aL, 1983) to measure aqueous solubility offers a number of advantages over 

other methods as the procedure is rapid, precise and suitable for hydrophobic 

compounds (Yalkowsky and Banedee, 1992). The synthetic scheme employed in the 

, present study for the synthesis of model aromatic UCM hydrocarbons is such that a 

number of hydrocarbons of differing alkyl chain length could easily be produced by 

synthesis of a large quantity of the 7-cyclohexyltetralone, division of the tetralone into 

smaller quantities and addition of a different alkyl chain to each 'batch' via Grignard 

reactions. Synthesis of a pseudo-homologous series of alkyltetralins, followed by 

measurement of the aqueous solubility of each compound and regression analysis of 

molecular size (carbon number) against aqueous solubility would produce an equation 
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relating the size of the molecule to its aqueous solubility. This equation could be used 

to predict the solubility of alkyltetralins and thus predict whether a compound will be 

toxic or non-toxic. Subsequent toxicological testing of the two compounds believed to 

bracket the narcotic cut-off point (i. e. the two alkyltetralins with aqueous solubilities 

closest to 70 Vg I") could then be conducted. Such an experiment would be of use in 

evaluating whether the existing parameters used to delineate narcotic action were 

correct. 

A promising area of future study could be to investigate whether UCM hydrocarbons 

are a significant source of polar hydrocarbon oxidation products into the marine 

environment and, if so, whether photo-oxidation products of UCM hydrocarbons are 

toxic. A number of model aromatic UCM hydrocarbons could be tested, firstly to see 

whether they will photo-oxidise and secondly if the oxidation products produced are 

toxic. 
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APPENDIX A. 1.3 
COMPARISON OF SAMPLE CONCENTRATION TESTS; Rotary evaporation 
vs rotary evaporation & micro-K. D. 

4-propyloctane 
P(O. 01) 
t-Test: Two-Sample Assuming 
Equal Variances 

method I method 2 
Mean 60.51666667 80.53333333 
Variance 167.8576667 41.75466667 
Observations 66 
Pooled Variance 104.8061667 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.386561494 
P(T<=t) one-tail 0.00346288 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.00692576 
t Critical two-tail 3.169261618 

phenyldecane 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method I method 2 
Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
PCT<=t) two-tail 
t Critical two-tail 

68.41666667 86.70333333 
25.38566667 47.52922667 

66 
36.45744667 

0 
10 

-5.245683109 
0.000187857 

2.7637725 
0.000375713 
3.169261618 
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5-ethyltetralin 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 68.1 88.583333T3 
Variance 95.76 29.91366667 
Observations 66 
Pooled Variance 62.83683333 
Hypothesized Mean Difference 0 
df 10 
t Stat -4.475629364 
P(T<=t) one-tail 0.000593513 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.001187026 
t Critical two-tail 3.169261618 

2-ethylnaphthalene 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 73.81666667 89.5 
Variance 60.53766667 54.636 
Observations 6 6 
Pooled Variance 57.58683333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.579623921 
P(T<=t) one-tail 0.002507418 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.005014837 
t Critical two-tail 3.169261618 

1,3-diphenylhexane 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 79.5 94.28333333 
Variance 66.064 24.75766667 
Observations 66 
Pooled Variance 45.41083333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.799734578 
P(T<=t) one-tail 0.001743661 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.003487322 
t Critical two-tail 3.169261618 
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4-pentylbiphenyl 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method I method 2 
Mean 86.7 95.516666T7 
Variance 19.756 12.08166667 
Observations 66 
Pooled Variance 15.91883333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.827449164 
P(T<=t) one-tail 0.001666362 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.003332725 
t Critical two-tail 3.169261618 

phenanthrene 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 88.4 96.96666667 
Variance 19.784 18.07466667 
Observations 66 
Pooled Variance 18.92933333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.410396206 
P(T<=t) one-tail 0.003326927 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.006653854 
t Critical two-tail 3.169261618 

pyrene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.01) 

method 1 method 2 
Mean 94.1 97.26666667 
Variance 23.328 16.35066667 
Observations 66 
Pooled Variance 19.83933333 
Hypothesized Mean Difference 0 
df 10 
t Stat -1.231400827 
P(T<=t) one-tail 0.123173169 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.246346338 
t Critical two-tail 2.228139238 
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P(O. 05) 
t-Test: Two-Sample Assuming Equal Variances 

method I method 2 

Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

94.1 97.26666667 
23.328 16.35066667 

66 
19.83933333 

0 
10 

-1.231400827 
0.123173169 

2.7637725 
0.246346338 
3.169261618 

7-hexylnonadecane 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 91.86666667 100.15 
Variance 15.21066667 21.327 
Observations 66 
Pooled Variance 18.26883333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.35668323 
P(T<=t) one-tail 0.003641443 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.007282887 
t Critical two-tail 3.169261618 

acetophenone 
P(O. 01) 
t-Test: Two-Sample Assuming Equal Variances 

method I method 2 
Mean 74.26666667 95.18333333 
Variance 36.88666667 31.24566667 
Observations 66 
Pooled Variance 34.06616667 
Hypothesized Mean Difference 0 
df 10 
t Stat -6.207138978 
P(T<=t) one-tail 5.0256E-05 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.000100512 
t Critical two-tail 3.169261618 
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9-fluorenone 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 05) 

method 1 method 2 
Mean 88.31666667 100.9 
Variance 79.80966667 44.092 
Observations 66 
Pooled Variance 61.95083333 
Hypothesized Mean Difference 0 
df 10 
t Stat -2.769062462 
P(T<=t) one-tail 0.00990958 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.01981916 
t Critical two-tail 2.228139238 

t-Test: Two-Sample Assuming Equal Variances 
P(O. 01) 

method 1 method 2 
Mean 88.31666667 100.5, 
Variance 79.80966667 44.092 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

66 
61.95083333 

0 
10 

-2.76906246 
0.00990958 
2.7637725 

0.01981916 
3.169261618 

benzoic acid 
P (0.01) 
t-Test: Two-Sample Assuming Equal Variances 

method 1 method 2 
Mean 77.08333333 93.383333 
Variance 95.07766667 75.74566667 
Observations 66 
Pooled Variance 85.41166667 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.054848194 
P(T<=t) one-tail 0.006075396 
t Critical one-tail 2.7637725 
PCT<=t) two-tail 0.012150792 
t Critical two-tail 3.169261618 
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t-Test: Two-Sample Assuming Equal Variances 
(P(O. 05) 

method I method 2 
Mean 77.08333333 93.383333T3- 
Variance 95.07766667 75.74566667 
Observations 66 
Pooled Variance 85.41166667 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.054848194 
P(T<=t) one-tail 0.006075396 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.012150792 
t Critical two-tail 2.228139238 

cyclohexanecarboxylic acid 
t-Test: Two-Sample Assuming Equal Variances 
P (0.01) 

method 1 method 2 
Mean 77.6 92.16666667 
Variance 212.94 23.02266667 
Observations 6 6 
Pooled Variance 117.9813333 
Hypothesized Mean Difference 0 
df 10 
t Stat -2.322812528 
PCT<=t) one-tail 0.021284164 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.042568328 
t Critical two-tail 3.169261618 

t-Test: Two-Sample Assuming Equal Variances 
P(O. 05) 

method 1 method 2 
Mean 77.6 92.16666667 
Variance 212.94 23.02266667 
Observations 6 6 
Pooled Variance 117.9813333 
Hypothesized Mean Difference 0 
df 10 
t Stat -2.322812528 P(r<=t) one-tail 0.021284164 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.042568328 
t Critical two-tail 2.228139238 
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9-anthracenecarboxylic acid 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 01) 

method I method 2 
Mean 81.56666667 97.05 
Variance 48.79866667 29.615 
Observations 66 
Pooled Variance 39.20683333 
Hypothesized Mean Difference 0 
df 10 
t Stat -4.282961867 
P(T<=t) one-tail 0.000801945 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.00160389 
t Critical two-tail 3.169261618 

hexanedioic acid 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

method 1 method 2 
Mean 75.13333333 92.3 
Variance 96.30666667 126.568 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 

6 
111.4373333 

0 
10 

-2.816639375 
P(T<=t) one-tail 0.009132844 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.018265687 
t Critical two-tail 2.228139238 

t-Test: Two-Sample Assuming Equal Variances 
P(O. 01) 

method I method 2 
Mean 75.13333333 92.3 
Variance 96.30666667 126.568 
Observations 66 
Pooled Variance 111.4373333 
Hypothesized Mean Difference 0 
df 10 
t Stat -2.816639375 
P(T<=t) one-tail 0.009132844 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.018265687 
t Critical two-tail 3.169261618 
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1-naphthol 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 01) 

method I method 2 
Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 

74.06666667 95.88333333 
154.9666667 47.49766667 

66 
101.2321667 

0 
10 

t Stat -3.75bbWl I 

PCr<=t) one4ail 0.0018743 
t Critical one4ail 2.7637725 
P(T<=t) two-tail 0.003748601 
t Critical two-tail 3.169261618 

9-hydroxyfluorene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

method I method 2 
Mean 82.6 95.13333333 
Variance 69.356 27.87466667 
Observations 66 
Pooled Variance 48.61533333 
Hypothesized Mean Difference 0 
df 10 
t Stat -3.113440594 
P(T<=t) one-tail 0.005498038 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.010996076 
t Critical two-tail 2.228139238 

t-Test: Two-Sample Assuming Equal Variances 
P (0.01) 

method I method 2 
Mean 82.6 95.13333333 
Variance 69.356 27.87466667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 

66 
48.61533333 

0 
10 

t Stat -3.113440594 
P(T<=t) one-tail 0.005498038 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.010996076 
t Critical two-tail 3.169261618 
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APPENDIX A. 2.4 
COMPARISON OF SAMPLE EXTRACTION TECHNIQUES; DCM Soxhlet 
extraction vs two-phase extraction method 

4-propyloctane 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 05) 

Soxhlet 2-phase 
Mean 39.68333333 57.71666667 
Variance 39.28566667 14.23366667 
Observations 66 
Pooled Variance 26.75966667 
Hypothesized Mean Difference 0 
df 10 
t Stat -6.038044203 
P(T<=t) one-tail 6.2793E-05 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.000125586 
t Critical two-tail 3.169261618 

phenyldecane 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 05) 

Soxhlet 2-phase 
Mean 58.83333333 70.8833333T 
Variance 33.95466667 5.445666667 
Observations 66 
Pooled Variance 19.70016667 
Hypothesized Mean Difference 0 
df 10 
t Stat -4.702325889 
P(T<=t) one-tail 0.000419301 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.000838602 
t Critical two-tail 2.228139238 

5-ethyltetralin 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

68.66666667 74.48333333 
3.338666667 3.389666667 

6 
3.364166667 

0 
10 

-5.49282866 
0.000132218 
1.812461505 
0.000264436 
2.228139238 

312 



2-ethylnaphthalene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 69.51666667 74.98333333 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

6.317666667 3.621666667 
66 

4.969666667 
0 

10 
-4.247365066 
0.000848278 
1.812461505 
0.001696555 
2.228139238 

1,3-diphenylhexane 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 80.25 88.566667 
Variance 8.683 3.9266667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

66 
6.304833333 

0 
10 

-5.73684502 
9.42658E-05 
1.812461505 
0.000188532 
2.228139238 

4-pentylbiphenyl 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 82.85 87.466667 
Variance 13.547 3.7746667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

66 
8.660833333 

0 
10 

-2.71712304 
0.010833531 
1.812461505 
0.021667063 
2.228139238 

313 



phenanthrene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 83.91666667 90.45 
Variance 6.117666667 5.343 
Observations 66 
Pooled Variance 5.730333333 
Hypothesized Mean Difference 0 
df 10 
t Stat -4.72721659 
P(T<=t) one-tail 0.000403785 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.000807571 
t Critical two-tail 2.228139238 

pyrene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 91.45 94.116667 
Vadance 27.359 16.245667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 

66 
21.80233333 

0 
10 

t Stat -0.9891858 
P(T<=t) one-tail 0.172951226 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.345902452 
t Critical two-tail 2.228139238 

7-hexyInonadecane 
t-Test: Two-Sample Assuming Equal Variances 
P(O. 05) 

Soxhlet 2-phase 
Mean 94.36666667 93.83333333 
Variance 8.498666667 8.074666667 
Observations 66 
Pooled Variance 8.286666667 
Hypothesized Mean Difference 0 
df 10 
t Stat 0.320899781 
P(T<=t) one-tail 0.377446054 
t Critical one-tail 2.7637725 
P(T<=t) two-tail 0.754892108 
t Critical two-tail 3.169261618 
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acetophenone 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 69.78333333 62.48333333 
Variance 7.993666667 25.82166667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 
P(T<=t) one-tail 
t Critical one-tail 
P(T<=t) two-tail 
t Critical two-tail 

66 
16.90766667 

0 
10 

3.074975422 
0.005870401 
1.812461505 
0.011740801 
2.228139238 

9-fluorenone 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 80.35 94.86666667 
Vadance 25.647 11.65866667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 

6 
18.65283333 

0 
10 

t Stat -5.821771117 
P(T<=t) one-tail 8.39573E-05 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.000167915 
t Critical two-tail 2.228139238 

benzoic acid 
P (0.05) 
t-Test: Two-Sample Assuming Equal Variances 

Soxhlet 2-phase 
Mean 70.61666667 70.26666667 
Variance 27.78166667 20.51066667 
Observations 66 
Pooled Vadance 24.14616667 
Hypothesized Mean Difference 0 
df 10 
t Stat 0.123368582 
P(T<=t) one-tail 0.452129799 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.904259597 
t Critical two-tail 2.228139238 
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cyclohexanecarboxylic acid 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 

70.88333333 66.83333333 
30.97366667 42.68266667 

66 
36.82816667 

0 
df 10 
t Stat 1.155914205 
P(T<=t) one-tail 0.137293051 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.274586102 
t Critical two-tail 2.228139238 

9-anthracenecarboxylic acid 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 74.51666667 71.63333333 
Variance 17.06966667 30.57066667 
Observations 66 
Pooled Variance 23.82016667 
Hypothesized Mean Difference 0 
df 10 
t Stat 1.023253131 
P(T<=t) one-tail 0.165152115 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.33030423 
t Critical two-tail 2.228139238 

1-naphthol 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 71.5 67.68333333 
Variance 8.172 33.10166667 
Observations 66 
Pooled Variance 20.63683333 
Hypothesized Mean Difference 0 
df 10 
t Stat 1.455202161 
P(T<=t) one-tail 0.088137534 
t Critical one-tail 1.812461505 
P(r<=t) two-tail 0.176275068 
t Critical two-tail 2.228139238 
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9-hydroxyfluorene 
t-Test: Two-Sample Assuming Equal Variances 
P (0.05) 

Soxhlet 2-phase 
Mean 68.68333333 68.36666667 
Variance 34.52566667 54.62666667 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 
t Stat 

66 
44.57616667 

0 
10 

0.082150766 
P(T<=t) one-tail 0.468073946 
t Critical one-tail 1.812461505 
P(T<=t) two-tail 0.936147892 
t Critical two-tail 2.228139238 
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APPENDIX B. 2. 
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APPENDIX C. 1 

13 C-NMR spectral assignments for 4-propyloctan-4-ol 

d 

c'*', 

hfa 

9e 
OH 

Carbon multiplicity chemical shift (ppm) 

a C 74.3 

b CH2 41.6 

c CH2 16.6 

d CH3 14.6 

e CH2 38.9 

f CH2 25.6 

9 CH2 23.3 

h CH3 14.0 

refer to Figure 3.6 for spectra ý-tC and DEPT) 
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APPENDIX C. 2 

13 C-NMR spectral assignments for 4-propyloctane 

d 

Carbon multiplicity chemical shift (ppm) 

a CH 36.8 

b CH2 36.1 

c CH2 19.0 

d CH3 14.2 

e CH2 33.4 

f CH2 28.9 

9 CH2 23.2 

h CH3 14.5 

refer to Figure 3.12 for spectra ý3 C and DEPT) 
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APPENDIX D. 1 

Estimation of octanol-water partition coefficients (log Kow) using Leo's fragment 

constant method (from Lyman, 1990). 

This approach uses empirically derived atomic or group fragment constants (0 and 

structural factors (F). All calculations are carried out in terms of log Kow: 

log Kow = sum of fragments (f) + factors (F) 

(i) Fragment constants (f values) 

Fragment constants (f values) used in the calculations described herein are listed in 

Table I and taken from Lyman (1990). A fragment has different f values, depending 

on the type of structure (e. g. aliphatic or aromatic) it is bonded to. 

A fragment is defined as an atom, or string of atoms, whose exterior bonds are to 

isolating carbon atoms. (An isolating carbon is one that has either four single bonds, at 

least two of which are to non-hetero atoms, or is multiply bonded to other carbon 

atoms. 

fragment f io 

1 0.20 0.20 
C- 
I 

CH3 0.89 0.89 

-H 0.23 0.23 

CH 0.355 

c 0.13 

'Pdenotes attachment to aromatic ring 

underlining any symbol associated with afragment constant means thefragment ispresent in a ring 

Table 1. Fragment values used in log Kow calculations (from Lyman, 1990) 
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(ii) Factors (F values) 

Fb = bond factor 

A bond factor of -0.12 for chains and -0.09 for non-aromatic rings is taken (n- 1) times, 

where n is the number of bonds in the molecule, with the following provisions: 

-P Do not count between hydrogen and any other atom 

v In ring chain combinations, consider that the ring stops the count. 

* Double and triple bonds are considered equivalent to single bonds for the 

calculation of Fb- 

Branching factors 

The length of the branching must be just one or two carbon atoms; or, two or more of 

the branches must contain hydrophilic groups. If the branching is more than two 

carbons long, use the factor FbYN (-0.20) , which is taken (n-1) times, as described 

above for branching factors. 

Calculation of the log Kow of 7-cyclohexyltetralin and 7-cyclohexyl- I -propyl-tetralin 

using Leo's fragments method (Leo and Hansch, 1979) was carried out following the 

guidelines described in Lyman (1990) and summarised above. Fragments have been 

labelled a, b etc. in order to clarify the fragmentation of the molecule for the reader. 
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(i) 7-cyclohexyltetralin 

c ab 

a, b 
acd 

ab 
ab 

a, bC ab 
a, b 

(a) 9x fc 9x (0.20) = 1.8 

+(b) 19xffl 19x(O. 23) = 4.37 

+ (c) 3x e_o =3x (0.355) = 1.065 

+ (d) 3x Or =3x (0.13) = 0.39 

1-1) x Fb = 10 X (-0.09) (correction for cyclisation) -0.9 

1x Fb= 1x (-0.12) = -0.12 

log Kow = 6.61 

(ii) 7-cyclohexyl-l-propyl-tetralin 

log Kow of 'base compound' (- IH) 

" (a) 2x fc =2x (0.20) 

" (b) 4x fH =4x (0.23) 

" (C) IX fCH3 

" (3-1) x FbYN =2x (420) 

a, b 
'a, b 

c 

= 6.61-0.23 

= 0.40 

= 0.46 

= 0.89 

= -0.40 

log Kow -7.73 
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APPENDIX E. 1.1 

Comparison of 24 h and 72 h data, 14 pg 1-1 

t-Test: Two-Sample Assuming Equal 
Variances 
P (0.05) 

24 h 72 h 
Mean 1.80125 2.325625 
Variance 0.382438333 0.352372917 
Observations 16 16 
Pooled Variance 0.367405625 
Hypothesized Mean Difference 0 
df 30 
t Stat -2.446887887 
P(T<--t) one-tail 0.010241853 
t Critical one-tail 1.697260359 
P(T<--t) two-tail 0.020483707 
t Critical two-tail 2.042270353 

Comparison of 24 h and 72 h data, 28 jLg 1-1 

t-Test: Two-Sample Assuming Equal 
Variances 
P (0.05) 

24 h 72 h 
Mean 1.53375 1.0575 
Variance 0.495665 0.166993333 
Observations 16 16 
Pooled Variance 0.331329167 
Hypothesized Mean Difference 0 
df 30 
t Stat 2.340184767 
P(T<--t) one-tail 0.013058863 
t Critical one-tail 1.697260359 
P(T<--t) two-tail 0.026117726 
t Critical two-tail 2.042270353 
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APPENDIX E. 2 

RAW DATA; 
EXPERIMENT III 
4-PO, 96 h (i) exposure: 23 [tg/l 

animal Oh 24h 48hC 48h 72h 96hC 96h 
1 3.41 2.20 1.93 2.10 2.03 2.44 2.45 
2 2.44 3.01 3.26 1.40 2.66 2.81 1.72 
3 2.72 2.97 2.44 1.63 1.62 2.37 2.39 
4 3.00 1.58 3.01 1.70 2.29 1.91 2.19 
5 2.70 1.87 2.73 2.24 2.19 2.81 1.21 
6 2.58 2.37 2.62 2.16 1.86 2.89 1.72 
7 2.87 2.05 2.18 1.29 1.67 2.02 2.26 
8 1.79 2.60 3.30 1.39 2.20 2.28 1.76 
9 1.79 1.78 2.11 1.50 1.78 2.59 2.54 
10 2.64 2.70 3.50 1.98 1.49 3.03 2.08 
11 2.98 1.80 3.28 1.85 1.99 1.81 2.11 
12 2.90 2.75 2.97 2.27 1.86 2.47 1.66 
13 2.21 2.58 2.67 1.71 2.18 2.14 1.29 
14 2.65 2.33 2.98 2.05 1.07 2.20 1.38 
15 2.45 2.19 2.78 1.27 1.60 2.68 1.62 
16 2.41 1.65 2.27 2.08 2.47 2.29 2.03 

mean 2.59 2.28 2.75 1.79 1.93 2.42 1.90 
n 16 16 16 16 16 16 16 
sd 0.42 0.46 0.47 0.35 0.40 0.36 0.42 
se 0.11 0.11 0.12 0.09 0.10 0.09 0.10 

2 se 0.21 0.23 0.23 0.17 0.20 0.18 0.21 
95% CI 0.21 0.23 0.23 0.17 0.20 0.18 0.20 
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E. 2.1 COMPARISON OF MUSSEL FEEDING RATES OF CONTROL 
ANIMALS OVER THE EXPOSURE PERIOD; EXPERIMENT HI 

96 h (i) - CONTROL values 

animal Oh 48hC 96hC 
1 
2 

3.41 
2.44 

1.93 
3.26 

2.44 
2.81 

3 2.72 2.44 2.37 
4 3.00 3.01 1.91 
5 2.70 2.73 2.81 
6 2.58 2.62 2.89 
7 2.87 2.18 2.02 
8 1.79 3.30 2.28 
9 1.79 2.11 2.59 
10 2.64 3.50 3.03 
11 2.98 3.28 1.81 
12 2.90 2.97 2.47 
13 2.21 2.67 2.14 
14 2.65 2.98 2.20 
15 2.45 2.78 2.68 
16 2.41 2.27 2.29 

Anova: Single Factor 

SUNEYLARY 
Groups Count Sum A verage Variance 

Column 1 16 41.54 2.59625 0.180038 
Column 2 16 44.03 2.751875 0.22219 
Column 3 16 38.74 2.42125 0.130305 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 0.875504 2 0.437752 2.466056 0.096324 3.20432 
Within Groups 7.987994 45 0.177511 

Total 8.863498 47 
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E. 2.2 COMPARISON OF MUSSEL FEEDING RATES OF EXPOSED 
ANIMALS OVER THE 96 H EXPOSURE PERIOD; EXPERIMENT III 

96 h (i) TOMCANT values 

animal Oh 24h 48h 72h 96h 
1 
2 

3.41 
2.44 

2.20 
3.01 

2.10 
1.40 

2.03 
2.66 

2.45 
1.72 

3 2.72 2.97 1.63 1.62 2.39 
4 3.00 1.58 1.70 2.29 2.19 
5 2.70 1.87 2.24 2.19 1.21 
6 2.58 2.37 2.16 1.86 1.72 
7 2.87 2.05 1.29 1.67 2.26 
8 1.79 2.60 1.39 2.20 1.76 
9 1.79 1.78 1.50 1.78 2.54 
10 2.64 2.70 1.98 1.49 2.08 
11 2.98 1.80 1.85 1.99 2.11 
12 2.90 2.75 2.27 1.86 1.66 
13 2.21 2.58 1.71 2.18 1.29 
14 2.65 2.33 2.05 1.07 1.38 
15 2.45 2.19 1.27 1.60 1.62 
16 2.41 1.65 2.08 2.47 2.03 

Anova: Single Factor 

SUMNURY 
Groups Count Sum Average Variance 

Column 1 16 41.54 2.59625 0.180038 
Column 2 16 36.43 2.276875 0.21413 
Column 3 16 28.62 1.78875 0.120932 
Column 4 16 30.96 1.935 0.16056 
Column 5 16 30.41 1.900625 0.17322 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 7.062393 4 1.765598 10.39958 9.37E-07 2.493692 
Within Groups 12.73319 75 0.169776 

Total 19.79558 79 
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E. 2.3 COMPARISON OF MUSSEL FEEDING RATES (EXPOSED 
ANEVIALS) FROM 24 H EXPOSURE TO 96 H EXPOSURE; EXPERIMENT 
III 

96 h (i) TOXICANT values 

animal 24h 48h 72h 96h 
1 2.20 2.10 2.03 2.45 
2 3.01 1.40 2.66 1.72 
3 2.97 1.63 1.62 2.39 
4 1.58 1.70 2.29 2.19 
5 1.87 2.24 2.19 1.21 
6 2.37 2.16 1.86 1.72 
7 2.05 1.29 1.67 2.26 
8 2.60 1.39 2.20 1.76 
9 1.78 1.50 1.78 2.54 
10 2.70 1.98 1.49 2.08 
11 1.80 1.85 1.99 2.11 
12 2.75 2.27 1.86 1.66 
13 2.58 1.71 2.18 1.29 
14 2.33 2.05 1.07 1.38 
15 2.19 1.27 1.60 1.62 
16 1.65 2.08 2.47 2.03 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 36.43 2.276875 0.21413 
Column 2 16 28.62 1.78875 0.120932 
Column 3 16 30.96 1.935 0.16056 
Column 4 16 30.41 1.900625 0.17322 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 2.127181 3 0.70906 4.240533 0.008758 2.758078 
Within Groups 10.03261 60 0.16721 

Total 12.15979 63 
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E. 2.4 COMPARISON OF MUSSEL FEEDING RATES (EXPOSED 
ANIMALS) OVER 48 H- 72 H EXPOSURE PERIOD; EXPERIMENT III 

Anova: Single 
Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 28.62 1.78875 0.120932 
Column 2 16 30.96 1.935 0.16056 
Column 3 16 30.41 1.900625 0.17322 

ANOVA 
Source of Variation SS df ms F P-value F crit 
Between Groups 0.187129 2 0.093565 0.617301 0.543903 3.20432 
Within Groups 6.820669 45 0.15157 

Total 7.007798 47 

E. 2.5 COMPARSION OF MUSSEL FEEDING RATES (EXPOSED 
ANIMALS) AT OH AND 24 H; EXPERIMENT III 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 2.59625 2.276875 
Variance 0.180038333 0.214129583 
Observations 16 16 
Pooled Variance 0.197083958 
Hypothesized Mean Difference 0 
df 30 
t Stat 2.034793178 
P(T<--t) one-tail 0.02539616 
t Critical one-tail 1.697260359 
P(T<--t) two-tail 0.050792319 
t Critical two-tail 2.042270353 
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E. 2.6 COMPARISON OF CONTROL FEEDING RATE AND EXPOSED 
FEEDING RATE AT 48 H EXPOSURE; EXPERIMENT III 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 2.751875 1.78875 
Variance 0.222189583 0.120931667 
Observations 16 16 
Pooled Variance 0.171560625 
Hypothesized Mean Difference 0 
df 30 
t Stat 6.576863672 
P(T<--t) one-tail 1.40735E-07 
t Critical one-tail 1.697260359 
P(T<--t) two-tail 2.81469E-07 
t Critical two-tail 2.042270353 
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APPENDIX E. 3 

RAW DATA; EXPERIMENT IV 

4-PO) 96 h (ii) exposure: 23 Rg/l 

animal Oh 24h 48hC 48h 72h 96hC 96h 
1 2.81 2.11 2.15 2.14 2.24 2.79 2.14 
2 2.28 1.77 3.30 1.77 2.39 2.71 3.06 
3 2.64 2.77 2.17 2.68 2.99 2.43 3.45 
4 2.26 2.48 2.75 2.48 2.87 2.82 2.70 
5 0.91 1.59 3.40 1.59 2.50 2.25 2.02 
6 2.79 2.55 2.01 2.55 2.64 1.90 2.12 
7 2.64 2.45 2.79 2.58 2.08 2.53 2.84 
8 1.88 1.16 2.81 1.16 1.79 3.01 2.73 
9 2.24 1.91 2.13 1.90 2.86 2.13 2.91 
10 3.13 2.30 2.24 2.31 2.90 2.70 2.32 
11 2.87 2.57 2.87 2.76 2.74 2.29 1.44 
12 2.46 2.85 2.45 2.85 3.07 2.65 1.31 
13 2.97 1.53 3.01 1.53 2.49 2.24 2.40 
14 3.28 2.36 2.82 2.36 2.68 2.82 2.44 
15 2.96 2.33 2.24 2.46 2.72 2.87 2.69 
16 2.31 2.07 2.02 2.07 2.56 2.45 2.75 

mean 2.53 2.17 2.57 2.20 2.59 2.54 2.46 
n 16 16 16 16 16 16 16 

sd 0.57 0.47 0.45 0.49 0.34 0.31 0.56 

se 0.14 0.12 0.11 0.12 0.08 0.08 0.14 
2 se 0.28 0.24 0.23 0.24 0.17 0.15 0.28 

95% CI 0.28 0.23 0.22 0.24 0.17 0.15 0.27 
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E. 3.1 COMPARISON OF MUSSEL FEEDING RATES OF CONTROL 
ANIMALS OVER THE EXPOSURE PERIOD; EXPERIMENT IV 

96 h (ii) CONTROL values 

animal Oh 48hC 96hC 
1 
2 

2.81 
2.28 

2.15 
3.30 

2.79 
2.71 

3 2.64 2.17 2.43 
4 2.26 2.75 2.82 
5 0.91 3.40 2.25 
6 2.79 2.01 1.90 
7 2.64 2.79 2.53 
8 1.88 2.81 3.01 
9 2.24 2.13 2.13 
10 3.13 2.24 2.70 
11 2.87 2.87 2.29 
12 2.46 2.45 2.65 
13 2.97 3.01 2.24 
14 3.28 2.82 2.82 
15 2.96 2.24 2.87 
16 2.31 2.02 2.45 

Anova: Single Factor 

SUNMARY 
Groups Count Sum Average Variance 

Column 1 16 40.43 2.526875 0.32709 
Column 2 16 41.16 2.5725 0.205633 
Column 3 16 40.59 2.536875 0.096676 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 0.018404 2 0.009202 0.043861 0.957128 3.20432 
Within Groups 9.440987 45 0.2098 

Total 9.459392 47 
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A. 3.2 COMPARISON OF MUSSEL FEEDING RATES (EXPOSED 
ANIMALS) FROM 0H EXPOSURE TO 96 H EXPOSURE; EXPERIMENT IV 

96 h (ii) TOXICANT values 

animal Oh 24h 48h 72h 96h 
1 2.81 2.11 2.14 2.24 2.14 
2 2.28 1.77 1.77 2.39 3.06 
3 2.64 2.77 2.68 2.99 3.45 
4 2.26 2.48 2.48 2.87 2.70 
5 0.91 1.59 1.59 2.50 2.02 
6 2.79 2.55 2.55 2.64 2.12 
7 2.64 2.45 2.58 2.08 2.84 
8 1.88 1.16 1.16 1.79 2.73 
9 2.24 1.91 1.90 2.86 2.91 
10 3.13 2.30 2.31 2.90 2.32 
11 2.87 2.57 2.76 2.74 1.44 
12 2.46 2.85 2.85 3.07 1.31 
13 2.97 1.53 1.53 2.49 2.40 
14 3.28 2.36 2.36 2.68 2.44 
15 2.96 2.33 2.46 2.72 2.69 
16 2.31 2.07 2.07 2.56 2.75 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 40.43 2.526875 0.32709 
Column 2 16 34.8 2.175 0.225787 
Column 3 16 35.19 2.199375 0.241006 
Column 4 16 41.52 2.595 0.117933 
Column 5 16 39.32 2.4575 0.316833 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 2.366017 4 0.591504 2.407133 0.056812 2.493692 
Within Groups 18.42974 75 0.24573 

Total 20.79575 79 
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E. 4.1 COMPARISON OF MUSSEL FEEDING RATES IN THE CONTROL 
ANIMALS OVER 120 H EXPOSURE PERIOD; EXPERIMENT V 

4-PO, 120 h 48 pg/l - CONTROL 

animal Oh 48 hC 96 hC 120 hC 
1 3.15 2.15 2.63 2.71 
2 2.67 2.87 3.20 2.93 
3 2.40 2.74 3.40 3.48 
4 3.03 2.90 3.15 3.03 
5 2.86 2.84 2.81 3.02 
6 2.64 2.76 2.77 2.85 
7 2.56 2.77 2.96 3.17 
8 2.55 3.23 3.67 2.92 
9 2.64 2.37 3.21 2.82 
10 2.96 3.02 2.46 2.47 
11 2.10 3.36 2.56 2.52 
12 2.34 3.05 3.10 2.09 
13 2.36 3.09 1.68 
14 2.12 3.06 3.23 
15 2.40 2.10 2.87 
16 2.11 2.83 2.68 

Anova: Single Factor CONTROL 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 40.89 2.555625 0.106066 
Column 2 16 45.14 2.82125 0.124985 
Column 3 16 46.38 2.89875 0.212585 
Column 4 12 34.01 2.834167 0.129117 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 1.091158 3 0.363719 2.522439 0.066966 2.769433 
Within Groups 8.074835 56 0.144193 

Total 9.165993 59 
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E. 4.2 COMPARISON OF MUSSEL FEEDING RATES OF EXPOSED 
ANIMALS OVER THE 120 H EXPOSURE PERIOD; EXPERIMENT V 

4-PO, 120 h, 45 pg/l - TOMCANT 

animal Oh 24h 48h 72h 96h 120h 
1 3.15 1.20 1.27 0.93 1.34 2.00 
2 2.67 1.70 1.73 0.72 0.02 1.67 
3 2.40 1.89 2.13 2.44 0.00 2.26 
4 3.03 2.32 1.69 0.81 2.18 2.74 
5 2.86 2.08 0.95 1.52 2.83 1.31 
6 2.64 2.45 2.48 0.83 1.62 2.79 
7 2.56 1.70 0.16 2.45 1.80 0.31 
8 2.55 2.00 2.94 1.12 2.62 1.27 
9 2.64 1.54 1.89 1.54 2.65 0.67 
10 2.96 1.56 1.68 0.80 1.80 1.32 
11 2.10 0.30 1.72 0.69 2.53 2.25 
12 2.34 1.26 2.17 1.42 2.77 1.60 
13 2.36 0.93 1.92 2.15 2.15 
14 2.12 2.07 1.33 0.82 1.88 
15 2.40 1.91 2.02 1.07 1.75 
16 2.11 0.88 1.06 1.91 1.39 

Anova: Single 
Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 40.89 2.555625 0.106066 
Column 2 16 25.79 1.611875 0.33255 
Column 3 16 27.14 1.69625 0.427052 
Column 4 16 21.22 1.32625 0.379878 
Column 5 16 29.33 1.833125 0.73389 
Column 6 12 20.19 1.6825 0.587039 

ANOVA 
Source of Variation SS df ms F P-value F crit 
Between Groups 13.63649 5 2.727297 6.488364 3.66E-05 2.320526 
Within Groups 36.14896 86 0.420337 

Total 49.78544 91 
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E. 4.3 COMPARISON OF MUSSEL FEEDING RATES (EXPOSED ANIMALS) 
FROM 24 H- 120 H EXPOSURE TIME; EXPERIMENT V 

Anova: Single Factor 

SUNMARY 
Groups Count Sum Average Variance 

Column 1 16 25.79 1.611875 0.33255 
Column 2 16 27.14 1.69625 0.427052 
Column 3 16 21.22 1.32625 0.379878 
Column 4 16 29.33 1.833125 0.73389 
Column 5 12 20.19 1.6825 0.587039 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 2.244357 4 0.561089 1.152769 0.339043 2.500762 
Within Groups 34.55796 71 0.486732 

Total 36.80232 75 

E. 4.4 COMPARISON OF CONTROL FEEDING RATE AND EXPOSED 
FEEDING RATE AT 48 H EXPOSURE TIME; EXPERIMENT V 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable T 

Mean 2.82125 1.69625 
Variance 0.124985 0.427051667 
Observations 16 16 
Pooled Variance 0.276018333 
Hypothesized Mean Difference 0 
df 30 
t Stat, 6.056595246 
P(T<--t) one-tail 5.95196E-07 
t Critical one-tail 1.697260359 
P(T<--t) two-tail 1.19039E-06 
t Critical two-tail 2.042270353 
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APPENDIX E. 5 

RAW DATA; EYPERMffiNT VI 

BCH) 96 h exposure; 90 gg r, 

animal Oh 24h 48hC 48h 72h 96 hC 96h 
1 2.64 0.36 1.73 1.73 2.07 1.23 
2 3.50 1.70 3.55 0.70 0.85 3.49 0.69 
3 3.46 0.21 4.03 2.73 0.92 1.65 1.13 
4 2.68 1.33 2.62 1.50 0.59 2.32 1.58 
5 2.11 0.44 2.65 1.34 1.28 3.26 0.57 
6 3.28 1.45 2.72 0.52 1.85 3.27 1.07 
7 2.17 1.65 3.05 2.17 1.74 2.30 0.47 
8 2.31 0.99 2.41 1.68 1.59 4.02 0.88 
9 3.22 1.67 4.18 1.07 1.63 3.36 1.67 
10 2.98 1.33 2.71 1.06 0.67 1.40 0.50 
11 2.74 1.34 2.67 0.43 0.49 3.20 1.83 
12 4.34 0.51 1.66 1.66 1.38 3.01 0.61 
13 3.42 1.45 2.74 1.85 1.46 2.87 1.03 
14 2.80 1.28 2.30 1.48 0.93 2.64 0.97 
15 2.69 1.24 3.15 1.29 0.84 3.01 2.37 
16 2.94 0.73 3.47 0.84 1.25 3.22 

mean 2.96 1.11 2.93 1.38 1.20 2.82 1.11 

n 16.00 16.00 16.00 16.00 16.00 16.00 16.00 

sd 0.57 0.50 0.66 0.61 0.45 0.71 0.55 

se 0.14 0.12 0.17 0.15 0.11 0.18 0.14 
2 se 0.29 0.25 0.33 0.31 0.22 0.35 0.28 

95% CI 0.28 0.24 0.33 0.30 0.22 0.35 0.27 
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E. 5.1 COMPARISON OF MUSSEL FEEDING RATES OF CONTROL 
ANIMALS OVER 96 H EXPOSURE PERIOD; EXPERIMENT VI 

BCH (90 jig I"); Control animals 

animal Oh 48h C 96 hC 
1 2.64 2.07 
2 3.50 3.55 3.49 
3 3.46 4.03 1.65 
4 2.68 2.62 2.32 
5 2.11 2.65 3.26 
6 3.28 2.72 3.27 
7 2.17 3.05 2.30 
8 2.31 2.41 4.02 
9 3.22 4.18 3.36 
10 2.98 2.71 1.40 
11 2.74 2.67 3.20 
12 4.34 1.66 3.01 
13 3.42 2.74 2.87 
14 2.8 2.30 2.64 
15 2.69 3.15 3.01 
16 2.94 3.47 3.22 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 47.28 2.955 0.32832 
Column 2 15 43.91 2.927333 0.44015 
Column 3 16 45.09 2.818125 0.497083 

ANOVA 
Source of Variation SS df ms F P-value F crit 

Between Groups 0.166854 2 0.083427 0.19796 0.821129 3.20928 
Within Groups 18.54314 44 0.421435 

Total 18.70999 46 
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E. 5.2 COMPSRISON OF MUSSEL FEEDING RATES OF EXPOSED 
ANIMALS OVER 96 H EXPOSURE PERIOD; EXPERIMENT VI 

BCH (90 gg 1-1); Exposed animals 

animal Oh 24h 48h 72h 96h 
1 2.64 0.36 1.73 1.73 1.23 
2 3.50 1.70 0.70 0.85 0.69 
3 3.46 0.21 2.73 0.92 1.13 
4 2.68 1.33 1.50 0.59 1.58 
5 2.11 0.44 1.34 1.28 0.57 
6 3.28 1.45 0.52 1.85 1.07 
7 2.17 1.65 2.17 1.74 0.47 
8 2.31 0.99 1.68 1.59 0.88 
9 3.22 1.67 1.07 1.63 1.67 
10 2.98 1.33 1.06 0.67 0.50 
11 2.74 1.34 0.43 0.49 1.83 
12 4.34 0.51 1.66 1.38 0.61 
13 3.42 1.45 1.85 1.46 1.03 
14 2.80 1.28 1.48 0.93 0.97 
15 2.69 1.24 1.29 0.84 2.37 
16 2.94 0.73 0.84 1.25 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 47.28 2.955 0.32832 
Column 2 16 17.68 1.105 0.247987 
Column 3 16 22.05 1.378125 0.37247 
Column 4 16 19.2 1.2 0.200093 
Column 5 15 16.6 1.106667 0.302524 

ANOVA 
Source of SS df ms F P-value F crit 
Variation 

Between 40.13198 4 10.033 34.58304 2.9E-16 2.495391 
Groups 
Within 21.46838 74 0.290113 
Groups 

Total 61.60036 78 
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E. 5.3 COMPARISON OF MUSSEL FEEDING RATES AT OH AND 2411 
EXPOSURE; EXPERIMENT VI 

t-Test: Paired Two Sample for 
Means 

Variable I Variable 2 
Mean 2.955 1.105 
Variance 0.32832 0.247986667 
Observations 16 16 
Pearson Correlation -0.05855001 
Hypothesized Mean Difference 0 
df 15 
t Stat 9.476904392 
P(T<--t) one-tail 5.04199E-08 
t Critical one-tail 1.753051038 
P(T<--t) two-tail 1.0084E-07 
t Critical two-tail 2.131450856 

E. 5.4 COMPARISON OF MUSSEL FEEDING RATES (EXPOSED) FROM 
24H TO 96 H EXPOSURE; EXPERIMENT VI 

Anova: Single Factor 

SUMMARY 
Groups Count Sum Average Variance 

Column 1 16 17.68 1.105 0.247987 
Column 2 16 22.05 1.37812 0.37247 
Column 3 16 19.2 1.2 0.200093 
Column 4 15 16.6 1.106667 0.302524 

ANOVA 
Source of Variation SS df ms F P-value F crit 
Between Groups 0.78264 3 0.26088 0.93039 0.43179 2.76077 
Within Groups 16.5435 59 0.2804 

Total 17.3262 62 

343 



APPENDIX E. 6.1 

ti 
Z: 
A 

't 00 le N m 
N %D t- e - 

.i le 00 
V) 00 rq m 
00 aý 

C) 
00 C) 

00 t- %0 
(2; cý cý c; 

>4 

ch 0 

04 P4 w 4) .0 .0 ta 0 Z 
fA 

t. cd 

4ý 
2. 

C3 :3 
10 

En : -F 
9 (A 

.0 P4 < , U) 

r I- 
IC\ 

? A) t- 
Cs 

C14 
C> 

LZ.. 

C14 

VII ON 
00 C) 
CD t- 
m NO 
en Vý 00 C14 

C'4 

C14 00 

V'l ON en 
00 t- C14 
C> en CN 
en 00 %D 
en en tý 
00 lwt Q 

Ci t-: 
-. 4 00 

C, 4 00 en 

P-4 V-4 Cq 

1-4 -4 

0 

r. 

0 -ZJ - ;g 

ell 0% 

"0 Igt 
C> V) 
cq C> 
ID C: ) 

&ý %M 00 

%£; 

c> r1q 

e\' CD v-i 
10.1 C-4 c> 
c> %0 c> 
&ý C, 4 (4 
qu %0 00 

%d 

le C> 

rj 
m 

C? 

C) 0% 

ný 0Q 

\o (4 

,D -w 

m C) 
C) C) 

c> 

c; oý 

tý 

ýi x 

ci 

la 

22 

Q 
ix 

344 



APPENDIX E. 6.2 

, 
Gn 
ým 

%D vl %0 m 
(D ýo le C) 
t- C) m \o 

c; c; cý 

0 
ta 
:i tr ý 0 

p4 w 0 
ýa CL) 

Z rn :1 
e 

9 gn 

iz < 

U'la, ON 
qu q: r 

00 

: -: n C) 

Ul. 

t- 
C14 

CN 

%D en 
ON C14 
Q r- 
".. 4 00 

00 t- 

06 
I'll: 

en %0 en 
%0 C3\ C14 
C\ WI) C\ 
C) %0 ýo 
V-4 C, 4 t- 
Oý 06 Ct 
00 t- t- 
Cl tn oo 

C) 
en 

C*4 

0 

345 

cn :i 0 cj - 

t- (4 
\, ' 3, N0\ (Z2h V) \o 

&ý "q: V»b 

. \l3 14t t- 

C) c4 

0 g. 

CK : ZK), 
18 

. \I, 5 (> 9t 
ke% Q tl 
c> %0 cý 

oý clý N P-4 

00 
V) 

ýh "t 0 

, Int «o 

c; 

0 

ci %0 c4 %-01 

&ý %, D (4 
9 

CD (4 
C> 0% 0 
00 
%0 Co 
00 Vlb 

00 
00 00 Z %D le (U C% C) 4, D« 

lEý %0 (> b 
lu -ýI: clý Z CD CD 

Cl$ 

coi 
u) 



APPENDIX E. 6.3 

to) 

h 
H 

m c4 \o 
%D CD CYN 

kn m V 00 
00 t- \o t- 
00 Cp t- 

lZ 

924 ýa CL) 
b. 4 Gn 

t. -4 ed 
- ýe 

g. CJ 4) 

< u2 

00 00 

lz-zý rq 
g 

ý:: 
ý 

-ý 
10 

Lt.. 

%0 
C> 
00 

%D C) 
10 ýo 

t- en V) 
tn -4- ON C) 00 
t C14 
%0 en 
Ci -i t- C14 
%0 qT 
ýo C14 

--4 14T V*j 

Ilý -e (114 

. 
e- 00 

. %'0 00 , I: ý 25 t- Vi Co - 

C, 6 V) 

m Cb 
\. 13 00 P-4 
(Z, tel vý 

oo 

06 
C'4 

C-4 -1 
V-0 %0 

II 

00 '00 

en 
00 
'n 
00 
en V) 
W11 I'D 
V) ON 
t-: 06 

k4 

00 00 q: r 00 

lu 
m WIS 
0 00 

-ýi W-. Zo en en 0 Cý 
C) C*4 

Cý C) C> 

C; 

0 C14 
t3 

CD 
C-4 C-4 
. -: ei 

2ý Cs - t3 
rýi 

wl W-. 

E 
lza ., tn C14 

en CN 
00 kn 
C'i 'n 

Q C) t- 
U C? 

< 

> 

4) 
-ci -; g 0 ce 

346 

cc 10 
r_ 
41 

>b 
10 

*J 

>b 

zw 

4.0 tb 



APPENDIX E. 6.4 

Z: 

H 

- t- qtt 00 ýo 
t- 00 00 C) 

m 

oo en M 10 tn 
M t"- "T C) C14 00 %0 
ON 00 t- (14 

(D Q \o 

a. 0 
p4 pý W 0 
0 
c24 

lu ýý ci ýý (L) 
4- ' 

-0 ß- 
tu 

ýg 
i>. 

Ei 
& 

Gn e 
z2 

0 > 1: 4 < c23 0 

0 

-It-- 

%0 
00 
P-4 

--, 0 0 
Lzý 

(Z 

m r- 
Vlb %0 
" 00 
V') %0 
(4 m 

E2 

en r- W) 

tn "'t (: 7; C14 t- C> 
CN 

%D 00 

C4 %6 

,. q IR: r tn I 

th -Z; .2 ý gý gý EC-> 

,u0 

347 

C) 
CY% Ch rq oo 

cý 
CY% 

, Z> -4 M 
00 

(D nt 

vý (D 
(D 

(D r- 

...; IC! 00 
ý 

(D le le 
. -1 (: 10 

1 r_ 
CY% 

;x (4 vi f4 %0 \o 
A CY% o0 41 C> 

C) 
(D Co MI 

CY% %0 

e3 %0 m 
gý cy% c> 21 v 00 

'-u C2N -e 0 K %0 --4 4.0 

.g 
-C! 

c�; 
es 

tý- -4 E 
9-4 

le kg 

oo b 

ce 

4ý jz *rn 

CL) >u tu pý 



APPENDIX F. 1 
CONCENTRATION-RESPONSE DATA FOR THE EFFECT OF 
BUTYLCYCLOHEXANE UPON MUSSEL FEEDING RATE 
RAW DATA 

animal 25 Itg/I 50 pg/l 100 Itg/l 200 Itg/l control 
1 0.46 0.23 0.15 0.08 0.47 
2 0.38 0.26 0.20 0.10 0.50 
3 0.35 0.24 0.24 0.08 0.34 
4 0.39 0.16 0.17 0.07 0.37 
5 0.39 0.14 0.20 0.03 0.45 
6 0.31 0.24 0.16 0.10 0.41 
7 0.32 0.26 0.14 0.10 0.41 
1 0.34 0.21 0.15 0.06 0.36 
2 0.30 0.32 0.12 0.08 0.47 
3 0.40 0.20 0.09 0.04 0.42 
4 0.37 0.16 0.07 0.06 0.53 
5 0.21 0.11 0.12 0.03 0.44 
6 0.30 0.25 0.12 0.04 0.40 
7 0.25 0.28 0.10 0.10 0.39 

mean' 0.34 0.22 0.15 0.07 0.43 
sdl 0.07 0.06 0.05 0.03 0.06 

F. I. 1 COMPARISON OF REPLICATE EXPOSURE CONCENTRATION 
DATA 

25 Itg I-' butylcyclohexane 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.371428571 0.31 
Variance 0.002580952 0.0044 
Observations 77 
Pooled Variance 0.003490476 
Hypothesized Mean Difference 0 
df 12 
t Stat 1.945190311 
P(T<--t) one-tail 0.037779107 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.075558214 
t Critical two-tail 2.178812792 

1 Mean and standard deviation of combined data (mean and standard deviation of individual data sets 
are given in Table 5.2) 
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50 pg 1-1 butylcyclohexane 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.218571429 0.218571429 
Variance 0.002347619 0.005114286 
Observations 77 
Pooled Variance 0.003730952 
Hypothesized Mean Difference 0 
df 12 
t Stat 0 
P(T<=t) one-tail 0.5 
t Critical one-tail 1.782286745 
P(T<=t) two-tail I 
t Critical two-tail 2.178812792 

100 ttg 1-1 butylcyclohexane 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.18 0.11 
Variance 0.001233333 0.000666667 
Observations 77 
Pooled Variance 0.00095 
Hypothesized Mean Difference 0 
df 12 
t Stat 4.248838851 
P(T<--t) one-tail 0.000564813 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.001129627 
t Critical two-tail 2.178812792 
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200 ILg 1-1 butyleyclohexane 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.08 0.058571429 
Variance 0.000633333 0.000614286 
Observations 77 
Pooled Variance 0.00062381 
Hypothesized Mean Difference 0 
df 12 
t Stat 1.605096844 
P(T<--t) one-tail 0.067225678 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.134451356 
t Critical two-tail 2.178812792 

control, butyleyclohexane 

t-Test: Two-Sample Assuming Equal 
Variances 

Variahle I Variahle 2_ 
Mean 0.421387457 0.4308453 
Variance 0.00316395 0.0034196 
observations 77 
Pooled Variance 0.003291755 
Hypothesized Mean Difference 0 
df 12 
t Stat -0.30839762 
P(T<=t) one-tail 0.381533886 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.763067773 
t Critical two-tail 2.178812792 
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APPENDIX F. 1.2 
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APPENDX F. 2 
CONCENTRATION-RESPONSE DATA FOR THE EFFECT OF 
7-CYCLOHEXYLTETRALIN UPON MUSSEL FEEDING RATE 
RAW DATA 

animal 12 pg 1-1 25 ttg 1-1 50 pg 1-1 100 ttg 1-1 control 
_ 1 0.42 0.30 0.12 0.12 0.47 

2 0.30 0.20 0.18 0.14 0.44 
3 0.27 0.17 0.16 0.19 0.47 
4 0.35 0.24 0.06 0.04 0.49 
5 0.32 0.23 0.13 0.11 0.50 
6 0.29 0.30 0.14 0.07 0.46 
7 0.34 0.33 0.28 0.13 0.45 
1 0.30 0.17 0.15 0.01 0.57 
2 0.31 0.21 0.16 0.12 0.49 
3 0.30 0.23 0.18 0.07 0.51 
4 0.36 0.17 0.06 0.08 0.53 
5 0.21 0.34 0.29 0.15 0.50 
6 0.28 0.19 0.22 0.10 0.46 
7 0.36 0.19 0.20 0.08 0.46 

mean 
2 0.32 0.23 0.17 0.10 0.49 

sd 
2 0.05 0.06 0.07 0.05 0.04 

APPENDIX F. 2.1 
COMPARISON OF REPLICATE EXPOSURE DATA 
12 pg 1-1 7-cyclohexyltetralin 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.327142857 0.303969714 
Variance 0.002457143 0.002572151 
Observations 77 
Pooled Variance 0.002514647 
Hypothesized Mean Difference 0 
df 12 
t Stat, 0.864530758 
P(T<--t) one-tail 0.202123684 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.404247368 
t Critical two-tail 2.178812792 

2 mean and standard deviation of combined data sets (mean and standard deviation of individual data 
sets are given in Table 5.4) 

352 



25 ftg 1-1 7-cyclohexyltetralin 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.252238714 0.214228714 
Variance 0.003384399 0.003530353 
Observations 77 
Pooled Variance 0.003457376 
Hypothesized Mean Difference 0 
df 12 
t Stat 1.20936832 
P(T<--t) one-tail 0.124904542 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.249809084 
t Critical two-tail 2.178812792 

50 pg 1-1 7-cyclohexyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.152973 0.181029143 
Variance 0.004512835 0.0047877 
Observations 77 
Pooled Variance 0.004650267 
Hypothesized Mean Difference 0 
df 12 
t Stat -0.76970273 
P(T<=t) one-tail 0.228180509 
t, Critical one-tail 1.782286745 
P(T<--t) two-tail 0.456361018 
t Critical two-tail 2.178812792 
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100 pg 1-1 7-cyclohexyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variahle I Variable 2 
Mean 0.115445429 0.0868566 
Variance 0.002382709 0.001914771 
Observations 77 
Pooled Variance 0.00214874 
Hypothesized Mean Difference 0 
df 12 
t Stat 1.153820994 
P(T<--t) one-tail 0.135518346 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.271036691 
t Critical two-tail 2.178812792 

control, 7-cyclohexyltetralin 

t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.468571429 0.502857143 
Variance 0.000447619 0.00152381 
Observations 77 
Pooled Variance 0.000985714 
Hypothesized Mean Difference 0 
df 12 
t Stat -2.043015674 
P(T<--t) one-tail 0.031825696 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.063651392 
t Critical two-tail 2.178812792 
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APPENDIX F. 3 
CONCENTRATION-RESPONSE DATA FOR THE EFFECT OF 7- 
CYCLOHEXYL, 1-PROPYLTETRALIN UPON MUSSEL FEEDNG RATE 

RAW DATA 
animal 12 pg/l 25 ttg/l 50 ttg/l 100 Itg/l controls 

1 0.59 0.36 0.23 0.07 0.43 
2 0.42 0.33 0.31 0.22 0.41 
3 0.50 0.40 0.34 0.06 0.49 
4 0.55 0.46 0.27 0.15 0.42 
5 0.51 0.35 0.12 0.35 0.45 
6 0.52 0.38 0.29 0.21 0.50 
7 0.46 0.32 0.36 0.06 0.45 
1 0.52 0.27 0.21 0.19 0.47 
2 0.47 0.31 0.34 0.09 0.55 
3 0.45 0.37 0.17 0.29 0.57 
4 0.45 0.34 0.32 0.08 0.48 
5 0.42 0.39 0.31 0.12 0.48 
6 0.52 0.35 0.29 0.16 0.44 
7 0.56 0.34 0.35 0.20 0.46 

mean 
3 0.50 0.36 0.28 0.16 0.47 

sa 0.05 0.05 0.07 0.09 0.04 

APPENDIX F. 3.1 
COMPARISON OF DATA FROM REPLICATE EXPOURE, 
CONCENTRATIONS 

12 Itg 1-1 7-cyclohexyl-1-propyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.507142857 0.484285714 
Variance 0.00312381 0.002495238 
Observations 77 
Pooled Variance 0.002809524 
Hypothesized Mean Difference 0 
df 12 
t Stat, 0.806751175 
P(T<--t) one-tail 0.217754043 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.435508086 
t Critical two-tail 2.178812792 

3 Mean and standard deviation given are for the combined data sets (mean and standard deviation for 
individual data sets are given in Table 5.5) 
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25 ttg -1 7-cyclohexyl-1-propyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.371428571 0.338571429 
Variance 0.002280952 0.001547619 
Observations 77 
Pooled Variance 0.001914286 
Hypothesized Mean Difference 0 
df 12 
t Stat 1.40494861 
P(T<--t) one-tail 0.092695599 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.185391199 
t Critical two-tail 2.178812792 

50 pg 1-1 7-cyclohexyl-1-propyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.274285714 0.284285714 
Variance 0.006495238 0.004661905 
Observations 77 
Pooled Variance 0.005578571 
Hypothesized Mean Difference 0 
df 12 
t Stat -0.250479693 
P(T<--t) one-tail 0.403226756 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.806453513 
t Critical two-tail 2.178812792 
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100 Itg 1-1 7-cyclohexyl-1-propyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 0.16 0.161428571 
Variance 0.011733333 0.005380952 
Observations 77 
Pooled Variance 0.008557143 
Hypothesized Mean Difference 0 
df 12 
t Stat -0.0288916 
P(T<--t) one-tail 0.488712993 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.977425986 
t Critical two-tail 2.178812792 

control, 7-cyclohexyl-l-propyltetralin 
t-Test: Two-Sample Assuming Equal 
Variances 

Variable I Variable 2 
Mean 
Variance 
Observations 
Pooled Variance 
Hypothesized Mean Difference 
df 

0.45 0.492334286 
0.001166667 0.002231609 

77 
0.001699138 

0 
12 

t Stat -1.921374225 
P(T<--t) one-tail 0.039376258 
t Critical one-tail 1.782286745 
P(T<--t) two-tail 0.078752516 
t Critical two-tail 2.178812792 
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APPENDIX F. 3.2 
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The errors of the EC5o estimates for all toxicants tested were calculated using the 

following formula (Miller and Miller, 1994); 

SY /X 1+ 
1+ (Yo 

-V 
112 

bnb 2Z(X, -j-)2 

where yo is the experimental value of y from the concentration of xO has been 

detennined. 

S. o is the estimated standard deviation required 

Syl, is the standard deviation of the y residuals 

b is the gradient of the regression line 

95% confidence intervals were then calculated from the standard deviation (so) in the 

usual manner (L e. 95 %CL=t*s. ý / V-n) 

360 


