
MUSIC AS COMPLEX EMERGENT BEHAVIOUR:
AN APPROACH TO INTERACTIVE MUSIC SYSTEMS

Volume I of 2

by

PETER F. E. BEYLS

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

ýC)089ol6ol
vgl 3ý'ýý

School of Computing, Communications and Electronics
Faculty of Technology

November 2009

Volume 2 is

not available
from the

40 institution

Copyright Statement

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the thesis and no
information derived from it may be published without the author's
prior consent.

Peter Beyls

Music as Complex Emergent Behaviour: an Approach to Interactive Music Systems

Abstract

This thesis suggests a new model of human-machine interaction in the domain of non-

idiomatic musical improvisation. Musical results are viewed as emergent phenomena

issuing from complex internal systems behaviour in relation to input from a single

human performer. We investigate the prospect of rewarding interaction whereby a

system modifies itself in coherent though non-trivial ways as a result of exposure to a

human interactor. In addition, we explore whether such interactions can be sustained

over extended time spans. These objectives translate into four criteria for evaluation;

maximisation of human influence, blending of human and machine influence in the

creation of machine responses, the maintenance of independent machine motivations

in order to support machine autonomy and finally, a combination of global emergent

behaviour and variable behaviour in the long run. Our implementation is heavily

inspired by ideas and engineering approaches from the discipline of Artificial Life.

However, we also address a collection of representative existing systems from the

field of interactive composing, some of which are implemented using techniques of

conventional Artificial Intelligence. All systems serve as a contextual background and

comparative framework helping the assessment of the work reported here.

This thesis advocates a networked model incorporating functionality for listening,

playing and the synthesis of machine motivations. The latter incorporate dynamic

relationships instructing the machine to either integrate with a musical context

suggested by the human performer or, in contrast, perform as an individual musical

character irrespective of context. Techniques of evolutionary computing are used to

optimise system components over time. Evolution proceeds based on an implicit

fitness measure; the melodic distance between consecutive musical statements made

by human and machine in relation to the currently prevailing machine motivation.

A substantial number of systematic experiments reveal complex emergent behaviour

inside and between the various systems modules. Music scores document how global

systems behaviour is rendered into actual musical output. The concluding chapter

offers evidence of how the research criteria were accomplished and proposes

recommendations for future research.

Acknowledgements

First I would like to forward my deepest gratitude to my promoter, Prof. Dr. Eduardo

Reck Miranda whose expertise in both music and computer science was instrumental

in guiding me throughout the dissertation process, his many helpful suggestions and

critical observations were vital to make it to the finish. Also, thanks to my co-

promoter Prof. Dr. Angelo Cangelosi. My thoughts are with my first music teacher,

Tamas Ungvary in Stockholm, with John Van Rymenant who taught me the language

of jazz and with Luc Steels who introduced me to the world of artificial intelligence

and symbolic programming. Many friends and colleagues provided invaluable

assistance in various ways. The discussions with my fellow students at ICCMR

generated much momentum indeed. Marcello Gimenes, Qijun Zhang, Alexis Kirke,

Torsten Anders, Joao Martins, Alicja Knast, Andrew Brouse, Hillary Mullaney,

Eduardo Coutinho, Nikolas Valsamakis and Leandro Costalonga - all were helpful to

pinpoint problems and clarify ideas. In addition, I thank Robert Rowe, Joel Chadabe,

Peter Swinnen, Karl Sims, Francois Pachet, David Rosenboom, Jeffrey Ventrella,

Brad Garton, Yann Orlaray, Stephane Letz, Dominique Fober, Andrew Sorensen,

Andrew Brown, George Lewis, Heinrich Taube, Marc Leman, Paul Berg, David

Behrman, Gerard Assayag and Carlos Agon for discussions and/or help with

implementation related issues. I thank Jonathan Impett and Michael Punt whose

comments and suggestions contributed substantially to the structure and general

readability of the text. I recall the companionship of those who left us way too soon

including Steve Lacy, Sal Martirano, Martin Bartlett and my dear father. Last but not

least, a warmest thanks to my family: Katrien, Thomas, Laurens and Jasper who are

still patient and happy to live with a student for life and to my mother in appreciation

of her endless love and support.

Peter Beyls, Plymouth, July 28,2009

Author's declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of the

Graduate Committee.

I hereby declare that I composed this thesis entirely myself, and that it describes my

own research.

Relevant scientific seminars and conferences were regularly attended at which work

was often presented; external institutions were visited for consultation purposes and

several papers prepared for publication.

Word count of main body of thesis: 105.294.

Peter Beyls
Plymouth, November 26,2009

Signed
------------- .. -- ----.. ---....

Date -...
1uiýT1ý'---. ý. C,..

Contents
.....................

Chapter 1: Introduction 1

1.1 Towards an Artificial Companion for Life Performance 1

1.2 Research Objectives and Evaluation 4

1.2.1 Objectives 4

1.2.2 Evaluation 6

1.3 Definitions 9

1.3.1 Autonomy and Motivation 9

1.3.2 Complexity and Rewarding Interaction 11

1.3.3 Emergent Behaviour 13

1.3.4 Listening to Music as an Emergent Process 14

1.3.5 Playing Music as an Emergent Process 15

1.3.6 The Synthesis of Machine Motivations as an Emergent Process 15

1.3.7 Interaction 16

1.3.8 Characterisation and Contextualisation of Emergence from a Cross-disciplinary

Perspective 18

1.4 Overview of the Architecture of the Proposed System: Oscar 24

1.5 General Plan of the thesis 28

Chapter 2: Related Systems and Comparative Framework 31

2.1 Two Major Historical Precedents 31

2.2 Systems that do not follow an Artificial Life Design Approach 33

2.2.1 Cypher 34

2.2.2 Voyager 38

2.2.3 The Continuator Project 41

2.2.4 GenJam 45

2.2.5 Discussion and analysis 50

2.3 Systems that follow an Artificial Life Design Approach 51

2.3.1 Diseases Squared 51

2.3.2 Social Robots 53

2.3.3 Cellular Automata: CAMUS and Chaosynth 54

2.3.4 Audible Ecosystems 55

2.3.5 Swarm 57

2.3.6 Eden 59

2.3.7 Discussion and analysis 61

2.4 Comparative Design Criteria 63

2.4.1 Paradigm 63

2.4.2 Idiomatic Inclination 64

2.4.3 Objective 64

2.4.4 Learning Capacity 65

2.4.5 Evolution Capability 65

2.4.6 Complexity and transparency 66

2.4.7 Autonomy 67

2.4.8 Agents Paradigm 69

2.4.9 Generative Paradigm 70

2.4.10 Sensing Approach 71

Chapter 3: General Methodology 75

3.1 Engineering Approaches 75

3.1.1 Introduction 75

3.1.2 Mapping and the Consequences of Rule-based Systems Design 77

3.1.3 Implementation Methodology: Why A-life? 81

3.2 Evolutionary Computing 85

3.2.1 Background 85

3.2.2 Genetic Methods in Music 88

3.2.3 Advantages of GA 89

3.3 Overview of Proposed Model 90
3.3.1 Global Systems Topology 90

3.3.2 The Sensor-to-Ear Hierarchy 93

3.3.2.1 Sensor 93

3.3.2.2 Neuron 94

3.3.2.3 Sensor-Activator-Network 94

3.3.2.4 Brain 95

3.3.2.5 Ear 96

3.4 Implementation 100

3.4.1 LISP 100

3.4.2 Concurrent Processes 101

3.4.3 Time Lines 107

3.5 Summary 108

Chapter 4: Listening Networks 111

4.1 Introduction 111

4.2 Listening as a Dynamic Process 111

4.3 Dimensions of Listening 116

4.4 Implementation of Listening 117

4.5 Low Level Sensors 119

4.5.1 Single Event, Single Dimension Sensors 119

4.5.1.1 Level sensors 119

4.5.1.2 Reflex Sensors 124

4.5.1.3 Ratio Sensors 125

4.5.1.4 Silence Sensors 126

4.5.2 Single Event, Multiple Dimension Sensors 126

4.5.3 Working-Memory Based Sensors 127

4.5.3.4 Angularity and Interval-Profile-Sensors 127

4.5.3.5 Duration Based Sensors 127

4.5.3.6 Global complexity sensors 130

4.5.4 Short-Term-Memory Based Sensors 132

4.6 High Level Sensors 134

4.6.1 Entropy 134

4.6.2 Points of Change 142

4.6.3 Common Accent Inference 150

4.6.4 Harmonic Tension Analysis 153

4.6.5 Global Ratio Sensors 155

4.6.6 Tonality Induction 161

4.6.7 Real-Time Segmentation 164

4.6.7.4 Purpose of Segmentation 164

4.6.7.5 Implementation of Real-Time Segmentation 165

4.6.8 Four Continuous Higher-level Sensors 168

4.6.9 Histograms of Change 172

4.7 Listening Networks 175

4.7.1 Sensor-Activator Networks 176

4.7.2 Synopsis of the Sensors Depicted in the Graphic User Interface shown in Figure 4.24.181

4.8 Evolving Sensor-Activator Networks

4.9 Evaluation of Sensor Network Responsiveness

184

192

4.10 Conclusion 194

Chapter 5: The Patch Object 195

5.1 Purpose of the Patch Object 195

5.2 Definition of a Relation 197

5.3 Definition of a Relationship Object 199

5.4 The Patch Object 200

5.6 Analysis of Patch Responsiveness 207

5.6.1 Patch Pilot Experiments 207

5.6.1 Assessment of Results 219

5.7 Functional Integration of SAN and Patch Objects 220

5.8 Patch Optimisation 224

5.9 Conclusion 226

Chapter 6: Musical Sequence Processing and the Compound function Class
-

228

6.1 The Melody Object Class Hierarchy 229

6.2 Melodic Processing Functions 233

6.3 Compound-function Definition 236

6.4 The Principle of Multiple Influences 237

6.5 Definition of the Output Model 241
6.5.1 Overview 241
6.5.2 Initial Construction of a New Response 242

6.5.3 Definition of the Feedback-Algorithm 246
6.5.4 Input Deliberation 253
6.5.5 Evaluation of the Compound-Function Pool 258

6.6 Optimisation of the Compound-Function Pool 263

6.7 Conclusion 265

Chapter 7: Output Section: a Distributed Agents Model 267

7.1 Introduction 267

7.2 Definition of an Agent

7.3 Description of Agents' Implementation_

7.3.1 Behaviour with Orientation Bit Equal Zero

7.3.2 Behaviour with Orientation Bit Equal One

270

273

277

279

7.4 Musical Articulation 286

7.4.1 Musical Event Generation by Contraction 288

7.4.2 Musical Event Generation by Expansion 289

7.5 Visualisation of Stress 290

7.6 Experiments

7.6.1 Experiments Investigating Autonomous Behaviour: Part one
7.6.2 Experiments Investigating Autonomous Behaviour: Part two

7.7 Conclusion

292

292

318

323

Chapter 8: Machine Motivations and the Drive Object 325

8.1 Introduction

8.2 Implementation of the Drive Object

8.3 Detection of Changes in Human-Machine Similarity

8.4 Learning in the Drive Object

8.5 Definition of the Drives Pool

8.6 Human-machine Common Understanding

8.7 Optimisation of the Drives Pool

8.8 Conclusion

325

327

331

336

340

343

350

350

Chapter 9: Interaction Tracking, Analysis and Coordination of Breeding and
Learning 352

9.1 Introduction

9.2 The Top-level Analysis Function

9.2.1 Consideration of Context

9.2.2 Consideration of Intervals

9.2.3 Handling the Listening Network: Sensors, Brain and Patch

9.2.4 Detection of Halting Behaviour of the Human Improviser,

352

355

355

357

357

358

9.3 Updating the Interaction-trail 359

9.4 Evaluation of Human-Machine Interaction 360

9.4.1 Detection of Temporal Interaction Patterns 360

9.4.2 Deployment of Temporal Interaction Patterns 362

9.4.2.1 Pattern nr. 1 362

9.4.2.2 Pattern nr. 2 365

9.4.2.3 Pattern nr. 3 366

9.4.2.4 Pattern nr. 4 366

9.4.3 Analysis of Temporal Interaction Patterns 366

9.5 Prediction and Interaction Scheduling 367

9.6 Coordination of learning and evolution 373

9.6.1 Coordination of Learning 373

9.6.2 Coordination of Breeding 379

9.7 Conclusion 379

Chapter 10: Experiments 385

10.1 Organization of the experiments

10.2 Data Acquisition Methods_

10.2.1 The Tracer-Data Collector

10.2.2 The Evolution-Data Collector

10.3 Initial experiments
10.3.1 Experiments el to e4: A Comparative Study of System Consistency

10.3.2 Experiments e5 and e6: a comparative study of system inclination_

385

389

389

395

397

397

405

10.4 Experiments e7 to e10: A Series of Systematic Experiments 421
10.4.1 Introduction 421

10.4.2 Experiments 7 and 8: Visualisation of Tracer Data 422

10.4.3 Experiments e7 and e8: Visualisation of Evolution Data 431

10.4.4 Experiments e9 and e10: Visualisation of Tracer Data 441

10.4.5 Experiments e9 and e10: Visualisation of Evolution Data 449

10.4.6 Overview and Interpretation of Data of Experiments e7 to e10 459
10.4.7 Consideration of Global Comparative Results 469

10.4.7.1 Comparative Visualisation of Results 469

10.4.7.2 Evaluation of Results 475

10.4.8 : Correlation Analysis of Experiments e7 to e10 483

10.5 Experiment e7: Analysis of a Limited Interaction Context 486

10.5.1 Data Visualisation of Interaction Context 487

10.5.2 Analysis of the Musical Score 520

10.6 Experiment e8: Analysis of System Behaviour in Relation to Music al Output

524

10.6.1 Experiment e8, Score Excerpt nr. 1: Performance-step nr. 9 526

10.6.1.1 Description of Score Excerpt nr. 1 526

10.6.1.2 Analysis of Score Excerpt nr. 1 528

10.6.2 Experiment e8, Score Excerpt nr. 2: Performance-step nr. 63 532

10.6.2.1 Description of Score Excerpt nr. 2 532

10.6.2.2 Analysis of Score Excerpt nr. 2 534

10.6.3 Experiment e8, Score Excerpt 3: Performance-step nr. 68 538

10.6.3.1 Description of Score Excerpt nr. 3 538

10.6.3.2 Analysis of Score Excerpt nr. 3 541

Chapter 11: Conclusion 545

11.1 Introduction: Thesis Review and Discussion 545

11.2 Contributions to Knowledge 547

11.2.1 Answers to Overarching Research Questions 547

11.2.2 Matching the Evaluation Criteria 549

11.2.2.1 Maximization of External (Human) Influence 549

11.2.2.2 Blending of Mutual Influences 551

11.2.2.3 Automatic Generation of Internal Motivations 552

11.2.2.4 Emergent Functionality vs. Variable Behaviour 555

11.2.3 Contextual Evaluation and Fulfilment of a Lacuna in the Field 557

11.2.3.1. Critical Evaluation of Contextual Systems 558

11.2.3.2. Fulfilment of a Lacuna in the Field 562

11.2.4 Musical Output 565

11.4 Recommendations for future research 566

Glossary 569

References 583

L! At. of figures

Figure 1.1: Model of human-machine interaction based on structural couplings on
different hierarchical levels simultaneously .. 24

Figure 3.2: General systems topology showing information flow and actual
implementation of the three-network layout depicted in chapter 1, figure 1.1. The four

pool objects are subject to genetic optimisation .. 91

Figure 3.3: Example of cascading classes in the sensor-to-ear hierarchy 93

Figure 3.4: Snapshot of ear GUI .. 99

Figure 4.1: Memory structure in Oscar. Short-term memories 1 and 2 capture the last

human-produced sequences in alternation, comparative analysis may reveal

tendencies in the behaviour of the human interactor ... 116

Figure 4.2: Global listening network; sensor network ... 118

Figure 4.3a: Example of context sensitive behaviour in a level sensor for the

dimension of duration (time in seconds) ... 121

Figure 4.3b: Example of context sensitive behaviour in a level sensor for the

dimension of duration, discrimination window size in milliseconds (time in seconds).

... 121

Figure 4.3c: Example of context sensitive behaviour in a level sensor for the

dimension of duration, sensor focus value in milliseconds (time in seconds).......... 122

Figure 4.3d: Example of context sensitive behaviour in a level sensor for the
dimension of velocity, relative to input range of 1-127 (time in seconds) 122

Figure 4.3e: Example of context sensitive behaviour in a level sensor for the
dimension of velocity, size of discrimination window (time in seconds) 123

Figure 4.3f: Example of context sensitive behaviour in a level sensor for the

dimension of velocity, sensor focus history (time in seconds) 123

Figure 4.4: Entropy 1 .. 139

Figure 4.5: Entropy 2 .. 139

Figure 4.6: Entropy 3 .. 140

Figure 4.7: Entropy 4 .. 140

Figure 4.8: Entropy 5 .. 141

Figure 4.9: Entropy 6 ..
141

Figure 4.10: POC 1 ...
146

Figure 4.11: POC 2 ...
146

Figure 4.13: POC 3 ... 147

Figure 4.14: POC 4 ... 147

Figure 4.15: POC 5 ... 148

Figure 4.16: POC 6 ... 148

Figure 4.17: POC 7 ... 149

Figure 4.18: POC 8 ... 149

Figure 4.19: POC 9 ... 150

Figure 4.19: Visualisation of random melody used with common-accentedness

example ... 153

Figure 4.20: Tension profile of a random melody of 100 events long
..................... 155

Figure 4.21: Working memory, last 32 events input by the human interactor......... 158

Figure 4.22: Ratios history in four dimensions
.. 160

Figure 4.23: Histograms documenting changes in working memory in the dimensi ons

of event pitch, event velocity, event duration and event entry-delay 172

Figure 4.24: Snapshot reflecting firing activity in neurons and their associated

sensors ... 174

Figure 4.25: Basic SAN without feedback ... 177

Figure 4.26: Topology of a three layer partially connected sensor-actuator network.

Black arrows specify sensor input, red arrows show the neuronal network, blue arrows

signify neuron to patch connections and green arrows denote feedback
.................. 177

Figure 4.27: Functionality inside a single SAN neural node 178

Figure 4.28: Example of partially connected neural layer, random number of

connections (1-5) and a single input sensor per neuron ... 180

Figure 4.29: Example of uniform connected neuronal layer with five connections per

neuron and a variable number of sensors per neuron .. 180

Figure 4.30: Method for unsupervised exploration of the state space of listening

networks using genetic operators .. 185

Figure 4.31: Sample evolved SAN composed of 16 neurons. Every neuron feature s
five Boolean sensors with individual weights. The matrix represents a sparsely

connected neural structure ... 187

Figure 4.32: Fitness history of a single SAN in experiment 1 190

Figure 4.33: Comparative view of five fitness histories in experiment 1 190

Figure 4.34: Fitness history of a single SAN in experiment 2 191

Figure 4.35: Comparative view of five fitness histories in experiment 2 191

Figure 4.36: Sensor network responsiveness experiment nr. 1
193

Figure 4.37: Sensor network responsiveness experiment nr. 2
193

Figure 5.1: Global listening network highlighting feedback loop from patch......... 196

Figure 5.2: Four types of basic relations between changes in an input quantity (green

arrows) and the effect in an output quantity (red arrows) ...
198

Figure 5.3: A typical patch showing couplings between 16-element

activation/inhibition vector and a collection of twelve player agents. Four colours

reflect four types of relations .. 203

Figure 5.4: Patch activation as a function of neural activity 208

Figure 5.5.1: d=20, w=0.1, mp=nil, mi=t ... 210

Figure 5.5.2: cß=20, x=0.1, mp=t, mv=t .. 211

Figure 5.5.3: cß=20, x=0.9, mp=nil, mv=t ... 212

Figure 5.5.4: cß=20, w=0.9, mp=t, mv=t .. 213

Figure 5.5.5: d=80, w=0.1, mp=nil, mv=t ... 214

Figure 5.5.6: cß=80, X0.1, mp=t, mi=t .. 215

Figure 5.5.7: d`=80, w--0.9, mp=nil, mv=t ... 216

Figure 5.5.8: d=80, x=0.9, mp=t, mv=t .. 217

Figure 5.5.9: d=100, w=0.1, mp=t, mv=t .. 218

Figure 5.6: The current sensor-activator network and the current patch are tightly

coupled and subject to sustained, qualitative oscillation ...
221

Figure 5.7: Experiment e17, average SAN fitness history 224

Figure 5.8: Experiment e18, average SAN fitness history
.......................................

224

Figure 5.9: Experiment e17, average patcher fitness history 225

Figure 5.10: Experiment e18, average patcher fitness history
.................................

225

Figure 6.1: Exemplary situations of multiple influences in four dimensions. A new

sequence is constructed from material in two potential sources according to a binary

weighting scheme .. 240

Figure 6.2: Top most decision triggering a machine response 243

Figure 6.3: Creation of a new response using the principle of multiple influences.

Example with two sources only; working memory and private patterns. The block

"select sources" refers to the format in figure 6.1 .. . 244

Figure 6.4: Information flow in the feedback-algorithm 247

Figure 6.5: A fluid container metaphor underpins the feedback-algorithm 248

Figure 6.7: Adaptation of an agent's input-pressures vector. The three weights are

modified proportional to changes in human-responsiveness and changes in the agent's

number of neighbours. Weight range is 0 to 100 .. 254

Figure 6.8: Adaptation of input-pressures-adapted vector of a single agent in

experiment e7 ..
256

Figure 6.9: Mutual influence of three weights during generations 560 to 630 in figure

6.8 ..
256

Figure 6.10: Adjusting CF fitness according to selfish machine inclination........... 260

Figure 6.11: Adjusting CF fitness according to social machine inclination............ 260

Figure 6.12: The fitness of a compound-function is updated according to the systems

global orientation and the change in melodic distance between human and machin e.

... 261

Figure 7.1: Simplified representation of complete system. Red curves depict the

transmission of an activation signal from a patch to an agent. Black curves represent

the distribution of specific compound-functions towards the agents 269

Figure 7.2: Main interface showing action pane with six temporary clusters.......... 274

Figure 7.3: Main interface showing regular, diamond-like emergent pattern 275

Figure 7.4: Basic scheme: responsive and autonomous behaviour
.......................... 276

Figure 7.5: Interaction according to global stress .. 277

Figure 7.6: Interaction according to local proximity .. 279

Figure 7.7: Agent activity according to the status of its orientation bit 281

Figure 7.8: Creation of a machine response: a hybrid mix of autonomy and

responsiveness in melody generation .. 285

Figure 7.9: Example of emergent cluster orchestration ... 287

Figure 7.10: Creation of parallel-events by contraction and expansion. Specification

of the arguments of the grouping and ungrouping algorithms 290

Figure 7.11: Stress view 1, uniform matrix .. 291

Figure 7.12: Stress view 2: random matrix .. 291

Figure 7.13: Stress view 3: random matrix .. 292

Figure 7.14: Agents experiment 1, structural changes with random contents of

affinities matrix ... 293

Figure 7.15: Agents experiment 2, structural changes with uniform contents of

affinities matrix ...
306

Figure 7.16: Agents Experiment 10; uniform affinity matrix 320

Figure 7.17: Agents Experiment 12; random affinity matrix 321

Figure 8.1: Topology of a single drive object showing three groups of four bits per

motivation ..
328

Figure 8.2: -Manipulation of levels of integration and expression according to the

evaluation of the drive's current relationships and adjusting the efficiency of the drive

according to perceived changes; i. e., the delta value and its sign
339

Figure 8.4: Drives are selected according to the current learning mode and an input

value between 0 and 100. This value operates as a stochastic threshold to decide about

the invocation of an exploration or exploitation oriented selection procedure......... 342

Figure 8.5: Top-level system-common-understanding is obtained by comparing the

level and sign of the current output levels of patch and drive objects 343

Figure 8.6: Experiment 7, patch vs. drive levels of global orientation 349

Figure 8.7: Experiment 7, patch vs. drive levels of global orientation - detail....... 349

Figure 9.1: The analysis-function (on the left) is scheduled by the background

analysis-process, typically every 1000 milliseconds. The evaluate-interaction-function
itself evaluates a sequence of sub-functions as depicted on the right hand side....... 354

Figure 9.2: Identification of 16 significant temporal interaction micro-patterns.

Activity in the human performer (HP) and the machine player (MP) is visualised as

two parallel tracks, green denotes human-active, blue denotes machine-active, yellow

denotes neither is active; i. e., silence ..
361

Figure 9.3: Four significant interaction patterns are filtered out of a continuous

interaction stream. These patterns signal the start and stop activity in both human and

machine and trigger specific further processing ... 364

Figure 9.4: Histogram of temporal interaction patterns ... 367

Figure 9.5: Motivation equals integration, erroneous prediction, human performer

starts later than predicted ... 371

Figure 9.6: Motivation equals integration, correct prediction of start-time of the

human performer ... 371

Figure 9.7: Motivation equals expression, erroneous prediction, overdue machine

reaction ..
371

Figure 9.8: Motivation equals expression, erroneous prediction, premature machine

reaction ..
371

Figure 9.9: Motivation equals expression, correct prediction of the duration of the

human performer's response ...
372

Figure 9.10: Handle-main-function coordinates timing of learning and breeding

activity, the selection of fresh instances from the respective populations and the

distribution of compound-functions to the players-agency 376

Figure 9.11: Select-specific-function: the algorithm selects a compound-function

from the compound-function-pool according to four parameters 378

Note that the parametric exploration-exploitation-ratio is set as ratio]. It is competing

for attention with a second, internal ratio2, it is computed as follows:
....................

378

Figure 10.1: Prototypical experimental setup showing a gradual transition from only

exploration towards novel resources at the beginning to only exploitation of existing

resources at the end ...
388

Figure 10.2: A nine-pane tracer window reveals distinctive systems behaviour. This

figure documents data acquisition over the first 400 steps of a typical test run of

Oscar ..
390

Figure 10.3: Compound-function pool integration vs. expression fitness levels in el.

...
401

Figure 10.4: Compound-function pool integration vs. expression fitness levels in e2.

...
401

Figure 10.5: Compound-function pool integration vs. expression fitness levels in e3.

...
402

Figure 10.6: Compound-function pool integration vs. expression fitness levels in e4.

...
402

Figure 10.7: Patcher global orientation levels in el ... 403

Figure 10.8: Patcher global orientation levels in e2 ... 403

Figure 10.9: Drives global orientation levels
... 404

Figure 10.10: Drives global orientation levels
... 405

Figure 10.11: Current patch orientation levels in e5 .. 407

Figure 10.12: Current patch orientation levels in e6 .. 407

Figure 10.13: Current drive integration level in e5 ..
408

Figure 10.14: Current drive integration level in e6 ..
408

Figure 10.15: Current drive expression level in e5 ..
409

Figure 10.16: Current drive expression level in e6 ..
409

Figure 10.17: Current drive orientation level in e5 ..
410

Figure 10.18: Current drive orientation level in e6 ..
410

Figure 10.19: Level of human agreement in e5 ..
412

Figure 10.20: Level of human agreement in e6 .. 412

Figure 10.21: Level of machine agreement in e5 ... 413

Figure 10.22: Level of machine agreement ..
413

Figure 10.23: Total human/machine similarity in e5 ...
414

Figure 10.24: Total human/machine similarity in e6 ...
414

Figure 10.25: Histogram of levels of human-machine similarity in e5
416

Figure 10.26: Histogram of levels of human-machine similarity in e6
416

Figure 10.27: Drives total integrations level in e5 and e6 .. 418

Figure 10.28: Drives total expression level in e5 and e6 ... 418

Figure 10.29: Drives total efficiency level in e5 and e6 .. 419

Figure 10.30: Drives total human/machine understanding in e5 and e6 419

Figure 10.31: History of human-machine total similarity in e7 423
Figure 10.32: History of human-machine total similarity in e8 423
Figure 10.33: History of human responsiveness in e7 ... 424
Figure 10.34: History of human responsiveness in e8 ... 424
Figure 10.35: Exploitation vs. exploration pressures in e7 425
Figure 10.36: Exploitation vs. exploration pressures in e8 425

Figure 10.37: Quantity vs. quality of human input in e7 ... 426

Figure 10.38: Quantity vs. quality of human input in e8 ... 426

Figure 10.39: Patcher global orientation in e7 ... 427

Figure 10.40: Patcher global orientation in e8 ... 427

Figure 10.41: Drives-pool global orientation in e7 .. 428

Figure 10.42: Drives-pool global orientation in e8 .. 428

Figure 10.43: Number of events in the compound-function held by the reference

agent in e7 ... 429

Figure 10.44: Number of events in the compound-function held by the reference

agent in e8 ... 429

Figure 10.45: Human vs. machine agreement in e7 ... 430

Figure 10.46: Human vs. machine agreement in e8 ...
430

Figure 10.47: History of drives-pool efficiency in e7 ..
431

Figure 10.48: History of drives-pool efficiency in e8 ..
431

Figure 10.49: Drives-pool output levels in e7 .. 432

Figure 10.50: Drives-pool output levels in e8 ... 432

Figure 10.51: History of drives-pool understanding in e7 433

Figure 10.52: History of drives-pool understanding in e8 433

Figure 10.53: History of patcher fitness in e7 .. 434

Figure 10.54: History of patcher fitness in e8 .. 434

Figure 10.55: Compound-function pool fitness history in e7 435

Figure 10.56: Compound-function pool fitness history in e8 435

Figure 10.57: Compound-function pool application density in e7 436

Figure 10.58: Compound-function pool application density in e8 436

Figure 10.59: Compound-function pool application density histogram in e7.......... 437

Figure 10.60: Compound-function pool application density histogram in e8.......... 437

Figure 10.61: Percentage unique agent's CF ID's in e7 ... 438

Figure 10.62: Percentage unique agent's CF ID's in e8 ...
438

Figure 10.63: System common understanding in e7 .. 439

Figure 10.64: System common understanding in e8 .. 439

Figure 10.65: System global orientation in e7 ... 440

Figure 10.66: System global orientation in e8 ... 440

Figure 10.67: History of human-machine total similarity in e9 441

Figure 10.68: History of human-machine total similarity in e10 441

Figure 10.69: History of human responsiveness in e9 ... 442

Figure 10.70: History of human responsiveness in e10 ... 442

Figure 10.71: Exploitation vs. exploration pressures in e9 443

Figure 10.72: Exploitation vs. exploration pressures in e10 443

Figure 10.73: Quantity vs. quality of human input in e9 ... 444

Figure 10.74: Quantity vs. quality of human input in e10 444

Figure 10.75: Patcher global orientation in e9 ... 445

Figure 10.76: Patcher global orientation in e10 .. 445

Figure 10.77: Drives-pool global orientation in e9 ... 446

Figure 10.78: Drives-pool global orientation in e10 .. 446

Figure 10.79: Number of events in the compound-function held by the reference

agent in e9 ...
447

Figure 10.80: Number of events in the compound-function held by the reference

agent in e 10 ...
447

Figure 10.81: Human vs. machine agreement in e9 ...
448

Figure 10.82: Human vs. machine agreement in e10 ...
448

Figure 10.83: History of drives-pool efficiency in e9 ... 449

Figure 10.84: History of drives-pool efficiency in e10 .. 449

Figure 10.85: Drives-pool output levels in e9 .. 450

Figure 10.86: Drives-pool output levels in elO .. 450

Figure 10.87: History of drives-pool understanding in e9 451

Figure 10.88: History of drives-pool understanding in e10 451

Figure 10.89: History of patcher fitness in e9 .. 452

Figure 10.90: History of patcher fitness in elO .. 452

Figure 10.91: Compound-function pool fitness history in e9 453

Figure 10.92: Compound-function pool fitness history in e10 453

Figure 10.93: Compound-function pool application density in e9 454
Figure 10.94: compound-function pool application density in elO 454

Figure 10.95: CF pool application density histogram in e9 455
Figure 10.96: CF pool application density histogram in elO 455
Figure 10.97: Percentage unique agent's CF ID's in e9 ... 456
Figure 10.98: Percentage unique agent's CF ID's in elO ... 456
Figure 10.99: System common understanding in e9 .. 457
Figure 10.100: System common understanding in elO .. 457
Figure 10.101: System global orientation in e9 ... 458

Figure 10.102: System global orientation in e10 ... 458

Figure 10.103: Sum of patch pressures in e7 to elO .. 471

Figure 10.104: Count of patch pressures in e7 to elO .. 471

Figure 10.105: Sum of drive activation in e7 to e10 .. 472

Figure 10.106: Count of drive activation in e7 to e10 ... 472

Figure 10.107: Sum of system orientation in e7 to e10 .. 473

Figure 10.108: Count of system orientation in e7 to elO ... 473

Figure 10.109: Sum of common understanding in e7 to elO 474

Figure 10.110: Count of common understanding in e7 to elO 474

Figure 10.111: Correlation between the drives global orientation and system common

understanding in experiment e7: social inclination, evolution and learning
............. 483

Figure 10.112: Correlation between the drives global orientation and system common

understanding in experiment e8: selfish inclination, evolution and learning............ 483

Figure 10.113: Correlation between the drives global orientation and system common

understanding in experiment e9: social inclination, evolution only (no learning).... 484
w

Figure 10.114: Correlation between the drives global orientation and system common

understanding in experiment e10: selfish inclination, evolution only (no learning). 484

Figure 10.115: Human input, dimension of pitch; 166 samples 488

Figure 10.116: Human input, dimension of velocity; 166 samples 489

Figure 10.117: Human input, dimension of duration; 166 samples 489

Figure 10.118: Human input, dimension of rhythm; 242 samples 489

Figure 10.119: Agent 1, dimension of pitch; 84 samples ... 490

Figure 10.120: Agent 1, dimension of velocity; 84 samples.................................... 490

Figure 10.121: Agent 1, dimension of duration; 84 samples 491

Figure 10.122: Agent 1, dimension of rhythm; 146 samples 491

Figure 10.123: Agent 3, dimension of pitch; 66 samples ... 492

Figure 10.124: Agent 3, dimension of velocity; 66 samples 492

Figure 10.125: Agent 3, dimension of duration; 66 samples 492

Figure 10.126: Agent 3, dimension of rhythm; 127 samples 492

Figure 10.127: Agents input-pressure, single dimension (human), 58 samples. For

clarity, only the data reflecting the six agents (out of 8) that actually engage in

interaction are visualised ... 493

Figure 10.128: Human-machine total similarity), 58 samples 494

Figure 10.129: Human (green curve) vs. machine (red curve) agreement, 58 samp les.

... 494

Figure 10.130: Drives global orientation, 58 samples .. 494

Figure 10.131: Patcher global orientation, 58 samples .. 495

Figure 10.132: Exploitation (green curve) vs. exploration (red curve), 58 samples. 495

Figure 10.133: Human-responsiveness, 58 samples .. 495

Figure 10.134: Compound-function-pool levels: integration (red), expression (green),

14 samples ... 496

Figure 10.135: Compound-function-pool, function application frequency, 14 samples

... 496

Figure 10.136: System-global-orientation, 14 samples .. 496

Figure 10.137: System common understanding, 14 samples 497

Figure 10.138: Percentage unique agents' ID's, 14 samples 497

Figure 10.139: player-agency score excerpt at performance step nr. 9, voice 1 and 2.

... 526

Figure 10.140: player-agency score excerpt at performance step nr. 63, voices 1 to 4,

top to bottom ... 535

Figure 10.141: player-agency score excerpt at performance step nr. 68, voices 1 to 5,

top to bottom ... 541

Figure 10.142: Contents of working-memory at performance step nr. 68
............... 542

1

Chapter 1: Introduction

This thesis is about interactive music systems that support a way of music making

where listening and playing activity of humans and machines results in various forms

of collective musical engagements. Musical human-machine interaction is considered

here as a form of interactive composition in the domain on non-ideomatic musical

improvisation (Bailey 1980). This thesis proposes an approach to musical human-

machine interaction whereby music is considered as a result of complex emergent

behaviour. In a nutshell, by complex emergent behaviour we mean the spontaneous

creation of fruitful interactions between the components comprising the system and

between the system and a human performer, where the complexity of the musical

experience cannot be explained from observation of those components in isolation.

More details about the notions of complexity, emergent behaviour and complexity are

discussed later in this chapter.

This chapter is organised as follows. It begins with an introductory discussion on

artificial musicianship in the context of this thesis. Then we present the research

objectives and indicate how the work will be demonstrated and evaluated. Next, we

introduce the meaning of terms and notions that are fundamental for the

understanding of this thesis, followed by an overview of the architecture of Oscar -

the system we developed as part of the research for this thesis. The chapter ends with

an overview of the general plan of the thesis.

1.1 Towards an Artificial Companion for Life Performance

The motivation behind the research developed in this thesis is the creation of an

artificial musical companion for live performance. In essence, this artificial partner

should offer very specific functionality: it must (1) act as an autonomous, independent

2

musician expressing a private musical personality and (2) it should be receptive and

adaptive to a real-time musical context suggested by a human performer.

Interaction and improvisation are vital aspects of interactive composing, a musical

practice defined as "a two-stage process that consists of creating an interactive

composing system and simultaneously composing and performing by interacting with

that system as it is functioning" (Chadabe 1989, p. 143). The performer issues specific

commands to the software though the details of the changes in the music cannot be

predicted - one must react to what one hears in deciding what to do next. This implies

a tight interplay between the composer's intentions embedded in the software and

performer's actions steering the program in a particular direction.

The system developed in this thesis is designed to function according to the

paradigm of non-idiomatic improvisation. This implies a depreciation of rules -

however, as we shall see later, not a complete elimination of rule-based knowledge. In

addition, we are working towards a system that can function on a continuous scale:

from total autonomous musical behaviour to a system that reflects user influences in

interesting, non-trivial ways. The system is called Oscar (acronym for Oscillator

Artist). Oscar suggests novel ways for dealing with key aspects of interactive

composing: musical perception, the production of musical statements and the

independent synthesis of machine motivations.

An interactive composing system incorporates a degree of intelligence because the

system is responsive in that it reflects the user's actions coloured by the interpretation

of the program's logic. That logic also generates new information to be interpreted by

the performer - the result is a dynamic, intimate human/machine relationship that

propagates in an action-reaction cycle. Such a system features a conversational

quality: "The response must be as in a conversation, where the reply to a statement is

3

related to the statement but not to a repetition of it" (Chadabe 1989, p. 146).

Interactive composing software employs random number generators as sources of

complexity. The basic rationale of interactive composing is to make good use of

whatever the system happens to suggest. Randomness is thought to provide a scope of

opportunities in which the performer navigates, reacts by issuing control gestures,

evaluates machine feedback and subsequently reacts again. Socially speaking, such

systems are clearly functional on a basis of shared initiative - this implies that the

global musical result is intimately tied to the collective efforts of two interacting

entities. Human and machine each contribute improvised musical arguments to foster

the development of the ongoing musical fabric in real-time. This mode of

improvisation is referred to as "strong interactivity" in contrast to "weak interactivity"

where user's actions trigger pre-designed machine reactions. Like Lewis (2007),

Blackwell and Young (2004) believe that strong interactivity is exemplified by the

human-only practice of free-improvisation (Bailey 1980). Strong interaction and

rewarding interaction are solidly related concepts as they imply a degree of surprise

and innovation. According to (Blackwell and Young 2004, p. 8), "Without the

capacity to innovate, listeners would lose the belief that the Live Algorithm was truly

engaged with the performance ... It is the ability to innovate that distinguishes

automation from autonomy".

Free-improvisation implies the working principle of bottom-up emergence instead

of top-down design; bottom-up means that the music issues from temporal, individual

contributions by human and machine without any priori compositional arrangements,

musical patterns are formed through self-organization rather than explicit organization

following instructions by an external designer. Self-organization as studied in the

scientific theory of complex dynamical systems (Thomson and Stuart 1986) may

4

indeed offer a firm mathematical platform to analyse musical improvisations. As we

shall see later, complex dynamical systems provide a consistent nomenclature to

describe, analyse and understand the complex phenomena issuing from self-

organising musical processes (Borgo and Goguen 2005).

While the early practice of free-improvisation between humans and machines is

exemplified, for instance, in the work of Martirano (Franco 1974), Mumma (1975),

Behrman (1981) and the networked computer music band The Hub (Bisshof et. al.

1978; Perkis 1989), the recently created Live Algorithms for Music (LAM) research

network coordinates interdisciplinary work aiming the identification of the theoretical

and practical issues implicit in free human-machine improvisation (Blackwell and

Young, 2004). And yet, there is still no stable definition for the complexity and the

dynamics LAM aims to explore. We agree with Lewis (2007) that improvisation must

be open to contingency and function in a real-world production mode. In other words,

interacting partners should be receptive and supportive to the unforeseen while

interaction takes place in a common, real-time grounded environment.

1.2 Research Objectives and Evaluation

1.2.1 Objectives

Qualitative human-machine interaction implies considerations on two interrelated

time scales; (1) the long-term articulation of a musical climate suggested through

shared initiative by human and machine and (2) the effect of moment-to-moment

decisions that contribute to the evolving interaction trajectory.

Firstly, human-machine interaction is identified as a process where both parties

participate in an ongoing autonomous process. The effect of human activity on the

system exhibits variable degrees of comprehension e. g., the immediate effect of user

5

actions is not totally and unequivocally discernable. Interaction is more seen as the

articulation of variable engagement by human and machine; for instance, either one

may temporarily exercise more influence, while the other one will pick up with the

renewed situation later on. Human or machine originated actions may leave a

significant impact in the long run but their immediate effect is only partially

perceptible to the human performer.

Secondly, moment-to-moment decisions are made relative to the constraints of the

logic embedded in a particular program. For instance, the complexity of a machine

response usually depends on the way it interprets human input and the nature of its

musical processing functionality. Constraints can be thought of as "designed

relationships" that form the basis of specific, recognizable musical identities. This

thesis avoids "designed relationships" in a wish to maximize diversity and so foster a

more dynamic and challenging interaction climate. As an alternative, human-machine

relationships are evolved on-line rather than being designed explicitly.

In practice, both time-scale considerations merge in a single, continuous process

that accommodates respectively, (1) relative autonomous systems behaviour and (2)

actions implying relative responsiveness. This results in a situation where the human

interactor and machine are engaged in a process of mutual influence rather than

explicit control. A metaphorical link is made with the dynamic qualities normally

associated with living systems - systems that develop complex behaviour according

to internal autonomous motivations and external stimuli (McFarland 1992). Note that

we do not wish to implement a living system as such. In the spirit of Artificial Life

(Langton 1997) we only take inspiration from certain aspects of biological systems in

order to create artificial ones.

The overarching questions that this thesis seeks to answer are:

6

A) Is it possible to develop an interactive system that is able to modify itself in

coherent, but non-trivial ways, as the result from interactions with the external

world (e. g., with a human interactor)?

B) Would such system be able to offer an ongoing interaction platform, which

remains interesting over extended time spans?

The second research question above gives rise to the definition of an important

notion in this thesis: the notion of rewarding interaction. This notion will be further

discussed below and become increasingly clearer as the thesis develops.

1.2.2 Evaluation

In order to unpack our research questions into objective and demonstrable goals,

we identified four required functionalities that are deemed fundamental for the type of

interactive system we propose to develop. As these functionalities will be part of our

evaluation strategy, we refer to them as main evaluation criteria. The rationale for

these four requirements will become clearer in chapter 2, when we survey related

systems.

Main Evaluation Criterion 1: Maximization of external (human) influence.

The system must maximise human influence in the process of machine listening.

The system must be adaptive to the variable character and intensity of external human

input. In addition, it should provide significant diversity of perspectives towards the

analysis of human input. For instance, the impact of a particular parameter of a single

input event must be approved while movement (such as the detection of an

incremental pitch profile) in a perceived melody must equally be possible. A global

indication of listening should materialize from a great variety of independent, lower

level listening components.

7

Main Evaluation Criterion 2: Blending of mutual influences

Temporal complexity and novelty should emerge from blending influence from a

human performer and pressure generated by internal system components. Therefore,

the system's internal organization must accommodate mutual influences between

musical objects in a distributed system. That is, the articulation of larger, multi-

layered musical output structures should emerge from the interactions (variable

associations) between more basic musical processing units. In essence, when creating

a response, the system must negotiate influence from internal and external

information resources.

Main Evaluation Criterion 3: Automatic generation of internal motivations

The system must have a capacity for the autonomous generation of internal

motivations that are instrumental in influencing the interaction climate in specific

ways. We avoid the specification of explicit associations between human input and

machine responses. Therefore, a scripted interaction protocol - generally known as a

"mapping" procedure (Hunt 2002) - is not acceptable (the problems associated with

mapping are described in a moment). Two competing machine motivations are

identified: integration and expression. Integration means a machine motivation that

aims to comply with the musical context suggested by a human interactor and a wish

to minimise the melodic distance between the current human and machine produced

musical statements. Expression implies a machine motivation to produce output

according private specifications, irrespective of current context.

The implied goal is that the system develops motivations that contribute to an

interaction climate characterised by the manifestation of similar objectives of human

and machine. In other words, the system aims for mutual agreement as to the

8

proposition of a particular motivation i. e., either integration or expression. To attain

this goal, the system must (1) learn to adapt its motivations according to the dynamics

of the actual interaction and (2) develop musical processing functions that provide

expertise to fulfil a particular machine motivation.

Main Evaluation Criterion 4: Emergent functionality vs. variable behaviour

The system should consistently offer coherent implicit emergent functionality as a

whole while still showing evidence of variable behaviour evolving in the long run.

Therefore, we are interested to investigate if there could be fruitful interactions

between the three sub goals defined above. In other words, the complex functionality

demanded by the previous sub goals and the overall performance functionality of the

global system is imagined to appear spontaneously from favourable interactions inside

and between system components.

The question that immediately comes to mind now is: How could a system be

implemented in order to meet the design criteria listed above? Two potential

engineering approaches exist. These and an argumentation about our methodology

will be discussed in chapter 3. Below we introduce the meaning of terms and notions

that are fundamental for the understanding of this thesis,

Consideration of the first three criteria offers directives for the characterization

and implementation of the three key system components, respectively (1) the listening

network, (2) a distributed player agency and (3) a motivation generator. (These are

detailed respectively in chapters 4,7 and 8). The final criterion suggests a global

networked architecture of interacting lower level system components whose overview

is introduced below. (This architecture is further detailed as the thesis develops.)

Therefore, this research will be demonstrated and evaluated in terms of:

9

1) Our ability to provide conclusive answers to our overarching research

questions.

2) Our ability to demonstrate that the system meets the four aforementioned

criteria.

In addition, in order to contextualise our system in relation to previous developments

in the field, we will demonstrate how our system compares with these other

developments in terms of a comparative framework, which is developed in chapter 2.

Thus:

3) Our ability to demonstrate that the system fulfils a lacuna in the field.

Finally, and related to all three above:

4) The ability to demonstrate the system in terms of musical output; that is, how

the aforementioned behaviours translate into music.

1.3 Definitions

1.3.1 Autonomy and Motivation

In order to be considered autonomous, an agent must to some extend control its

own destiny (Steels 1994). It is useful to contrast autonomy with the automatic nature

of many generative music systems. Automatic systems are self-regulating but they do

not make the laws their regulatory activities seek to satisfy, laws are hard-wired or

imposed explicitly. Autonomous systems, on the other hand, develop for themselves,

the laws and strategies according to which they regulate their behaviour; they are self-

governing as well as self-regulating (Smithers 1991). One can fully predict the

behaviour of automatic systems because their inner functions are known by design -

disturbing their surroundings will entail predictable self-steering behaviour.

10

The behaviour of an autonomous system is inherently unpredictable because it was

designed to develop its own motivations and responses in order to deal with novel

situations. Autonomous systems do more than tweak internal variables according to

external pressures; they adapt their structure in a fundamental way yielding behaviour

that could not be anticipated by their designers. The theory developed by Maturana

and Varela (1984) even suggests that adaptations in structural coupling between an

organism and its environment are mandatory to support life itself.

Autonomous systems are congruent with musical interaction; typically, they both

develop in time and feed on historical data, an autonomous agent "... is a system

situated within and part of an environment that senses that environment and acts on it,

over time, in pursuit of its own agenda and so as to effect what it senses in the future"

(Franklin and Graesser 1996, p. 26). This aptly underlines (1) the circular nature of

autonomy as a process that feeds on itself and (2) potential behaviour on the brink of

instability because of positive feedback.

Autonomy is strongly linked with the principles of embodiment and situatedness.

Typically, embodiment refers to the sensorial connection of a mobile robotic agent

with its environment. However, this principle does not have to be taken only in a

materialistic sense (Riegler 2002). Embodiment refers to the dynamics of the

structural coupling between agent and environment; interacting with the environment

will condition future perceptions - which in turn will condition future interactions.

The notion of mutual influence is clearly at work under such conditions.

Autonomy - as a graded property - is a highly desired quality in interactive music

systems because (1) it guarantees the generation of unexpected responses that are

however tightly connected to the current context in musically interesting complex

ways, (2) it allows interactive systems to develop unpredictable yet coherent

11

behaviour from the synthesis of internal motivations. The principle of embodiment

here is taken in a non-materialistic, computational sense; it simply refers to the

creation of relationships between the variable structure of the environment (the human

performer) and the internal cognitive structures in the program - for instance, the

neural networks used in our system for listening and the associative emergent clusters

in the agents player section, as it will be introduced later in this thesis.

In summary, automata follow rules while autonomy involves the implicit synthesis

of goal-directedness from the evaluation of many simultaneous, competing

alternatives as the system behaves over time.

1.3.2 Complexity and Rewarding Interaction

According to Waldrop (1994), a system is complex if it contains many

independent agents that are interacting in many different ways. More precisely,

complex systems are defined according to three critical features. Firstly, the nature of

the interactions allows the system as a whole to exhibit spontaneous self-organization.

For example, the genes in a developing embryo organise themselves as to create

particular functional cells, that themselves form collective properties to support life

itself. Secondly, complex systems are adaptive to variable external conditions. For

example, the human brain continuously reorganises its neural connections in order to

learn from experience. Finally, the behaviour of complex systems is described as

qualitative in the sense that dynamic behaviour emerges in between the behavioural

extremes of perfect order and total chaos. This point of balance is referred to as "the

edge of chaos" (Waldrop 1994, p. 12), a point of relative equilibrium where a system

keeps enough structure to sustain itself yet is also open enough to create novelty.

12

Complex systems allow for the use of initial randomness (theoretically, unlimited

degrees of freedom) and the gradual reduction in randomness forced by constraints

and non-linearity. This observation is totally in line with the idea of open

improvisation within a group of interacting musicians. Participants contribute aspects

of their personal language to create a common vocabulary. However, it is stressed that

"the material is never fixed and its historical and systematic associations can be

ignored (...) he [the musician] needs something which is endlessly variable, all parts

of which are always and equally available" (Bailey 1980, p. 126). Open improvisation

seeks to provide an extended vocabulary (a mass of microscopic rules) to favour

invention and imagination (macroscopic effect). The responsibility of the improviser

forces the ultimate reduction of "outside" information (learned or inherited cultural

systems in general) and the unconditional appreciation of "inside" intended effect of a

society of minute processes. Any pre-conceived system of tonal organisation or

musical form will interfere with the act of exploration; "One could approach the

unknown with a method and a compass but to take a map made it pointless to go there

at all" (Bailey 1980, p. 127).

In music, gradual evolution (in contrast to explicit design aiming a singular focus)

is understood as a qualitative process entailing the synthesis on unforeseen forms in

permanent flux. This is equivalent with a preference of the music to dictate its own

form. According to Evan Parker, "Improvisation makes its own form" (cited in

Bailey 1980, p. 132).

Our working definition of complexity builds on the ones above and views

complexity as a means to create a sufficiently large and rich behavioural space for

human-machine interaction to take place. Interaction itself is seen as blending features

13

of human input with the complexity articulated by the relationships between the

various system components.

Our definition of rewarding interaction is directly informed by the definition of

complexity as described above. A musical interaction is considered rewarding if the

interaction process incorporates a critical amount of complexity and when the

performer's activity leaves a discernable impact on the system's behaviour. In other

words, a live performer must leave a perceptible trace while the system holds enough

dynamic relationships amongst its components to guarantee complex autonomous

behaviour.

1.3.3 Emergent Behaviour

According to Holland (1998) emergence is a product of context-dependent

interactions resulting in a non-linear system where the global behaviour of the system

cannot be explained by summing the behaviours of its constituent parts. A "system" is

understood as a collection of parts that interact locally. Parts being interrelated by

simple rules provide complex, global emergent behaviour that cannot be explained

from consideration of the rules in isolation. This definition implies a particular

separation between the nature of the rules and the complexity of their global effect.

Emergence can thus be a generator of surprise. Impett (2002) identifies the broad

theoretical issues in a critical study on interactive music systems. It develops a model

of interaction, simulation and invention implemented as a complex adaptive system

where emergence is viewed as an act of redescription; this implies that

representational constructs can cross domains and thus present shifting levels of

abstraction. What is the motivation for using emergence in interactive composing? An

overview of interactive systems adopting and artificial life approach - thus implicitly

including a form of emergence - is documented in chapter 2, section 2.3.

14

In the context of the present thesis, emergence is defined as the spontaneous

generation of a specific, intended functionality from interacting lower level system

components. Emergence is seen as a bottom-up process where global complexity

materialises from the collective functioning of many simple components.

Oscar consists of a collection of "designed" components; its constituent networks,

as depicted in figure 1.1. Every "macro" network (A, B and C, each organised as two

sub-networks) handles respectively listening, playing and the generation of machine

motivations. Emergence is operational in each network and in the system as a whole.

Therefore, emergence is understood as viewpoint specific. By "viewpoint specific"

we mean the distinction between emergence on a local scale (emergence in a single

network) and emergence on a global scale (the overall system in relation to the

performer). The local viewpoints consider emergence in the subtasks of respectively

listening, playing and the management of machine motivations. The global viewpoint

addresses emergence in terms of human-machine interaction i. e. the behaviour of the

system in relation to human input. All viewpoints are briefly introduced next.

1.3.4 Listening to Music as an Emergent Process

Listening is defined as the extraction of a higher-level signal from a variable array

of low-level features of a continuous input stream. Listening must accommodate the

influence of many different types of features into a single output structure. Listening

is viewed as an active, constructive process rather than the passive summation of

features. Therefore, the listening process is modelled as two interacting sub-networks:

(1) a sensor-activator network (SAN) collecting weighted evidence of many parallel

Boolean sensors and (2) a patch network containing non-linear relationships that

provide interpretation of changes in the sensor-activator network. Feedback from

patch to SAN turns the listening network into a qualitative oscillator. The sensor

15

configurations with their associated weights and the weighted connections of the SAN

are subject to genetic optimisation. In conclusion, listening is understood as an

emergent process because the global output signal of the listening network cannot be

explained in terms of the influence of its associated individual sensors. The listening

functionality of Oscar is detailed in chapters 4 and 5.

1.3.5 Playing Music as an Emergent Process

The player agency in Oscar is modelled as a distributed, two-dimensional micro-

world. All agents express a certain social affinity towards all other agents, this mutual

affinity gives rise to a preferable distance between any two agents. Agents try to

minimise the global stress in the agency by moving to locations of perceived minimal

social stress. The resulting spatiotemporal patterns document emergent behaviour.

The social affinities may pull an initially random agency into a more regular pattern -

in effect, regularity emerges from irregular beginnings. Again, the global patterns,

known as agent clusters, cannot be explained from the many individual inter-agent

affinities. Individual agents inside clusters are activated by the listening network and -

according to the nature of this activation - contribute as layers to the synthesis of a

polyphonic musical texture. The way the individual layers join together into a global

texture is a second kind of emergence in the player agency. Oscar's player agency is

fully documented in chapter 7.

1.3.6 The Synthesis of Machine Motivations as an Emergent Process

Oscar maintains two basic machine motivations: integration and expression. The

degree of prominence of both motivations is influenced by external changes; (1)

changes in the quantity and quality of the musical material performed by the human

interactor and (2) changes in musical distance between the most recent material

16

performed by man and machine. The temporal outcome of the competitive action

between Oscar's two basic machine motivations (integration and expression) is seen

as an emergent result. The drive object which implements machine motivations is

addressed in chapter 8.

1.3.7 Interaction

Musical interaction commonly implies making choices that will influence the

further development of musical relationships in meaningful ways. For instance, in

group improvisations, interactions take place on many levels simultaneously; from the

appreciation of the formal aspects of a single event to larger musical structures to the

sensation of a common cultural language extending into a particular idiom such as

jazz improvisation.

Within the context of the present thesis, human-machine interaction is defined as a

process of reciprocal action, that is, a process of mutual influence. This definition puts

human and machine on equal levels of authority; machine behaviour cannot be

controlled but only influenced. We adopt the musical paradigm of non-idiomatic

improvisation (Bailey 1980) because we aim to study the development of musical

interactions that are not grounded in any particular musical style. As a consequence,

one objective is to study complex musical behaviour issuing from minimal a priory

design specifications.

We expect interaction to emerge from within the system rather than being the

result of a fixed, scripted scenario. Therefore, application of direct mapping is

avoided (an in-depth discussion of mapping follows in chapter 3, section 3.1.2).

According to communications theorist Littlejohn (1989), interaction consists of two or

more communicants in the process of defining the nature of their relationship. As we

17

shall see in chapter 5, the notion of "relationship" plays an important function in the

systems architecture developed here.

Chadabe defines interactive composing as "a two-stage process that consists of

creating an interactive composing system and simultaneously composing and

performing by interacting with that system as it is functioning" (1989, p. 143). This

definition implies the interpretative role of the human and machine performers. It also

stresses the conversation-like nature of interaction (Walker et. al. 1992).

Salen and Zimmerman (2004) suggest two modes to characterize interactivity. The

first mode is defined as unambiguous interactivity with designed choices and

procedures. In this mode, the system offers a palette of responsive options that are

triggered by user actions. Meaning is created explicitly by a clear sense of correlation

between action and response. The second mode views interaction as cognitive

interactivity: the psychological, emotional and intellectual participation between a

person and a system. The latter mode implies implicit interaction in the sense that the

system is (1) considered a microworld of interacting components in itself and (2) a

global system exposed to interaction with a human.

As a generalisation, these two modes identify two common approaches to musical

interaction, respectively (1) the rule-based systems approach that is founded on

conventional Artificial Intelligence (AI) and (2) systems built using principles of

Artificial Life (A-life) such as self-organization. The system developed in this thesis

primarily adopts an A-life approach because we are interested in emergent behaviour

and wish to avoid the negative consequences of mapping - as to be explained in a

moment. However, as we shall see, the knowledge representation and symbol

manipulation techniques of conventional AI are still very useful in Oscar.

18

A comparative analysis of ten real-time music systems in the next chapter

provides a context for the work presented here. The inclusion of each system is

motivated by their relative connection to one of the approaches outlined above. As

we shall see, every system provides a specific orientation towards real-time human-

machine improvisation aiming to support musically rewarding and compelling

interactions.

1.3.8 Characterisation and Contextualisation of Emergence from a Cross-

disciplinary Perspective

A remarkable intentional parallel exists between the practice of free musical

improvisation and the scientific investigation in non-linear systems. Both disciplines

are engaged in the study of behavioural systems involving cooperation and

competition, while the outcomes cannot be predicted from the behaviour of the

individual parts. Recent musicological studies address complex dynamics to help the

analysis and understanding of collective improvisation. The work of American

experimental musician Sam Rivers has been the subject of a concise study using

principles of dynamical systems theory (Borgo and Goguen 2005). An entire issue of

Organised Sound was devoted to complex systems in composition and improvisation

(Worrall 2004). Its editorial lists three characteristics of complex systems: self-

organisation into specific patterns, emergence of specific behaviours such as

bifurcations, and robustness. All three features are essential. Robustness is crucial in

particular as it implies adaptation and the possibility to build systems that expose

themselves as being receptive to external influence while still guaranteeing

continuous operation. In other words, the idea of instrumental control is abandoned

because complex systems cannot be controlled in any conventional sense: non-

linearity implies that the output is not proportional to the input.

19

A cross-disciplinary investigation of free improvisation reports: "Like other

dynamical systems, the exact development and structure of a free jazz improvisation

is inherently unpredictable, and yet through certain shared understandings, nuanced

interactions and interconnections, and a shared cognitive ability to attend to and parse

musical sound, dynamical orderings can emerge that are both surprising and

comprehensible. " (Borgo and Goguen 2005, p. 47). The goal here is to study the

structure and transitions in phase spaces of improvisation. Phase portraits do indeed

provide a qualitative view of the general shape of a non-linear process rather than a

detailed numerical description. Phase space visualisation has also been used to study

emergent behaviour in artificial animals, in particular, the work of Beer (1990).

Free jazz musicians usually explore the maximum degrees of freedom in a floating

framework and thus avoid basins of attraction with lower complexity. However,

players typically renew themselves, express engagement in interaction driven by

discovery and surprise. At the same time, players aim relative coherence to the

prevailing context and are forced to work within a range of physical and cognitive

constraints. These conflicting requirements spontaneously lead to critical behaviour -

more precisely - to surfing the "edge of chaos". Thus, on the one hand, improvisation

requires high sensitivity and focussed listening and, on the other hand, a persistent

intention to project a personal, individual musical image. This musical attitude is very

sensitive to sudden changes in state space; a bifurcation may shift the musical climate

between two levels of relative complexity because a simple musical action may

trigger a reaction that is totally out of proportion to the simplicity of the trigger.

Fundamental uncertainty is inherent in the approach. Free jazz musicians intend for

unintended things to happen, they develop levels of increased awareness to

accommodate the artefacts of self-organisation. A critical state of self-organisation is

20

arrived at through collective experience and engagement rather than collective effort

(Borgo 2002). Such a musical attitude allows unpredictable yet coherent structures to

emerge spontaneously.

It is further useful to draw a conceptual parallel between the ideas expressed by

Steve Lacy and the terminology of "the edge" in the study of non-linear systems. In

an interview with Bailey (1980), Lacy explains his commitment to jazz through

improvisation as follows: "I'm attracted to improvisation because of something I

value. That is freshness, a certain quality that can only be obtained through

improvisation, something you cannot possibly get from writing. It is something to do

with being on the "edge". Always being on the brink of the unknown and being

prepared for the leap (...) if through that leap you find something then it has a value

which I don't think can be found in any other way" (cited in Bailey 1980, p. 74). In

essence, Lacy addresses the problem of dealing with higher levels of complexity, how

to create a dynamic system forcing the known and unknown to interact within the

actual process of improvisation. It is a circular process that entails variable couplings

between the musician and his own statements. This attitude to improvisation thus also

constitutes a method for introspective behaviour.

The theory of complex dynamical systems has studied the idea of "the edge" in

great detail. It claims that the conflicting balancing forces of order and disorder form

the basis of biological life itself. The theory stresses the importance of behaviour

rather than internal construction. Biological systems swing between the extremes of

order and chaos. The delicate balance between order and chaos does not lock the

system in a particular behavioural niche, yet it also avoids it to dissolve in open

turbulence. Such systems are "stable enough to store information yet open enough to

21

transmit it" (Waldrop 1994, p. 293). This idea provides a strong image for describing

qualitative emergent behaviour in an improvisation setting.

Other apparent links exist between complex systems (and the discipline of A-life

in general) and musical improvisation. Consider this statement by Lacy; "For me

that's where the music always has to be - on the edge - in between the known and the

unknown and you have to keep pushing it towards the unknown otherwise it and you

die" (cited in Bailey 1980, p. 71). Research on the origins of order deals with the

relationship between self-organisation and evolutionary selection (Kauffman 1995).

How do both forces contribute and interact to the synthesis and maintenance of living

systems? The work of Packard (1988) sheds light on this problem. It proves that

complex computation in cellular automata (Wolfram 1994) actually takes place at the

edge of chaos. The insight gained was that self-organisation is not the antagonist of

natural selection and that selection is in effect a force supporting emergent behaviour

by pushing the system towards the edge of chaos - which is in support of the of the

computational architecture developed in this thesis. As a most significant conclusion,

metaphorically speaking, when drawing a connection between Lacy and Kauffman,

the deep link between cultural and biological survival is striking.

Many more unexpected conceptual relationships exist between creative thinking in

music and science. The idea of perpetual renewal plays a vital role in both free

improvisation and agent systems. The ground for free improvisation is "... to

assemble a language that would be literally disjoint, whose constituents would be

unconnected in any causal or grammatical way and would so be more open to free

manipulation" (Bailey 1980, p. 128). The implied unpredictability and discontinuity of

such an approach is comparable to the missing supervisor (no global grammatical

coordination) in agent systems. No matter how an agent happens to be defined, each

22

agent finds itself in an environment produced by its interactions with the other agents

in the system.

A general design attitude within complex systems is to maximise responsiveness

by way of high degrees of immediate connectivity between environmental data and

agent behaviour. Such a design approach deemphasises the construction and

maintenance of intricate memory structures because this would be computationally

expensive and thus seriously impair system performance. An outspoken example of

intelligence without representation is the MIT subsumption architecture; a reactive

framework for building mobile robots exposed to an unknown and unpredictable

environment (Brooks 1991b). A similar line of thought characterises much work in

non-idiomatic improvisation. For instance, in relation to musical form, improvisers do

not avail themselves of frameworks inherited from tradition, they prefer the music to

dictate its own form; improvisation becomes "playing without memory" (Bailey 1980,

p. 131).

As explained above, non-linear systems are influenced by external changes that

effectuate potential perturbations in systems behaviour. This thesis suggests the

notion of "change" as a first principle: "Change for the benefits that change can bring"

(Bailey 1980, p. 129). The observation and interpretation of changes occurring in

internal and external quantities plays a crucial role in Oscar's implementation; the

behaviour of most software objects is conditioned by impinging changes. For

instance, we explore relationship objects that specify non-linear relations between

what the system hears and its current internal motivation; whether the system will

integrate with a human performer or, in contrast, will express a private musical

personality, both orientations being not mutually exclusive but rather operating as

competing alternatives (please refer to chapter 5). Global systems performance may

23

be conceptualised as the propagation, accumulation and resolution of waves of

changes in many behavioural dimensions simultaneously.

In conclusion, this thesis views interaction as the act of navigating the behavioural

space implied in a specific system design. The experience of variable complexity and

the appreciation of change are intimately and critically linked to the quality of the

interactive experience.

24

1.4 Overview of the Architecture of the Proposed System: Oscar

human i Memory

G2 F2

motivation
generator

Cl C2

pm esseng
functions

E2

C

Figure 1.1: Model of human-machine interaction based on structural couplings on
different hierarchical levels simultaneously.

As it will be detailed throughout this thesis, Oscar's architecture consists of three

interacting networks and each network consists of two sub-networks (figure 1.1). The

system thus comprises three sets (A, B and C) of two interacting networks. Every

lowest level network provides an intended functionality in itself. Every network -

irrespective of its hierarchical level - is based on the same first principle; the extended

exploitation of emergent behaviour by way of non-linear couplings between the

constituent network components. In addition, global systems behaviour follows from

the development of complex interactions between individual networks throughout the

design hierarchy. The resulting topology is thus reminiscent of the subsumption

model (Brooks 1991a) in its attempt to specify complexity by networks of

incremental functionality. However, in contrast to the subsumption architecture, the

A8

25

idea of stacked layers is deemphasised in favour of a more distributed design model;

all six low-level networks (depicted by the six circular objects in figure 1.1) are open

to direct and indirect mutual influence.

Figure 1.1 shows Oscar's architecture, where the core two-part networks A, B and

C provides functionality for respectively, musical perception, generation/performance

of musical events and the synthesis of machine motivations. These three sub-networks

are the middle layer of a fractal-like architecture. They extend inwards since each part

is also organised as a network on a smaller scale. And they extend outwards because

they aggregate into a macroscopic network additionally incorporating the human

performer.

A short description of each network in provided in terms of its place in the global

network. The information flow in the global network is detailed next. Only the global

nature of the couplings is described here. Detailed descriptions of these are given in

the respective chapters.

The first network (A) is the listening network. It includes the various memory

structures reflecting the performer's activity. Working memory is addressed by a large

number of sensors configured in evolved sensor/activator network that themselves

feed a patch object (at any time the patcher holds a population of such patch objects).

The link A2 depicts stylistic features of the human performer leading to activation of

a patch, while A1 depicts feedback from the patch to the input of the sensor network.

The sensor network and the patcher network use genetic techniques to evolve families

of responsive networks in real-time. The sensor network aims to optimise towards

maximum responsiveness. The patcher network is built from the expression of

relationships between changes in input quantities and output levels. Three input

quantities are observed: (1) changes in similarity between human and machine

26

produced melodies and changes in (2) quantity and (3) quality of human produced

melodies. These changes respectively reflect the musical distance between human and

machine and the density and relative complexity of human input.

The listening network is intended to function as a qualitative oscillator according

to the hypothesis that listening is an active process (Maturana and Varela 1984;

Berger 2004). A detailed explanation is given in chapter 4.

The second network (B) - the player network - creates musical output. It consists

of a collection of musical agents (Maes 1994) following the cognitive theory

developed by Minsky (1986). An agent can play melodies but is also an object

moving in 2D space. Agents express social affinities towards all other agents in a

virtual society (Dewdney 1987, Gold 2007). These affinities act like a network of

mutual influence and every agent aims to reduce its perceived stress by moving to a

new position. As a single agent moves, it will recondition the imposed stress towards

all the others; again the net result is complex, emergent social push-pull behaviour.

The influence of changing configurations of agents on the interpretation of the

affinities is visualised in link B I. The impact of the social affinities - expressed as a

matrix holding preferential distances (Baron and Byrne 1997) - is visualised by the

link B2. The method by which they create musical output will be clarified later.

The third network (C) is the motivation network. It consists of a motivation

generator and a collection of musical processing functions. The goal of the generator

is to suggest an internal machine motivation; a temporary motivation to either (1)

integrate with the context proposed by the human performer or (2) to express an

individual musical character irrespective of context. The efficiency of a motivation

depends on the reaction of the human performer. For instance, if the motivation is

integration and the similarity between the machine melody and the human melody

27

increases, the motivation is considered successful because man and machine are in

agreement and seemingly willing to adjoin to the current context and ready to

contribute to its further existence. The same types of relationships that operate inside

the patcher (in sub-network A) are also used to generate motivations in a drive object.

A single drive object keeps two variables, one for integration level and one for

expression level. These levels act like competing pressures, the winning level sets the

final orientation of the drive. The drive addresses a collection of musical processing

functions. These functions keep two records: how well they contribute to integration

and to expression. Therefore, a drive can easily select a processing function to

contribute successfully to its current orientation (the link C2). Once put into action,

the processing function will exercise a delayed effect on the efficiency of the

instigating drive (link Cl). The motivation network is documented in chapter 8.

Let us now study how the tree networks for respectively listening, playing and the

creation of motivations, mutually interact in a higher-level network topology.

According to its current relationships, the current patch sends a mix of positive

(activation) and negative (inhibition) signals to individual agents. Agents assemble

into temporary spatiotemporal clusters that are interpreted as monophonic melodies.

The sign and amplitude of the patch output signal will influence the orchestration of

these melodies into complex multi-channel polyphonic objects (link El). The patch

will thus influence the relative autonomy in the player society in a qualitative rather

than a quantitative way.

Every agent holds a complex musical processing function used to process the

contents of its melody. These functions are imported from the compound-function

pool into individual agents. All compound-functions evolve under the pressure of the

required functionality, how good they are at either reducing the musical distance

28

between human and machine (integration option) or, in contrast, how good they are at

expressing an individual character irrespective of the human suggested momentary

context (expression option). All functions are in essence LISP methods subject to

genetic crossover and mutation (Koza 1992). The current functions in the pool are

sorted according to their fitness and then distributed to the agents (link E2) according

to a weighting scheme based on the predicament exploration vs. exploitation. A full

discussion is given in chapter 6.

The links Fl, F2 and F3 depict a coupling between changes in working memory

(WM) (holding the last few events performed by the human interactor) and

respectively the agents, the motivation generator (drives) and the patcher network. At

given time intervals, both the quantitative and qualitative changes in WM are

computed. These delta values feed the relationships inside the patcher and the drives.

The latter thus produce output by interpreting stylistic changes in the human

performer's input.

Finally, at the highest structural level of coupling, the human performer observes

feedback from the system (G1) while his output is reflected in working memory (G3)

and the status of the sensor network (G2).

1.5 General Plan of the thesis

This thesis is organised as follows. The next chapter presents a review of related

work and establishes a framework for comparing our system with existing systems in

terms of design features deemed important for interactive systems.

Chapter 3 focuses on research methodology. It discusses possible approaches to

tackle the sort of problems we are addressing in this thesis. Then is presents the

methodology we adopted for the thesis and its rationale.

29

Chapter 4 introduces the system's music listening functionality. The various kinds

of sensors are discussed and how they are configured into sensor networks. The

optimisation of sensor configurations by way of genetic techniques is further

explained.

Chapter 5 brings in the Patch object that creates interpretations of signals provided

by the sensor networks. This chapter introduces the notion of "relationship" -a

method to maintain associations between external changes and internal quantities -

and explains how they are implemented.

Chapter 6 describes musical sequence processing by way of complex, composite

musical processing modules consisting of assemblies of more simple, elementary

processing functions. This chapter introduces the notion of "multiple influence" i. e.

how different aspects of input signals originating from man and machine may

gracefully blend to condition a melody-generating algorithm. The optimisation of

compound functions by way of genetic programming is further discussed.

Chapter 7 explains Oscar's output section that is organised as a distributed agents

model. The effect of the social affinities between agents is explained and how it

contributes to musical output.

Chapter 8 explains how the system generates, manages and implements its internal

motivations (tendencies to (1) integrate with the human performer or (2) express a

private musical character irrespective of context) and how motivations interact with

the compound-function pool described in chapter 6.

Chapter 9 discusses methods for tracking the many treads of activity in the system

such as "temporal interaction patterns" - patterns documenting the relationship

between player activity of man and machine. This chapter also explains the

30

coordination and analysis of learning and breeding in the system and introduces a

prediction algorithm instrumental in scheduling machine responses.

Chapter 10 details a series of systematic experiments documenting the behaviour

of the system. The impact of breeding and learning is evaluated from the observation

and analysis of large bodies of data collected during specific experiments.

Chapter 11 finally provides a global discussion, formulates a conclusion and offers

ideas for further research.

31

Chapter 2: Related Systems and Comparative Framework

This chapter documents a comparative framework of related systems and provides

a comparative discussion about their designs. We establish a number of comparative

design criteria aimed at the definition of a framework to contextualise our research.

As mentioned in chapter 1, this framework will be used in chapter 11 for comparing

our system with existing systems in terms of design features deemed important for

interactive music systems.

Three groups of systems are introduced, organised as three different research

contexts. The rationale for selecting these specific systems and not others is given as

follows:

(1) The systems in question are very well documented in the literature of

computer music

(2) The systems and the concepts they implement are very influential within the

computer music community and cited considerably in the literature, and finally

(3) 1 had the opportunity to debate the motivations underlying specific systems

design with all of the authors of the systems cited here, except three (the author of the

SWARM systems, the author of Diseased Squares and the author of Audible

Ecosystems).

2.1 Two Major Historical Precedents

In 1970, composer Gordon Mumma, based in New York used a remote PDP-6

computer located in Boston for in his composition Conspiracy 8. The ensemble in

New York and the computer were connected by two live data links. The computer

played the role of some sort of "social coordinator"; it received information about the

32

ongoing performance and issued instructions by way of a Teletype situated among the

live performers. The software thus embodied a decision-making member albeit at a

distance. In addition, the computer contributed live sounds relayed to the performance

space through the second data link. This work incarnates the early fascination for

shared responsibility between man and machine in an interactive setting and the

understanding that musical deliberation can actually be described in software

(Mumma 1975). A similar coordinating role of the computer is evident in the work of

The Hub, a computer music network collective. The Hub is the name of the group

though also the central coordinating device featuring a public data protocol that makes

information interchange between a hybrid diversity of microcomputers possible. From

CD liner notes is learned that "... instead of trying to eliminate the imperfect human

performer, we try to use the electronic tools available to enhance the social aspects of

music making" (Perkis 1989).

The technologically sophisticated climate at the University of Illinois, towards the

end of the 1960s, proved to be an ideal ground for the design of radically novel,

personalized music hardware. Composer Salvatore Martirano and his engineering

colleagues developed the SALMAR construction; a machine that would accommodate

both total automatic functioning and direct manual action (Franco 1974). This hybrid

system used discrete TTL (Transistor-Transistor Logic) digital circuits to control an

array of custom-built analog modules, the output routed to multiple speakers allowing

sounds to travel in space. The body of the human performer was in fact inserted in the

control loop; an array of about 300 touch sensitive logic switches made the underlying

architecture of the system visible and accessible in a parallel fashion. Thus, the

machine was a massive hardwired algorithm, with any control point readily accessible

as they were spread out on a large control panel. The "program" defining the musical

33

character of the system was a patch panel similar to those of conventional analog

computers at the time.

The performer was able to shift the focus of control; from triggering complex

gestures lasting several minutes to exercising microscopic control of individual sound

parameters. This control space continuum made the machine unique. In addition, the

system made no clear distinction between sound generating and sound transforming

modules, quite different from the standard engineering approach with voltage

controlled equipment at the time. Incidentally, Martirano viewed the machine as a

musical composition in itself. A performance was essentially a confrontation between

a large collection of semi-automatic parallel processes and a human interactor steering

these processes through a complex network of logic decision trees. Martirano

explains: "I was trading swaps with the logic. I enabled paths, or better, I steered. It

was like driving a bus. " (cited in Chadabe 1997, p. 291).

2.2 Systems that do not follow an Artificial Life Design Approach

The significance of grouping developments into those that do not follow an

Artifical Life (A-life) approach and those that follow will become self-explanatory in

chapter 3, where approaches to interactive systems' design and our methodology will

be discussed in depth.

A collection of four significant real-time improvisation-oriented systems is

presented next; they primarily build on methods of symbolic computing and methods

of knowledge representation of conventional Al. Only GenJam is slightly related to

A-life because - in its original incarnation (Bites 1994) - it employs a genetic

algorithm to evolve jazz-type melodies.

34

As we shall see later, some systems here essentially feature forms of emergent

behaviour that are not associated with the kind of emergence that issues from a typical

A-life distributed architecture. Referring to chapter 1, section 1.3.3, this observation

underpins the importance to actually provide precise definitions of what is understood

by "emergence". The discussion on emergence in this particular context receives

further attention in the concluding section.

The systems addressed below are listed in table 2.1.

Project name/system title Recommended reference

Cypher (Rowe 1993)

Voyager (Lewis 2000)

The Continuator (Pachet 2003)

GenJam (Biles 1998)

Table 2.1: Systems whose design does not follow an Artificial Life approach.

2.2.1 Cypher

Cypher is a real-time interactive system designed by American composer Robert

Rowe. It consists of a listener and a player component. The computational

architecture of both components is largely inspired by the cognitive theory developed

by Marvin Minsky in his seminal book The Society of Mind (1985). The listener and

the player consist of many simple software agents that, when properly interconnected,

form hierarchical agencies that provide the intended musical expertise. Agent and

agency are identified as follows: "Agent is any part or process of the mind that by

itself is simple enough to understand, even though the interactions among groups of

such agents may produce phenomena that are much harder to understand; agency is

35

any assembly of parts considered in terms of what it can accomplish as a unit, without

regards to what each of its parts does by itself' (Minsky 1985, p. 326).

The listener classifies features in a live MIDI (Loy 1985, Moore 1988) input

stream: timbral information is not available. The player consists of sequential

arrangements of music composing and processing functions. The user specifies

explicit links between input features and musical responses via a graphic user

interface. Rowe coined the idea of "score oriented performance" - in contrast to score

following (Dannenberg 1989). Score orientation views a score as a list of input-output

configurations that become effective at well-planned moments in time or when

triggered by predefined features in the input stream. Cypher is also equipped with a

critic; a rule-based component that holds programmed aesthetic preferences. An

important notion in Cypher is that the system is designed to be sensitive to musical

cues provided by a human performer. The listener and player components are detailed

next.

On level one, the listener can analyse the following features: density, speed,

loudness, register, duration and harmony. Thus events can be classified in a six

dimensional feature space. On level two, the listener considers linked input events to

detect musical behaviour over time such as regularity and phrasing. Various features

may be configured to trigger responses by way of selected player functions.

Important, the relationship between specific input features and musical responses is an

explicit one; it is a product of a reasoning process where the user actually anticipates

characteristic human input and consequently foresees a premeditated musical reaction.

The player component has access to three types of compositional methods:

transformation of melodic sequences provided by a human performer, a library of

carefully crafted stylistic music generating algorithms, and direct playback of pre-

36

composed melodies retrieved from a sequence library. The playback of stored

sequences cannot be altered in real-time. Many compositional algorithms use a form

of conditioned randomness in combination with a few external control parameters that

provide a stylistic bias to the actual output. Cypher is primarily viewed as

transformation engine using a series of simple processing functions - complexity is

cumulative. The idea of hierarchical influence of also present in the player: level two

listener features may be used to modify connections between features and

transformations on level one (Rowe 1993). This is a significant characteristic of

Cypher: behavioural gestures detected in the input stream may spark off

complementary higher-level changes in the player functions.

Cypher is also equipped with a critic. The critic continuously filters the musical

output according to a set of rules providing yet another stylistic bias to the system.

When Cypher performs solo, without any input from a human musician, it will enter a

mode of introspective composition since it will continually transform its own musical

output. Then, the listener and the player are engaged in a feedback loop. The rules are

organised as a production system: a collection of condition-action pairs. The

conditions capture specific critical musical attributes while the action part instructs

the system to execute specific musical transformers. The net effect is that of a real-

time expert system exercising stylistic control using a set of explicit aesthetic

preference rules.

Some feature detectors in Cypher are adaptive, for instance the register agent

keeps a scale of pitches perceived at any moment in time. As new events arrive, that

scale will expand in order to accommodate pitches that are outside the present scale.

The precision of the classification will depend on the size of the scale: if less than two

octaves, it will only distinguish between two levels (high and low), if more than two

37

octaves, the classification will recognise four levels (very low, low, high and very

high). In contrast, the loudness agent classifies loudness relative to a user defined

threshold as soft or hard, in effect a non adaptive binary sensor. The speed agent

considers the temporal offsets between consecutive MIDI events: the inter-onset-

intervals (101). It employs an absolute scale to identify 101 into one of four regions

with 101 values smaller than 300 to values greater than 2000 milliseconds. This is a

typical example of a non-adaptive classifier because it does not consider contextual

information. Cypher uses a neural network to infer harmony; it builds on the

connectionist model proposed by Scarborough et al. (1989). The harmony analyser is

a good example of a Minsky-type agency: the connectionist core is extended by

adding paths to the following agents: the vertical density agent providing information

on the nature of chords, the register agent and the beat tracking agent. Beat tracking

itself also follows a connectionist model.

The listener tries to isolate characteristic phrases in a continuous input stream.

Groupings of events are computed from the observation of significant discontinuities

signalling phrase boundaries. A boundary detection algorithm compares the summed,

weighted influence of many lower level feature detection agents to a specific

threshold.

If one views the input and output agencies of Cypher as variable networks, the

input agency functions as a parallel network while the output acts as a sequential

network and the listener really asserts a double purpose. Firstly, output of listener

agents can be patched into response networks as explained above. Secondly, the block

of information holding the current output of all feature detection agents can be sent to

the process that invokes algorithmic responses. This approach to real-time

composition potentially creates interesting, dynamic links between stylistic features at

38

the input and output side of the system. The analysis record is also sent to the

connection manager, it manages the selection of specific musical transformers

according to the currently perceived features. It is concluded that variable input

features may condition the selection of specific music processing/composing modules

as well as their parametric control.

Cypher offers two functional modes: (1) score-oriented interaction using pre-

planned structures as mentioned above, and (2) interaction as open improvisation.

Mode one is considered "composition mode". A score is thought of as a script

that specifies points in time where appropriate responses come into action. These

points specify state changes in the system and are designed explicitly by the

composer. However, they are also linked with characteristic patterns that - when they

occur - specify the actual cue point. This mechanism of score orientation uses a

windowing technique; the program invokes a pattern matching algorithm and, when a

pattern is detected, its associated system responses are configured. This method aims

to create a performance mode where planned state changes follow from performed

patterns allowing Cypher and performer to participate without any operator

intervention.

Mode two is thought of as "improvisation mode". Cypher transforms human input

material using procedures that receive parametric tuning from the features extracted

from that very same musical input material.

2.2.2 Voyager

The work of George Lewis is exemplary in connecting computing and

improvisation in many ways; it merits close analysis. Lewis extends the discussion of

interactive music systems to include the social, political, trans-cultural and

39

philosophical implications: "Improvised music deemphasizes Western classical

notions of form and structure in favour of the exchange of cultural and social

narratives. Informed listening to improvised music ... will involve attention to this

process" (Lewis 1999, p. 102).

Lewis' computer program, entitled Voyager, is a non-hierarchical interactive

musical environment consisting of an ensemble of virtual players controlled by global

behaviour specifications. The flow of musical decisions in the programs follows from

the interpretation of features extracted from musical sequences provided by a human

interactor. Random number generators condition the stylistic attributes of Voyager's

responses. Particular lists of probabilities create various types of musical personality.

From this it follows that the program can exhibit a number of potential states, isolated

from an infinite state-space, brought about by the selective power of random numbers.

By shifting states in time, the impression of directedness is afforded to the system.

Lewis describes interaction as a process of negotiation between computer and the

improviser where the only channel for communication is the actual sounds produced

by man and machine. This is in contrast, for example, with the evident listen-

transform oriented approach in Cypher. Voyager suggests a non-hierarchical subject-

subject model of musical discourse rather than a stimulus-response model.

Voyager includes the same feature extraction methods that provide functionality to

most interactive systems using the standard MIDI protocol: analysis of the last

perceived MIDI event (pitch, loudness, duration and inter-onset-time), register,

interval and pitch-class histograms, volume range and frequency of silence. A

structure similar to Cypher's level two analysis functions is also present in Voyager, it

documents the effect of extracted features averaged over time. There is a direct link

between the current features and the behaviour of the program. In addition, many

40

decisions are generated internally using random numbers, including specifications for

harmony, orchestration and higher-level internal behaviour decisions. The latter may

typically specify when and how to react to live input, or when and how to change

internal parameter values.

Voyager can also function as an independent musician; i. e., without any human

input. In that case, all behavioural specifications are generated internally. The

program seamlessly performs on a continuous scale between total autonomy and tight

dialog-like human-machine interaction. Voyager continuously adapts to the presence

and activity of a human performer. However, there is no built-in hierarchy and no

external parametric conditioning of any kind as all communication happens through

the appreciation of sound itself, the result is like a process of musical negotiation

between the program and the improviser.

Lewis connects the identification of musical personality - whether shaped by man

or machine - to the presence of a distinctive "sound", a notion that extends far beyond

the conventional consideration of musical timbre alone. The "sound" of Voyager

results from a state-based design rather than a transformation based motivic approach.

Interestingly, Lewis' deliberate use of white noise is basically a device to favour

serendipity; i. e., the accidental discovery of machine states that could never have been

anticipated by the user/programmer. It is further analogous to the suggestion of De

Bono (1990) to use random stimulation and analogies to create a fresh reference.

However, Voyager makes a critical claim on the construction of musical personality

by using conditioned white noise. Random numbers are indeed filtered in many ways

to address many different program variables. The parallel exercise of these many

white noise sources, known as "the principle of multi-dominance", results in the

emergence of a complex global musical character. This global personality is known as

41

"a behaviour" and the aggregate group of data values are called a "behaviour

specification". The notion of emergence here is explained in terms of the unforeseen

microscopic interactions between the otherwise independent parallel data streams,

developing without any central authority.

Lewis claims a program can convey and mirror the emotional state of the human

improviser on the condition that the critical mass of the program is above a certain

complexity barrier and that the input sensing granularity and diversity in machine

output are equally above a certain threshold. "The transduction of musical

intentionality into or from sound, or "emotional transduction", is important to the

construction of interactive work. This notion constructs physicality and performance

as an intentional act, that is, an act embodying meaning... " (Lewis 1999, p. 106).

Lewis refers to the necessity of deep level analysis rather than shallow feature

detection to infer that meaning. Interaction and behaviour become the carriers of a

complex symbolic signal that is not necessarily apparent from, for example, the

details of a particular melodic structure.

2.2.3 The Continuator Project

The primary goal of the Continuator is to create a musical instrument that can

learn to play in a specific musical style suggested by a human player. In addition, the

Continuator aims to bridge the gap between completely interactive systems only

capable of limited stylistic consistency and completely deterministic composition

systems that, by definition, are not interactive. This project employs a probabilistic

model of musical style, a Markov transition table (Cope 1996) however augmented

with a number of original extensions. The objective is to have an instrument that can

learn arbitrary musical styles and adapt their realisation to the playing mode of a

given musician in real-time. Playing with such instruments offers higher levels of

42

active participation and interaction. As such, the Continuator is related to earlier work

with hyperinstruments (Machover 1992a, 1992b). As its name implies, the system

composes extensions of human provided musical lines according to learned stylistic

information while simultaneously adapting gracefully to unexpected input.

The input stream is segmented continuously into phrases using an adaptive phrase

detection process. Next, the phrase analyser builds a tree structure of recurring

patterns, creating a hierarchic representation of a learned musical corpus. The system

responds immediately with a stylistically coherent continuation derived from the

learned database. The system also manages to avoid the drawback of Markov methods

- their lack of long-term memory - because, in this particular case, their output is

only used to fill in the gaps between any two musical continuations. This reflects the

idea of a musical instrument to temporarily imitate musical style rather than a

(possibly interactive) composition program to develop musical style in time.

Technically speaking, the innovative ideas here are: (1) at the analysis side, the

use of variable-order Markov chains, (2) at the synthesis side, the use of a reduction

function and (3) a constraint algorithm to accommodate context.

The reduction function introduces a degree of tolerance in the style recognition

algorithm. Given a short user supplied sequence, the system will always try to

compute a maximum length continuation that most consistently follows that input.

The reduction function allows the retrieval of learned sequences that deviate partially

from the current user sequence so that they can still function as a kind of selector to

retrieve a sensible continuation. This method is by far more elegant than the

conventional solution to an impasse; i. e., the generation of a new random starting

point. In practice, the Continuator employs a hierarchy of reduction functions

involving pitch, duration and velocity dimensions. In addition, a continuation must

43

follow the users' input without any perceivable delay. This implies a first-rate

algorithm to detect phrase endings so that immediate continuation follows

automatically. Pachet developed a surprisingly simple yet effective phrase detection

procedure (Pachet 2004). It uses a shifting time window to measure the time of the

last note event vs. the current time. That delay is compared to an adaptive threshold to

decide whether the current phrase has ended. This method handles response times of

less than 30 milliseconds, which fits the real-time constraints of the system.

In its basic form, the Continuator is a responsive style imitation engine. However,

a context-sensing algorithm turns it into an interactive musical instrument. The system

generates output events in small chunks in such a way that - at any time - the most

recent information can condition the style of the next chunk. The stylistic features of

the last few input notes, for example, their implied harmony, thus modulate Markov-

based generation. One may choose to retrieve continuations that are a closer match to

the last input than the one suggested by the Markovian probabilities.

The notion of a fitness function is introduced. It specifies how strong the

continuation has to conform to the current context. When the Markov probability and

the contextual fitness are taken together, a new probability for continuation x is

defined as follows:

Probability(x) =S* MarkovProbalility(x) + (1-S)*Fitness(x, context)

When parameter S=1, contextual influence is excluded, when S=O, the context will

retrieve the closest match from the database, intermediate values combine learned

stylistic material conditioned by (and responsive to) a given context.

The Continuator offers a number of discrete player modes that aim to create

higher-level structures during improvisation (Pachet 2004). A basic mode is the

44

question-answer mode where the learned musical corpus is addressed but the

contextual input is not. The system stops when the user plays and responds as soon as

the user stops. The effect is like turn-taking in mainstream jazz and very similar to the

trading-eights conversational approach of GenJam (Biles 1994) or the Neurswing

system (Baggi 1992). Other modes include accompaniment and composition. In

accompaniment mode, the user must firstly supply a series of chords that are saved to

disk. During the next phase, after loading the file, the user improvises monophonic

melodies and the system provides harmonic accompaniment according to the a few

simple constraints such as the required pitch-class overlap between input notes and a

selected chord. In addition, the user may control the interactions from the melodic

material played, for example, a long note can toggle a parameter to block the current

chord(s). At this point, the user can improvise to that given harmonic reference for

any given duration. This interface-free approach to install particular modes of

functioning is a significant feature of the Continuator.

The objectives of the Continuator and Oscar are quite different. The intelligence in

the Continuator aims to make human input and machine output stylistically

indistinguishable whereas in Oscar, the aim is to explore the contrasting musical

personalities of man and machine by having them interact following a principle of

mutual influence. However, newer versions of the Continuator seek to explore new

collaborative modes of music making beyond the question-answer paradigm

effectively enhancing individual creativity with interactive music systems for

beginners and professionals alike (Pachet 2004). Consider just three examples:

" Multiple simultaneous styles: an ensemble improvisation with many versions of

the Continuator with each musician using his own musical database.

" Cumulative: many musicians using the same pattern database.

45

" Sharing: many musicians playing with and responding to each other's musical

database.

In conclusion, the Continuator successfully integrates musical learning and real-

time performance by extending the conventional Markov model with musical

constraints instructed by the most recent context.

2.2.4 GenJam

GenJam is an interactive system that models a jazz musician learning to

improvise. It evolved over the years from a genetic algorithm-based system (Biles

1994) to an autonomous generative system that no longer includes representations of

fitness (Biles 2001). GenJam evolves and employs families of jazz licks to construct

musical answers in response to input from a human interactor. For that purpose, a

musical database is constructed that holds stylistic information - in particular, chord

progressions - of a large number of standard jazz tunes. In fact, the computational

architecture of GenJam consists of two types of modules: (1) static data structures

filled with stylistic data read from disk and (2) dynamic data structures in support of

real-time interaction and learning.

A list of choruses and chord progressions (18 different chord types are

understood) is first imported from disk, this information reflects the style of the tune

to be performed explicitly. GenJam follows a strict interpretation scheme based on an

implied structure of theme and variation. For instance, the choruses' data may specify

improvisations with "trading fours" or "trading eights", where full solos take place,

where the two soloists take turns and where soloists improvise simultaneously.

GenJam requires two more standard MIDI files, the Rhythm and Head Sequences

files that respectively provide a rhythm section and the arranged harmony parts for the

46

first and last choruses. Another data file, the MIDI Parameters file, will set the kind of

sounds and their volumes to be used on the General MIDI sound modules in use.

The Measure and Phrase populations are either loaded from disk or dynamically

generated with fragments taken from a resident licks database. GenJam improvises on

a given tune by creating choruses decoded from members of the measure and phrase

populations. A phrase consists of a series of pointers to four measures, therefore

measures and phrases make for a mutually dependent hierarchy of melodic structures.

The representation of a four-measure phrase uses GJNF or GenJam Normal Form.

GJNF specifies how the pointers and the values in the measure chromosomes are

interpreted as musical events. In addition, both phrase and measure chromosomes

carry an independent fitness value. A human interactor who is acting as a mentor to

the interactive genetic algorithm attributes fitness. The first version of GenJam

demonstrates the notion of fitness bottleneck: the user must provide aesthetic

judgement of the program's performance because it is impossible to embed the

required aesthetic criteria in explicit ways. When GenJam creates a realisation of a

chorus using a chord and its implied musical scale and plays it as a solo to the user,

that user must issue keyboard strokes, "g" for good and "b" for bad. These actions

respectively increase or decrease the fitness of the phrase and its constituent

measures.

Learning starts with random populations of measures and phrases, and GenJam

creates a series of tunes from the currently available choruses and chord progressions.

Important, every tune also implies a new genetic epoch. Evolution takes place as

follows: four individuals are selected and the two fittest chromosomes are considered

parents, a single point cross over is performed on the parents and only one of the

resulting children is mutated, finally, the two non-parent chromosomes are replaced

47

by the new children in the population. However, only 50 percent of each population is

actually changed during one epoch. This method has advantages and disadvantages.

The advantage is that fit licks are preserved over many generations and that

unfavourable licks are replaced by variations of favoured licks. The disadvantage is

that the system easily converges on a few nearly similar optimal licks. GenJam

employs heuristics to address the convergence problem; a set of rules act as critics to

assure sufficient diversity in the next population of children to be generated. It is

important to consider this (otherwise ill documented) knowledge-based component.

In terms of interactivity, GenJam supports three basic performance modes: trading

fours, collective improvisation and full-chorus solos. In trading fours, the program

listens to a human improviser via a pitch-to-MIDI converter, maps the last four

measures to GJNF, mutates some of the chromosomes a plays back a mutated phrase

as a response. This clearly implies a musical question-answer strategy. Pitch tracking

errors are of little significance because, whatever the pitch, it will generate a pointer

to a specific tonality guided by the current chord progression. In order to create

responses to the human input, GenJam uses "musically meaningful" mutations

operators on GJNF. For measures these include transposition, sorting, playing

backwards and inverting intervals. Phrase mutations include reversing the order and

rotating the data in measures. This transformation approach follows the jazz tradition

of trading fours where musicians are involved in a competitive interplay. Obviously,

GenJam offers advanced opportunities in this respect because complex - and

therefore challenging - material can be generated in real-time.

In the collective improvisation mode, man and machine improvise simultaneously.

The program echoes the last measure performed by the human performer with a given

delay. Human input is not changed in any way since it must act as a tonal/harmonic

48

reference that is continuously extended in real-time improvisation. In other words, the

past must always be reflected correctly, otherwise it would function as a moving

target and make the creation of sensible connections between past and future very

difficult.

In the full-chorus improvisation mode, the human plays a solo; GenJam listens

and maps what it heard to GJNF. GenJam then searches the measure population for a

chromosome that closely matches the human measure. Next, an intelligent crossover

is applied so that the intervals between adjacent pitches in the children will end up

being as small as possible. Finally, the child that most closely matches the selected

population measure will replace that measure in the population. The effect is a subtle

influence on the population contents without disrupting the prevailing melodic

continuity.

One version of GenJam explores neural networks in an attempt to automate the

acquisition of user feedback and solve the fitness bottleneck (Biles et al. 1996). The

cascade correlation algorithm (Fahlman 1990) was used to gradually train the network

and develop an estimate of the number of hidden nodes required for optimal

generalisation. The training data was derived from a human performer and organised

as a population of 64 measures. A number of custom statistical analysis "parameters"

were developed to reflect the musical fitness of a given measure including the

following features: maximum interval, number of changes in direction within a

melodic contour and an energy statistic that reflects the ratio of interval to note

duration. Later, a histogram-based method was also tried. However, numerous

experiments proved that these fitness ratings did not allow the neural network to learn

the training set. It was concluded that the complexity in the human listening process

couldn't simply be modelled by statistical methods.

49

The most recent version of GenJam - AutoGenJam - solves the fitness bottleneck

by eliminating fitness altogether (Biles 2001). A fitness measure is no longer needed

because the program boots from a published database of high quality standard jazz

licks. However, without any fitness measure and consequently without any selection

pressure, AutoGenJam no longer qualifies as a genetic program - it can be seen as a

genetics-inspired pattern processor. In contrast to GenJam, AutoGenJam does no

longer feature evolving populations of measures and phrases and there is no human

mentor. Instead, the licks database (offering a wide variety of jazz styles) supplies

four measure licks from which the program creates measure and phrase populations of

64 and 48 individuals respectively all encoded in GJNF. Note that the approach

requires tedious manual hand coding to build the licks database in GJNF. A specific

tune is created as follows: 16 four measure licks are randomly selected from the licks

database, a measure population is created from the 64 measures in those licks, 16

phrases are computed to represent 16 initial licks and finally, 32 more phrases are

constructed from the initial 16 by using intelligent crossovers of randomly selected

parents. Intelligent crossovers act as constraints that guarantee measures to retain

intervals at the crossover points that maximally resemble the intervals in the parents.

In conclusion, implicit evolution is replaced by explicit knowledge expressed as

constraints.

Interestingly, evaluations reveal that AutoGenJam typically plays better solos than

GenJam improvising with a well-trained musician (Biles 2002). The power of

AutoGenJam originates in the licks database from which fresh tunes are created while

GenJam has to evolve them from scratch. In addition, the elimination of fitness also

has the positive side effect of eliminating the convergence problem.

50

2.2.5 Discussion and analysis

One of the main goals of the Cypher project was to combine composed and

improvised elements in the same piece. For example, Cypher may adopt the jazz

idiom of trading eights where program and performer exchange alternating

improvisations of eight measures. This mode of fixed format musical dialog is also

applied with GenJam (Biles 1994).

Generally speaking, Cypher manages to combine scripted and improvised material

in a consistent way because responses and improvisations surface from the same

processes. Cypher thus supports the generation of a continuous musical flow by

keeping a recognizable relationship between input and output. The idea of "flow" is

significant; it has been studied in the context of interactive music systems, notably in

the Continuator Project (Pachet 2004d).

Lewis expresses deep socio-cultural concerns in the context of the Voyager project

making allusions to the inherent instability of the conventional taxonomy of

listening/performing/composing. Lewis' thesis suggests the comprehension of the

unique musical character of an individual composer/programmer from interacting

with a computer program designed by that individual - even potentially inferring a

feel for the culture from which it emanated (Lewis 2000). A similar qualitative

process unfolds on an individual basis; "Gesture is constructed as an intentional

act... embodying meaning and announcing emotional and mental intention.... the

emotional state of the improviser working with a computer program may be mirrored

in the behaviour emanating from the computer partner, thus evoking a feeling of

dialogue. " (Lewis 1995, p. 3)

As it is our intention to view improvisation as a distributed process with a large

mass of interlocking components, Lewis' idea of multi-dominance is very useful.

51

Multi-dominant forms are seen as culturally contingent, historically emergent and

situated structures of power and dialogue.

The most interesting feature of the Continuator is its ability to merge two specific

influences towards the creation of a machine response; (1) stylistic material learned

from interaction with a given human interactor over a given time span and (2) stylistic

constraints extracted from the most recent performance context.

2.3 Systems that follow an Artificial Life Design Approach

Project name/system title Recommended references

Diseased Squares (Dorin 2005)

Social Robots (Miranda 2008)

Cellular Automata (Miranda 2003c)

Audible Ecosystems (Di Scipio 2003)

Swarm (Blackwell and Bentley 2002)

Eden (McCormack 2001)

Table 2.2: Systems whose design follows and Artificial Life approach.

We offer a brief overview of six A-life oriented improvisatory music systems that

function in real-time (Table 2.2). In particular, we examine to what purpose emergent

behaviour is explored in these systems.

2.3.1 Diseases Squared

Australian media artist Alan Dorin developed the first system under inspection.

Dorin (2005) describes a sonic artificial ecosystem, entitled Diseased Squares,

supporting the autonomous synthesis of audiovisual patterns in a generative artwork.

The ecosystem is intended to function as a non-interactive (excluding human

52

influence) micro world. A list of desirable properties of a machine for artistic pattern

creation is provided: multi-scaled temporal complexity, autonomous production of

novelty, susceptibility to constraints and maintenance of coherence and unity. Dorin

describes how these properties are found in biological ecosystems and further draws

an analogy between interactions between biological organisms in a natural ecosystem

and the interactions between sounds in a musical composition. According to Dorin,

diversity in biological organisms is a feature that recommends the artificial ecosystem

approach to artistic production. Bio-diversity is seen as way to enhance novelty

without however destroying coherence. Important, this implies that the system must

function within a range of possibilities, holding a balance between sufficient novelty

and sufficient coherence. The extremes of novelty and coherence are related to

respectively high mutation rates and convergence in the context of evolutionary

algorithms. In addition, in the context of artistic creation, the extremes are viewed as

randomness and uniformity. Dorin makes a connection by suggesting that the implicit

fitness function, which aims to maximise reproductive success in a biological

ecosystem, may work as a method to navigate between novelty and coherence. In

other words, a biology inspired method is put forward to tune in to variable degrees of

complexity.

Diseased Squares is an audiovisual generative work of art that models agents

moving in a two-dimensional world. Agents reproduce and interact according to local

preferences. In addition, this work incorporates an extended model of disease

transmission (Dorm 2006). Infected agents that successfully overcome disease acquire

immunity, though the disease itself mutates within infected agents. Therefore, the

disease may re-infect previous hosts. As a result, interesting dynamics emerge

because disease and agents co-evolve and continuously adapt in order to survive.

53

The system dynamics is visualised and made audible using MIDI based music

output. Specific sounds correspond to activity in the ecosystem; the birth of a new

agent, the onset of a new evolutionary epoch and the moment to moment changes in

agent's features, such as agent's energy level and position. The audible patterns thus

reflect variations in the system dynamics informed by both the behaviour and

characteristics of individual agents.

In summary, Diseased Squares explores emergence on the two following levels.

Firstly, a global recurrent oscillatory pattern emerges because of the co-evolution of

agent and disease. Secondly, the autonomous production of novelty is guaranteed

because the system supports a form of emergent bio-diversity as a consequence of

evolutionary pressure.

2.3.2 Social Robots

Miranda (2008) developed an innovative model of music cognition based on the

emergent behaviour of robots interacting by singing. Robots must develop a shared

repertoire of songs from scratch, by producing imitations of heard songs. This project

integrates two ideas: music acknowledged to exist as explicitly constructed temporal

form and music as a form of cultural transmission. The fact that robots are engaged in

a social process of acquiring a shared repertoire suggests an innovative approach to

the design of musical human-machine improvisation without any a priori

specifications. Therefore this project is significant given the objectives of the present

thesis.

Robots communicate by way of vocal-like intonations and listen to pitch contours

in heard sounds. A robot stores intonations in its memory in two formats (a motor

54

map and a perceptual map) and keeps a set of reinforcement parameters that are

adjusted according to how successful imitations are.

Robots interact in pairs, intermittently functioning as players and as imitators. In

short, player robots perform intonations while imitator robots build a representation of

what is heard and react by selecting and playing a similar intonation from their current

repertoire. Robots aim to minimise the distance between what is heard and what is

produced. The perceptual memory representations are continuously adjusted

according to how successful interactions are and the robots gradually acquire the

effect of consecutive interactions by reinforcement. An interaction round terminates

by merging intonations that are perceptibly close to each other and very weak

intonations are removed. Finally, a probability for novelty exists; a chance for new,

random intonations to enter the repertoire. Experiments show that the average size of

the repertoire of intonations quickly grows while the imitation success rate rapidly

stabilises at nearly 100 percent.

In the context of interactive composing, the robot system offers a method to

develop human-machine interactions based on two-way interpretation of information,

not on scripted interaction protocols. A robot develops the appropriate memory

structures autonomously, as a side effect of interaction itself.

2.3.3 Cellular Automata: CAM US and Chaosynth

Cellular Automata (CA) are prominent examples of systems that support emergent

behaviour. Miranda (2003) applies CA in two ways: to compute musical structures

from the interpretation of CA behaviour (the CAMUS system) and to synthesise

sound using a method of granular sound synthesis (the Chaosynth system). CAMUS

interprets CA cells as musical triplets, articulated according to specific timing

55

templates. Chaosynth uses the activity in consecutive iterations of a CA to control

frequency and duration of small sound segments produced by a digital oscillator.

From his experiments, Miranda concludes there is "good evidence that both musical

sounds and abstract musical forms might indeed share similar organisational

principles witch cellular automata" (Miranda 2003, p. 57). In other words, emergence

can be successfully applied to create larger musical structures as well as to create

interesting sounds. In essence, emergence in these projects refers to the creation of

complex oscillatory patterns from an initially random distribution of cells; the

synthesis of relative order from initial disorder.

2.3.4 Audible Ecosystems

The Audible Ecosystems approach of Di Scipio (2003) is unique because it

integrates physical space as a component in a hybrid complex dynamical system.

Sound is sent into a given space and recaptured using a microphone, this signal is

further processed digitally with the actual sound functioning in two ways: as audible

feedback and as a control signal exercising parametric control on the way that sound

is processed. That is, all signals are seen as sonic material and simultaneously as

abstract processing data. In this respect, Audible Ecosystems is related to the

SALMAR construction (Franco, 1974), which also incorporates a continuum viewing

sound as audio and as control signal. (The SALMAR construction is documented in

section 2.1). The resulting signal is again sent into space; a feedback system

integrating acoustic and digital components results. A computer algorithm traces the

difference between the initial signal sent out and the signal received and employs this

information to control parameters in a series of digital sound processing modules;

musical processing continuously adapts to how the space responds. Di Scipio designs

56

interactions that leave largely unpredictable audible traces rather than producing

intentional music using interactive means.

Audible Ecosystems views the system components as configured in a kind of

dynamic network. Network components are engaged in mutual control through a

series of specific functions aiming self-regulating behaviour. However, the system

also includes functions that provide positive feedback, which may push it in a chaotic

behavioural regime. The digital processing functions and the acoustic space are seen

as engaged in continuous eco-systemic exchange, oscillating between two extreme

competing behavioural modes, identified by Di Scipio as omeostasis and omeoresis

i. e. static behaviour vs. dynamic behaviour. Di Scipio's aesthetic is radical because

musical form is only considered a second order consequence of designed lower level

interactions (in essence, non-linear transfer functions between input and output

signals) and the acoustics of a given space.

Composition for Di Scipio is the construction of a process rather than designing a

musical architecture in time: "I am interested in composing desirable interactions

among available components ... not as an abstract discourse written by me and

diligently spoken by others" (Di Scipio 2005, p. 385). Then, interactive composing

becomes planning specific inter-dependencies amongst system components i. e.,

"composing interactions" -a move from creating sound by interactive means to

creating interactions leaving audible traces.

As mentioned before, the self-organising dynamics of Audible Ecosystems results

from positive and negative feedback amongst system components and amongst the

system and acoustic space. Di Scipio has described his work as a form of "timbre

composition" suggesting rich timbres to exist from the self-organising dynamics of

changes in spectral complexity. Self-organization is seen as the key to emergence:

57

"The passage of a system or process from a given structural organization to a new

state of order which is recognised as a function of the qualitative properties of the

former, is what we call here a phenomenon of emergence" (Di Scipio 1994, p. 206). It

is clear that "quality" here is associated with temporal changes in global emergent

complexity of the lower level, designed interactions between system components.

2.3.5 Swarm

The Swarm project comprises two systems; Swarm Music (Blackwell 2001) and

Swarm Granulator (Blackwell and Young 2004), systems respectively producing

MIDI events and musical output on the audio sample level. Both systems explore the

musical application of self-organisation in a collection of artificial, animated agents,

firmly inspired on the Reynolds' pioneering simulations of flocking behaviour (1987).

Reynolds' initial model only specifies three simple local rules though their emergent

effect is robust flocking behaviour that would be impossible to orchestrate from

explicit rules. This bottom-up approach was applied both in the MIDI domain

(Blackwell 2001) and for granular synthesis (Blackwell and Young 2004). In addition,

the principle of stigmergy (Bonabeau et al. 1999) is used -a form of indirect

communication found in nature, where organisms interact by modifying features in

their environment, changes that trigger responses later on. The idea of multi-swarms

is also proposed as a colony of particle swarms interacting by way of stigmergy

(Blackwell and Branke 2001; Blackwell and Bentley 2002). Particles from one swarm

may function as attractors in another swarm and all participating swarms may be

interpreted using separate functions.

Swarm refers to numerous theories of musical, biological and social interaction

(Blackwell and Young 2004) and concludes that models gained from these theories

can only serve as metaphors and that a formal, algorithmic model is required. Many

58

existing models imply the use of a "mapping" scheme whereby human input is

mapped as control functions to a sound generating algorithm. This results in a

responsive system where man and machine are entailed in a circular listen-react

procedure. However, the idea of "mapping" cannot describe the complexity of the

interaction of a human improviser who is socially situated inside a flock of musical

agents. Rather, a process of "interpretation" is formulated incorporating three phases:

listening, reflecting and responding. A swarming function [P - F- QJ is consequently

introduced to formalise this inference process:

"P is a function mapping user input to an internal representation

"F represents the internal processing functions employed to process the

information in P,

"Q represents how the actual output is produced, for instance, what type of

control signals are generated for sound control.

In short, the three phases in the swarming function loosely correspond to the act of

listening (P), reflecting (F) and responding (Q),

The swarming function specifies a link between the spatial position of agents and

features of the environment - it thus implements the general statement of stigmergy.

For instance, an external sound may function as a temporary attractor, the positive and

negative feedback inherent in the flocking rules results in self-organised behaviour.

The musical impact of the flocking will vary according to the swarm function

parameters.

The swarming function can be interpreted on three different temporal levels: the

micro-, mini-and meso-level. At the micro level, F is interpreted as granular synthesis

parameters (grain size, grain amplitude, grain density ...), on the mini-level MIDI

59

events are under control (MIDI key number, velocity...) and on the meso-level

higher-level parameters such as phrase shape and variance are controlled. For

example, Swarm Music samples MIDI input in six dimensions providing as many

parameter components to the attractor placed inside the current flock. Specific output

is produced from the consideration of the attractor data in relation to the centroid of

the flock. The tonality of the output is computed using the combined effects of a pitch

histogram (prevailing tonic) and maximal harmonic intersection of pitch-classes in a

small set of tonal templates.

2.3.6 Eden

Eden is a complex, reactive audiovisual environment driven by evolutionary

computing (McCormack 2001). Eden tries to capture the concept of an open-ended

system that is responsive to an environment with multiple human participants. The

project is relevant because (1) it creates a virtual world that evolves according to cues

from the audience (via invisible sensors) however without them needing to perform

explicit fitness selection, and (2) it suggests an experiential environment that

seamlessly integrates real and virtual spaces (McCormack 2003). Eden draws on the

computational methods developed in John Holland's Echo system (1995) in

significant ways.

The discrete, cellular world of Eden contains sonic agents (designed to sing and

listen) in addition to rocks (obstacles) and biomass (food). An agent contains an

evolved performance system consisting of a set of sensors, a rule-based performance

system and a set of actuators. The internal data of an agent includes age, health index,

energy level and mass. Sensors account for environmental and introspective sensing.

The sensors, just like the actuators, are not subject to evolution. Agents have access to

five different sensor categories: colour sensitive vision, smell, frequency sensitive

60

sensing of sound, a pain sensor (communicating a negative health index) and energy

level. The actuators have many options as well. They attempt to change the world by

moving to a neighbouring cell, they can change direction, they can modify whatever

is present in the new cell occupied by the agent, engage in mating if two agents

happen to be in the same cell, eat biomass or communicate to other agents by singing.

From the computational point of view, the most interesting component is the

performance system that proposes a connection between sensors and actuators. It is

functionally equivalent to the classification system developed by Holland (1995). The

performance system is an economy based process where conditional rules bid for

execution according to their specificity and credit. Each rule is matched to the current

sensor data (a binary string of fixed length), its strength is computed and the action of

the strongest agent is added to the active message table. The rule's credit follows how

useful that rule has been in the agent's survival. A credit payoff is performed relative

to energy and health index: rules are punished or rewarded in proportion to the

magnitude of their effect towards successful survival. This process can also be

interpreted as a form of reinforcement learning (Sutton and Barto, 1998). Oscar also

includes reinforcement learning conditioning machine motivations as explained in

chapter 8.

The evolutionary component of Eden is now addressed; how the system discovers

better rules than the current ones that were progressively optimized using the credit

system. Rules are viewed as individual genotypes subject to the standard operators of

crossover and mutation (Mitchell 1998). Evolution occurs when any two agents

engage in the act of mating. However, the mutation rate varies in proportion to the

movement of people interacting with the installation. Also, only the strongest rules are

selected from both parents - in contrast, as we shall see later, Oscar uses a

61

probabilistic weighting scheme to condition the selection of promising motivations

but not to exclude the possible selection of weaker ones (This will be discussed in

chapter 8, section 8.5). Eden's rationale for selecting only strong rules is speed of

adaptation to the behaviour of human interactors. This observation highlights the

well-known conflicting relationship between opportunistic exploitation (consistent

use of strong rules) and more adventurous exploration (discovery of potentially better

rules). In addition, the physical presence of people in Eden will map to local energy

absorption rates for biomass (McCormack and Dorin 2002). Thus growing biomass

requires the presence of people, without human interaction, the Eden world dies out.

Eden contains sophisticated software modules to listen and produce sound, both

faculties articulated in three frequency bands spanning the audible spectrum. For

instance, the actuator "sing" message sends a 9-bit instruction to modulate three

frequency regions in real-time thereby creating sounds of vast expressivity. Likewise,

hearing is sensitive to the perceived energy in three separate frequency bands: the

sound input and output sections are functionally equivalent.

2.3.7 Discussion and analysis

A remarkable resemblance is noted between the approaches of Dorin (2005) and

the socially interacting robots described by Miranda (2008). Both systems incorporate

the same selectionist principles inspired by evolutionary theory. For example,

Diseased Squares introduces variations in existing agents by critical tuning of

mutation levels while, in the case of the robot project, reinforcement introduces

changes in the relative positions of intonations in a robot's memory. In addition,

Diseased Squares aims for perpetual novelty based on the concept of bio-diversity

while the robot project includes a "creativity coefficient" conditioning the chance of

random songs to enter an existing repertoire. Finally, both projects include a means to

62

introduce decay or removal of inappropriate components from their respective

populations. To this purpose, Diseased Squares includes a model of epidemic disease

removing weak agents while the robot project includes a "spring-cleaning"

mechanism that removes weak intonations.

The works of Dorin, Mc Cormack and Di Scipio are related as they deal with the

notion of an ecosystem, however with different connotations. In short, with Audible

Ecosystems (Di Scipio 2005), the ecosystem is what supports the interactions between

the behaviour of sound in a given acoustic space and the particular kind of sound

transformation algorithms in use. Diseased Squares (Donn 2005) the implemented

artificial ecosystem is a direct reflection of a biological ecosystem where agents

generate patterns made audible for humans to hear. In Eden (McCormack 2003), the

ecosystem refers to a "global system" consisting of (1) agents communicating using

simulated audio, (2) interaction of cells inside cellular automata and (3) social group

interactions of people in relation to the system.

The Swarm developed by Blackwell and Young requires that the interpretative

functions and parameter settings are transparent enough for interacting musicians to

grasp the human-machine relationships during interaction (Blackwell and Young

2004). This cognitive demand is shared by other interactive systems including the

Hyperinstruments project (Machover 1989). However, in sharp contrast, this thesis

suggests evolving, more open-ended human-machine relationships with many degrees

of understanding, awareness and potential confusion in many dimensions. More

precisely, as explained in the introduction, the link between human input and machine

output should be dynamic and not trivial, yet there should remain a sense of

"connectedness" between human and machine activity.

63

The most significant feature of Eden is the way it integrates real and virtual spaces

and how spontaneous human behaviour is interpreted as implicit guidelines to

influence the evolutionary component. This approach avoids the fitness bottleneck

that confronts most evolutionary art systems using explicit aesthetic selection (Sims

1991; Todd and Latham 1992). The solution implied in Eden is to discard any explicit

fitness function. As mentioned above, the presence of people maps to biomass growth

rates and movement to genotype mutation rates based on the assumptions that

respectively, (1) agents that capture the attention of a human interactor should receive

more food and thus increase their chances for survival and mating, and (2) the

movement of people is proportional to their intent to explore the Eden world, thus

higher mutation may help to create more variation supporting the act of exploration.

When further considering all six A-life oriented approaches, the notions of

innovation and diversity are acknowledged implicitly or explicitly as of paramount

significance.

2.4 Comparative Design Criteria

This section introduces 10 comparative design criteria, which form a framework to

compare the systems discussed above. These criteria will be used in chapter 11 to

demonstrate how our system fulfils a lacuna in the field of interactive music systems.

2.4.1 Paradigm

Paradigm defines how the project is conceived; it identifies the constitution of the

project and denotes it at a higher level of abstraction. Three types are identified:

system, instrument and environment. Paradigm is also related to the way the system is

approached in terms of bodily engagement. System is most abstract, instrument hints

64

towards the act of playing and environment suggests total potentially multimodal

physical involvement.

2.4.2 Idiomatic Inclination

An idiomatic inclination means that the system, by definition, suggests a distinct

mode of exploitation. Idiomatic implies a strong stylistic bias in the type of musical

interaction. The rich tradition of jazz improvisation is a prime source of influence

here. Both versions of GenJam use a form of trading-fours, a standard conversational

model that typifies much conventional jazz improvisation. The Continuator follows a

different but related model, man and machine develop chained continuations on their

mutual musical material. Neither Cypher nor Voyager suggests any a priori stylistic

orientation, they are considered non-idiomatic. However, Voyager (like the SALMAR

construction) takes the idea of non-idiomatic improvisation even further by suggesting

an open system. Paradoxically, Voyager is deeply rooted in the history, practice and

tradition of Afro-American improvisation yet expressing a wish for total freedom

during improvisation. A deep belief in the expressive potential of software, even so

that it may successfully reflect elements of deep global culture (as opposed to musical

decision making on the surface) typifies the work of Lewis (2004).

2.4.3 Objective

What is the musical goal of the system? Cypher provides a structured toolbox to

design advanced stimulus-response behaviour; it literally supports the explicit design

of imagined interactions. In contrast, musical behaviour in Voyager is determined by

its internal (inaccessible) logic that in its actual functioning is influenced by an

external human player. The obvious objective of the Continuator is to create

continuations strongly connected to a human supplied context. GenJam is aimed to

65

function as a virtual band member or as a virtual orchestra which hints towards

personification of the system. All A-life systems explore self-organization towards the

creation of musical patterns in real-time. Blackwell's Swarm systems take direct

inspiration from the pioneering experiments in rule-based, behavioural animation

developed by Reynolds (1987). Eden offers social modes of group interaction; the

work is perceived and understood as a navigating in a physical environment.

2.4.4 Learning Capacity

Not all systems have a capacity to learn, to change their behaviour according to

information acquired by experience. Cypher and the Swarm systems do not learn.

Voyager incorporates minimal learning since it builds probabilistic profiles of features

of human input. The Continuator employs a stochastic learning-from-example

technique similar to a Markov transition table, however implemented as an efficient

hierarchic tree structure. Learning in the Continuator is thus superior to musical

surface learning and extends into a higher-level acquisition of a structural

representation of musical style. The Social Robots project features a form of

reinforcement learning. Social Robots learn to produce the required articulators

supporting successful imitation of what is being heard.

2.4.5 Evolution Capability

Three systems draw on evolutionary mechanisms. While facing the fitness

bottleneck, de further development of GenJam resulted in the radical elimination of

the fitness function. GenJam became a musical pattern processors thriving on genetics

inspired musical operators. However, given no fitness ranking, it probably does no

longer qualify as an evolutionary system. Diseases Squared and Eden use a genetic

algorithm to breed artificial organisms in time. GenJam version one makes use of an

66

explicit fitness function; the user provides additional information through a method of

on-line evaluation. Thus, two information channels are at play; (1) the MIDI data sent

to the system and (2) a scheme of keyboard strokes proportional to the degree of

musical interestingness of the machine response. Observe that these two information

strata happen in sequence, evaluation follows perception. Eden and Diseases Squared

apply an implicit fitness function; fitness is derived from a specific relationship

between features in the behaviour of the system and the behaviour of the human

interactor(s). For instance, in Eden fitness of an agent's rule is proportional to how

well it contributed that agent's survival.

2.4.6 Complexity and transparency

The complexity of a system is related to the degree its behaviour is readily

understood by an external observer. Transparency (understood as the inverse of

complexity) is critically connected to predictability and behavioural consistency and

consequently to general interestingness. The listener-transformer model that

dominates Cypher guarantees intermediate to high levels of transparency because

machine output is strongly linked to the nature of user input. In this respect, Voyager

is totally different. In essence, Voyager aims to suggest an open, perceptive cultural

musical climate where the program continuously computes aggregates of random

numbers that push system behaviour in various directions. The human interactor can

however catch the attention of the system within the developing improvisation; user

input is tracked continuously and analysed/organised in groups of histograms.

Complexity in Voyager follows from the interference between randomly computed

histograms and histograms inferred from human input behaviour. The global

perception of Voyager is like navigating orbits or relative stability as the system shifts

within its temporary state space. In addition, Voyager features fluctuating levels of

67

relatively high complexity because of the difficulty of establishing clear relationships

between human and machine activity Transparency in The Continuator is very high

because the intention of the system is understood immediately even from a single

musical statement. However, complexity in the Continuator is also considered

"contextual" because musical output is determined by how learned melodies are

conditioned by the most recently sensed musical context. In GenJam, transparency is

said to be implicit because it is rooted in the strict musical format of trading-fours. In

all A-life oriented systems, complexity is an emergent quality of the respective

systems. The designers of the swarm systems take great effort to render their work

highly transparent because they reason transparency to be essential in the achievement

of rewarding person-to-flock interaction. Transparency in Eden is considered

intermediate because input/output relationships are not straightforward; for instance,

the degree of genetic mutation is proportional to the amount of physical activity in the

crowd as perceived by the system. Transparency in the Cellular Automata projects

and Audible Ecosystems is very low because it is virtually impossible to predict the

cumulative consequences of the rules in question. In addition, in Audible Ecosystems

draws on the principle of positive feedback to create unpredictable musical

complexities as the system connects particular acoustic features of a given physical

space with the intricacy of particular digital signal processing functions.

2.4.7 Autonomy

As explained in section 1.3.1, a system is considered autonomous if its behaviour

follows from dynamic, internal motivations rather than predetermined rules. This

implies that the system must develop particular objectives in relation to impinging

information. However, it is important make a clear distinction between the apparent

complexity of a system and its degree of autonomy. For instance, Voyager possibly

68

offers an impression of limited autonomy because of the complexity caused by the

combinatorial explosion of its processing modules might entail. Cypher supports

intricate forms of self-interaction because it has the capacity to continuously

transform its own output without any external input. Complexity in Voyager results

from a vast library of generation and transformation software modules with

parametric activation by histogram data reflecting external and internal activity. In

addition, Voyager is entirely particular since exploitation of the data held by its

histograms entails modifications of the same data and thus conditions future

behaviour of the system - therefore, we attribute a form of low-level autonomy to this

type of stochastic algorithm. Audible Ecosystems may be compared to Voyager; both

systems change their internal data structures as a consequence of interaction itself. In

Audible Ecosystems, goal-directedness is of a slightly higher order because it is

conditioned by the confrontation of three complex systems; (1) the network of digital

signal processing modules, (2) the complex acoustics of a given space and (3) the

interaction between both. Audible Ecosystems adapts its internal data structures

according to actual behaviour so it is endowed with a form of low-level autonomy.

Since genuine autonomy requires the system to pursue a particular agenda, only

the Social Robots project can be explicitly attributed autonomy; the robots must learn

to develop a common repertoire of patterns from actual interaction. The other A-life

oriented systems (table 2.4), feature self-organization but they do not develop goal-

oriented behaviour; therefore they are not autonomous.

The absence of autonomy has impact on the articulation of behavioural complexity

over time. Cypher and both versions of GenJam offer a sort of episodic development;

interaction thrives on machine suggested frames of reference that delineate a

sequential musical narrative. In particular, Cypher employs a cue-oriented technique

69

to advance an internal software pointer to enter the next musical scene. Such cues are

used to install particular sets of listener/transformer functions or even to trigger pre-

recorded MIDI sequences for playback. The discrete nature of GenJam follows from

its underlying question-answer model. In contrast, all other systems offer a graded

view of autonomy vs. responsiveness that extends on a continuous scale. Continuous

implies a variable, only partially predictable relationship between activity in man and

machine, the quantity and quality and the emergent musical meaning during

interaction follows from many forces typically provided by complex dynamical

behaviour in a set of interacting system components. The Continuator is the only

system featuring a continuous control device (a software fader) to offer explicit

control over the amount of contextual influence versus the weight of learned patterns

during interaction.

2.4.8 Agents Paradigm

Cypher builds on the agents-paradigm (Minsky 1985); the bottom-up synthesis of

macroscopic intelligence from agencies of simple microscopic building blocks. For

instance, phrase detection in Cypher builds a hypothesis from the appreciation of

seven independent software modules, thought of as "agents": density, register, speed,

dynamic, duration, harmony and beat. All modules thus contribute independent

expertise to arrive at a global conclusion. In contrast to Swarm, agents in Cypher are

not visualised and the idea of agency is interpreted as a powerful functional metaphor.

The agents in Swarm are graphic objects moving in space, objects that also hold

functions describing their musical character. The agents in Eden contain an evolved

performance system with various sensors and actuators, they are visualised on a

regular grid organised as a cellular automaton. In Diseases Squared and Eden, the

agents approach is implicit because they are implemented as distributed agents

70

architecture. Swarm directly implements the boids agents initially developed by

Reynolds (1987).

2.4.9 Generative Paradigm

The comparative study documented here reveals a great variety of procedural

approaches to generate music. The Cybernetic Console and the SALMAR

Construction use a form of algorithms that are hardwired in their respective electronic

circuitry. Cypher employs a carefully designed library of musical processing

functions that may be combined in arbitrary ways. Cypher offers three classes of

algorithms; sequencing (manipulation of pre-recorded musical fragments), generative

algorithms combining small units of parametric data for pitch, loudness and duration

to build larger forms, and transformation of perceived musical sequences. In some

algorithms, the distinction is no longer obvious; the solo method is a hybrid of

transformative and generative algorithms, it combines harmonic data and input

density information from the listener with an independent array holding pitch-

intervals. Randomness is most vital in Voyager; the program also contains collections

of pitch-intervals and data structures holding rhythmic material. Probability profiles

are used to select specific elements from these collections and these profiles are then

modified in proportion to the actual outcome of the selection process. The application

of such feedback may suggest a very subtle degree of directedness during

improvisation.

Independent activity in the Continuator is minimal since its objective is to create

timely extensions of user supplied sequences. GenJam is not equipped to be self-

sufficient and does not feature any generative algorithms; the stylistic nature of its

musical output is computed by consulting explicit data tables loaded from disk. The

generative ground in the Swarm systems is the emergent dynamics of the flocking

71

rules. In addition, the principle of stigmergy (how certain biological species

communicate by changing features of their common environment) is implemented

using a swarming function; it maps aspects of the flock to the domain of MIDI or

audio samples. The prominent generative autonomy in Eden is created using cellular

automata. These automata support the synthesis of complex audiovisual worlds given

very little specification; i. e., only a few local rules. In Eden, physical movement of an

audience may influence the rules, the perception of Eden becomes multifaceted; a

certain relationship may be observed between external and internal activity, however,

it cannot be fully understood. All A-life oriented systems exploit a form of mapping

to effectuate a sensible association between emergent systems behaviour and a set of

parameters shaping musical output.

2.4.10 Sensing Approach

Most systems feature software sensors to track human input, do these sensors

change their functionality according to the nature of the imparting stimuli? Adaptation

is implicit in Audible Ecosystems; in essence, the project acts as a self-regulating

system balancing sounds produced by a musician and feedback from complex

acoustic reflections within a given performance space.

The pitch-tracking algorithm in Cypher is minimally adaptive by way of a sliding

window technique; upper and lower limits adapt according to whether new incoming

pitches are inside or outside the window, which affects the pitch discrimination power

of the algorithm (section 2.2.1).

The Continuator exploits a similar windowing technique to address timing of input

events in order to tackle the intricate problem of musical segmentation. The

Continuator is adaptive to context in the sense that machine responses based on

72

previously learned stylistic information are manipulated as to be coherent with the

currently prevailing contextual stylistic circumstances.

A comparative outline of 10 design criteria is documented in tables 2.3 and 2.4.

73

Cypher Voyager Continuator GenJam

Version 1

GenJam

Version 2

Paradigm System System Instrument System System

Idiomatic

inclination

No Open Jazz Jazz Jazz

Objective Designed

interaction

Improvisation Continuation Band member Band member

Learning

capability

No Minimal Extended

Markov

No No

Evolution

capability

No No No Yes No

Complexity Low High Contextual Evolved Combinatorial

Autonomy No Very low No No No

Agents paradigm Metaphorical No No No No

Generative

paradigm

Designed

library

Probabilistic Embellish-

ment

None None

Sensing approach Minimally

adaptive

Not adaptive Not adaptive Not adaptive Not adaptive

Table 2.3: Comparative outlines of systems whose design strategy does not follow an

Artificial Life approach.

74

Diseases Social Robots Cellular Audible Swarm Eden

Squared Automata Ecosystems Systems

Paradigm Installation System System Environment System Environment

Idiomatic No No No No No No

inclination

Objective Self- Social Self- Self- Self- Social/group

organisation experiment organisation organisation organisation experience

Learning No Reinforcement No No No No

capability learning

Evolution Yes Yes No No No Yes

capability

Complexity Emergent Emergent Emergent Emergent Emergent Emergent

Autonomy No High No Very low No No

Agents Implicit Implicit No No Flocking Implicit

paradigm

Generative Mapping Imitation Mapping Mapping DSP Mapping Mapping

paradigm

Sensing Not applicable Not applicable Not applicable Implicitly Not adaptive Not adaptive

approach adaptive

Table 2.4: Comparative outlines of systems whose design strategy follows an
Artificial Life approach.

75

Chapter 3: General Methodology

In chapter 1 we introduced the notion of an artificial companion for live

performance in the context of non-idiomatic improvisation and formalised criteria

guiding evaluation of its performance. Chapter 2 formulates a comparative research

context in order to evaluate our work in relation to a number of relevant existing

systems. One question that remained unaddressed in chapter 1, section 1.2.2, is the

question of how to approach the design of a system that meets the various criteria

discussed in the previous chapters. This chapter begins by introducing approaches to

tackle this question. Then we move on to discuss issues pertaining to the Artificial

Life-oriented methodology that we adopted for our research.

3.1 Engineering Approaches

3.1.1 Introduction

Broadly speaking, two general engineering methods exist towards the creation of

advanced forms of interactive composing: (1) methods based on Artificial Intelligence

(AI) and more recently, (2) methods using ideas from the discipline of Artificial Life

(A-life). The two general approaches were introduced in chapter 2 where a selection

of existing interactive composing systems are reviewed and comparatively analysed.

The next section provides a concise characterisation of the two methods.

The Al (Newell and Simon 1972; Russell and Norvig 2003) oriented approach

typically views interaction as a process of coordination guided by rules. A human

programmer defines a body of explicit rules, if-then structures that identify

relationships between user actions and system responses. The rules characterising AI

systems are identified in isolation, they are not grounded into the act of improvisation

76

itself. Therefore, they offer responsive rather than interactive functionality. The

design and application of input-output relationships is known as mapping. Mapping

basically represents a scripted interaction protocol that cannot adapt to large changes

in a given interaction context. AI methods are typically computationally expensive

because they rely on reasoning on symbolic structures, which might weaken their

potential in a real-time setting. However, the Al paradigm also offers advanced tools

for symbolic programming (including machine learning) and sophisticated methods

supporting musical knowledge representation. This explains why many AI oriented

systems contain musical expertise extracted from existing musical styles such as

classical music or jazz. Conventional Al is viewed as a top-down method; a systems

designer (1) imagines a given stylistic result and (2) establishes a body of musical

expertise to attain a specific, explicit goal. Miranda (2000) offers a compilation of AI

applications in computer music research.

In contrast, the A-life (Langton 1997) approach to interactive composing is rooted

in the idea of emergence - the spontaneous synthesis of global complex behaviour

from the local interactions between a set of simple rules. We speak of a bottom-up

methodology; the systems designer specifies a number of basic objects and a set of

possible interactions amongst them. Given enough critical mass, very complex

behaviour may result that cannot be explained from the analysis of the underlying

interactions. This unusual relationship between simple specifications entailing

complex results has captured the attention of generative systems designers in general.

Interactive music systems built on emergence may use a from of simulated audio for

communication amongst system components (known as "agents") (Miranda 2002) or

use a method of direct sonification of emergent spatiotemporal structures (Dorin

2005). The A-life approach in itself does not promote any stylistic bias though A-life

77

methods entail a more experimental design attitude because the systems designer first

(1) identifies small building blocks and then (2) speculates on how their interactions

may lead to surprisingly complex emergent behaviour. A-life systems thus offer a

strong control strategy; a range of complex behaviours may typically be articulated by

few control parameters.

This thesis primarily adopts an A-life design methodology but views particular Al

tools as complementary and helpful in attaining a set of unambiguous goals as to be

specified in a moment. The rationale for adopting an Artificial Life (A-life) approach

to create an interactive music system is double; (1) knowledge-based system suffer

from a number of serious drawbacks and (2) global research in A-life acts as a source

of inspiration and A-life offers alternative computational methods that avoid the

difficulties associated with conventional rule-based systems. A comprehensive

argumentation for choosing an A-life oriented implementation follows in section

3.1.3.

3.1.2 Mapping and the Consequences of Rule-based Systems Design

In its most basic form, a mapping is an explicit association between human input

events and machine output events (Chadabe 1977). A static rule-base is designed to

provide primarily fixed relationships between musical input and output, consequently,

the nature of the musical interaction is characterised by simple reactive behaviour.

In a slightly more complex approach, the mapping algorithm may act both as filter

and amplifier: (1) only some actions may be entitled to be instrumental in control and,

(2) the effect of minute actions may be amplified beyond the normal control range of

the human body. The MIT hyperinstruments project (Machover and Chung 1989) and

the hand-held controllers developed by Waisvisz (1985) are highly exemplary: both

78

approaches feature modes of instrumental performance that heightens flexibility,

extended control range, simultaneity in control and access to extended timbral

palettes. The goal of the hyperinstruments project was to develop "systems that

measure emotion in acoustic signals, allowing anyone's voice to be used to control an

interactive environment... systems that have a sense of our goals and intentions,

allowing you to sketch out a musical story whose details are filled in by your musical

assistant" (Machover and Chung 1989, pp. 186).

The musical assistant personification takes us further up the scale; the mapping

scheme becomes increasingly complex and potentially unpredictable. One no longer

thinks in terms of (extended) instruments but rather in terms of procedural musical

activity. The performer's actions are analyzed and used on two levels: as a selection

mechanism and as an articulation mechanism. Thus, a causal relationship may exist

between a given feature in the input stream and a specific sound-producing algorithm

being selected. Other features in the input stream may articulate control parameters

within the scope of the current output generating procedure. From here on, it is easy

to imagine procedures that blur the effect of particular relationships between input

and output. The confrontation with the human performer becomes increasingly

complex and difficult to understand. Note that unpredictable output may either find its

roots in the use of random numbers or may issue from the exponential combinatorial

explosion of the control parameters. The Cypher project illustrates the mapping

approach discussed (Rowe 1993). The user establishes explicit relationships between

individual feature extractors and specific player functions: interesting conversation-

like music develops from the interactions between many simultaneously active player

functions.

79

Computer Improvisation (Fry 1980) is an important early example of a jazz

oriented rule-based composition program. The user specifies the overall form while

the program generates the details - including musical arrangements. This program

mainly uses probabilistic procedures and does not function in real-time. However, it is

an instructive example of distributed musical thinking in a conventional Al setting.

"The significance of computer improvisation is not so much the specific musical ideas

embodied within it as the overall architecture that allows individual routines to work

as independently as possible while still building a single unified musical structure"

(Fry 1980, p. 56). This statement comes close to the multi-dominance idea that is

fundamental to the musical thinking of Lewis (2000). Ironically, the work of Fry

exemplifies a wish to escape the inflexible structures of rule based systems by

focussing on the complexity generated by the combined effect of interlocking rules.

While mapping may lead to fascinating, complex results, it also entails a number

of serious drawbacks. For instance, when the number of independent system variables

becomes very high, the idea of mapping itself becomes problematic. The systems

programmer may loose control over the complexity of the mapping scheme. The use

of evolutionary techniques was suggested to both relieve the instrument designer from

the need of deep knowledge of the parameter mappings and to encourage the creation

of novel mappings by exploring the space of a genetic encoding (Mandelis 2002).

The fundamental problems of rule-based mapping are now identified as follows:

1. A rule-based system breaks down in non-graceful degradation when facing

input that was not anticipated by its designer. Mapping only guarantees the

successful interpretation of input events that were explicitly identified by the

systems designer. In case of unanticipated input, the system has no resources

to actually interpret that input towards the creation of a sensible musical

80

response. Non-graceful degradation refers to the sudden discontinuities in the

interaction flow - the system is either well informed on how to interpret given

input events or such knowledge is not available; there is no functional level in

between these operational extremes. The net result is a kind of Boolean

functionality: the system either works fine or it does not work at all.

2. Rule-based systems function like automata however without the ability to

develop autonomous behaviour. Automatic behaviour reflects the

consequences of rules. In contrast, autonomy implies freedom of control

(McFarland 1992). In other words, an autonomous system features self-

motivation, it aims to satisfy internal motivations by the development of goal

directed activity. From this it follows that an autonomous system cannot be

completely controlled by a human interactor because its internal state is not

completely observable.

3. Most often, interactive systems based on mapping are not adaptive. They lack

flexibility; they cannot adapt their categorization and production algorithms

facing radical contextual changes. The conditioning if-part of the if-then rule

structure should have the capacity to adjust its sensitivity according to the

nature of the incoming signals; for example while facing under- and over

stimulation. Sensing algorithms should tune themselves for optimal

perception of incoming events. Also, a deeper qualitative link is desirable

between input and output; interactive systems should develop higher levels of

complexity beyond the call-and-response paradigm.

4. Metaphorically speaking, the system's behaviour is concentric rather than

eccentric. In other words, the system pulls the human interactor into a stylistic

cranny heavily conditioning his/her operational freedom. Concentric

81

behaviour refers to the uniformity of the output produced by the repeated

application of static rules. Eccentric systems are capable to develop a style of

performance that supersedes the specifications implied in the rules. Eccentric

systems are capable to innovate, to manipulate the logic of the rules according

to the nature of the actual interaction process, for example, by way of

evolution and learning.

In conclusion, rule-based systems only support reflex responses rather than the

deeper forms of interaction we are aiming at. The next section suggests an alternative

approach to circumvent many of the problems listed above.

3.1.3 Implementation Methodology: Why A-life?

Broadly speaking, A-life is "a general research method consisting in generating at

the macroscopic level, from microscopic, generally simple, interacting components,

behaviours that are interpretable as life-like" (Bonebeau and Theraulaz 1997, p. 303).

This thesis views A-life as a source of inspiration and a general design methodology.

We adopt an A-life oriented research approach because A-life acknowledges that

synthesis is the most appropriate method to study complex systems. Much A-life

research develops methods to speculate about how complex behaviour is potentially

achieved from the identification and interactions of a few simple components, in other

words, the method is characterised as implicitly experimental. This implies strong

aesthetic consequences when applied to the field of algorithmic musical composition;

it underpins the distinction between (1) music generated from the imitation of style

features of existing music (Cope 1992) or (2) music generated from new first

principles unconnected to any existing musical idiom - the various emergence-based

systems to be reviewed in a moment are all excellent examples of the latter approach.

A-life, when viewed as a science that "imitates nature" reminds us of the work of

82

John Cage, his universal embracing of the principle of chance operations followed

from a wish to imitate nature in her manner of operation rather than appearance

(Pritchett 1993). In this light, the more recent methods of evolutionary computer

music (Miranda and Biles 2007) offer more sophisticated computational methods to

create music, not so much in an attempt to imitate nature's complexity but rather, as

an attempt to generate completely novel kinds of music inspired by phenomena found

in nature such as evolution, self-organization and, in particular, emergence.

A-life offers distributed computational methods for the bottom-up synthesis of

complex behaviours, methods to reflect on the potential of a number of basic

components to interact successfully in order to provide emergent functionality. In

other words, A-life offers a concrete simulation-based engineering method to create

complex systems that would be very hard or impossible to design in a top-down

fashion.

Another reason for adopting an A-life, biology inspired methodology is that

biological ecologies inherently support the autonomous production of diversity and

novelty, welcome features in the context of non-idiomatic improvisation. The

synthesis of diversity in behaviour and form is a result of evolutionary pressure;

organisms continuously develop strategies aiming to maximise chances for survival

and reproduction. A-life offers methods for the synthesis of complex, higher-level

behaviours from low-level interactions however without the need to specify any

explicit global rules for such emergent behaviour. The key concepts requiring

definition are: autonomy, complexity, emergence and interaction. Later on, we

question how complexity and emergence may lead to rewarding human-machine

interaction.

83

One final motivation for adopting a Biology inspired approach towards the

creation of an autonomous system, a system developing goal directed behaviour

without external instruction, is that autonomy is clearly observed in living systems.

Therefore, we take inspiration from biological organisms to create artificial ones.

In chapter 1, section 1.3.8), we said that we aim for a computational model that

exploits implicit emergent behaviour from structural interactions rather than the

explicit design of some intended musical form. The work of Piaget offers good

evidence that human knowledge is gained from active interfacing with the

environment (Singer and Revenson 1996). This constructivist view of learning refers

to the development of cognitive structures by interaction rather than genetic makeup.

Thus, the role of the environment is seen as a constructive rather than a selective

factor during interaction. If Oscar can develop interesting internal behaviour from

interacting with a complex environment (a human musician) then the problem of

"designing" appropriate responses is solved because they simply develop online from

the bootstrap of an initial minimal amount of innate random behaviour. Online

learning may develop surprisingly complex behaviour and representations that could

not have been anticipated by an explicit designer. Just stated briefly, Oscar draws on a

simple form of reinforcement learning (Sutton and Barto 1998) to manage a

selectionist algorithm that will select a fresh computational module (a new drive)

aiming for short-term efficiency; i. e., optimal exploitation of the best current options.

A parallel genetic process will breed structures taking into account a combination of

current genetic fitness and the learned efficiencies of the pool of candidate drive

structures. Chapter 8 provides a detailed explanation.

Oscar is implemented as a distributed collection of loosely coupled processes that

interact internally as well as externally, with the human musician. Non-linear low-

84

level couplings form the basis of emergence. This principle was implemented in the

subsumption architecture of mobile robotics (Brooks 1991a; 1991b) however, with

various design layers providing incremental functionality being designed by hand

rather than evolved. The subsumption approach is radical as it avoids both

representations and reasoning. Bryson (1995) developed a musical improvisation

system based on the subsumption architecture.

Oscar maintains a collection of innate drives, they can be thought of as a set of

competing machine opinions (chapter 8). For now, it is only significant to know that

the winning opinion (integration or expression) will select a musical processing

function that is compatible with that opinion -a function that has learned to provide

the appropriate functionality towards the realisation of that opinion in the past. At the

very start of an interactive session, a random drive is selected to function as a

machine suggestion towards the human performer. Learning takes place only at the

early stages of interaction; networks that sprout adaptive behaviour are reinforced.

Care is taken not to interfere too much with the developing dynamics. In fact, there is

a trade off between specificity and generality in deciding about the strength of

reinforcement (Pfeifer and Scheier 1999).

When reinforcement learning is too specific, flexibility will be impaired and the

system will have trouble generating the diversity that is required to achieve a goal in

an unpredictable environment. When reinforcement is too general, the typically huge

search space of possible actions will be insufficiently constrained.

Besides reinforcement learning, the second core method used in this thesis is

evolution as introduced in the next section.

85

3.2 Evolutionary Computing

3.2.1 Background

Genetic Algorithms (GA) mimic biological evolution in computer programs in

order to model complex systems such as the immune system, social systems and

Artificial Life oriented ecosystems. The basic working principles of GA (selection of

the fittest, maintenance of diversity in a population of potential solutions and

chromosome coding as bit strings) were developed and implemented by the late 1950s

(Friedman 1959). However, the work of Holland (1975) provided the theoretical

foundations for current research in GA. Holland's works aims the study of adaptation

in natural and artificial systems, viewing GA as an abstraction of the biological

process of evolution. It introduces a population-based computational model

attempting the simulation of evolution by way of three principles:

A) The use of inheritance from parents to offsprings.

B) A way to maintain variety in the process of reproduction thus guaranteeing

diversity in the population of offsprings.

C) Differential reproduction; i. e., the application of the neo-Darwinist principle

of natural selection.

Figure 3.1 highlights the structure of a genetic process. The genetic material in the

genotypes is metabolised into phenotypes that interact with a given environment.

Some phenotypes feature certain characteristics, which make them better adapted to

the environment. Those fitter organisms have more chance to survive and reproduce;

this is known as the process of natural selection. Mutation introduces new organisms

and natural selection spreads successful organisms and eliminates the less useful ones.

The combination of mutation and reproduction happens to be very efficient for

86

searching organisms that are increasingly better adapted to their environment.

Evolution is a slow process, however, organisms also learn during their life spans, in

between evolutionary epochs.

decode

evolve J** Genotype I Phenotype moo(learn

Mutation Mutation
Selection

Figure 3.1: Adaptation by way of genetic evolution and learning.

According to Dawkins' blind watchmaker metaphor, adaptations are the

accumulated output of selection and selection is the single significant anti-entropic

ordering force orchestrating functional organic design (Dawkins 1986). The two

assumptions are that (1) random variations in genetic makeup and natural selection

suffice to manage behavioural complexity and survival of a given species and (2)

evolution is intrinsically a gradual process (the gradual accumulation of small

changes) while, in fact, certain mutations may have very large effects (Morris 1999).

In addition, current evolutionary theories also stress the importance of emergence; "I

have always harboured the dream that selection has always had a partner in molding

life: self-organisation... I suggest that order, order for free, is the ultimate wellspring

for the order of ontogeny... much of the order is spontaneous, crafted thereafter by

selection" (Kauffman 1995, p. 97).

In other words, genetic selection is not enough to explain complexity in living

organisms. According to Gould (1996) emergence of complexity is a result of random

evolutionary events. In his foreword to Order Out of Chaos (Prigogine and Stengers

87

1984, p. xxiv), Alvin Toffler cautions against leaping to genetic explications for

explaining complex behaviour: "Many things that are attributed to biological

prewiring are not produced by selfish, determinist genes but rather by social

interactions under non-equilibrium conditions".

Dawkins (1986) introduced the idea of aesthetic (artificial) selection where

genotypes survive as a function of the aesthetic appeal of their resulting phenotypes -

early evolutionary art was directly inspired by Dawkins's bimorph program (Sims

1994; Todd and Latham 1992). The cumulative consequence of selection may look as

if enforced by a creative design. However, evolution is not an explicit search process,

morphologies are merely discovered; opportunities are taken from accidental

suggestions. Needless to say, this idea is totally in line with the practice of open

improvisation and it comments on the difference between reference based and non-

idiomatic improvisation. "The only real difference lies in the opportunities in free

improvisation to renew or change the known and so provoke an open-endedness

which by definition is not possible in idiomatic improvisation" (Bailey 1980, p. 152).

A trajectory though genetic space can indeed be likened to creative exploration on the

condition that the search space is sufficiently large.

Evolution and improvisation share a number of significant assumptions:

A) Chance operations on simple beginnings can produce sufficient starting

complexity.

B) Natural selection on stochastic mutations is enough to gradually evolve

ever more complex entities from one generation to the next.

88

C) There is no long-term goal, "the watchmaker is blind to the future"

(Dawkins 1986, p. 50) and the improviser's focus is on process rather than

optimisation towards a temporal target.

This thesis brings two types of genetic techniques into play: (1) genetic algorithms

(Goldberg 1989; Mitchell 1998) to breed computational networks of which both the

topology and the weights evolve according to their genome representations and (2)

genetic programming techniques (Koza 1992) to evolve the appropriate musical

transformer functions and maintain diversity in a pool of such functions.

3.2.2 Genetic Methods in Music

Genetic techniques are now widespread in musical practice (Burton and

Vladimirova 1997; Todd and Werner 1999; Biles 2005; Miranda and Biles 2007).

Genetic algorithms were applied to a great diversity of musical tasks. Representative

non real-time examples include a thematic bridging system using GA to morph two

melodies (Homer and Goldberg 1991), GA driven musical harmonisation (Phon-

Amnuaisuk et al. 1999), the CONGA system combining genetic algorithms to evolve

sequences and genetic programming to assist in their organisation (Tokui and Iba

2000). The SBEAT (Unemi 2002) and EMMA (Beyls 2003) programs allow for GA-

based synthesis of musical material and its organisation into larger forms by explicit

instruction. The Variations system (Jacob 1995) evolves composition functions and

critics simultaneously.

Two representative systems using GA in real-time musical improvisation are

included in table 1.1. GenJam (Biles 1994) is a pioneering example of a GA driven

system designed to support jazz oriented human-machine improvisation. Eden (Mc

Cormack 2001) is GA driven audiovisual environment. Both systems are fully

89

documented in chapter 2. The Genetic Improvisation Model (GIM) devised by

Nemirovsky and Watson (2003) is also mentioned because (like Oscar) it aims

symbiotic, real-time machine interaction following a non-idiomatic orientation. GIM

uses a directed graph technique to model associations between human input and

machine responses and turns to genetic algorithms to uncover graphs that lead to

interesting connectivity. However, as GIM is conceived as a platform to experiment

and connect many different types of media (audio, graphics, movies...) it is not

further discussed.

3.2.3 Advantages of GA

Within the context of the present thesis we identify two significant advantages of

GA as opposed to other search methods. Firstly, the biases of a human designer are

deemphasised which allows the exploration of search spaces that could not have been

anticipated by that designers' Consequently, GA are vehicles for unconstrained

exploration and discovery and thus entirely in line with the nature of open-ended

improvisation. Secondly, GA allows for complexity engineering without the need to

actually fully understand the underlying complexity. The structural and behavioural

complexity of a phenotype can be appreciated without understanding the evolved

logic that gave rise to it.

The system developed in this thesis, draws on GA in two specific ways. Firstly, to

evolve the topology and connection weights of the various networks depicted in

figure 1.1, chapter 1. Secondly, a technique of Genetic Programming (GP) is used to

evolve complex musical processing functions. Optimisation of the listening networks

using GA is documented in chapter 4 and chapter 5. Optimisation of the drives

1 "Evolution is a search algorithm that finds needles of good design in a haystack of
possibility" (Dennett 2003, p. 141).

90

networks is described in chapter 8. Optimisation of musical processing functions is

explained in chapter 6.

3.3 Overview of Proposed Model

This section introduces the general systems layout of our model. The general

network topology depicted in figure 1.1, chapter 1, receives a more comprehensive

specification as shown in figure 3.2. A brief overview of the information flow is given

here, the details follow in the respective chapters.

3.3.1 Global Systems Topology

The MIDI events sent by the human interactor are captured in a hybrid memory

structure. It holds the most recent context (known as working memory) and two

instances of short-term-memory in alternating use. A collection of Boolean software

sensors feed a neural network that in turn feeds an activation/inhibition structure that

itself sends its output to another network known as a patch. The patch contains

variable relationships that provide qualitative interpretation of its input signals. The

listening section functions as a qualitative oscillator since part of its output is

redirected to its input - this underpins the idea that listening is a dynamic process

susceptible to the spontaneous synthesis of internal activity. The signals sent by a

patch influences the musical interpretation of the clustering patterns formed by agents

engaged in social interaction.

91

human
in

MIDI

Memory comparator

dquafity Asimitarity
dquantity

Drives
Pool

Neural net H Neural net
Pooh

Drive

ActMh

Compou CF
Patch

H Pa
d

Patches 11
F nct oo

h1
pool

Agents

machine
out

Figure 3.2: General systems topology showing information flow and actual
implementation of the three-network layout depicted in chapter 1, figure 1.1. The four

pool objects are subject to genetic optimisation.

A comparator and the current drive object address the information in working

memory. A drive is a temporary machine suggestion as whether to play in agreement

with the human performer (integration) or, in contrast, to forward conflicting melodic

output (expression). Note that both object do not interpret the data in memory but

rather the way the data changes.

92

A drive contains two competing quantities; an integration-level and an expression-

level, both are influenced by the drive's current relationships, the winning level will

instruct the drive to select specific compound-function (CF) (a complex musical

processing function) from an online population of such functions. Informed selection

is possible because every CF keeps two complementary fitness levels; i. e., it tracks of

how good it was in offering functionality to both integration and expression in the

past. Compound-functions are further distributed to the player agents.

The function of the comparator is to validate whether the last machine speculation

was successful or not; the efficiency value of the drive is adjusted accordingly. For

instance, if the machine motivation equals integration, and the delta-similarity

(inversely proportional to the melodic distance between last statements produced by

man and machine) increases, the efficiency of the drive is also incremented otherwise

it is decremented. This conforms to a simple form of temporal difference learning

(Sutton and Barto, 1998). Note that the relationships in a drive are also activated by

changes in quality and quantity of the MIDI stream produced by the human

performer.

The proposed computational architecture features four locations of genetic

optimisation: the neural net pool (SAN or Sensor-Activator Networks), the patcher

object holding a pool of individual patches, the drives pool and finally, a population

of compound-functions organised in the CF-pool. According to a specific timing

scheme (this will be demonstrated in chapter 10), all individuals in a given population

are subject to crossover and mutation. The breeding activity makes the whole system

continuously evolve through a complex multi-dimensional state space. Consequently,

the system provides the impression of perpetual novelty yet its output is also

conditioned by human input in complex, only partially tractable ways. The intricate

93

balance between understanding and ambiguity forms a ground for sophisticated forms

of human-machine interaction during open improvisation.

Sensor Neuron SAN Brain Ear

FHImproviser

Figure 3.3: Example of cascading classes in the sensor-to-ear hierarchy.

3.3.2 The Sensor-to-Ear Hierarchy

The next section is exemplary of the object oriented design strategy employed

throughout the current thesis. As a general example, we present a short overview of

the main classes supporting the listening process and how they fit together as a class

hierarchy (figure 3.3). A more detailed description is given in the following chapters.

3.3.2.1 Sensor

A sensor object holds a single sensing function, a small piece of LISP code that

typically addresses features in working memory or the very last MIDI event received.

When a sensor fires, a Boolean T is returned and its status is set to 1. In order to

improve computational efficiency, all the status values for all 64 online sensors are

evaluated just once - at the beginning of every analysis cycle - and the results are

collected in a globally accessible feature-vector. Therefore, the feature-vector is an

instance variable of the top-most listening object, the ear. A list of all implemented

sensors is given in chapter 4.

class sensor

sfunction ;; LISP function associated with this sensor

status ;; 0 or 1

weight ;; -2 to +2

94

3.3.2.2 Neuron

The neuron class represents the input node in combination with a hidden node of a

sensor-activator network to be detailed shortly. It is a sub-class of the LED-class.

LED are actually simulated light emitting diodes; a blue flash (chapter 4, figure 4.24)

signals that a neuron is firing. Every neuron is hooked up to a maximum of five

different Boolean sensors.

class neuron (subclass of LED)

istate ;; integrator state

on-delay ;; positive value

off-delay ;; negative value

sensors ;; vector holding up to five sensors

output ;; 0 or 1

previous-output ;; 0 or 1

3.3.2.3 Sensor-Activator-Network

The next step in the hierarchy is the sensor-activator-network (SAN). A SAN

typically contains an assembly of 16 interconnected neurons. The connections

between the neurons (strictly speaking, the hidden layer of the SAN) are captured in a

16 by 16 element numeric array. Since the fitness of a SAN is proportional to the

number of neurons that change status at every analysis cycle, Oscar keeps track of the

number of changes and also maintains a neural-history vector.

The neural-activation-inhibition instance variable contains a 16-element vector.

The values in that vector reflect the firing frequencies of the associated 16 neurons.

The update function in pseudo code:

update-neural-actinh (san method)

prev-neural-actinhi = neural-actinhi ;; take backup

for n in neurons

if (plusp output n) and (prey-output a 0)

95

neural-actinhi = neural-actinhi * 3.5

else

neural-actinhi = neural-actinhi * 0.85

loop

Activations are boosted (factor 3.5 derived by trial-and-error) whenever a positive

transition occurs, if not, the activation levels are downscaled (factor 0.85)

accordingly. The output of the neural-activation-inhibition vector is used to influence

behaviour in the agents-society as documented in chapter 7.

class SAN (subclass of view) ;; sensor-activator network

id ;; 0 to 15

neurons ;; vector holding 16 neurons

nr-neurons-changed ;; counter, used to compute fitness

total-nr-neurons-changed ;; counter, used to compute fitness

pct-total-neurons-changed;; scalar

neural-history ;; 16 element vector

prev-neural-actinhi ;; 16 element vector

neural-actinhi ;; 16 element vector

fitness ;; 0 to 100 %

nr-runs ;; counter

collected-weights ;; 16 element vector, help variable

connections ;; 16*16 connection matrix

3.3.2.4 Brain

The brain class was developed to organize and visualise a collection of (typically

16) SAN objects. It consists of a GUI with functionality to select a SAN from the

SAN-pool and to inspect the currently selected SAN. One may also edit the sensor

functions associated with a given sensor as well as modify their related weights.

Handmade modifications are only helpful to changing a given sensor locally in order

to study its global behavioural impact. The sensor-list-editor is a small GUI used for

this purpose. However, there is no manual editing during normal interaction, all

96

connectivity in a brain, including sensors and their weights only change through the

activity of evolution. The brain class is formalized as follows:

class brain (windoid)

san

san-pool

owner

buttons

selector

sensor-list-editor

nai-viewer

fn-viewer

3.3.2.5 Ear

;; 16 radio buttons

;; global editor for all neurons

;; activation/inhibition view

;; neural pattern viewer

The ear object class contains the object hierarchy as shown in figure 3.3. The ear

object itself is contained in the top-most class, the improviser-class. A snapshot of a

typical ear object is given in figure 3.4. The upper pane shows a piano-roll notation of

working memory; i. e., the most recent 32 events of the MIDI input stream. Below that

pane, an info-string documents the following information: N (number of events

received since the ear was switched on), P, V and D (respectively, pitch, velocity and

duration in milliseconds of the last event), I (the last pitch interval), G (the last gap,

equivalent to the entry-delay of the last event), T (the prevailing tonality of the

contents of working memory, in this case F minor) and finally, Z (the output of the

zone sensor - fully documented in chapter 4).

class ear (windoid) ;; simplified contents

owner

last-msg

timeO (midishare: midigettime) ;; start-time

start-time ;; used with recording to disk

last-event ;; pitch, velocity, duration, iot

just-started-flag

;; current selected SAN

;; vector holding 16 SAN

;; the ear that owns this brain

97

just-stopped-flag

;; input-history (8 sequences plus entry-delays)

input-history instance of input-history)

;; tracking last two pitch intervals

interval-3 ;; =0>1<2

;; STM-1 and STM-2

last-sequence ;; instance of circular-melody

last-sequence-1 ;; instance of circular-melody

delta-vector ;; 4 element vector, pvd gap

previous-delta-vector ;; used with sensors

;; current and previous-human-responsiveness

human-responsiveness

previous-human-responsiveness

;; flags: last-sequence just started, used with predictor

last-sequence-just-started

last-sequence-just-stopped

;; connected modules

brain ;; instance of brain

patcher ;; instance of patcher

drives-pool ;; instance of drives-pool

compound-function-pool ;; instance of compound-function-pool

drive-cf-window ;; instance of drive-cf-window GUI interface

led-window ;; instance of led-window

zone ;; zone of last input event (1-8)

cur-features ;; 64 element vector, current

prv-features ;; 64 element vector, previous

features-histogram ;; 64 element vector

98

nr-features-changed ;; nr features changed in current cycle

timers ;; 2 tresh-timers, 2 simple-timers

clock ;; to trace duration of the interaction

pitch-context instance of context, used by adaptive sensors

veloc-context

durat-context

faders ;; system variables real-time visualisation

info-strings ;; numeric feedback of system variables

subviews ;; events-pane and buttons

The green scale fader controls the scaling factor in the piano-roll notation. The

other faders reflect internal system variables and cannot be changed by the user. All

variables are normalised on a degree between 0 and 100. HR-level shows the human-

responsiveness followed by two faders showing respectively the degree of quality and

quantity in working memory. Originally, the intention of the capacity fader was to

have a means to adjust the size of working memory. However, its use was depreciated

in further experiments because all sensors that address the contents of working

memory require a fixed number of events to guarantee consistency of the results. The

fader labelled Simi shows the momentary similarity between the last sequences

produced by man and machine. Patch and Drive reveal the current output of the

respective objects. Both objects output a signed value between -100 and +100, the

absolute value is shown and the fader's colour reflects the sign of the output signal,

negative values are shown as red, positive as green.

An array of buttons provides access to further software objects and additional

windows. When the Track button is switched on, the internal breeding and learning

activity is tracked and saved to disk for later off-line analysis. Print is a flag

conditioning textual feedback of selected system variables. When Echo is on, the

99

MIDI input from the user will be channelled through Oscar as to be heard on the

current MIDI output hardware.

f Idiel

N: 346 P: 65 V: 46 D: 97 I: -1 G: 8 T: F min Z: 5

S 35 Capacity 0 run Stop I cont iEYO Step Tnat 10100 Shut I >Evt SFL

M.
L 40

Uimi
10

PPM Answ Reset Feat cPool Lseq IHis eHis , Pdct Comp

- Brain Patch Sen Insp J Trace Rgts DCF Ist Play Bye
Quality 88 Patch 54 Delta: #(1 22 7 1) #(6 31 25 0)

TIP: #(1 31313232313120 2)
Qý Track

Quantity 24 Drive 35 Ic: 32 Lc: 2 Bc: 14 Pc: 14 SAN-04 Patch-4 CF-CP_0 Drive-0 Q Print
Q Echo

Figure 3.4: Snapshot of ear GUI.

Three more text strings offer additional information on current system status.

Delta shows two vectors holding the absolute value of the interval between the last

MIDI input event and the event before that - information given in four dimensions:

pitch, velocity, duration and the event's entry-delay. TIP is a 16-element vector

showing a sequence holding the most recent temporal-interaction-patterns

(documented in chapter 9). The bottom line of text shows four system counters (Ic,

Lc, Bc, Pc) that coordinate the learning and breeding activity. The remaining

characters identify the specific objects that are currently selected from their respective

populations; the SAN, the Patch, the compound-function and the drive. All these

elements of the ear will be clarified as the thesis develops.

The functionality implemented by the ear's various instance variables is described

in the following chapter.

100

3.4 Implementation

3.4.1 LISP

Oscar is implemented in LISP, the standard language of symbolic computing

(Fateman 1988). LISP boosts numerous advantages over functional programming

languages. From the introductory text by Alan Perlis in the classic book on the

structure and interpretation of computer programs (Abelson et al. 1996) we learn that

"Pascal is for building pyramids - imposing, breathtaking, static structures built by

armies pushing heavy blocks into place. Lisp is for building organisms - imposing,

breathtaking, dynamic structures built by squads fitting fluctuating myriads of simpler

organisms into place". This statement aptly echoes what happens in Oscar. In effect,

LISP perfectly fits the general design strategy of Oscar because it supports an

incremental style of programming in addition to object-orientation and message

passing. A programmer debugs and adds expertise and knowledge to a program from

the perception and evaluation of the programs current functioning. Since LISP is both

compiler and interpreter, one may evaluate a given function while the program is

running; i. e., without recompiling the program.

The first version was developed in MCL 4.5 (Macintosh Common Lisp) on a

Macintosh running OS9 and using the MIDI functionality of Common Music (Taube

2004). Switching to OSX for the second major implementation with MCL 5.0 was not

trivial because the most recent version of Common Music no longer supported MCL.

In the end, Midishare (Fober et al. 2004) was selected to create a link between LISP

and the low level MIDI drivers. In addition, with technical help from the crew at

GRAME (www. grame. fr), a software layer was developed to facilitate

communication between Oscar and Midishare.

101

The functionality in Oscar is spread-out in 25 program files while six parallel

LISP processes handle internal activity. The MCL application itself creates two

processes at start-up: (1) Initial responsible for processing events and (2) Listener that

runs the read-eval-print loop using a Lisp Listener. MCL features an internal

scheduler that chooses which process to run based on several conditions; the process

priority determines the precedence of process execution, the process run and arrest

functions determine when a given process becomes active.

3.4.2 Concurrent Processes

All behaviour in Oscar is shaped from the activity in six concurrent LISP

processes of equal priority, organised as follows:

1. MIDI input-listener-process:

This process is a MidiShare process, whenever MidiShare receives a MIDI

note-On or MIDI note-Off event, that event is accepted and sent to the ear

module where its information content is further accommodated, all other types

of MIDI events are ignored. The ear's store-event function takes further action

according to whether a note-On or note-Off event was captured.

2. Improviser-player-process:

This process takes three sequential decisions. First, the play-chance is

computed; i. e., whether to produce a machine response or not. Play-chance

depends on the current common-understanding:

play-chance = (round

(remap (abs common-understanding)

0 100 50 100)))

102

The play-chance is proportional to the absolute value of the common-

understanding level remapped over a range 50 to 100 percent. When Oscar

decides to play a response, the current-orientation is computed according to

the current system inclination: when inclination is social then global-

orientation is computed from the difference of the outputs of the current patch

and the current drive, when inclination is selfish, only the current drive is

considered (please refer to chapter 6 for details).

The player prediction algorithm is addressed next; its objective is to plan the

exact moment a particular response fires off. When global-orientation is

integration, the predictor organises the player's optimal start-time as to

coincide with the predicted future start-time of the human interactor. When

global-orientation equals expression, a machine response will start when the

human performer is about to stop playing his current input sequence (please

refer to chapter 9, section 9.5 for details).

3. Analysis-process:

The analysis process coordinates a sequence of activities as shown in the

annotated LISP function:

(defmethod analysis-func ((self improviser-class))

(set-info-string (interface self))

;; refresh the interface with updated global systems info;

;; analysis of last received MIDI event, most recent temporal

;; interaction pattern, update piano-roll notation

(when (analyse-status self) ;; if analysis is on

103

(handle-ear-analysis (interface self))

;; (interface self) is the ear object

;; current SAN and patch are evaluated here

(update-quality (interface self))

;; update quality according to the current input or absence of

;; input

(update-quantity (interface self)

;; update quantity of the current input or absence of

;; input

(update-human-responsiveness (interface self))

(update-exploration-exploitation self)

;; update exploration and exploitation pressures according

;; to most recent value of human-responsiveness

(update-interaction-trail self)

;; update interaction trail with a number: { 0,1,2,3 }

0-H and M finished playing

1- only Human playing

2- only Machine playing

3H and M playing

(evaluate-interaction self)

;; check for specific temporal-interaction-patterns

and take further action accordingly

;; (see chapter 9)

(run-predictor self)

;; finally, evaluate the prediction algorithm))

104

The analysis-func accommodates the last received MIDI event, computes the

most recent temporal interaction pattern (explained in chapter 9) and updates

the piano-roll notation in the graphic interface (figure 3.4). Next, the current

SAN and the current Patch are evaluated. Changes in the quality and quantity

of the human input stream are considered next and both values, quantity and

quality, are updated accordingly. The value of human-responsiveness is

further updated given the information gathered from the most recent values of

quantity and quality. The new value of human-responsiveness is employed to

adjust exploration and exploitation levels. Next, the interaction-trail is

updated according to whether human or machine or both are playing or neither

is playing (4 possible combinations). The interaction process now runs the

evaluate-interaction function in which further processing is guided by specific

temporal interaction patterns (figure 9.3). Finally, the run predictor function

attempts to predict the next moment in the future at which point the human

interactor will either stop (when he is playing) or start (when he is currently

silent). The refresh rate of the analysis process is typically 500 milliseconds.

4. Agents-animation-process:

This process updates the positions of the player agents, computes clusters

according to their respective neighbours and handles their visualisation. In

detail:

(defmethod run-pane ((self spane))

(progn

(keep-prey-positions self)

105

(handle-agents self)

;; move agents in 2D space, including energy dissipation

(if (stationary-p self)

;; when agency is stationary: the emergent outcome of the social

;; forces of attraction and repulsion are equal

(progn (pprint 'stationary)

(set-view-position (choose (agents self))

(make-point (random 400) (random 400)))

;; displace random agent

(led-on (stationary-led (view-container self))))

;; show stationary status in GUI

(draw-pane self)

;; update visualisation, draw clusters, update indicators

(update-histories self)

;; keep track of current values of the instance variables of the agents

;; including xy-position, angle of movement, energy and activation

;; level.

(incf (counter self))

;; local counter (used with visualisation functions)

(adapt-input-pressures (reference-agent self)))

;; rescale the native input-pressures (human - ego - neighbour) vector

;; according the current human-responsiveness

The refresh rate of the animation process is typically between one and five

seconds.

5. Test-melody-player-process:

The purpose of the test player is the internal generation of MIDI sequences to

be sent to the listening section of Oscar, the test-player may be thought of as a

106

substitute for an external human improviser. This makes it feasible to run

experiments lasting many hours without requiring the continuous input of a

human subject. Two algorithms were evaluated to generate test sequences.

First, a L-Systems (Prusinkiewicz and Lindenmayer 1990) based generator

featuring recursive rewrite rules for pitch, velocity, duration and IOT. Second,

a simple random melody generator with tuneable degrees of randomness. In

the end, it proved that the complexity of the melody is less critical than the

changes it provokes in the listening network.

6. Phrase-detection-process:

The phrase-detection-process aims the real-time segmentation of the

continuous stream of MIDI events produced by an internal test-player or

external human interactor. A variant of a very compact algorithm suggested by

Pachet (2003) was implemented. In order to detect phrase endings, the phrase-

detection-process periodically wakes up and computes the elapsed time

between the current time and the time the most recent MIDI note-On event

was received. The value of this time gap is next compared to a phrase-

threshold value; if the gap is smaller that the threshold, the segmentation

process sleeps for 50 milliseconds, a higher gap signals that the end of the

current phrase was detected. Initially, the threshold value is 200 milliseconds.

However, the threshold is made adaptive to global variations in timely

articulation of the input sequence; the value of the threshold is compared to

the average inter-onset-times of the last few input events (between 3 and 7,

arrived at by trail-and-error). In case the threshold is significantly lower than

the average (more than 20 percent) it is scaled up, if significantly higher, it is

107

scaled down accordingly. The threshold value is clipped inside a range of 50

to 500 milliseconds.

All processes run with independent clocks while pursuing their respective

agendas. The analysis-process and the player-process are sufficiently complex to

justify a visualisation of their timing relationships in a time line.

3.4.3 Time Lines

Only two processes in Oscar involve hierarchical functional decisions: the

analysis-process and the player-process. The other processes contain only simple

functions that do not involve any critical timing relationships.

The time line of the analysis-process is shown in figure 3.5. The analysis-process

runs the analysis-func with a clock cycle of typically 500 milliseconds. Only when the

pattern returned from the evaluate-interaction function corresponds to "machine just

finished playing", learning takes place. In experiment 7, the time between any two

moments of learning is between 3 and 37 seconds. After 16 learning steps took place,

the learning-counter (LC) is reset and the first occurrence of breeding takes place and

the breeding-counter (BC) is increased by one. This procedure repeats until the

breeding-counter equals 20 at which point the process terminates. A single breeding-

cycle in this example is between 87 and 156 seconds in duration. The total duration of

the 20 breeding cycles is 38 minutes and 324 seconds. Figure 3.5 illustrates the

hierarchical relationship between the moments of learning and breeding. The run-

predictor function in the analysis-process computes the time delays for the next start

and stop times of the human performer and the resulting data are exploited in the

player-process as described next.

108

The player-process depicted in figure 3.6 shows the relationship between 5 levels

of decision-making: from the lowest level (Clock) to the highest (Play). Similar as in

the analysis-process, the level labelled "Pattern? " looks for the pattern indicating,

"machine just finished playing". Then, according to the current system orientation

(integration or expression) the player will either wait or start playing. When

orientation equals integration, the player-process will wait until the predicted start-

time of the human performer - but not longer than 4 seconds - at which point the

"Schedule? " layer fires and the player starts playing immediately. In case system

orientation equals expression, the player-process instructs the scheduler to play at the

very moment the human performer just finishes playing the most recent input

sequence. The scheduling process is detailed in chapter 9.

3.5 Summary

This chapter introduced the general systems topology, developed a rationale for

the evolutionary approach and offered information concerning implementation in

terms of parallel processes and time lines. The next chapters all tune in to detail the

design and functioning of the various components in isolation and how they

contribute to global emergent functionality of a networked architecture from a global

perspective.

109

0
E
«r

o Na
U
m Co

11

(DM

in
Jm

. «-

r- u J

y

C

81 ýI

N.
M
O

C,

0)
C
0

N

Co

m c 0

'v
N

N

8 C
N
E

ty

G
m
C
0

bA

7

N
IS

O

GQ

(U

0
bq

cl

U

U

N
U
0
fir
W

Cl
9

4r
0
c)

E

L

Z
Gk

OCC YU

"CNo

cý U
W aj

ä

110

rn

CU
U) C.

f

u
c
0
C
C d

0

rn N
cr

U) CL

11
c 0

c

o

CL
ö

9) c

N

E

C> «0
Oy
Ö
ÖC

0-

Oy

Oc

D

Ü

C
O

i tC

-

Co C 'Y
C)

V
4.

V
(D cm

'c ep

C

7
f/1

y

0 cm LC
M. 5,

Co LL a.

rn

y

m
C

t cC

m ýw

vI r aý U
O

F,
N

I

111

Chapter 4: Listening Networks

The previous chapters introduced the thesis' objectives, formalised a background

for contextualisation and evaluation and sketched the general design methodology.

This chapter is the first one to offer implementation details; it addresses the problem

of artificial listening and suggests a method to develop a flexible, adaptive listener

using principles of evolutionary computing.

4.1 Introduction

This chapter characterises listening as a dynamic process. Much effort went into

the design of Boolean software sensors. Some are low level context sensitive single

event sensors, other sensors are adaptive and evaluate at much higher levels of

abstraction, for instance, sensors that consider the musical quality of the current

contents of working memory. Some sensors are fairly common e. g., tonality

induction, beat tracking and sensing of harmonic tension. However, many

unconventional sensors are developed here including (1) common-accentedness-

sensors addressing coinciding peaks in the various dimensions of a MIDI stream and

(2) entropy-based sensors that fire according to degrees of novelty in a continuous

signal. Sensors are configured in sensor-activator-networks (SAN). Their connectivity

and weights are evolved online using standard genetic operators. Experiments reveal

that even very small populations of SAN provide the intended functionality of

incremental fitness.

4.2 Listening as a Dynamic Process

The goal of machine listening is the extraction of detailed information from a

continuous data stream. The results are stored in appropriate, functional memory

representations. Algorithmic analysis provides procedures to listen at various

112

qualitative levels with different degrees of accuracy and variable degrees of

abstraction. The lowest, surface level of abstraction is called the data level; the

sensing of events in terms of scalar parametric values. The deepest level of

abstraction refers to musical style induction (Dannenberg et al. 1997; Dubnov et al.

2003). Situated in between are pattern-oriented approaches (Cope 1991).

The listening process is often thought of as a dynamic activity; a listener does not

merely perceive as a consequence of some statistical measure. Rather, one creates a

complex network of expectations in many dimensions, some readily available from

the surface of the data stream, some deeply hidden in unspoken, unconscious cultural

context. This deep context is not instrumentally available for inspection, which makes

the modelling of human perception very difficult indeed. According to Minsky

(1981), to understand how memory and process merge in "listening" we will have to

learn to use much more "procedural" descriptions, such as programs that describe

how processes proceed.

Early work by Meyer (1956) introduced the notion of "expectation" in cognitive

modelling of the listening process in the sense that emotion is aroused when a

tendency to respond is either amplified or inhibited. Meyer applies the laws of Gestalt

theory to the perception of melodies. The listener continuously questions the future

implications of currently heard musical patterns; the listener evaluates how conclusive

events are within a perceived musical structure. A listening model developed by

Narmour (1990) directly builds on the work of Meyer in choosing "closure" as

measure of melodic structure. A particular note functions as a "closure" to the extent

in which it manages to fulfil the implications raised by the preceding notes. The way

this works in practice is suggested to be the emergent result of two concurrent

complementary processes; a bottom-up and a top-down process. The bottom-up

113

process holds the collective outcome of a number of simple processing modules;

every module accommodates the effect of a single very basic musical parameter, for

instance, by checking whether the size and direction of the most recent pitch interval

is the same as the preceding interval. The second, top-down process, introduces the

effect of long-term memory i. e., the totality of musical expectations built up through

learning during a lifetime of musical experiences. The act of "listening" now becomes

the interpretation of the internal discourse between innate responses and learned

expectations. Cypher (Rowe 1993), Voyager (Lewis 2000) and Oscar exclusively

implement bottom-up listening functionality by combining evidence from groups of

low-level sensors to infer higher-level sensations.

Recent cognitive modelling of the listening experience by Huron (2006) further

recognizes the pioneering work by Meyer in acknowledging that the synthesis of

emotion is effectuated by the manipulation of musical expectations in the listeners

mind. The core of Huron's theory is based on the ITPRA model: each letter stands for

one of five categories of expectation responses: imagination, tension, prediction,

reaction and appraisal. The five categories are further organised in two groups

according to their timely occurrence. Feelings that occur prior to the perception of an

event (pre-outcome responses) include imagination and tension. Feelings occurring

after (post-outcome responses) include prediction, reaction and appraisal. Huron is

aiming for a universal theory to explain all cases of psychological expectation - not

only in music. After the title of his book, sweet anticipation is defined as the positive

feelings that arise from conscious thought about some event to happen in the future.

In contrast to Narmour's reliance on formal principles of Gestalt theory as a basis for

his implication-realisation model, Huron rejects such a formal approach by suggesting

a less specific cognitive framework based on evolution and statistical learning.

114

Huron's evolutionary approach is motivated by the observation that the capacity to

anticipate future events increases chances for biological survival and reproduction.

Consequently, emotions reflect the success or failure with which future events are

predicted. Huron suggests that the capacity of an organism to predict successfully is

the result of statistical learning of features of a given environment. Then, in the long

run, the evolved capability to learn forms a biological solution to the correct

anticipation of the future in an attempt to optimize chances for survival.

A common denominator in the models developed by Meyer, Narmour and Huron

is the insistence that "listening" does not account for passive perception of auditory

information but constitutes an active, constructive process balancing the creation of

expectations and the evaluation of their implications.

One computational model of the listening process, developed by Berger (2004)

likewise views listening as a constructive activity of continuous filtering, selecting

and categorizing. The listener actively builds expectations, which in turn feedback on

the way the listening proceeds. Berger turns to supervised learning using neural

networks to create a virtual listener; the errors in the generalisation phase are then

interpreted as the predictions of the listener.

Another theory views musical thinking in general as an action centred activity; the

assumption that "performance" should guide inquiries rather than "belief'. The deep

dimension of listening is aptly outlined: "Music engages a large number of types of

knowledge rather than specialist insights, and most of them are bound to acting, often

with one's body" (Laske 1996, p. 15).

Laske' s arguments fit very well with the new wave in Al; a research methodology

aiming robust, real-time intelligence. It is centred on immediate action rather than

115

extended reflection (Brooks 1991a). This methodology is referred to as subsymbolic

because it avoids the use of symbolic memory representations and favours distributed,

analogical representation. In addition, the intended functionality issues from many

low level modules organised in a loosely coupled network. This bottom-up approach

proves very successful to organise the behaviour of mobile robots facing an

unpredictable environment (Brooks and Stein 1994). Bryson (1995) developed a real-

time music system inspired on the subsumption architecture.

Important, the listening algorithms developed here are also inspired on the

subsumption architecture and thus avoid complex memory representations and

extensive reasoning and consequently, they do not build musical expectations within

the process of listening. However, in Brooks' original approach, the layered

functionalities typical of the subsumption architecture are implemented by hand i. e.,

through explicit design. In contrast, Oscar is built from evolved (rather than

"designed") listening functionality by networks of appropriate sensor configurations.

116

4.3 Dimensions of Listening

last event

10
time

short-term short-term
memory 2 memory I

working memory

pitch

loudness

duration

entry delay

Figure 4.1: Memory structure in Oscar. Short-term memories 1 and 2 capture the last

human-produced sequences in alternation, comparative analysis may reveal

tendencies in the behaviour of the human interactor.

Oscar focuses on three time-oriented layers for listening: the "now", the recent

context and the global context. The most recent MIDI event offers a single, detailed

grain of information, {Pitch Velocity Duration, Inter-onset-time} and the signed

intervals in these dimensions. The information content is small and the focus equals

one. A number of sensors use this information such as the adaptive pitch sensor

(section 4.4.1). The last event holds a single scalar value for pitch, velocity and

duration of the very last event perceived. The recent context of Oscar features two

short-term memories that are used in alternation. The two most recent gestures from

the human performer are captured in STM (figure 4.1). When comparing the contents

of both STM, we may infer the direction in which the human performer is heading

because this is reflected in the quantity and quality of the data. For instance, if the last

117

event of both STM is very similar, that event may be considered a temporary target.

In addition, both STM are snapshots in time, they can be used as sources for a process

of interpolation. This process could generate melodic material that borrows stylistic

data somewhere in between the two STM. Finally, Oscar's global context is

accumulated in a circular memory structure known as working memory (WM). The

capacity of WM is typically 32 events. It is considered a contextual memory

documenting the external activity; the historic trail left by the human performer. It is

consulted by many sensors such as sensors based on statistical analysis functions and

procedures aiming to detect motion in the data. It is also used as a ground to compute

similarity between machine and human originated melodies.

4.4 Implementation of Listening

We turn to a hybrid methodology for listening, a bottom-up technique involving

individual sensors in combination with a neural network aiming for robust feature

detection in real-time while purely symbolic methods prevail in the tasks of

segmentation, contour detection, similarity assessment and general pattern processing.

Oscar implements 64 Boolean sensors whose collective momentary status can be

consulted in the current 64-element feature-vector. This vector is updated once every

process cycle and then addressed by many analysis functions. Sensors support the

extraction of significant features of an input stream effectively reducing the

dimensionality of its data space. The objective of this reduction process is the

preservation of crucial information while eliminating redundant information.

118

Figure 4.2: The global listening network.

A general design approach is to acquire disperse information by spreading out

perception in many different, isolated dimensions. Discrete frames of listening

context are assembled from snapshots of a continuous musical flow rather than trying

to model the dynamics of expectation vs. resolution between specific patterns and the

emotional continuum they represent. In Oscar, particular chosen frames of reference,

i. e., particular sensor configurations, cannot help but be fragmentary and largely

biased. However, exploitation of a limited number of sensors addresses a perceptual

space by far exceeding our intuitive understanding.

119

4.5 Low Level Sensors

4.5.1 Single Event, Single Dimension Sensors

4.5.1.1 Level sensors

There are two groups of complementary sensors that sense a single dimension of

the last input event. These sensors evaluate the value in a given dimension to be high

or low. One group creates a discrimination threshold relative to the average value of a

dimension in working memory. The second group of sensors apply a more

sophisticated, adaptive algorithm. This algorithm develops a reference value

according to the recent history of the signal and is thus context sensitive. The two

groups of sensors provide slightly different perspectives on the same block of source

data.

For example, sensors based on a statistical average are developed to consider

pitch, velocity and duration of the last MIDI input event. High pitch p and low-pitch-

p are sensors providing information on whether the pitch is high (or low) relative to

the most recent history as stored in working memory. Loud -p and soft-p are similar

for amplitude and short -p / long-p speak for the duration of the last event. Note this

sensor handles a zone of uncertainty; it fires only if the scalar value is sufficiently

expressed. For instance, considering pitch, if the range of pitch values in working

memory is 48 to 66, a range of 18 semitones, the high-pitch-p sensor will fire if the

last input pitch is greater than the bottom value plus two thirds of the range; i. e.,

greater than 60. Correspondingly, given the same conditions, low-pitch-p sensor will

fire if the last input pitch is lower than 54. So instead of using a statistical average as a

Boolean barrier, decision-making is biased to the extremes of a scalar continuum

yielding a more pertinent analysis.

120

The alternative versions of the previous six sensors are adaptive, relative to the

most recent context. This context resides in the last few events and is typically much

shorter than the duration of working memory - thus more accurately reporting the

current state of affairs. A simple context sensitive algorithm traces the dynamics of

pitch, velocity and duration of the last incoming event. The edges of the current

context window are adjusted; the top and bottom values change - using a

multiplicative operator - according whether the event parameter is above, below or

inside the context window. This entails a functionality that always zooms in into the

most recent event. The value of the multiplier (0.5 <m<1.5) controls the hysteresis

or, in other words, the degree of context sensitivity.

Figure 4.3a to figure 4.3f document typical behaviour of the context zooming

algorithm in a single experiment. The experiment tracks the size of the discrimination

window (as defined by the adapting top and bottom values) over 100 seconds in time.

Figures 4.3a to 4.3c show related information for the dimension of duration. Figures

4.3a shows the top and bottom values of the discrimination window, figure 4.3b

shows the size of the window (difference between top and bottom values) and figure

4.3c shows the focus value, that is, the momentary averages of top and bottom values.

The same type of information is provided in figures 4.3d to 4.3f for the dimension of

velocity.

121

1000
900
800

100
600
S00

73 > 400
300

200

100
0

Sensor adaptation history, dimension of duration

Bottom value Top value

0 10 20 30 40 50 60 70 BO 90 100
time

Figure 4.3a: Example of context sensitive behaviour in a level sensor for

the dimension of duration (time in seconds).

Sensor adaptation history, dimension of duration

- Window size

1800
1600

1400

1200

1000

800

600

400

200

0-
0 10 20 30 40 50 60 10 80 90 100

Time

Figure 4.3b: Example of context sensitive behaviour in a level sensor for

the dimension of duration, discrimination window size in milliseconds (time

in seconds).

122

Sensor adaptation history, dimension of duration

- Value focus

1400

1200

1000

800

600

400

200

0
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 4.3c: Example of context sensitive behaviour in a level sensor for

the dimension of duration, sensor focus value in milliseconds (time in

seconds).

Sensor adaptation history, dimension of velocity

Bottom value Top value

120

100

80

60

V

>
40

20

0
0 10 20 30 40 50 60 10 80 90 100

Tlme

Figure 4.3d: Example of context sensitive behaviour in a level sensor for

the dimension of velocity, relative to input range of 1-127 (time in

seconds).

123

Sensor adaptation history, dimension of velocity

- wincow size

80 -

10

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 40 100

iIFýe

Figure 4.3e: Example of context sensitive behaviour in a level sensor for

the dimension of velocity, size of discrimination window (time in seconds).

Sensor adaptation history, dimension of velocity

value focus

100
90

80
70
60

50 AA
I

40
30
20

10
0

0 10 20 30 40 50 60 10 80 90 100
Time

Figure 4.3f: Example of context sensitive behaviour in a level sensor for the

dimension of velocity, sensor focus history (time in seconds).

124

Figure 4.3b reveals significant sudden variations. The algorithm adapts to a

exceptionally long input event after 25 seconds. Figure 4.3d shows consistently short

durations from time 60 to 80, revealing highly coherent input behaviour of the human

interactor for that segment of time.

Figures 4.3d shows decidedly more expression for the dimension of velocity; the

intervals in figure 4.3d are more articulated than in figure 4.3a. This observation

discloses more aggressive changes in the loudness of the input events. However,

adaptation for the dimension of velocity consistently stabilizes at 100 percent

(discrimination window size equals zero) in the time zone between 28 and 38

seconds. Chapter 9, section 9.2.1, includes implementation details of the context-

tracking algorithm.

4.5.1.2 Reflex Sensors

The intention of reflex sensors is to detect impulsive changes in the MIDI input

stream that may suggest a sudden swing in context. Four individual sensors exist that

address changes in respectively pitch, velocity, duration and inter-on-set-time (IOT)

of the last input event. Let's recall that the ear object keeps two vectors: the delta-

vector and the previous-delta-vector instance variables. Whenever an input event

arrives, these vectors are (1) updated; i. e., a backup is taken (previous values become

current values) and (2), the new delta value (the absolute value of the difference

between the current value and the previous value) is stored. This scheme thus always

reflects the difference between the changes (not the actual levels) for four dimensions

of the input event. A help function is employed to compute the degree of change in

percent, relative to a reference window. For example:

reflex-p (ear method)

(percentage-difference (aref (delta-vector self) 0)

125

(aref (previous-delta-vector self) 0)

24 127)

> 33)

The reflex -p function considers pitch (the first slot of the delta-vectors) and

outputs Boolean T when the difference in pitch-intervals, relative to a given area (24

to 127), exceeds 33 percent. Similar functions exist for velocity (area is 1 to 127),

duration and IOT (area is 0.05 to 10 seconds) all firing above a threshold of 33

percent. Note that reflex sensors focus on measures of change while we observe and

interpret changes in isolated dimensions.

4.5.1.3 Ratio Sensors

The ratio sensors fire according to the relationship between two numeric values.

They are primarily used to evaluate the ratio between the duration of the last input

event and the duration of the time gap that occurred just before the last received MIDI

input event (the entry delay of that event). Taken over the last few events, the

duration-ratio may reveal expressive qualities of the human performer. Consider the

following pseudo code:

duration-ratio (ear method)

if last-duration > last-gap

if last-gap < 30 ;; tolerance of 30 milliseconds

return 0

else

else

else

return (last-duration / last-gap)

if last-duration < 30

return 0

return (last-gap / last-duration) * -1

126

The duration-ratio function returns a signed numeric value according to the

difference between the last event (active duration) and the last-gap (passive duration).

A small tolerance of 30 milliseconds captures events that are interpreted as being

zero. Two sensors exist; ratio-high -p and ratio-low -p and fire respectively when the

duration-ratio is higher than 5 and lower than -5, threshold values are derived

experimentally.

4.5.1.4 Silence Sensors

Silence sensors can be thought of as functionally opposite to reflex sensors. The

idea is to track inactivity in the input stream. The short-silence-sensor -p fires when no

events were received within the last 500 milliseconds, similarly long-silence-sensor -p

fires after five seconds.

4.5.2 Single Event, Multiple Dimension Sensors

With the virtual cube sensor, the last input event is interpreted as residing inside

an imaginary cube extending in the dimensions of pitch, velocity and duration. The

cube is thus divided into eight cubical zones, yielding eight individual and mutually

exclusive sensors. The zone is identified using an adaptive algorithm. The median

value (not the average value) of the current contents of WM for pitch, velocity and

duration is first computed. The median values function as zone dividers inside the

cube. We then check on which side of the dividers the pitch, velocity and duration of

the last input event actually reside. This process constructs a discrimination tree and

returns a single numerical value from 1 to 8. For example, only when pitch and

velocity and duration are all below the median in the respective dimensions, the zone-

I -p sensor will return a Boolean true. In other words, the effect of three dimensions in

a single input event is spread out over eight individual sensors.

127

4.5.3 Working-Memory Based Sensors

4.5.3.4 Angularity and Interval-Profile-Sensors

Angularity sensor are designed to consider intervals; i. e., the first derivative (the

rate of change) of the data in working memory - in any given dimension; pitch,

velocity, duration and IOT. However, only the pitch intervals are addressed in the

current implementation. The angular -p and smooth -p sensors fire according to the

average size of the absolute values of the intervals in WM. When the average interval

is smaller than 3, WM is considered smooth, when greater than 3 it is considered

angular, when it exactly equals 3, no opinion is available. This illustrates a zone of

uncertainty: the feature has to be expressed strong enough in order to yield a Boolean

true.

Three interrelated interval-profile-sensors track the relationship of the last two

pitches in the MIDI input stream. The interval is considered and the sensors fire when

the same pitch repeats, when the interval is positive and when the interval is negative.

4.5.3.5 Duration Based Sensors

A large number of sensors focus on the dimension of duration in order to deduct

information about tempo, rhythm and other aspects of temporal expression. The

articulation of durations can be considered the primary channel to communicate

musical intentions (Barlow 1986).

The tempo sensors fire according to how fast the data changes in WM. Speed is

defined as the number of events in WM divided by the total duration (in seconds) of

the events in WM, multiplied by 60. Speed is thus expressed as events per minute.

The fast p and slow -p sensors fire respectively when the speed is higher than 120 and

slower than 60. In between 60 and 120, no opinion is available.

128

Oscar is equipped with sensors that feed from the way certain features change in a

given data block. Particular profiles of these changes reveal information that is

normally not available from statistical analysis algorithms. Expressive qualities in the

most recent context can be detected by checking changes of event durations and inter-

onset-times. The following help functions are defined: incremental, decremental and

stationary. The first two functions return true when, respectively the number of

positive and negative intervals is greater than 50 percent. Stationary fires when more

than one third of contiguous values repeat.

The functions accelerating-p and decelerating-p address these help functions.

Accelerating-p fires when the first derivative of the inter-onset-times taken over the

last five events in WM is considered incremental. In other words, the changes in the

gaps between actual events are evaluated. In pseudo code, decelerating -p is defined

as:

decelerating-p (ear method)

ne - nr-events in buffer

if ne >5

tail - subsequence of (inter-onset-times buffer) 5

data - derivative tail

if (decremental data) return true else return false

else

return false

Other duration based sensors feed from global expressive qualities in WM. Two

complementary sensors are expressionist p and pointillist p. Expressionist and

pointillist are visual metaphors referring to the way events are chained in time.

Expressionist means tightly connected events while pointillist implies short events in

relative isolation.

129

A simple form of beat tracking is also implemented. The algorithm aims to detect

the eventual presence of a steady pulse. It does not handle the detection of higher-

level articulations such as meter or particular rhythmic patterns. The algorithm first

looks for the positions of accented events; i. e., events that are louder than a given

threshold. This threshold is relative to both the lowest velocity and the dynamics

range of all considered events. A tolerance (in percent) is introduced. An event

position in a melody is considered emphasised when the velocity of that event is

above the tolerance threshold. Next, the absolute value of the first derivative of the

event start-times (the inter onset times of the respective events) at these locations is

collected. When the list is very stable (all values are roughly the same) a highly

regular pulse is perceived. The function beat-evidence computes the regularity in

percent. The beat-detected-p sensor fires when a beat is detected with a confidence of

at least 60 percent. The beat detection algorithm is structured as follows:

(definethod find-velocity-max-positions ((self melody)

&optional (tolerance-percent 10))

(loop with maxv - (apply 'max (velocities self))

with dyna - (- maxv (apply 'min (velocities self)))

for i from 0

for v in (velocities self)

when (< (abs (- v maxv))

(/ (* dyna tolerance-percent)

100))

collect i))

(defmethod velocity-max-positions-coherence ((self melody)

&optional (tolerance-percent 10))

(coherence

(derivative

(find-velocity-max-positions self tolerance-percent))))

(defmethod time-spans-between-velocity-tops ((self melody)

&optional (tolerance-percent 10))

130

(let ((mp (find-velocity-max-positions self tolerance-percent)))

(if (> (length mp) 1)

(loop with time - (nth (car mp) (start-times self))

for p in (cdr mp)

collect (round (* 1000 (- (nth p (start-times self)) time)))

do (setq time (nth p (start-times self))))

nil)))

(defun percentage-stability-sum (list)

(- 100 (ceiling (/ (apply '+ (loop for step in (mapcar 'abs (derivative list))

for vl in list

for v2 in (cdr list)

collect (* 100 (/ step

(max (abs vi) (abs v2))))))

(length list)))))

(defmethod beat-evidence ((self melody) &optional (tolerance-percent 10))

(let ((times (time-spans-between-velocity-tops self tolerance-percent))

(s-))

(print (mapcar 'abs (derivative times)))

(print (apply '+ (mapcar 'abs (derivative times))))

(if times

(progn (Betq sum (apply '+ (mapcar 'abs (derivative times))))

(cond ((zerop sum) 100)

(t

(regularity (mapcar 'abs (derivative times))))))

0))) ;; return evidence in percent

4.5.3.6 Global complexity sensors

Some sensors address the complexity of the contents of working memory.

Intuitively, relative complexity is reflected in three interlocking features: diversity,

coherence and regularity. The MIDI event values for the dimensions of pitch,

velocity, duration and inter-onset-time can be extracted from any melody,

consequently also for any memory (WM, STMT and STM2). Thus a complete

131

complexity analysis of a single melody yields twelve values: three features and four

dimensions.

Diversity is a measure of the number of different values in relation to the total

number of values. Diversity in percent is computed as follows:

(defun diversity (list)

(round (* 100 (/ (length (remove-duplicates list))

(length list)))))

Coherence measures relative stability, reflected in the amount of values that

remain unchanged while scanning a given sequence. A certain tolerance may

condition the strength of the constraint. The algorithm counts the number of

consecutive intervals equal or smaller than the tolerance window. The result is

normalised in percent:

(defun coherence (list tolerance)

(round (* 100 (/ (loop for i from 0 to (- (length list) 2)

count (<- (abs (- (nth i list)

(nth (+ 1 i) list)))

tolerance))

(- (length list) 1)))))

Regularity also deals with consecutive changes. The amount of change between

two consecutive values is scaled in proportion to the highest value of the two and

normalised in percent. The average irregularity is obtained by dividing the sum of all

percentage wise changes by the length of the list minus one:

(defun regularity (list)

(- 100 (round (/ (loop for d in (mapcar 'abs (derivative list))

for vl in list

for v2 in (cdr list)

sum (* 100 (/ d (max (abs vl) (abs v2)))))

(- (length list) 1)))))

132

The results of complexity analysis are globally accessible in the complexity-

features melody instance variable; a 12-element list documenting all evaluated

combinations of three features and four dimensions. This list is updated at every tick

of the analysis process. When computing coherence, the quantisation value for

velocities is 8, the quantisation value for event durations and inter-onset-times is 200

milliseconds. Twelve sensors directly address the values in the complexity-features

list. Individual sensors fire when the values are considered low or high, given a

critical threshold. For example, pitch-diverse -p is considered true if pitch diversity

exceeds 70 %, considered low when below 30 %, in between, no opinion is available.

4.5.4 Short-Term-Memory Based Sensors

Oscar is equipped with two Short-Term Memories, STM-1 and STM-2. These are

updated in an alternating way (as a side effect of the segmentation algorithm), and one

STM always contains the last sequence performed by the human interactor. Thus, the

very last sequence and the previous one are accessible at any time. It can be

instructive to compare both STM. In particular, the similarity between STM-1 and

STM-2 may expose discontinuities in the melodic output of the human performer.

Two methods are developed to address melodic similarity; one based on Hamming

distances, the other on simple stepwise comparison of a given dimension. The first

method is as follows:

(defmethod melodic-similarity ((self melody) mel-2)

(let ((11 (nr-events self))

(12 (nr-events mel-2)))

(unless (< (min 11 12) 2) ;; at least 2 events

(loop with inter

for weight from 1 ;; weight

133

for ws from 2 to (min 11 12) ;; window size

do (setq inter (intersection (hamming (intervals self) ws)

(hamming (intervals mel-2) ws)

: test 'equal))

when inter sum (* (length inter) weight)))))

This method is sophisticated but computationally expensive. It is designed to evaluate

the presence of similarity of changes in the data; i. e., the first derivative is considered

(for instance, intervals in the pitch dimension). The rationale is that similarity is (1)

considered a value that builds up from a sequential comparison from start to finish of

both melodies and (2) similarity receives increasingly more weight the longer the

melodies manage to remain similar.

A minimal form of similarity is defined as:

(defun similarity (list-1 list-2)

(let ((nd (abs (- (length list-1) (length list-2))))

(maxi (max (length list-1) (length list-2)))

(mini (min (length list-1) (length list-2)))

(c (loop for el in list-1

for e2 in list-2

count (e el e2))))

(round (* 100 (* (/ c mini)) ;; percent

(/ (- maxl nd) maxl)))) ;; account for difference in length

This function provides an approximate level of similarity; it compares all elements

in the lists one by one and finally downscales the result according to the difference in

length of the two lists. There is no tolerance and this function works well with lists of

pitches or pitch-intervals.

134

4.6 High Level Sensors

4.6.1 Entropy

We are interested in developing metrics to address levels of uncertainty, novelty

and amount of surprise in a given MIDI stream; analysis considered beyond the

conventional criteria of, for instance, tonality, harmony and meter. Analysis

algorithms to obtain such information are available, however, they are complemented

here with functions that are less culturally rooted in the Western musical idiom. A

fresh approach to musical analysis is suggested building on the notion of

predictability; the experience of surprise is inverse proportional to the degree of

predictability.

The entropy of a signal is measured with respect to the prediction of its possible

continuations. In other words, the amount of entropy contributed by an event is

inverse proportional to the probability of it occurring. Formally, entropy is defined as:

(defun entropy (probabilities)

(loop for p in probabilities

sum (if (- p 0)

0 ;; assume 0 when the probability equals zero

(* p (l09 (/ 1 p) 2)))))

Early work by (Meyer 1957) investigated the use of entropy to measure aesthetic

appeal in a given melody. Hiller and Bean (1966) used statistical analysis to derive

stylistic information from a corpus of melodies in an effort to draw contours of

information fluctuation - in fact, the type of profiles of change that we are interested

in here. Manzara et al. (1992) set up an experiment to investigate human listener's

models of music, it uses a game-like protocol to guess melodic continuation in

chorale melodies by JS Bach.

135

Consideration of entropy is functional on the following levels:

A) Infer a global impression of melodic complexity in terms of overall,

accumulated surprise. This scalar datum can be used to drive a Boolean

sensor firing given a certain threshold.

B) Compute a profile of how the level of surprise evolves from beginning to

end. This information can be used to isolate zones in a melody being above

a required level of unpredictability.

C) Consider peaking features in a profile. This is very effective to compute

relative periodicity of surprise in a given melody.

As an example, consider the computation of the entropy profile of a melody in the

dimension of pitch, documented in figures 4.4 to 4.9.

A profile is computed as follows. A vector documenting the probability of

occurrence of all possible values is initialized with zeroes: a vector of 25 elements

tracing occurrence of intervals -12 to 12 is created. A sliding window technique is

then used to scan the melody. Before collecting the data in the next window, the

existing probabilities are decremented by multiplication by an inhibition-factor. Next,

for every interval encountered (limited to a range of -12 to 12, including 0), its

probability value is incremented in the vector. The increment is also multiplicative

and proportional to an activation-factor. Once the window data is gathered, the

entropy of the current contents of the probabilities vector is computed and collected in

a list. The most effective results were obtained with window sizes of 3,5 and 7 data

points, inhibition factors of 0.75 - 0.95 and activation factors of 1.15 - 1.25.

136

A profile typically builds up a critical mass from zero, a few events are needed to

create the first field of reference reflected in the probabilities. One gets an impression

of how much of a melody has to be perceived before its level of surprise can be

appreciated. The inter peak distances document the periodicity of a melody. One can

detect clusters of high periodicity and use that information to extract partial melodies

from a source melody. This is one method to address the difficulty of extracting

musically significant parts in a non-trivial way. Interactive composing often exploits

the borrowing of fragments of melodic material issued by a human improviser for

further processing or as seeds for procedural composition. The question is to provide

fragments or short patterns that express a certain constructive meaning in the source

melody; similar to the classic problem of segmentation (Rowe 1993; Friberg et al.

1998). However, entropy profiles go beyond the detection of local boundaries. They

support the isolation of islands of relative interestingness making pertinent pattern

retrieval possible. In addition, the window size affects the quality of the analysis,

there is however a trade off between efficiency and quality. A large window size will

provide faster building up of results but with less detail and take more time to

compute, smaller windows are slower to reveal information but are computationally

less expensive.

Figures 4.4 to 4.9 show different instances of entropy profiles for different data

sets. Every data set contains 100 numbers between 1 and 127, which implies these

could be regarded as a sequence of MIDI pitch numbers. The algorithm computes the

entropy in the changes if the actual data; i. e., the entropy of the pitch-intervals as

explained above. All examples use three sizes for the sliding data-window - sizes 3,5

and 7- corresponding to a colouring scheme of respectively red, green and blue. In

all examples, the inhibition-factor equals 0.85 and the activation-factor equals 1.25.

137

The curves document the entropy level while scanning the 100 data points from start

to finish. The three upper rows of coloured lines show an analysis of the periodicity of

the corresponding changes reflected in the curves. These lines can be considered

locations of change in the data set - more precisely, positions of changes above a

certain threshold. This threshold is computed in three steps:

1) The absolute value of the first derivative of the data is collected in a list. The

minimum and maximum values are identified.

2) A threshold value is set to the median (not the average) of the values in that

list.

3) A short line is draw on two conditions: when the derivative changes direction

(the previous interval signum is different from the current interval signum)

and the absolute value of the interval is above the threshold. The relative

groupings in these lines reveal degrees of periodicity in relation to the three

window-sizes.

Interesting patterns emerge according to the complexity of the data set. The data

for figure 4.4 to figure 4.9 was obtained from the following functions:

figure 4.4:

(loop with list - (loop repeat 10 collect (+ 60 (random 33))) repeat 10 append list)

figure 4.5:

(loop repeat 100 collect (+ 60 (random 40)))

figure 4.6:

(loop with list - (loop repeat 4 collect (+ 60 (random 33))) repeat 25 append list)

figure 4.7:

138

(loop for i from 0 to 100 collect (+ 10 (if (zerop (random 11)) 55 66)))

figure 4.8:

(loop repeat 100 collect (+ 60 (random 12)))

figure 4.9:

(loop repeat 10 append '(55 54 57 58 59 56 52 77 66 55))

139

n Entropy

26
r 111 111111II 1111 1111 111111 111111

24 11 III 1I11II11I1III1
r 11111 11 11 11 11 II 11 II 11 II II II 11 11

22

20

13

115

14

12

6 r%' u

4

2

0
.. 02463 10 12 14 16 13 20 22 24 26 28 30 32 34 =; r_ __

Figure 4.4: Entropy 1.

lý Entropy

26
rI1 11 11 111111 IIII1I1

241 1 11 1 11 11 1111111 1I11III1
r 11 1111 Ilnluinl 11 II I1I11 III I1

22

20

18

16

14 7
J1J

12

10
3

8fr ýýti
i

ýI

6

4

2

0.
02468 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.5: Entropy 2.

140

Entropy

26
f 11 1

241 111
f 1111111111111 11111111111111111111111111 111111

22

20

18

16

14

12

10

8

6

4

2

02468 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.6: Entropy 3.

l Entropy

26
rI111I11II1111 11

24 11 I1II1III1
rI111111II 11

22

20

18

16

14

12

10

8

67

4 5

2

02468 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.7: Entropy 4.

141

Figure 4.8: Entropy 5.

r1 Entropy

26
r 11111111 II II II I II II II II II II II II II II

24 1 II 111 111 1111 1111 1111 1111 1111 II11 IIII 1111 1111 IM 1111 1111 11
11 II1IIIII11II 11 11 I111111 r

22

20

18

16 7

14

12

10

8

6

4

2

0.
02468 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Figure 4.9: Entropy 6.

142

4.6.2 Points of Change

We are interested to capture changes in a musical gesture, more precisely, to find

the location where significant changes occur. Such information can be used to solve

the conventional musical segmentation problem, though it is used in a more general

way: aiming at the identification of musically interesting locations to extract data

sequences in any dimension - not just critical timing. The algorithm used is a real-

time variant of the Local Boundary Detection Model (LBDM) developed by

Cambouropoulos (2001). The LBDM uses two rules inspired on the classic work of

Lehrdall and Jackendoff (1983):

1. The change rule: The strength of the boundary is proportional to the degree of

change between two consecutive intervals; i. e., the amplitude difference of

two intervals. This rule is more general than most of the other Gestalt Rules.

The degree of change is given by;

R(i, i+1) = abs(X(i) - X(i+1))/ X(i) + X(i+1)

X(i) + X(i+1) x0

X(i) 0

X(i+1) >_ 0

Where R is the degree of change and the successive intervals are X(i) and

X(i+1). The sum of both intervals must not equal zero and both intervals must

be zero or positive.

2. The proximity rule: given two consecutive intervals of different strength, the

boundary will alienate towards the stronger of the two intervals. Formally, the

amplitude of the boundary is given by:

143

A(i) = X(i) "[R(i-1, i) + R(i, i+l)]

Where A is the strength of the boundary, X is the current interval and R is a

degree of change.

The LBDM algorithm was developed to study expressive timing deviations in

expert performances of piano music. However, Oscar's implementation aims the

identification of read-pointers that make musical sense. Read-pointers indicate start

and/or stop pointers in a sequence used in data extraction. In addition, a set of specific

interaction-oriented modalities are added. The effect of this additional functionality is

exhibited in a series of consecutive time frames, documented in figures 4.10 to 4.18.

The following modalities were added to the initial LBDM algorithm:

1. The exploitation of five dimensions: pitch-intervals, inter-onset-intervals, rest-

intervals (time span between previous note-offset and current note-onset times),

duration-intervals and loudness-intervals. Pitch-intervals are limited to two

octaves (-12 to 12 semitones), any timing intervals are limited to durations

between 100 milliseconds and 4 seconds, and loudness uses the full 7-bit range

of MIDI. The data in each dimension is interpreted as a singular point of view.

2. The algorithm is adaptive. It uses a variable threshold; data above the threshold

are considered peaks and thus more important than lower level spikes in the

data. The algorithm strives to have just two peaks (red dots in figures 4.10 to

4.18), successful for the dimension of inter-onset-time in figure 4.10. The

rationale is (1) the isolation of the most significant subsequence, implying the

identification of the highest possible threshold value yielding exactly two points

144

of change and (2) the identification of the location of the centroid of the data in

a given melodic dimension. In case of more than two peaks above the threshold,

its value is lowered else it is increased. Changes in threshold are multiplicative

and may give rise to oscillatory behaviour. It means that the number of peaks in

a given dimension alternate between 1 and any number higher than 2.

Oscillations provide additional information; they indicate a particular sensitivity

for change in that dimension.

3. The purpose of locating critical peaks is to interpret them as read-pointers in a

given sequence. Suppose one wants to borrow musical material from a melody,

it makes little sense to start reading at a random location and continue reading

for an arbitrary number of events. A subsequence residing between two peaks is

assumed to provide a coherent impression. Also, one can extract data sequences

of different length in different dimensions. These lists may then function as

input to a generative procedure and produce interference patterns in support of

an intended musical functionality.

4. The locations of the peaks in the five dimensions are considered as a group. We

inspect whether some of them actually coincide; i. e., occur at the same points in

time. If so, we reason there to be a more significant change at such coinciding

locations. In case that no two peaks (points-of change) line up at the same

location in time, we know that musical expression in every dimension happens

in isolation. Otherwise, for example, when pitch-interval and rest-interval

coincide, the conclusion is the existence of a very strong hint for a musically

significant boundary to exist.

5. The points of gravity are computed in every dimension; the combined results

specify the centroid in the current data block. A centroid reveals the time

145

position of "average most attention" in the melody, it is computed using all

currently available peaks. Finally, all five dimensions are considered; the

signature centroid characterising the melody as a whole is computed and drawn.

Such shapes could be applied to compare specific melodies; i. e., by comparing

their centroid signature. Such consideration provides deep level analysis of how

much and where two given melodies are different.

The points-of-change algorithm (POC) helps to extract significant subsequences

from a larger source sequence. For instance, when the machine improviser borrows a

small sequence of durations from the current contents of short-term memory (the most

recent sequence played by the human interactor) then, we should avoid simple

random grabbing from the source data. In contrast, the POC algorithm suggests read-

pointers that start and stop where the complexity of the source sequence signals

specific changes, that is, important breakpoints in the data analysis sequence.

ký&
Inter-onset: 0.7566298961127079/3 ""

Rest: 0.7718484851562498/3 ""

mAAAA

Duration: 0.7818163201864456/2 "

Loudness: 0.799455230812793/2 "

10 I:: I54 I9r, 11-3 II6p ji. ' '_a I_sr_. I__a I7:, =. 4 I41r, 144:?: 14? p

Pitch: 0.12313166374020967/3

ým

A

Figure 4.10: POC 1.

POC viewer

Pitch: 0A79195893491175/2

Inter-onset: 0.9196768203324723/1 "

AN*j
Rest: 0.938184228747954/3 """

M AA AAS, A" AY M, �MM Duration: 0.7019163201064456/2 "

JA
Loudness: 0.799455230812793/2 "

Av,

l\j

MAA

10 1_2 I4 196 ji_ý I1e, 13 ýlQ2 ßa24 ýz56 12s3 1s_vl j-'s_ ßa4 141e 14as 1a:, j

146

Figure 4.11: POC 2.

147

Figure 4.13: POC 3.

Pitch: 0., 791958934911 75/2

Loudness: 0.799455230812793/2 0

AIWW Wo"

1o 1-: - ('4 ý, r, 1'-*: ' "" ll '-' 1-L4 1-sh I_ , _> >_� 1-`- 1-: -4 4 141F144-: 14__,

DC viewer

Inter-onset: 0.87150 '468865I16/3 ""

Rest: 0.95/3 "

Mi � 11Iý Duration: 0.7815463201864456/2

vv-
mh

4

Figure 4.14: POC 4.

148

Pitch: 0.5791958934911775/2

Inter-onset: 0.9150841842308371/1 "

Rest: 0.9974999999999999/3 """

MA RR, A, ýM .J, M Duration: 8.78181463281864456/2 "

VV-4
JA ýAv, ýýN

Loudness: 0.79945523D812793/2 0

AAw P 132 X64 JJ6 ßt28 X160 Diaz 1-4 14 e, 144 14: 3

Figure 4.15: POC 5.

/N POC viewer

Pitch: 0.791938934911705/2

Inter-onset: 0.8693290750192952/3 ""

NA",
fj

X--,

\

Rest: 1.0/0

Duration: 0.7015163201864456/2 "

Loudness: 0.799455230012793/2 "

10 1 32 164 196 1128 I1 F, 0 lf e_ 122a 1<s6 Uzes 13_° jse2 1 ae4 X418 1443 14: a

Avý

itýIiý

Figure 4.16: POC 6.

149

Arl'o
Ik

Loudness: 0.799433230812793/2

Aw 4L
I0 132 Ido 107 1128 I1 F00 '1 32 1-24 1-56 1208 1320 1,52 1? 24 1416 1443 I4:? 0

Pitch: 0. X791958934911705/2

Inter-onset: 0.91279,7377026/3 ee

Rest: 0.95/3 ""

MAAAAA Duration: 0.781x463201864456/2 a

1

Figure 4.17: POC 7.

Pitch: 0. A791958934911705/2

Inter-onset: 0.958436297458773/1

POC viewer

IYýIV Y r\, -qJ Rest: 0.9974999999999999/3 """

M RRRR
Duration: 0.7810463201864456/2

iv'4ýI

ýý

ýn PAP

sý, ýý.
Loudness: 0.7994552310812793/2 I"

AAVI-A_

1u 1: 2 Ufa ýa, ji-:; 1i, o 11e- 1224 fee 1_34 1 415 1 443 1a: i,

Figure 4.18: POC 8.

150

n POC viewer

Pitch: 8A7919589349117.5/2

Inter-onset: 0.91051411825858343/3 ""

r\,

aK

ý,

Rest: 1.0/0

iä ä

M AA AA A- AV\4\
, MM Duration: 0.7816463201864456/2 "

k%"-A
JA

Loudness: 0.799455230812793/2 "

P X32 X64 196 X123 1160 X192 X224 1256 X2='8 ý3_J ýP: 52 1 ,? 4 X416 X44' 14x,

A

JL"ý

Figure 4.19: POC 9.

4.6.3 Common Accent Inference

The common-accentedness method provides analysis information beyond the note

event level. It offers information on the relationships between two given event

dimensions, for example, duration and pitch-interval. Firstly, the algorithm creates a

list of the minimum and maximum values (extremes) in the dimensions of pitch-

interval (absolute values) and event duration. The common-accentedness algorithm

scans the events in a given melody looking for locations where extremes in different

dimensions actually coincide. A small tolerance is at work for the dimension of

duration: 50 milliseconds, zero tolerance for the dimension of pitch-interval. Let us

consider common-accentedness in a random melody of 30 events long. The melody is

151

represented as follows; I= event-number, S= start-time, P= pitch, V= velocity and D

= duration. Start-times and durations are in units of 10 milliseconds.

I: 0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

S: 0 10 15 20 25 28 30 31 34 38 42 47 50 58 62 66 71 75 76 78 82 85 90 91 95101106111121131

P: 65 69 72 69 68 70 65 64 70 65 66 72 69 69 71 70 68 71 66 70 73 73 68 67 67 64 71 71 67 73

V: 100 70 89 85 84 82 64 57 57 64 64 77 84 65 63 70 68 89 79 74 93 63 58 74 91 70 92 68 61 55

D: 50 50 50 30 30 20 10 20 40 40 50 30 40 40 40 50 40 10 20 20 30 50 10 40 30 50 50 50 50 30

Firstly, the location lists are calculated: four combinations of two parameters

(duration, interval) and two extremes (lowest, highest). Observe that the highest pitch-

interval only occurs at a single location - at the 26`h position in the melody. On the

other hand, the longest duration is present at the locations (0 12 10 15 21 25 26 27

28) or 10 locations out of 30, and so on:

Dimension Extreme Result

1 duration lowest (6 17 22)

2 duration highest (0 12 10 15 21 25 26 27 28)

3 interval lowest (0 13 21 24 27)

4 interval highest (26)

Table 4.1: Common accent inference: locations of extreme values in the dimensions

of duration and pitch-interval of a melody.

Next, the length of the lists is considered and how they overlap; i. e., where the

length of the intersection is greater than zero. In addition, the strength of the

intersection is computed from the observation of the length of the intersection vs. the

length of one other dimension. For instance, the positions of the highest durations and

the lowest intervals coincide at three locations: (27 21 0). The strength of the

152

intersection relative to the durations is 30 percent; relative to the intervals it is 60

percent.

Argument-i Argument-2 List-sizes Intersection Percent

Durat lowest Interv lowest (3 5) NIL (0 0)

Durat lowest Interv highest (3 1) NIL (0 0)

Durat highest Interv lowest (10 5) (27 21 0) (30 60)

Durat highest Interv highest (10 1) (26) (10 100)

Table 4.2: Common accent inference: listing of intersections of data in two
dimensions of a melody.

The content of the common-accentedness-vector is computed from the evaluation

of the intersection lists of the four combinations of the two dimensions and two

extremes. A "1" outcome results if an intersection exists else the result is "0". The

current result vector is: #(0 01 1). In this example, the content of the vector states

that the longest event coincides with the smallest interval and that the longest event

also coincides with the largest interval. The results can be further constrained by

imposing a minimum strength of the intersection.

The binary common-accentedness-vector is accessed by four individual sensor

functions firing when their respective locations in the vector hold a "1". An

exemplary melody used with the common-accentedness algorithm is shown in figure

4.19.

153

Inspector

i°ý'u_ý ý , fin

Figure 4.19: Visualisation of random melody used with common-accentedness

example.

4.6.4 Harmonic Tension Analysis

It is useful to tackle melodic complexity in terms of perceived psychological

tension. The objective is to obtain deeper level analysis based on the appreciation of

pitch-interval tension that is viewed as the expression of abstract potential energy

between melodic events either in the melodic (horizontal) or harmonic (vertical)

sense. For example, the information may be used to compare any two melodies by

consideration of global tension, to compute the total inner tension of a melody or to

compute the effect - in terms of global tension - of adding a single pitch to an

existing melody. In addition, simple tonal inference is possible by computing the best

matching tonalities given a single melody and twelve minor and twelve major scales.

The scale with minimal tension of the pitch-classes intersecting with that scale is

considered the goal tonality. We implemented this algorithm but switched to the PPM

model (section 4.6.6) as it is faster than the method described above.

Inspired by earlier work of Schillinger (1948) a simple though sophisticated

theory of musical tension was developed by Citron (1985). Tension expresses the

psychological dissonance in a musical structure such as a chord or a melody. A

logarithmic scale is suggested in order to quantify tension. Only four intervals require

non-zero values of tension; the tensions of 1,10,100 and 1000 are assigned

154

respectively to the intervals of a minor seventh, major second, major seventh and

minor second. The effect of octave displacements is ignored.

A more refined tension algorithm was also developed using values from a

hypothetical sale of dissonance intensity proposed by Berry (1989). According to

Berry, the list of intervals (0 to 11) as being sorted according to increasing tension: (0

743985 10 26 11 1). The tension scale is a linear one. Unison produces zero

tension, the interval of a perfect fifth produces tension 1, a major third produces 2 and

so on. The interval of a minor second turns out a tension of 11 units.

A more recent hypothetical list of tensions is formalised in (Cope 2005) presenting

twelve individual tensions for the twelve intervals of unison (tension 0) to major

seventh (tension 1). It was decided to draw on the scale suggested by Citron because

of its natural logarithmic character. The total tension in a list of pitches is calculated

by summing the tension-value of every pitch towards every other pitch, not by

summing the effect of the enumeration of the intervals.

The tension profiles of a given melody may be computed and visualised. The

position(s) of the maximum tension may also function as breakpoints similar to the

point-of-change described in chapter 4, section 4.6.2. Figure 4.20 depicts a tension

profile of a random melody 100 events long. The vertical axis is logarithmic: 0,1,10,

100 and 1000. The window size of the tension algorithm is 4 events. The maximum

tension (red line) of 2001 occurs just once, at location 52.

155

Tension view

Figure 4.20: Tension profile of a random melody of 100 events long.

The individual tension sensors tension-low-p and tension-high-p fire according to

the amount of tension in working memory. Considering, for instance, that WM holds

16 events, there are 15 sequential pitch intervals, taken absolute value and modulo 12.

In order to compute all possible values for total tension, we must consider all

permutations of twelve intervals (0-11) in collections of 15 elements. The number of

permutations of size K taken from N elements is N! divided by (N-K)! or in this case

12! / 3! which equals 479001600. It is practically impossible to chart this

astronomical number of permutations exhaustively. A pragmatic trial and error

method using live keyboard input from a human performer is used. The contents of

WM - in terms of global tension - is evaluated and so intuitive understanding is

gained of the relationships between intervals and global tension. Experiments resulted

in a tension-low-p sensor firing when the tension in WM is lower than 1000, the

tension-high-p fires when the tension is above 5000.

4.6.5 Global Ratio Sensors

Ratio sensors fire according to the ratio between two numerical values. For

example, consider the ratio between the number of positive and the number of

negative intervals in a melody, disregarding intervals that equal zero. Some ratios of

interest are: duration-ratio representing the total note duration vs. the total rest

156

duration, the semitone ratio representing the ratio of the number of semitone intervals

vs. all other intervals, the duration-mm-ratio representing the ratio between the

maximum and the minimum event duration in a memory. For example, consider the

pseudo code for the interval-ratio-value and interval-ratio-expression methods:

interval-ratio-value (melody method)

;; nr of positive vs. nr of negative intervals

loop np -0

nm -0

for i in (intervals melody)

if (plusp i)

(incf np)

else

(incf nm)

finally if (zerop nm)

return 0

else

return (float (/ np nm))

interval-ratio-expression (melody method)

;; nr of zero intervals vs nr positive plus nr of negative intervals

loop np a0

nm -0

nO -0

for i in (intervals self) do

if (plusp i)

(incf np)

else

if (minusp i)

(incf nm)

else

(incf n0)

finally if (zerop n0)

return 0

else

return (float (/ nO (+ np nm)))

sý

157

A single method was developed as a generalization to compute ratio information

in any memory (working memory, short-term memory) for the dimensions of pitch,

velocity, duration and inter-onset-times. Memory contents are addressed as a whole,

so adding or modifying a single MIDI event may produce substantially different

results.

Ratio sensors generate fine grain information on two levels: quantitative and

qualitative. All functions address the first derivative of the data in every dimension in

order to address the changes rather than the surface of the data.

Quantitative (value) analysis considers the ratio between the number of all

positive and negative intervals in a given dimension. Qualitative (expression) analysis

computes a ratio between the number of occurrences of non-zero and zero intervals;

i. e., how strong the changes in the data are expressed, what their critical mass actually

represents. The data in the dimensions of note-duration and 10-times are quantized

and use a tolerance window of 10 milliseconds. Thus intervals in any time related

dimension of less than 10 milliseconds are considered zero.

For both quantitative and qualitative analysis, two values are computed by

counting specific intervals (see program listing above). The net result is multiplied by

the sign of that ratio and finally, normalized as to return a signed value between -100

and 100 percent.

158

Input (Idle)

N: 458 P: 61 V: 104 D: 86 I: -14 G: 147 T: G# min Z: 3

Figure 4.21: Working memory, last 32 events input by the human interactor.

As a typical example, let us consider the contents of working memory as

visualized in figure 4.21 and then listed numerically (start-times and durations are in

10 millisecond units).

N: 0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S: 02369 27 75 76 78 80 83 86 88 91100103106118130133140143170205209213218222226231233236

P: 68 68 68 68 68 51 75 70 68 75 80 80 80 80 61 61 61 76 73 70 78 68 49 75 61 75 61 75 61 75 75 61

V: 91 82 73 73 67 30 52 62 62 37 85 75 60 59108110127 56 56 69 72 30 23104110 99106104100 96104104

D: 9888 8327 995 14 88888988 30 28 31 80147 88 17 89 17 888

When the all-parameter-ratios method is applied to the contents of WM, the

following results:

PITCH VALUE -14.

PITCH EXPRESSION 35.

VELOCITY VALUE -11.

VELOCITY EXPRESSION 74.

DURATION VALUE 0.

DURATION EXPRESSION 3.

INTER-ONSET-TIME VALUE 18.

INTER-ONSET-TIME EXPRESSION 47.

159

Dimension pitch value is negative meaning that there are slightly more negative

pitch intervals than positive pitch intervals and that, when considering repeating

pitches (interval zero) the expressive strength is only 35 percent.

The expression of the velocity dimension is 74 implying there are very few events

with repeating loudness. The duration value is zero, meaning there are as many

positive as negative intervals, however, their expression is weak implying there is a

significant amount of repeating duration intervals.

The eight values gained from ratio analysis are translated into 24 Boolean sensors:

eight ratios evaluated as being positive, negative or zero. The analysis LISP

background process checks the sensor status every 500 milliseconds. However, it is

also instructive to consider the history of ratio analysis results.

Figure 4.22 shows the history of eight ratio levels over 200 events input by a

human improviser using a standard MIDI keyboard. Every time a new event is input

into WM, the next value is computed for the eight data levels (four dimensions with

two levels each). The last 32 data points correspond to the last 32 events input by the

human performer are also reflected in the input pane of the GUI shown in figure 4.21.

Various tendencies are discernible.

The most interesting feature of this analysis method is that the effect of the most

recent input event will be conditioned by the recent history; i. e., be relative to earlier

input events. The signal will typically oscillate with individual frequencies and

periodicity for the four dimensions of pitch, velocity, duration and inter-onset-time,

thus four individual traits are extracted from the same basic signal.

160

Figure 4.22: Ratios history in four dimensions.

161

4.6.6 Tonality Induction

The conventional, idiomatic approach to jazz improvisation relies heavily on the

specification of tonal charts, the identification of tonal key and the appreciation of the

structural importance of tonal changes. It was decided to include tonality sensing in

Oscar (a non-idiomatic inclined system) yet considerations of tonality are not more

important than any other sensing algorithm.

A variant of the parallel processing model (PPM) developed by Vos and Van

Geenen (1996) was implemented. The PPM algorithm works only with monophonic

input and is straightforward to implement for real-time use. A brief discussion

follows.

class PPModel (subclass of melody)

top-score

melodic-winner ;; a scale pointer

harmonic-winner

melodic-score ;; array of 24 scalars

harmonic-score ;; array of 24 3-element vectors

nr-inputs

current-tonality

previous-tonality ;; used by tonal-swing sensor

The algorithm is typified as parallel because both a melodic and a harmonic score

are kept for every incoming MIDI event. When the pitch-class of the event is a

member of any of all 24 possible major and minor scales, the weight for that tonality

is incremented proportional to the duration of the event. In its original version, the

algorithm includes a primacy-span meaning that the first members of a new sequence

will receive higher attention and thus exercise more pressure on the weighting

scheme. Since Oscar builds on continuous input, primacy-span was removed. One

162

other important modification was included: an inhibition factor gradually fades the

weight of any pitch-class that is not present in a given scale. In this form, the

algorithm will mirror contextual tonalities rather than the effect of a single event.

The melodic-score will thus reflect how every input event is associated with any

of 24 possible tonal keys. The harmonic-score keeps a second, similar list of weights

that accommodates the relationship of a pitch-class with functional chords associated

with a given scale. The following chords are considered for each tonality: tonic,

subdominant and dominant-seventh chords. When a pitch-class is a member of more

than one chord, the weight is divided and shared amongst the different tonalities.

The overall contents of both melodic-score and harmonic-score are now

considered. When the maximum weight in melodic-score and harmonic-score is

associated with the same scale, that scale is considered the target tonality. When they

are not, tonality is thought of as ambiguous. Consider the following print out of the

PPM algorithm:

0: C MAJOR 65 I 0 60 60 = 120

1: C MINOR 218 I 90 60 60 = 210

2: C# MAJOR 700 I 140 50 120 = 310

3: C# MINOR 460 I 20 50 120 = 190

4: D MAJOR 172 I 60 0 40 - 100

5: D MINOR 65 I 120 0 0 = 120

6:

7:

EB

EB

MAJOR

MINOR

335 I

800 I

45

105

45

45

120

160

=

=

210

310

8: E MAJOR 380 I 0 40 150 = 190

9: E MINOR 120 I 0 0 60 = 60

10: F MAJOR 131 I 60 60 0 = 120

11: F MINOR 481 1 60 100 90 = 250

163

12: F# MAJOR 740 I 50 120 140 = 310

13: F# MINOR 292 I 50 30 20 = 100

14: G MAJOR 120 I 0 0 60 = 60

15: G MINOR 218 I 0 90 120 = 210

16: G# MAJOR 325 I 45 140 65 = 250

17: G# MINOR 380 I 45 20 125 = 190

18: A MAJOR 172 I 40 60 0 = 100

19: A MINOR 65 I 0 120 0 = 120

20: A# MAJOR 218 I 60 45 105 = 210

21: A# MINOR 620 I 100 105 105 = 310

22: B MAJOR 380 I 120 0 70 = 190

23: B MINOR 172 1 30 0 70 = 100

The information block above shows a tabulation of the weights for 24 scales. For

every scale, the following datum is listed: tonic, scale type, melodic-weight,

harmonic-weights for three basic chords (I, IV and V7) and finally, the sum of the

harmonic-weights in the last column. The maximum melodic-score is 800 and the

maximum harmonic-score is 300, therefore, the prevailing tonality is Eb-minor.

The PPM-class is a subclass of the melody-class. It keeps a previous-tonality

instance variable to compare a newly calculated tonality to the previous one. The

tonal-swing sensor addresses this facility. The inhibition-factor in the melodic-score is

0.85 in the current implementation. Its value is derived by experiment and represents

a trade-off between enough attention to the single most recent input event and keeping

enough influence of the most recent context.

164

4.6.7 Real-Time Segmentation

4.6.7.4 Purpose of Segmentation

An important organizing factor in musical perception is the spontaneous grouping

of events into functional subgroups or clusters of events and, intimately linked to this,

the perception of characteristic patterns as perceived in a continuous musical stream.

Both the act of musical segmentation and the detection of patterns allows for the

appreciation of stylistic musical profiles (Rowe 2001).

Segmentation is useful to capture individual gestures from a human player.

Oscar's implementation features the alternating use of two short-term memories that -

- at any time during interaction - accommodate the last two segments performed by

the human player. By tracking differences in both memories one may speculate where

the music is going - what the global tendency is and how strong it is actually

expressed. Many analysis functions and various sensors consult the data in both short-

term memories.

Most segmentation methods are based on the Generative Theory of Tonal Music

(GTTM) developed by Lehrdall and Jackendoff (1983). This theory provides two

types of rules. First, well-formedness rules specifying which kind of sequences are

acceptable for analysis and second, preference rules that specify the positive chance

(preference) that human listeners would identify these sequences. This theory thus

builds a hierarchy of rules that seems difficult to implement in real-time systems.

However, Pennycook et al. (1993) report on a real-time segmentation algorithm based

on ideas of GTTM.

An alternative method to GTTM is the use of Gestalt psychology. This theory

specifies a series of perceptual principles. For example, the law of good continuation

165

says that sequences will be heard as grouped when they do not contain discontinuities,

the principle of similarity will tend to group elements that are similar in some

dimension, the principle of common fate indicates that humans tend to group elements

that change in similar ways. Tenney and Polansky (1980) implemented the Gestalt

principles of proximity and similarity in a theory of musical segmentation.

The process of segmentation involves the detection of boundaries by the

identification of specific events in a sequence. For example, considering the law of

good continuation, a large event-duration will be identified as a boundary if the

durations of the events occurring just before and after that event are substantially

shorter events. Thus, boundary information is only available given a delay of one

event. This is an obvious problem because a segmentation algorithm is required that

signals the exact start of a new segment. In particular, this is instrumental for writing

events in short-term memory; the event signalling a new segment must be stored as

the first event of that segment.

4.6.7.5 Implementation of Real-Time Segmentation

Two different types of segmentation algorithms were implemented and evaluated.

Firstly, a procedure that accumulates evidence for the existence of a boundary based

on the evaluation of changes in the dimensions of pitch, velocity and inter-onset-time.

Secondly, a method derived from an algorithm suggested in the Continuator Project

(Pachet 2003). The first method is briefly introduced below. The second method was

documented in chapter 3, section 3.4.2.

The algorithm creates a hypothesis of the strength with which an event in a

continuous monophonic stream could signal the start of a new segment. In other

words, the algorithm returns the level of confidence that a boundary is detected. The

166

confidence is expressed in a boundary-value between 0 and 8, computed from the

combination of a three-element bit-string. The respective values of 1,2 and 4 are set

or reset according to three different functions. Every function considers a possible

contribution from three dimensions in the input buffer; i. e., working memory: pitch,

velocity, and inter-onset-times (IOT). Note that the dimension of duration is missing:

it cannot be used because the boundary must be detected once a new note-on event

arrives and before the complementary note-off event arrives.

For every dimension, the absolute value of the first derivative is computed. This

list documents the amount of change in that dimension. The minimum and maximum

value in each is list is measured; these values will operate as reference values for

every new incoming event. The last interval in each dimension is available as an

instance variable of the ear class objects and is updated automatically by a

background bookkeeping function.

A typical boundary-value is computed as follows: considering the dimension of

event velocity:

when

delta-velocity value is greater than the max-velocity-interval OR

the delta-velocity value is lower than the min-velocity-interval

then

increment boundary-value by 2

The boundary detection flag is set True if the boundary-value is positive AND the

following condition is also true: the previous boundary condition is either zero OR the

current boundary-value is not the same as the previous-boundary-value. This implies

that only the first significant change will trigger a boundary and repeating changes in

the same dimension will simply be ignored.

f4

1

�ý

167

This algorithm has two advantages: it suggests a simple, unified approach across

event dimensions (all three dimensions also contribute equal weight) and it can signal

a boundary from the observation of a single event, the very last event captured from

the human performer. A serious disadvantage is an intrinsic delay that follows from

the consideration of the contents of the complete buffer. However, the benefit of the

disadvantage is that it reduces ineffective spurious behaviour. The annotated code

looks as follows:

(defmethod segmenter-start-p ((self ear))

;; return a number indicating the kind of boundry detected

;; the number (0-8) is a confidence factor

(let* ((boundry-value 0)

(flag nil)

(intervals (mapcar 'abs (intervals (buffer self))))

(min-interval (apply 'min intervals))

(max-interval (apply 'max intervals))

(velo-intervals (mapcar 'abs (derivative (velocities (buffer self)))))

(min-veloi (apply 'min velo-intervals))

(max-veloi (apply 'max velo-intervals))

(gap-intervals (mapcar 'abs (derivative (gaps0 (buffer self)))))

(min-gapi (* 1000 (apply 'min gap-intervals)))

(max-gapi (* 1000 (apply 'max gap-intervals))))

(format t "-% -5d, -5d. " min-interval max-interval)

(format t "-% -5d, -5d. " min-veloi max-veloi)

(format t "-% -5d, -5d. " min-gapi max-gapi)

(when (or (> (abs (last-interval self)) max-interval)

(< (abs (last-interval self)) min-interval))

(incf boundry-value 1))

(when (or (> (abs (delta-velocity self)) max-veloi)

(< (abs (delta-velocity self)) min-veloi))

(incf boundry-value 2))

168

(when (or (> (abs (delta-gap self)) max-gapi)

(< (abs (delta-gap self)) min-gapi))

(incf boundry-value 4))

;; delta-velocity relative to max delta (maxval - minval) - (128 - 28) - 100

;; and relative to all previous changes

;; (shorter than shortest or longer than longest)

(format t "-% previous-boundry-values -a boundry-value: -d. " previous-

boundry-value boundry-value)

(setq flag (and (plusp boundry-value)

(or (zerop previous-boundry-value)

(not (- boundry-value previous-boundry-value)))))

(setq previous-boundry-value boundry-value)

flag)) ;; return Boolean

4.6.8 Four Continuous Higher-level Sensors

In contrast to the Boolean nature of all low-level sensors used with sensor-

activator networks, four higher-level values are kept which reflect more complex

contextual information and how it changes in time. The four sensors are: quantity,

quality, human-responsiveness and exploration-exploitation-ratio. The values are

updated continuously (at every tick of the analyser-process) according to their private

procedure. In case the human performer stops inputting new data, the levels decrease

(multiply by 0.975) in time to reflect a fading process, or in other words, the

relevance of the data in question decreases. The difference between the last two

samples of both quantity and quality (delta-QL and delta-QT) is of crucial

significance to the global functioning of the system. Delta-QL and delta-QT are

interpreted by way of relationships that, in turn, influence behaviour of the patch and

the drive objects.

Analysis takes place addressing the contents memory, a circular buffer (FIFO

structure) that always holds the last 32 MIDI events input by the human performer.

169

The goal of the quantity level is to capture changes in the dynamics of the human

improviser. In pseudo code:

Update-quantity (interface method)

if long-silence-p then

quantity = quantity * 0.975

else

if loud-p or fast-p then quantity = quantity * 1.1

else

quantity a quantity * 0.8

The goal of the quality level is to measure changes in the relative complexity of

human input. In pseudo code:

Update-quality (interface method)

if long-silence-p then

quantity = quantity * 0.975

else

if pitch-intervals-diversity > 50 %

then quantity - quantity * 1.1

else

quantity = quantity * 0.8

A simple though effective measure of complexity/monotony is the diversity of the

pitch intervals in working memory.

Human-responsiveness is computed from a combination of three sources as shown

in the next pseudo code:

Update-HR (interface method)

gap = 10000 - (min current-no-input-gap 10000) ;; max 10 sec

gap-pct - (gap / 10000) * 100 ;; pct

previous-human-responsiveness = human-responsiveness

human-responsiveness

170

(gap-pct + quantity + quality) /3

The human-responsiveness level is thus proportional to the average of quantity,

quality and the current-no-input-gap value; i. e., the time span since the last note-off

event input by the human performer was received.

Finally, the rationale of exploration-exploitation level is to establish a relationship

between the intensity of human activity and the urgency of deployment of the

information contained by that activity. For instance, if human-responsiveness is high,

it is concluded that the human performer is momentarily requesting for increased

attention, consequently the machine performer should pay attention to the most recent

context; in other words, the machine performer should exploit the information just

entered by human performer. In contrast, when human-responsiveness is low, it is

concluded that the human performer becomes less interested to interact; the current

context is no longer very up-to-date and consequently, it becomes less useful. In

pseudo code:

Update-exploration-exploitation

if human-responsiveness < previous-human-responsiveness

exploitation-pressure - exploitation-pressure * 0.85

factor =(remap (min last-gap 5000) 0 5000 1.0 1.33

exploration-pressure = exploration-pressure * factor

else

exploration-pressure = exploration-pressure * 0.85

factor =(remap (max 50 last-velocity) 1 127 1.0 1.37

exploitation-pressure = exploitation-pressure

Note that the function above is asymmetrical in functional content as well as

parametric weights. The multiplicative scaling factors are determined by trial and

,ý

171

error. The exploitation-pressure and exploration-pressure factors are proportional to a

remapping of the last-gap (the length of the silence just before the last-note-on event,

clipped to 5000 milliseconds) and the velocity of the last input event. Both cases yield

a scaling value greater than one while the complementary pressure is scaled down. As

we shall see in chapter 8, this simple, flexible scheme provides continuous, non-linear

weights influencing the exploration/exploitation motivation of the system.

172

4.6.9 Histograms of Change

Q Histogram 0.2

P /3/9 1/5/10
1

son
minims I

0123456789 10 11121110 9876541U12345h89 10 11 12
y 3/7/4 1/`3/6

1111

0123456789 10 987654321312456789 10

U 1/11/4 16/16/1

0123456789 10 9876543
R1 /3 /2

0123456789 10 98765432

45r. Hy 10

2/2/1

t123456789 10

Figure 4.23: Histograms documenting changes in working memory in the dimensions

of event pitch, event velocity, event duration and event entry-delay.

Histograms of change are created in order to feed families of sensors that fire

according to the amount of change in working memory (WM) - in four different

dimensions independently. The amount of change is measured in the dimensions of

pitch, velocity, duration and rest (the entry delays before the start of every event in

WM). Figure 4.23 shows typical datasets organised as four rows, one per dimension.

The data is normalised on a scale 0 to 100 which makes it feasible to consider (and

compare) all dimensions on an identical basis. Every histogram holds data structures

to keep track of its current and previous contents; the difference is computed,

normalised and visualised. In the first row, the first column shows the changes in

173

pitch-class contents of WM. The second column shows the changes in pitch-intervals,

in a range of -12 to +12 semitones, other intervals are ignored. The visualisation is

colour coded as follows;

for every value in histogram

if current < previous

show previous in red

else

show current in light-blue

else

show current in green

else

show previous in light-blue

then

loop

Additional numeric information is given in the upper right corner of every

histogram; a three-element string showing aspects of the current data: (1) the lowest

value higher than zero, (2) the highest value and (3) the number of values higher than

zero. In other words, the second value provides information on the resolution of the

data; when addressed by a sensor, it will condition that sensor's discrimination

fitness.

Considering figure 4.23, the remaining rows show similar information for the

dimensions of duration, velocity and event entry-delay; all three histograms in the

first row contain 10 values. The resolution of the input data for the histograms varies

according to the dimension. When addressing time (event duration and event entry-

delay) a special non-linear classification scheme was developed; it discriminates

relative to the following Fibonacci series:

fibo-durations - '(100 200 300 500 800 1300 2500 3800 6300 10100)

174

Given a duration input value, a discrimination algorithm computes a pointer as to

where that value lies in the fibo-durations. The series accommodates input durations

between 100 milliseconds (10 events per second) to a single input event lasting just

over 10 seconds. The algorithm returns a pointer (0 to 9) that corresponds to the

position of the duration value that is closest to the value of the input duration, that

pointer will instruct a particular slot in the histogram to be updated. The rationale

behind the fibo-durations is to spread out a continuous range of potential input

durations into a small number output values suggesting an incremental scale of

durations that make sense from a musical point of view.

mml Ei2 QI3 wýi4 ý]i3 wý16 wý17 [ýiB Q19 ale Q111 Q112 EM13 Q114 Q113 Ei16

Qw Inp ORfx MHig OLow OLou OSft OLng OSht IJRng OSth OFst OSlw OLgs OSts ®Exp OPoI
Olnc ODec OSto OTon OPdi OPsi ODir QDrg OI lp OIsp ®Don OSpa Dito ®Thi ®Noj Onin

IRhi ORIo ORcc ODeL OIPO QwIP1 OIP2 921 OZ2 923 OZ4 ! ZS 926 OZ7 OZ8 OTtl

OTt2 OSrt OStp Elsim OToe OEpL QO Eph OEvt IEvh OEdi ®Edh OEi I DEih ORp ORv ORd

Figure 4.24: Snapshot reflecting firing activity in neurons and their associated

sensors.

A large family of sensors can be configured to exploit the information flux in a

histogram of change. For example, the pitch-intervals-histogram (upper row, second

column) could feed 25 Boolean sensors that fire according to the data being above a

certain threshold or not. Whatever the dimension, the same threshold can be used

since all data is scaled (and visualised) on a range 0 to 100, in effect a special form of

adaptive sensing offering equal opportunities of sensor impact from distinct input

dimensions.

175

The GUI of Oscar is composed of a number of individual (but linked)

visualisation windows including a LED-window. The LED-window instance variable

holds two sets of objects. The top row consists of 16 (simulated) LEDs that mirror the

status of the 16 neurons in the current sensor network of the brain. The lower part

shows 64 LEDs that echo the status of every single online sensor. A typical snapshot

is depicted in figure 4.24. In this case, 3 neurons and 17 sensors report a positive

status.

In conclusion, the histograms of change offer data patterns (normalised from 0 to

100) that are treated as sources of pseudo-unpredictability because it is impossible to

explain the correlation between the histogram data and musical behaviour of the

human performer. However, there are man-machine associations hidden in the

histogram data thus, rather than blindly use (eventually conditioned) random

numbers, a very subtle kind of source of unpredictability is obtained. When brought

into action, histogram data may indicate an impact of some historically accumulated

musical behaviour (as reflected in the histogram data itself) on the most recent

program behaviour. In terms of complex dynamical systems, this is yet another form

of structural coupling that expresses itself in time.

4.7 Listening Networks

As outlined above, a human listener actively builds expectations that speculate on

the further development of what is being heard. Listening is understood as a complex,

recursive self-organizing process with multiple channels of confirmation and

contradiction. As explained in section 4.2, in the spirit of non-idiomatic

improvisation, we aim for more reactive behaviour. Still, we acknowledge the

recursive nature of the listening process; part of the output of the listening network is

fed back into its input. At this point, the global listening network may develop

176

interesting behaviour that follows from the interaction of two dynamical systems: the

sensor network and the interpretation network described in chapter 5.

The listening network thus consists of two interacting but functionally

independent objects that are considered networks in themselves - they simply

aggregate to form a listening network on a macroscopic scale. The current chapter

explains the layout and functioning of the first component; the sensor network. The

next chapter addresses the second network that contains relationships offering

qualitative interpretation of the signals sent by the sensor network.

4.7.1 Sensor-Activator Networks

An inspiring implementation of recursive networks, known as Sensor-Activator

Networks (SAN) is reported by Fiume and Van de Panne (1993); work that aspires the

automatic synthesis of interesting modes of locomotion of user-designed objects

equipped with sensors and activators. A small non-linear network then functions as a

controller guiding animated behaviour in simulated objects. Oscar's implementation

turns to genetic algorithms to evolve such networks because it is hypothesized they

support the discovery of interesting modes of listening.

A sensor-activator network is built of three layers with partially interconnected

nodes. Layer 1 and 2 are formalised inside the SAN object while the output layer is

formalised inside a Patch object. The three layers are described next.

177

Sensors
input nodes

Neurons
hidden nodes

Figure 4.25: Basic SAN without feedback.

Sensors
input nodes

Neurons
hidden nodes

Patch
output nodes

Figure 4.26: Topology of a three layer partially connected sensor-actuator

network. Black arrows specify sensor input, red arrows show the neuronal

network, blue arrows signify neuron to patch connections and green arrows

denote feedback.

The input layer consists of sensor functions selected from an array of 64 different

kinds of sensors. The connection between a sensor and a neuron is modulated by a

weight: an integer value in the range -2 to +2, excluding 0. The number of sensors

178

connected to a neural node is variable: from a single sensor up to a maximum of five

sensors. The sensor nodes output a Boolean value according to the current sensor

status.

So

Si

S2

S3

S4

Sensors

Figure 4.27: Functionality inside a single SAN neural node.

Out

The hidden layer consists of 16 neural nodes. We experimented with various

connection schemes in order to study the state space as a function of connection

densities. However, in order to constrain that space, it was decided that any neuron

has exactly five connections. Connections between neural nodes feature positive

(excitation) activations and negative (inhibition) activations. The strength of the

activation is a random value between -2.0 and +2.0.

For any neuron, there is equal chance for either positive or negative activation in a

connection. Any neuron will connect to a random destination neuron on the condition

that it still has a free slot - only five connections per neuron are allowed. With 16

neurons and five connections, any neuron will connect with approximately one third

of the other neurons. Also, a neuron cannot connect to itself. The connections

179

between neurons are represented by a 16 by 16 element array. Non-zero values denote

a connection. The matrix itself serves as genotype in the evolutionary process to be

described shortly.

The connections between the neural layer and the output layer are kept inside a

patch object. The connections inside a patch are known as relationships -

relationships specify weighted correlations between neural activation and patch output

(documented in chapter 5).

The global topology of the network is irregular in the sense that (1) the neural

nodes are not fully connected and feature a variable number of positive and negative

connections (2) the same sensor may be connected to different neurons, and (3)

feedback from a single output node may be directed towards more than one neural

node.

A neural node computes its output according to the scheme depicted in figure

4.27. The functioning of this node is similar to nodes in conventional neural networks

(Rumelhart and McClelland 1986). However, the nodes are not used for the purpose

of learning but to support sensor fusion. Every node sums the weighted inputs of all

five sensors and outputs a1 if that sum is greater than zero. In order to obtain non-

linear dynamics, time delays are introduced to acquire the intended functionality of a

node. The integrator function specifies two time delays, respectively for a node to

switch on or off. The value of the delays has impact on the duration cycle of eventual

oscillations and the relationship between on-delay and off-delay specifies the duty

cycle of an oscillation. It proved very difficult to study the influence of specific delay

values in Oscar's implementation. Systematic study would require removing the non-

linearity introduced by the network topology itself. As it happens, even with on-delay

of 1.0 and off-delay of -1.0, a SAN may self oscillate. However, it was impossible to

180

SAN-02

aQ Q Q 13- Q Q-1 Q o-J oQ Q o Q Q o
QQ Q Qo o Q-ý oQoQ Q o Q Q o

0- 0- 11- Q Q oQ 13 o 0 0 0
QQ 0- 0- 13- Q 0 oQoQ Q o Q o

Clear rFwd rBkw Mutas QoQQQQQQQ QQ Q QQ QQ Breed RSen 1Sen Load 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Rndl Rnd5 Fitn Zone
EvalPrint Full Hide

Figure 4.28: Example of partially connected neural layer, random number of

connections (1-5) and a single input sensor per neuron.

#<NEURON *x24840FE>

Q Q Q Q Q
Q Q Q Q Q

Q Q Q Q
Q Q Q Q Q

Q QP Q
QQQ
QQQ
QQQ

Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q

Clear rFwd rekw nutaj M QQDDDDDQQQQQQQQ
Breed RSen ISen Load 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Rndl ' Rnd5 Fitn Zone
EvaL Print Full Hide

Figure 4.29: Example of uniform connected neuronal layer with five connections per

neuron and a variable number of sensors per neuron.

181

trace the origin of observed oscillations. Therefore, it was decided, to keep fixed

delays for all experiments reported here (on-delays 0.5 to 1.0 and off-delays -0.5 to -

1.0) and focus foremost on the effect of SAN connectivity.

Finally, the output employs a hysteresis function rather than a simple threshold.

The objective here is to prevent excessive oscillatory behaviour.

Once that sensor input is accommodated, the further activation of a hidden node is

computed from the combined effect of (1) the inter-node activations (the expression

of the connection matrix) and (2) the feedback from the patch, determined by the kind

of relationships inside that patch.

Figures 4.28 and 4.29 show two instances of SAN in their private graphic user

interface. The GUI is used to select a current-SAN from the online database of 16

SAN objects, to inspect or modify the list of sensors (and their associated weights)

connected to a given neuron or to access functionality triggered by the buttons.

All the decisions inside the ear object are coordinated by the evaluate-brain

method; it considers the combined effect of the activity in a SAN and a patch. The

evaluate-brain method consists of three major sub-functions reflecting the three-layer

structure of a listening network plus a number of important bookkeeping functions.

As the patch object is the subject of the next chapter, the evaluate-brain method will

be addressed in that chapter. However, we first put forward additional information on

the various classes of sensors as well as the SAN optimisation process.

4.7.2 Synopsis of the Sensors Depicted in the Graphic User Interface shown

in Figure 4.24.

All sensor functions are evaluated in a concurrent background process - the

analysis process - that schedules itself at the frequency of a given sampling-delay.

182

The value of the sampling-delay is typically fixed between 500 milliseconds and 2

seconds. Low sampling rates are acceptable because they exemplify the speed of

change in a typical MIDI input stream produced by a human interactor.

The label reflects the label next to every LED in the GUI depicted in figure 4.24.

The source refers to the data being addressed by a given sensor.

The following six sources are in effect:

1) Event: the very last MIDI event received by the background, low level MIDI

listener process.

2) Hybrid: a sensor that merges data from other sensors,

3) WM: the (typically 32) most recent events as currently stored in working

memory.

4) Clock: reports timing information such as the time since the human interactor

last sent a MIDI note-off event.

5) PPM: the parallel processing model used for real-time tonal inference.

6) Vector is the intervals-vector instance variable of the ear object. The vector

captures a two-element pitch interval profile updated by the recent history of

the perceived pitches - it feeds three individual sensors. The eight zone

sensors are mutually exclusive and feed from the last MIDI input event.

7) STM: denotes short-term-memory.

The description column specifies the condition for obtaining a Boolean true from the

given sensor.

183

Label Source Description

1 Inp event input event is currently sounding

2 Rfx hybrid Reflex: last-interval > 10 and last-velocity > 100

3 Hig event Adaptive, context sensitive sensor, high pitch

4 Low event Adaptive, context sensitive sensor, low pitch

5 Lou event Loud: adaptive, context sensitive sensor, high loudness

6 Sft event Soft: adaptive, context sensitive sensor, low loudness

7 Lng event Long: adaptive, context sensitive sensor, high duration

8 Slit event Short: adaptive, context sensitive sensor, low duration

9 Ang WM Angularity of pitch intervals higher than 60%

10 Sth WM Smooth: angularity of pitch intervals lower than 30%

11 Fst WM Fast tempo: speed > 120 events/minute

12 Slw WM Slow tempo: speed < 60 events/minute

13 Lgs clock Long silence since last note-off (> 5000 ms)

14 Sts clock Short silence since last note-off (<200 ms)

15 Exp WM Expressionist: nr-rests < nr-events/2

16 Poi WM Pointillist: nr-rests > nr-events/2

17 Inc WM Incrementing: nr positive intervals > nr-events/2

18 Dec WM Decrementing: nr negative intervals > nr-events/2

19 Sta WM Stationary: nr neg. intervals nr pos. intervals

20 Ton PPM Previous-tonality * current-tonality

21 Pdi WM Pitch-class diversity > 60%

22 Psi WM Pitch-class diversity < 30%

23 Dir WM Event durations regularity < 30%

24 Drg WM Event durations regularity > 60%

25 Up STM Last pitch-interval > 11

26 Lsp STM Last pitch-interval <3

27 Den WM Dense: sum of event-durations > sum gaps

28 Spa WM Sparse: sum of event-durations < sum gaps

29 Tlo WM Harmonic tension lower than 1000

30 Thi WM Harmonic tension higher than 5000

31 Maj PPM Prevailing tonality is major

32 Min PPM Prevailing tonality is minor

33 Rhi STM Gap/event-duration ratio >5

34 Rlo STM Gap/event-duration ratio < -5
35 Acc WM Accelerating; durations > 50 % decrement

36 Del WM Slowing down; durations > 50 % incremental

37 IPO vector Pitch-interval profile 0: i-curr = i-prey

38 IPI vector Pitch-interval profile 1: i-curr> i-prey

39 1P2 vector Pitch-interval profile 2: i-curr < i-prey

40 ZI event Pitch low, duration low, velocity low

41 Z2 event Pitch low, duration low, velocity high

42 Z3 event Pitch low, duration high, velocity low

43 Z4 event Pitch low, duration high, velocity high

44 Z5 event Pitch high, duration low, velocity low

45 Z6 event Pitch high, duration low, velocity high

46 Z7 event Pitch high, duration high, velocity low

184

47 Z8 event Pitch high, duration high, velocity high

48 Ttl clock Threshold-algorithm based timer

49 Tt2 clock Threshold-algorithm based timer

50 Srt clock Human performer just started

51 Stp clock Human performer just stopped

52 Sim STM Contents of 2 short term memories are similar

53 Tam WM Tonality considered ambiguous

54 EpI WM/ev Last-pitch < lowest WM pitch

55 Eph WM/ev Last-pitch > highest WM pitch

56 Evl WM/ev Last-velocity < lowest WM velocity

57 Evh WM/ev Last-velocity > highest WM velocity

58 Edl WM/ev Last-duration < shortest WM duration

59 Edh WM/ev Last-duration > longest WM duration

60 Eil WM/ev Last-IOT < shortest WM IOT

61 Eih WM/ev Last-IOT > longest WM IOT

62 Rp vector Pitch reflex: delta-vector[O] pct-difference > 33%

63 Rv vector Velocity reflex: delta-vector[l] pct-difference > 33%

64 Rd vector Duration reflex: delta-vector[2] pct-difference > 33%

Table 4.1: Library of on-line sensors.

4.8 Evolving Sensor-Activator Networks

A human designer clearly lacks the explicit knowledge to approach network

design in a top-down fashion. Top-down design could also entail the danger of

introducing stylistic biases, which in fact, we aim to avoid in an attempt to maximize

diversity. A bottom-up design methodology is adopted using a neo-Darwinist

algorithm incorporating a generate-and-test strategy. A genetic algorithm is used to

explore the huge search space of all possible networks. The matrix, representing the

weighted neural connections, is considered a genotype subject to crossover and

mutation. Thus, two components are subject to evolutionary adaptation: (1) the

number of sensors and their associated weights and, (2) the density of the connections

between neurons and their respective weights.

185

The evolutionary process studied here involves a basic sensor-activator network

isolated from a patch i. e., without feedback. Experiments involving feedback are

documented in chapter 6.

Simple experiments examine the prospect to evolve fit sensor-activator networks.

An external selective fitness attribution by a human evaluator is avoided through the

application of an implicit fitness metric. The unsupervised evolutionary method is

depicted in figure 4.30.

instantiate 10 sensor-activator
networks at random

10 sensor-activator networks

sequential evaluation offline exposure to
trace fitness

H
L-systems melody

select parents [I trace to disk

breed by crossover and I
evaluate mutation operators

Figure 4.30: Method for unsupervised exploration of the state space of listening

networks using genetic operators.

The fitness of a given SAN is directly proportional to the number of neurons that

change state for every perception cycle; the rationale is to evolve sensors that

maximize sensitivity facing a given source. A SAN is normally exposed to input from

a human subject - it would seemingly need extended periods of interaction with a

186

human interactor. However, an off-line method is used which makes it feasible to run

the experiment for several hours. For this experiment, a simple, tuneable L-systems

based sequence generator is employed. It is assumed to be a source of relatively

coherent output and stylistically stable behaviour. A test player (in contrast to a

human interactor), which is operational in its own scheduler implemented as a LISP

background process, handles the automatic playback of the L-systems melody. The

melody itself remains fixed throughout the experiment. At the end of every evolution

epoch, all SAN are stored to disk for further study and visualisation (figure 4.31).

187

11 SAN-O1 50{Martha: MCL4.2: MUSIC: OSCAR54: EvoSan5: }= EI

(SAN "SAN-01"
31
*2A((0 00000000000000 0)

(2 00010000000000 -1)
(0 00000 -2 00000000 0)
(0 00000000200000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 0010000000 -2 -2 00 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000000000000 0)
(0 00000200000000 0)
(0 00000000 -2 00000 0))

((((TONALITY-PC-5 EAR) 1) ((ZONE-2-P EAR) 2) ((LOUD-P EAR) -2)
((PLAYING-P EAR) 2) ((TONALITY-PC-0 EAR) -2))

(((RATIO-HIGH-P EAR) -1) ((SOFT-P EAR) 1) ((TONALITY-PC-11 EAR) 2)
((PLAYING-P EAR) 1) ((EXPRESSIONIST-P EAR) -1))

(((TONALITY-PC-5 EAR) 1) ((RATIO-LOW-P EAR) 2) ((LOUD-P EAR) 1)
((PLAYING-P EAR) 1) ((LOUD-P EAR) 1))

(((TONALITY-PC-1 EAR) -1) ((SOFT-P EAR) -2) ((RATIO-LOW-P ERR) -1)
((PLAYING-P EAR) 1) ((ZONE-5-P EAR) -1))

(((RATIO-HIGH-P EAR) -2) ((SOFT-P EAR) 1) ((ZONE-4-P EAR) 2)
((PLAYING-P ERR) 1) ((EXPRESSIONIST-P ERR) -2))

(((ZONE-7-P EAR) -1) ((TONALITY-PC-9 EAR) -2) ((TONALITY-PC-1 EAR) 2)
((PLAYING-P EAR) 1) ((TENSION-LOW-P EAR) 1))

(((HIGH-PITCHES-P EAR) -2) ((ZONE-2-P EAR) 2) ((STATIONARY-P EAR) -2)
((PLAYING-P EAR) -2) ((ZONE-2-P EAR) -1))

(((TONALITY-PC-8 EAR) 1) ((SOFT-P EAR) 2) ((STATIONARY-P EAR) 2)
((PLAYING-P EAR) 1) ((TONALITY-PC-7 EAR) 2))

(((EXPRESSIONIST-P EAR) -2) ((HIGH-PITCHES-P EAR) 2) ((ZONE-5-P ERR) 1)
((PLAYING-P ERR) 2) ((EXPRESSIONIST-P EAR) -1))

(((TONALITY-PC-1 EAR) -1) ((TONALITY-PC-9 EAR) -2) ((RATIO-LOW-P EAR) 2)
((PLAYING-P EAR) 1) ((TENSION-LOW-P EAR) -2))

(((ZONE-1-P EAR) -1) ((ZONE-2-P EAR) -1) ((ZONE-5-P EAR) -2)
((PLAYING-P EAR) 1) ((ZONE-8-P EAR) -2))

(((HIGH-PITCHES-P EAR) -2) ((ZONE-2-P EAR) 2) ((STATIONARY-P EAR) -2)
((PLAYING-P EAR) 2) ((ZONE-2-P EAR) -1))

(((EXPRESSIONIST-P EAR) -2) ((HIGH-PITCHES-P EAR) 2) ((ZONE-5-P EAR) 1)
((PLAYING-P EAR) 2) ((EXPRESSIONIST-P EAR) 1))

(((TONALITY-PC-5 EAR) 2) ((ZONE-2-P EAR) 2) ((LOUD-P EAR) -2)
((PLAYING-P EAR) 1) ((TONALITY-PC-0 EAR) -2))

(((TONALITY-PC-5 EAR) 1) ((ZONE-2-P EAR) 2) ((ZONE-3-P EAR) -2)
((PLAYING-P EAR) 1) ((TONALITY-PC-0 EAR) -2))

(((TONALITY-PC-1 EAR) -2) ((TONALITY-PC-9 EAR) -2) ((RATIO-LOW-P EAR) 2)
((PLAYING-P ERR) 2) ((TENSION-LOW-P EAR) 1))))

Figure 4.31: Sample evolved SAN composed of 16 neurons. Every neuron features five

Boolean sensors with individual weights. The matrix represents a sparsely connected

neural structure.

The experiment runs as follows:

1) First, generate ten SAN with random neuronal connections and weights, with

every neuron up to five sensors. Care is taken not to include a timer function

(functions providing regular pulses) among the list of potential sensors. It was

188

discovered that, when included, the evolutionary process favours the networks

containing the timers. The effect is increased oscillatory behaviour but not

increased sensitivity to an external excitatory source.

2) Play the test sequence into every SAN and trace its fitness.

3) Select the two fittest networks, apply crossover and mutation operators and

create ten new offsprings. Crossover is effectuated by linear interpolation of

weights and mixing the sensor functions of both parents. Slight mutation

contributes to the evolution process not getting stuck in local minima. The

generate-evaluate-select cycle is repeated and the fitness history is

accumulated.

The two experiments documented here share the same initial conditions. A SAN

always contains 16 neurons. Inter-neuron wiring density is very low; five forward

(positive weight of 1 or 2) and five backward (negative weight of -1 or -2)

connections to/from every neuron. The number of sensors to every neuron is five and

remains fixed throughout the experiments. Mutation chance equals 5 percent. The first

experiment runs over 50 epochs, the second over 100. For clarity, figures 4.32 and

4.34 show the evolutionary path for only one individual network. The fitness is shown

over time (blue line) and the third order polynomial (black line) is evidence of the

incremental nature of the data. The other two figures show the evolutionary path of

five different networks. The following observations are apparent:

A) A quite low critical mass (only ten SAN) is adequate to develop increasingly

fitter structures.

B) A sturdy initial increase in fitness is noticeable in all SAN.

189

C) Fig. 4.31: a period of relative saturation is established after 20 epochs.

Gradual recovery to more successful points in state space.

D) Occasional sharp peaks in fitness. Fig. 4.34: exceptionally high fitness values

prove that evolution is fundamentally a non-linear process. These peaks are in

conflict with the notion of the gradual accumulation of change (Dawkins

1986). The opinion expressed by Ray (1991) is confirmed; evolution may

produce sudden bursts in fitness in an otherwise moderately flat fitness

landscape.

E) Both experiments show that all SAN retain enough common phenotype to

remain in sync for the opening time steps. In addition, all networks exhibit a

tendency to correlate over time.

F) Fitness seems to develop in a number of higher periodicity "waves".

G) The global fitness landscape is relatively irregular. However, figures 4.33 and

4.35 confirm a clear tendency for incremental fitness.

190

SAN 1 fitness history

35

30

25

A o4ýn 20

15

10

5

0
0 10 20 30 40 50

time

Figure 4.32: Fitness history of a single SAN in experiment 1.

SAN nrs. 1N5 fitness history

45 -
40

35 ------T

30

u 20
/I

10

0
0 10 20 30 40 50

time

Figure 4.33: Comparative view of five fitness histories in experiment 1.

191

SAN nr. 1 fitness history

30

25

20

15

A 10

5

0
0 20 40 60 BO 100

time

Figure 4.34: Fitness history of a single SAN in experiment 2.

SAN nrs. 15 fitness history

45

40
35

30

25
ai

20

10

5

0
0 20 40 60 80 100

time

Figure 4.35: Comparative view of five fitness histories in experiment 2.

192

4.9 Evaluation of Sensor Network Responsiveness

The next experiments investigate the complexity of the neural history of a given

SAN. Consider a SAN with 16 neurons, five inhibitory and five exhibitory

connections with a random weight (-2.0 <w<2.0) and five random sensors for every

neuronal node. The behavioural complexity of this SAN is evaluated by having a

human performer improvise. The objective here is to evaluate the degrees of freedom

in the network by charting its state space, assuming the performer to be a source of

relatively coherent qualitative information.

During interaction, the status of all neurons is captured in a vector, a neural firing

configuration that was not encountered before is added to the neural-history list.

When an existing pattern reoccurs, its frequency parameter is incremented by one.

Figures 4.36 and 4.37 show 100 sequentially detected firing patterns, the blue line

represents the rate of recurrence, the red line shows the number of firing neurons for

every individual neural pattern. The figures disclose a Brownian-like distribution of

the number of firing neurons though a clear correlation is observed between both

graphs; a small peak in occurrence rate corresponds with a decline in firing density.

This area of the state space reveals very low density corresponding with low but non-

zero occurrence rate. In addition, the relative clustering of peaks in the rate of

recurrence follows from the inertia in the non-linear network. Finally, as the

experiment progresses, the rate of recurrence gradually goes up. This echoes the

incremental nature of the listening network's sensitivity over time.

193

Unique neural firing patterns, experiment nr. 1

Rate of recurrence Number of firing neurons

14
13
12
11
10

9-
/k RA

5
4
3
2 AnI vullOvi

11
1 U, I
0

0 10 20 30 40 50 60 70 80 90 100
pattern nr

Figure 4.36: Sensor network responsiveness experiment 1

Unique neural firing patterns, experiment nr. 2

hate of recurrence Number of firing neurons

11 ---- -- -
10

9- AA
-A B

ü6
y
u5

4

3
2

X-RUA A; AA

0 10 20 30 40 s0 60 10 BO 90 100

pattern nr.

Figure 4.37: Sensor network responsiveness experiment 2

194

4.10 Conclusion

This chapter focused on Oscar's listening module. It consists of two components:

(1) a configurations of Boolean sensors and a network of neurons together forming a

SAN (2) a patch holding a set of relationships to interpret the signals sent by the SAN.

The output of the patch is fed back to the neurons establishing complex oscillatory

behaviour.

A wide range of original - some quite unconventional - sensors is suggested

including entropy, global ratio sensors and the points-of-change sensors used to detect

specific (multi-dimensional synchronisation) of changes in a MIDI stream.

The combination of adaptive, handcrafted sensor functions and evolved non-linear

networks for qualitative listening has proved promising on two axes. Firstly, evolution

allows complexity engineering without necessarily understanding the details of the

process and secondly, the evolutionary exploration of state spaces discloses

surprisingly reactive configurations that were unknown to exist by the experimenter.

Listening is implemented as a process of gradual optimisation continuously adapting

to largely unpredictable input in sharp contrast to conventional optimization that

optimizes towards a given pre-conceived goal.

The experiments provided evidence that genetic techniques can be applied

successfully to evolve small populations of listening networks in real-time.

,a
.,

195

Chapter 5: The Patch Object

The previous chapter described listening networks composed of sensor

configurations. A patch object, introduced in the present chapter, completes the global

listening functionality in Oscar. This chapter first explains the notion of relationships,

used to create non-linear associations between changes in given input quantities and

their accumulative effect on output quantities. The output of a patch is sent to a

number of target agents (chapter 7) that, by this measure, take delivery of a signed

activation signal. This signal will influence a number of parameters in the agent's

orchestration algorithm. Part of the patch output signal is also sent back to the input of

the sensor-activation network that may entail sustained oscillations in the global

listening network. Patch optimisation using genetic techniques is detailed while the

behavioural space of a patch is charted from a series of systematic experiments.

5.1 Purpose of the Patch Object

The purpose of a patch is to establish a qualitative link between perception and

action, between input from a human performer and activity of the machine player. It

exemplifies a process-oriented view of perception. It explicitly avoids the basic notion

of "mapping" (chapter 3, section 3.1.2) input values to parameters controlling a

specific musical process. In addition, it avoids the discontinuities implied by viewing

human-machine interaction as an action selection mechanism (Maes 1994). In

contrast, it recommends a method to connect an input pressure to an output tendency

by having a variable assembly of non-linear couplings. A patch can thus be

considered a small network with couplings of variable intensity. The design of a patch

also aims to accommodate one of my first principles: the appreciation of change. The

196

objective of a patch is to tune its internal relationships in order to be as sensitive as

possible to such external change.

Figure 5.1: Global listening network highlighting feedback loop from patch to SAN.

The input to a patch consists of a vector that reflects the most recent changes of

the activation-inhibition vector, that itself receives input from the current sensor-

activator-network. The sign of the most recent change is important. An input vector

holding 16 values is computed, considering the changes in every slot of the a/i-vector:

1 (increment), -1 (decrement) or 0 (no change). For instance, increment means that

the level in a given slot of the current neural-activation-inhibition vector is higher

than the previous contents of that slot.

Note that a patch functions as the output layer of the global listening network

(figure 5.1). A patch computes a data structure that sends signed values to a collection

197

of software agents. The music production algorithms inside every agent are

influenced by the information sent by a patch. The notion of a relation is first

explained because of its specific meaning in this thesis.

5.2 Definition of a Relation

The idea of a relation and relationship is inspired on the two-axis theory of

personality developed by Eysenck (1973) and the relationships (viewed as couplings)

inside model ecosystems described by Steels (1995). Eysenck's model suggests a

four-quadrant system with the horizontal axis denoting a degree of stability (stable to

unstable) and the vertical axis denoting introverted vs. extraverted behaviour. The

way the human performer behaves is imagined as being reflected in the two-axis

model. Behavioural changes are suggested by specific trajectories in two-dimensional

space. Steels' model involves the acquisition of couplings between processes in the

environment and internal processes. It studies couplings in order to evolve favourable

relationships between a mobile robot, its resources and an unpredictable environment.

Four complementary types of couplings are suggested which are viewed as

functionally equivalent to the four quadrants described by Eysenck.

198

relation 1

relation 3

relation 2

relation 4

Figure 5.2: Four types of basic relations between changes in an input quantity (green

arrows) and the effect in an output quantity (red arrows).

A basic set of four relations exist, we consider them in their most basic form, as

linking two quantities by way of a multiplication factor f. Let us consider the four

different couplings between changes in a source quantity OQ-source(t) at time t, and

the value of a destination quantity Q-dest(i+l) at time (t+l).

The four relations are defined as follows:

If AQ-source(t) >0 then Q-dest(t+1) = Q-dest(t) + AQ-source(t)*fl

If OQ-source(t) >0 then Q-dest(t+1) = Q-dest(t) - AQ-source(t)*f2

If AQ-source(t) <0 then Q-dest(t+1) = Q-dest(t) + ABS(AQ-source(t))*f3

If AQ-source(t) <0 then Q-dest(t+l) = Q-dest(t) - ABS(AQ-source(t))*f4

199

The four types of relations are visualised in figure 5.2. Note that every relation {

rl ... r4 } features a private multiplicative weighting factor {f1... f4 }. Relation

type I implies that a positive change in a source quantity will introduce a positive

change in a destination quantity, the amount of change being proportional to the

change at the source modulated by the private weighing factor of relation 1. In

relation type 2, positive input changes produce negative output changes: output is

inverse proportional to input. Relation type 3 connects negative input changes to

positive output changes. Finally, relation type 4 implies that negative input changes

produce negative output changes, again scaled by the weighting factor of the given

relation. It was decided to keep the weighting factors local to every relation, rather

than have individual weights in every relationship (see next paragraph) in order to

limit the state space and create a better chance to monitor the impact of the individual

relations. Relations operate inside the relationship-class, described next.

5.3 Definition of a Relationship Object

A relationship specifies a type of coupling between input changes and output

values. A single patch typically holds a list of 16 individual relationships. A single

patch relationship is defined as follows:

class relationship ()

id ;; unique ID (0 to 15)

nr-changes ;; total number of changes

nr-consecutive-changes ;; number of consecutive changes

relation ;; type of relation (0 to 3)

agent-id ;; ID of target agent of this relationship

value ;; output: current activation 0 to 1

pvalue ;; previous activation (in preceding cycle)

value-history ;; array, history of relationship activation

200

The four weighting factors of every relation are initially assigned a random value

between 0.1 and 0.9. As explained above, the weight specifies the fraction of the

current value to be added or subtracted from that value, according to the type of

relation. The nr-changes instance variable is a counter that increments every time the

relationship value changes. The amount of change reflects the responsiveness of the

relationship and contributes to the global responsiveness of the patch holding that

relationship. The nr-consecutive-changes instance variable is an important additional

fitness measure. It allows capturing the responsiveness of a relationship at a higher

level by counting the number of times consecutive input changes also lead to

consecutive output changes. The agent-id instance variable holds the target agent for

the current relationship. The value-history instance variable is useful to analyse the

behaviour of a patch over time.

5.4 The Patch Object

A patch holds data structures to represent 16 relationships: coupling between the

output of the activation/inhibition-vector (a/i-vector) and the activation level of a

specific agent in the agents-society. However, the number of agents does not relate to

the number of elements in the a/i-vector - the number of agents is typically the same

or less than the number of elements in the vector. In practice, not all 16 potential

relationship need to be instantiated. The relative density of relationships will have a

vast impact on the global responsiveness of the patch. Less relationships implies less

coupling between man and machine and consequently potentially more autonomy in

the agents society.

The patch class looks as follows:

201

class patch (view) ;; patch is subclass of the view class

id ;; unique ID (typically 0 to 15)

nr-runs ;; counter

outputs ;; 16 el. vector

prey-outputs ;; 16 el. vector

density ;; percent chance

relationships ;; vector holding 16 relationship objects

fitness ;; scalar 0-100

fitness-history ;; 100 el. vector

output-history ;; 100 el. vector

weigths ;; 4 el. vector

previous-total-diff ;; scalar

total-diff ;; scalar

The nr-runs instance variable keeps track of how many times the patch was used.

The outputs and prey-outputs (previous outputs) are vectors holding the grand total of

all relations towards all agents. As an example, a print out is given of a typical patch

featuring 16 relationships. The kind of relation (0 to 3) and the ID of the destination

agent (0 to 15) are given. In addition, the current status of every relationship is

documented. The number of elements in the output vector is 16 because 16 agents are

addressed. The weights are kept local to the patch because they apply to all

relationships in that patch.

Patch: 0 nr-runs: 11 prev-td: 4332 td: 7323 total-changed: 5

fitness: 1.8307222420041684 tncc: 5 tscc: 6

Weigths: 0.394 0.651 0.527 0.363

O: Rel: O Agent: 6 pVal: 1544 Val: 1544 Chg: 1 CChg: O Diff: 0

1: Rel: O Agent: ll pVal: 4919 Val: 7357 Chg: 4 CChg: 1 Diff: 2438

202

2: Rel: 2 Agent: 6 pVal:

3: Rel: 3 Agent: 13 pVal:

4: Rel: 3 Agent: 12 pVal:

5: Rel: 3 Agent: 7 pVal:

6: Rel: l Agent: 14 pVal:

7: Rel: 2 Agent: 14 pVal:

8: Rel: O Agent: 4 pVal:

9: Rel: l Agent: 6 pVal:

10: Rel: l Agent: 2 pVal:

11: Rel: 2 Agent: 15 pVal:

12: Rel: 3 Agent: 2 pVal:

13; Rel: 0 Agent: 9 pVal:

14: Rel: 0 Agent: 11 pVal:

15: Rel: 3 Agent: 6 pVal:

-10000

-6419

-10000

-381

-4383

506

-287

-1652

-140

-446

312

-2047

-3558

-864

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

Val:

-10000 Chg: 7

-9249 Chg: 8

-10000 Chg: 7

-381 Chg: 3

-4383 Chg: 5

1273 Chg: 3

100 Chg: 4

-1652 Chg: 1

-140 Chg: O

-446 Chg: O

312 Chg: O

-2047 Chg: O

-4459 Chg: 3

-864 Chg: 3

CChg: 0

CChg: 2

CChg: 0

CChg: 0

CChg: 0

CChg: 1

CChg: 1

CChg: 0

CChg: 0

CChg: 0

CChg: 0

CChg: 0

CChg: 1

CChg: 0

Diff: 0

Diff: -2830

Diff: 0

Diff: 0

Diff: 0

Diff: 766

Diff: 387

Diff: 0

Diff: 0

Diff: 0

Diff: 0

Diff: 0

Diff: -902

Diff: 0

PrevOut: 0000 46 0 -777 -201 000 203 -726 -606 -456 0

Outputs: 0000 80 0 -734 -190 000 337 -686 -840 -358 0

Every relationship shows the following data: the relation type (0 to 3), the ID of

the target agent, previous-value and the current value (for clarity, scaled by a factor of

10000) of that relationship, the number of changes; i. e., the number of times the

current relation managed to change the output value, the number of consecutive

changes and finally, the current difference between current and previous values

reflecting the implied fitness of the relationship.

The first two lines show global information: the prev-td (previous total difference)

and td (current total difference) are the sums of differences taken for all 16

relationships, total-changed, tncc and tscc respectively document how many relations

changed in the last process step, show the total number of consecutive changes and

the total sum of the number of consecutive changes.

203

Note that fitness here is a cumulative quantity, clipped at a maximum level of 1.0.

Consequently, the actual fitness of a patch is computed by dividing the accumulated

fitness by the number of runs. Many experiments consult the fitness-history vector to

compute global fitness (see below).

Figure 5.3: A typical patch showing couplings between 16-element

activation/inhibition vector and a collection of twelve player agents. Four colours

reflect four types of relations.

Figure 5.3 illustrates a typical layout of the connections between the

activation/inhibition-vector and the society of player agents. The four possible colours

123456789 10 11 12 13 14 15 16

204

of the arrows symbolise the four types of relationships. Three out of sixteen outputs

(8,13 and 14) of the ah-vector are not used. Many agents receive input from more

than one element in the ali-vector. The effect of the relationships is combined. When

the sign of the output values of the different relationships is the same, relationships

will amplify each other's impact. When the sign is opposite, according to the

individual amplitudes, they may cancel out each other's effect.

The patch algorithm vector-input-from-san corresponds to the right-hand side of

figure 5.6 below. The algorithm takes the following sequential actions:

1. First, the input to the patch is calculated. A 16-element changes-vector is

constructed as follows. All elements in the vectors neural-activation and

previous-neural-activation (SAN instance variables) are pair-wise compared,

when equal a0 is collected, when neural-activation (current value) is higher

than the previous value a 1 is collected otherwise a -1 is collected. The

obtained changes-vector thus echoes the changes in neural

activation/inhibition.

2. For every relationship 0-15 (unless NIL) and the respective slot in the

changes-vector, if its value is 1 or -1, the current value is either incremented or

decremented according to the current type of relation applying the private

weight of that relation. Values are clipped to remain in the range -1.0 to 1.0.

3. If the newly computed value equals the previous value, the nr-consecutive-

changes is reset otherwise it is incremented by one and the nr-changes is also

;

205

incremented.

4. A backup is taken of the current total-difference of the patch because we shall

compute the fitness by comparing the new and the previous value of total-

difference. The absolute value of all 16-value steps (previous-value minus

current-value) are now added into a total-difference. The change in global

fitness of the patch follows proportionally to the absolute value of the step

from current to previous total-difference. In pseudo-code:

Jiff - total-diff - previous-total-diff

maxv - max (total-diff previous-total-diff)

fitness-weight fw = 1.33

If maxv = 0, prop-incrdecr =0 else

prop-incrdecr = fw * (abs diff) / maxv

Prop-incrdecr is a value in the range 0-1.00.

The prop-incrdecr factor is used as a multiplier to upscale of downscale the

fitness of the patch according to the sign of the expression: total-difference

minus previous-total-difference. The fitness-weight factor acts as a bias to be

scaled by the current difference. Thus, when the current particular

combination of relations and target agents IDs behave very dynamically given

the prevailing user input (via the SAN and a/i-vector), we conclude that the

patch as a whole is efficient. In that case, the relations in that patch team up

successfully to capture the right (pertinent) user supplied changes in order to

produce many variations in global patch output. However, one additional

consideration will act critically to the computation of global patch fitness.

When a first derivative of the total difference is zero (the same difference

206

repeats itself) the fitness of the patch is slightly decremented by a factor of

0.98. This is totally in line with a first principle: the appreciation of change.

5. The outputs vector of the patch is now updated. The 16 values in this vector

hold the activation for every single agent in the agents-society configured as a

virtual orchestra. The activation is a signed real -1.0 to 1.0. The activation

receives a qualitative interpretation (documented in chapter 5) beyond what

the idea of activation (the supply of energy) actually might suggest.

The effect of all relationships featuring the same agent-id is summed in that

individual output slot. Obviously, different relationships might add up

positively and boost the output in the same direction. On the other hand, two

simultaneous relations may cancel out their mutual effect because they

contribute conflicting forces to the output. In between, many subtle couplings

emerge because of the diversity in the network and because of the nonlinearity

introduced by the multiplicative operators. And, of course, unpredictable

human input might push and pull the outputs in chaotic patterns.

6. In order to remain highly responsive, the outputs vector is slightly decrement

after every process cycle. This is equivalent to a leak factor in a condenser;

the accumulated level fades gradually to create the opportunity to acquire new

input. The leak-factor is valued between 0.94 and 0.98 in all experiments.

7. The nr-runs instance variable is incremented by 1.

''ý

207

Oscar keeps a list of 16 patch objects in a single patcher object. These patches can be

thought of as a critical mass of typically 16 different but simultaneously available

options that specify as many complex couplings between global input activation and

global output activation.

A patcher is built as follows:

class patcher (subclass of windoid)

owner ;; link to the ear interface

epoch-cntr ;; epoch counter

data-cntr ;; data counter

current-patch ;; currently active patch

patch-activation ;; GUI window showing activation levels

patches ;; 16 subviews

5.6 Analysis of Patch Responsiveness

A number of pilot experiments were set up to study the behaviour of patches in

time, given specific settings of parameters, in particular the four weighing factors, the

density and the types of active relationships. The first experiments deal with

responsiveness of patches without them sending feedback to the SAN (see figure 5.1)

- thus the circular nature of listening network is abandoned in a wish to avoid non-

linear consequences introduced by feedback. These phenomena would interfere with

the private behaviour of a patch and thus condition the results of our analysis.

5.6.1 Patch Pilot Experiments

Figure 5.4 documents the first 200 seconds of an experiment with human input via

a MIDI keyboard. The top pane shows the firing activity of the neurons in the current

SAN, more precisely, the number of neurons that change state in every cycle. Note

208

the periodic signal that emerges after about 15 seconds. It proves that the simple SAN

network topology is capable to produce interesting oscillatory behaviour while still

connecting to external pressure. The middle pane shows the global sum of all output

levels of the neural activation-inhibition vector.

SP view

1: nr-neurons-changed

2: neural act-inh

3: patch activation)

10 120 140 160 180 1100 120 140 1160 180

Figure 5.4: Patch activation as a function of neural activity.

Strong correlations are visible; the activation-inhibition algorithm captures the

neural activity into a lower frequency signal. The effect of the changes in this

fluctuating signal - taking account of the current relationships and the four global

relation weights - is visible in the bottom pane. The green line and the red line

respectively show the total sum of all positive and negative relationship values. Again

a slowly pulsing pattern is clearly observed. The negative patch output correlates

209

strongly with the neural activation/inhibition. Initially, the positive patch output is

dominant while it gradually settles into a regular, slowly pulsing pattern of lesser

amplitude.

Figures 5.5.1 to 5.5.9 document a systematic experiment that studies the impact of

the parameter values of the following four parameters:

1) Density of relationships in every patch, densities of 20 and 80 percent are

considered.

2) Relation weight, the values of 0.1 and 0,9 are considered. For clarity, the

relation weight is the same for all four types of relationships.

3) Mutations of relationship types: when this flag is true, the relations in every

relationship are mutated; i. e., the relation type (0 to 3) and the destination

agent (0 to 7) may be modified. Mutations take place every ten time steps.

Mutation chance is 30 percent for all experiments.

4) Mutations in the stimulation vector: mutations in the stimulation vector

simulate the alterations in the activation-inhibition vector effectuated by

changes in the playing behaviour of the human musician. That vector holds

delta values: 0 for no change, -1 when the interval is negative and 1 if the

interval is positive. Potential mutation may take place every ten steps and

mutation chance is 30 percent.

The number of agents is eight in all simulations. Every image shows the activity

of the eight patches over 100 time steps. Every image specifies the list of parameters:

density (in percent), the weight factor for all relations (the extreme values of 0.1 or

0.9 are considered) and two Boolean flags mp and my respectively denote mutate-

patch and mutate-stimulation-vector.

210

r) Patcher

777- 7

-- -------- --- ---------

.....
11ý

--- -----
.... . _........... ... - ---- _. __...

10 110 120 130 140 150 160 170 180 190

Edit Hist! DrawI Hide

Figure 5.5.1: d=20, w=0.1, mp=nil, mit.

211

n Patcher

-

--- - --------

-_ - :. _ý--- ----
0 110 ? 43 140 150 60 170 i80 i90

Editi Hist Draw; Hide

Figure 5.5.2: d 20, w=0.1, mp=t, mv=t.

212

Patcher I

All

i

.
21

r. iI

r
ý-- --~--

ý-'
=ý

i

r_.. ý'
.. ýý)

. _. III

.. 'Iý
10 110 120 130 140 150 160 170 180 190

Edit I Hist Draw] Hide]

Figure 5.5.3: d=20, w=0.9, mp=nil, mit.

213

Patcher

L_(iI
_. <'iI .., iI

ý_...., tIII __.., i ItI

_fl
ýýý ýII

tIL 11 L 2ß 130

Edit Histj Draw Hide

! III .. i

40 15Ü 160 170 ISO 190

Figure 5.5.4: d=20, w=0.9, mp=t, my=t.

214

Edit) Hist Draw Hide

Figure 5.5.5: d=80, w=0.1, mp=nil, mv=t.

r1 Patcher

10 110 120 130 140 150 160 170 180 190

215

Patcher

Edit' Hist Draw' Hide

Figure 5.5.6: d=80, w=0.1, mp=t, mv=t.

id 110 I40

216

r1 Patcher

mot-
-ý-

~~---ý-

'Ill
.. I

ý1
.. . 11

AII

t ~- JG
uI

.1IIý. f. l

10 110 120 130 140 150 160 170 180 190

Edi t Histj Draw Hide

Figure 5.5.7: d=80, w=0.9, mp=nil, mit.

217

Patcher

YZII

- . ill ._i.. ý "ý

Toll

. 111, --l
f-11 ý11

Oil-

119 I2_-i 3 140 I5ti Ir ý I? ß

t Ed iIHist Draw Hide

Figure 5.5.8: d 80, w=0.9, mp=t, my=t.

218

Patcher

Edi tl Histý Drawl Hid

Figure 5.5.9: d=100, w=0.1, mp=t, mv=t.

10 110 120 130 140 150 160 170 180 190

219

All panes show the history of the output levels of the eight relationships in time.

Red lines show positive output and green lines show (the absolute values) of negative

output. The vertical strips in light-blue show the changes in fitness of a patch.

5.6.1 Assessment of Results

Since the density in figures 5.5.1 and 5.5.2 is only 20 percent, both images look

alike. Activity builds up very slowly though extended low-level activity is easily

maintained. In figures 5.5.3 and 5.5.4, the weight is 0.9 leading to more responsive

patches with very steep attack times. Figure 4 shows a fitness pattern that

synchronises with the rhythm of the mutation in the relations (the weights are not

changed). It proves that the patches adapt positively. However, with a density of only

20 percent, the favourable variations in efficiency are not reflected in positive output

levels. Figures 5.5.5 and 5.5.6 show similar results with different settings of the

mutate-patch Boolean parameter. It is concluded that the low weight factor of 0.1 has

more conditioning power than the expected positive effect of patch mutations.

However, both figures document interesting quasi-periodic behaviour. Figures 5.5.7

and 5.5.8 show the most efficient patches.

In conclusion, a clear inverse correlation is observed between the density of the

relationships in a patch (the relative number of couplings from activation/inhibition-

vector to the agents) and the weight factor. High density and low weight produce

interesting wave-like behaviour; the effect is most apparently expressed in figure

5.5.9 with a density of 100 percent and weight factor of 0.1. The combination of high

density and high weights entails strong initial response with gradual decay of the

amplitude of the output values. Too many relations seem to cancel out their mutual

effect.

220

In particular, figure 5.5.9 proves that patches are capable of developing interesting

internal activity and can produce propagating structures over extended periods of time

given only the fact of negative feedback (weights < 1.0). This pursuit should reflect

the activity of the human performer (via the SAN - a/i-vector tandem) in non-trivial

ways; a patch must function both as a qualitative filter and amplifier.

Two more patch related components have to be developed: (1) a method to

gradually optimise a patch, to make it as efficient as possible given unpredictable

input from the human interactor and (2) study the effect of positive feedback from the

patch output back into the input of the SAN (see global listening network in figure

5.1). These items are addressed next.

5.7 Functional Integration of SAN and Patch Objects

In the final implementation, the current SAN and current patch are integrated into

a single macroscopic listening network, the ear-object. The left-hand part of figure

5.6 shows the SAN and the right-hand part shows the current patch. The red arrow

depicts feedback from the patch back into the middle layer of the SAN.

The top-level ear analysis function takes the following actions in this specific order:

1) Evaluate-sensors

2) Evaluate-ear (described below)

3) Vector-input-from-SAN (described above)

The activity in the patch as a result of the vector-input-from-san function is

described in section 5.4. The evaluate-ear method that implements the layout depicted

in figure 5.6 is in fact a 2-stage algorithm: (1) it considers the current situation and

221

keeps statistics and updates the SAN fitness and (2) it computes the new situation by

running the

SAN

SAN

update t mess

L pdata sensor
neural history array

SAN II evaluate
run connect, ons sensors

summed
we ghls

scale by delta
pacth-output

I evaluate I
neL rann

refresh neural acthnh
nterface changes

PATCH

.. pdate patch output

delta <0 and
relation =3 (--)

delta <0 aid
relation =2 (-+)

delta >0 and
relation =t (+-)

delta >0 and
relation =0 (++)

delta vector

Figure 5.6: The current sensor-activator network and the current patch are tightly

coupled and subject to sustained, qualitative oscillation.

SAN. In detail, it works as follows in every process cycle of the analysis process:

1. Compute number of neurons changed in SAN

2. Increment total-number-of-neurons-changed accordingly

222

3. Update fitness of SAN proportional to the total-number-of-neurons-changed

divided by the number-of-runs of the current SAN

4. Update neural-history (for later analysis)

5. Execute-connection-matrix of SAN: results in a vector (collected-weights)

holding the weighted sum of the impact of all connections in the given SAN

6. Evaluate all sensors for every SAN; returns a vector holding the summed

values for every SAN, the sum-vector

7. Every element in the sum-vector is now scaled by the respective value in the

collected-weights vector. The resulting vector (summed-weights) thus merges

the effect of external activation and the connectivity inside the SAN.

8. Now accommodate the impact from the current patch (red arrow in figure 5.6).

Every element (typically 1 to 16) in the summed-weights vector is scaled in

proportion to the change in the respective output value (1 to 16) of the current

patch. The list (sum-with-actuators) holding the final result is computed as

follows:

(loop with curpatch - (current-patch (patcher ear))

for v in summed-weigths

for r in (relationships curpatch)

for i from 0 to 15 ;; 16 objects

if (relation r)

collect (+ v (* 1000 ;; needs scaling

(- (aref (prev-outputs curpatch) (agent-id r))

(aref (outputs curpatch) (agent-id r)))))

else

collect v)))

When a relationship exists in the given slot of the current patch, it is taken into

account; the respective value in the summed-weights vector is incremented by

223

the change (a real between -1.0 and 1.0) multiplied by a scaling factor of 1000

(value derived by trial-and-error). If the relationship in the respective slot is

NIL, the original value is returned. Note that the agent-id of the given

relationship provides a pointer to address the data in the output vectors of the

given patch. Note also that the difference of current and previous output

values of the patch provides information on the results of the patch as applied

in the previous process cycle.

9. The new outputs for every neuron in the current SAN may now be computed.

The sum-with-actuators list is modulated by the three sequential functions that

make up a SAN; thresholding, integration and the application of the hysteresis

function (please refer to figure 4.27). The GUI is updated to reflect the new

status of every neuron.

224

5.8 Patch Optimisation

Zj Exp e17 SAN fitness history

500 -
450 -

400 -
350 --
300 -- ---
250 - ------ ---
200 ------- -- -- -- -- -
150

100

50 --- - -- - ---
0 0

0 20 40 60 80 100 120 140
time

Figure 5.7: Experiment e17, average SAN fitness history.

Exp e18 SAN fitness history

500
450

400

350 -
300

250 ------- -
200 -

loo ---------- -----
50

0
0 20 40 60 80 100 120 140

time

Figure 5.8: Experiment e 18, average SAN fitness history.

225

Exp e17 Patcher fitness history

3]U

300

250

200

150

100

50

0
0 20 40 60 130 100 120 140

time

Figure 5.9: Experiment e17, average patcher fitness history.

Exp e18 Patcher fitness history

jýo U

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140

time

Figure 5.10: Experiment e18, average patcher fitness history.

226

Patches are typically selected to functions for a number of process cycles while

their fitness is being tracked. The resulting list of eight fitness values provides criteria

for the genetic operators that breed new patches combining genotype of the most

successful (most responsive) patches in the previous generation. Breeding patches

works as follows.

1) The global fitness of every patch is computed by taking the average of the

values in the fitness-history vector

2) The resulting list is sorted incrementally and the first two values point to the

patches considered parents

3) A single point crossover is used; for every patch in the patcher, a cross-over

pointer is computed at random between 4 and 13; in view of the 16 relations

in a patch

4) The crossover operator is applied to the relation type (0-3) and the target

agents ID (0-15) using the values from both parents (parents are skipped).

5) A mutation of 5 percent is applied to all patches, excluding the parents

6) Finally, all patches are reset.

5.9 Conclusion

The SAN/Patch construction implements the idea of listening viewed as an active

process. Many experiments reveal that the breeding process produces very irregular

results - while, in fact, we try to discover increasingly more responsive patches

optimised towards the accommodation of changes (the maximisation of diversity) in

227

the man-machine interplay. The reason for relatively unpredictable yet still coherent

behaviour is explained by two arguments:

1) The individual relationships active in a single patch accumulate in non-linear

ways leading to chaotic behaviour.

2) The breeding process is, by definition, largely irregular with long time spans

featuring minor changes and occasional unexpected large changes in evolved

behaviour. This phenomenon was, amongst others, clearly identified in the

Tierra Project (Ray 1991).

Figures 5.7 to 5.10 are evidence of the comments above. In particular, figures 5.9

and 5.10 documents an utterly irregular evolutionary fitness pattern. More

experimental examples providing additional insight in the non-linear nature of the

evolutionary process is given in chapter 10. A visualisation of system components

subject to genetic optimisation was provided in chapter 3, figure 3.2.

228

Chapter 6: Musical Sequence Processing and the Compound-

function Class

This chapter first explains the melody-class hierarchy, the various data structures

holding MIDI events. Oscar's library of melodic processing functions is addressed

next. These procedures offer simple functionality, however, when simple functions

combine into a compound-function (CF), the results are often of unexpected

complexity. Compound-functions address input material according to the idea of

multiple influences; a weighting scheme is developed that views the four dimensions

of a MIDI stream (pitch, velocity, duration and inter-onset-time) as independent

information strata. The construction of a new machine response is explained next,

including the feedback-algorithm; a generative method inspired by non-linear

behaviour in a circular fluid container. Next the important problem of input

deliberation is tackled; the coordination of the type of input events to be processed by

the feedback algorithm. We suggest an adaptive method that tunes the probabilities

for three potential sources to be heard: (1) the human performer (from the contents of

WM), (2) private patterns inside an agent and (3) melodic patterns borrowed from a

neighbouring agent, if any.

Compound-functions are organised into a compound-function-pool, and all

constituent functions develop two distinct fitness levels; one for the task of integration

(decreasing the melodic distance between man and machine), the other for expression

(the inverse objective). Two system inclinations exist, selfish and social, the

inclination determines what is used as reference signals to compute the strength of the

current system global-orientation; i. e., integration or expression.

229

The LISP functions defining the musical transformers and their arguments are

viewed as genotype and susceptive to crossover and mutation following the general

methodology of genetic programming. The collective functionality of the compound-

function-pool is continuously optimised according to the interaction of the listening

network and the motivation network (the activity depicted in sub-network C of figure

1.1).

6.1 The Melody Object Class Hierarchy

The melody-base class object is a subclass of the sequence class object, the only

musical object borrowed from the Common Music package (Taube 2004). Any

melody holds a series of timed MIDI events in the following 5-data format: < start-

time in milliseconds, pitch (1-127), velocity (0-127), duration (in milliseconds),

MIDI-channel (0-15)>. Melodies can be scheduled to play at any time in the future

using the timing functionality provided by the MidiShare package (Fober et al. 2004).

A higher-level performance layer was developed in order to connect MidiShare to

LISP. This allows for accurate scheduling of multiple melodies in real-time.

The class hierarchy for melodies is as follows:

1) Melody-base: subclass of Common Music sequence class.

2) Melody: subclass of Melody-base class.

3) Circular-melody: subclass of Melody class and Simple-view class.

4) PPM-melody: subclass of Circular-melody class.

The melody-base class (subclass of cm:: sequence) is simply a sequence of MIDI

events. A large library of basic melody information retrieval functions was developed.

These include functions to print, to filter (selective extraction of events from user

specifications), to delete events and to remove events (delete operations compensate

for the duration gap left after deletion by time shifting all trailing events, remove

230

operations do not), functions to compute basic statistics of information content in any

dimension and its first derivative (pitch, velocity, duration, channel), collect inter-

onset-times, compute melody duration, to copy and clone melodies (clone instantiates

a new object, copy does not), to merge or chain two melodies, to handle disk-10 and

many more.

The melody class looks as follows:

class melody (subclass of melody-base)

backup ;; instance of melody-base

complexity-features ;; 12-element vector

previous-complexity-features;; 12-element vector

cdate ;; creation date

channel ;; global private channel

edges ;; 8-element vector

play-start-time ;; used with player

play-stop-time ;; used with player

just-finished-flag ;; Boolean

capacity ;; can be used to limit nr of events

Note that a melody contains a backup instance variable. It can be used as a

temporary buffer addressed by certain destructive musical operators. However, it

cannot be employed to undo the possibly unconstructive effects of a wrongly chosen

transformer; Oscar does not contain any form of backtracking to compensate for past

decision-making, all decisions happen in real-time. Appreciation of what happened

last in an interactive interplay can be influenced (though not controlled) only by

posterior activity: time does not travel backwards.

The complexity-features and previous-complexity-features instance variable

contain is a 12-element vector holding the results of the complexity analysis function.

The data in these vectors (more precisely the changes between the two vectors) feeds

NX

231

twelve individual sensors such as the complexity-diversity-pitch sensor function.

Twelve data items are obtained: three criteria (diversity, coherence and regularity) are

calculated for four dimensions of melody events (pitch, velocity, duration and inter-

onset-time) - all data normalised on a scale 0 to 100.

The edges instance variable contains the minimum and maximum values of the

current events in the melody for the same four dimensions. The adaptive algorithm

controlling the six high-low sensors takes up this information.

The play-start-time and play-stop-time instance variables are instrumental in the

scheduler. The just-finished-flag is used with the prediction algorithm and the

algorithm that constructs the temporal interaction patterns (see chapter 9). This

Boolean is set T when the melody just finished playing within a given following time

frame; i. e., given a background analysis process with a sampling rate of typically 1

second, that flag will signal T only during that specific tick of the analysis process

The reason for having instance variables that hold data provided by analysis

functions (such as edges) is computational economy. The data in these variables is

typically consulted by many different sensor functions. Rather than to replicate the

analysis functions for the benefit of every individual sensor, the data is just computed

once, at the rhythm of the analysis process, typically every 500 milliseconds (see

chapter 3, section 3.4.2).

class circular-melody (subclass of melody class and simple-view class)

tmatrix ;; 12 * 12 array, pitch interval transition matrix

write-pntr ;; scalar (0 < pntr < capacity), write pointer

intervals-counts-list ;; 3 element vector

232

The circular-melody class inherits from the melody-class and the simple-view

class, a circular melody may visualise its events in a graphic pane. This class is

designed to accept MIDI events from an external user; for instance, working-memory

and the two short-term-memories are all instances of circular-melody.

The transition matrix tmatrix, accumulates the number of transitions of (the

absolute value) of pitch intervals in an adaptive way. The relative amount of

transitions is captured. When a given matrix location hits a value of 100, the numbers

in all the matrix locations are scaled by 50 percent. At this point, all values are

decreased but the relative contents of the matrix remains intact. So whatever the

number of input events, the matrix will always reflect a correct and up-to-date image

of the transitions.

The three elements in the intervals-counts-list vector contain the number of pitch

intervals that are positive, negative and zero.

A circular-melody may function in two ways: as a circular buffer or as a FIFO-like

structure. Circular means that given a number of events equal the capacity, a new

input event will overwrite the first event in the buffer and the write-pointer will be

incremented by 1 and so on. A first-in-first-out (FIFO) buffer will accept new input

by first deleting its first event, then appending the new event and recalculate the start-

times of every MIDI event to compensate for the new situation. Computationally

speaking, circular buffers are less expensive. Therefore, they are designated to

function as long-term-memories with potentially over a thousand events.

class ppm-melody (subclass of circular-melody)

ppm ;; instance of PPModel

233

The PPM-melody class holds the parallel processing model for tonal inference

developed by Vos and Van Geenen (1996). It is fully documented in chapter 4,

section 4.6.6.

6.2 Melodic Processing Functions

A large collection of melodic processing functions was developed, some fairly

standard, and some quite original. These basic functions are typically assembled into

compound-functions, the latter being gathered in the compound-function-pool.

Compound-functions are instrumental to achieve desired program behaviour during

man-machine interaction and are subject to genetic manipulation. Many transformers

view the data dimensions (pitch, velocity, duration) of MIDI events as independent

data layers within a single melody.

The utility function limit-reflect will bounce back values beyond the limits of a

given dimension. For instance, considering pitches (using a limit-reflect function with

arguments min: 48 and max: 96) given a midi-key-number of 99 will reflect from the

upper limit to 93 - rather than scale to the lower limit plus the value modulo the

implied range (48); i. e., to 51. Limit-reflect presents a smoother way to deal with

extreme values than does the modulo-operator.

The most significant functions are described as follows:

1) Displacement: views the data dimensions of MIDI events as independent data

layers and rotates the data (P, V, D) left or right by individual amounts, a

timely distortion results without changing any values

2) Shuffle: reorganise events at random

234

3) Reverse: all or any combination of dimensions of a melody backwards

4) Transpose: increment or decrement the value any dimension, conditioned by

limit-reflect (values outside of legal limits are reflected, rather than clipped by

a modulo operator). The argument is a single interval or a list of intervals.

When the argument is a list, it is often referred to as a shape following

terminology suggested in HMSL (Burk et al. 1987).

5) Contrast-expand: original transformer in any (combination of) dimension(s), it

modifies the dynamic range and the global position of the data in that range.

This function has two parameters, the intended bottom and top values. First,

the lowest value is computed, the existing bias of the data. Next, the existing

range is computed and the expansion factor is defined as ((max-value - min-

value) / existing-range). Next every element in the dimension is recomputed

as:

(limit-reflect (floor (bottom + ((data - bias) * expansion-factor)))).

According to the arguments, the data is expanded or compressed; the

expressive qualities of the melody are amplified or diminished.

6) Pitch interval manipulation: (1) mirror pitches: all pitches are reflected

around a given argument, the centre-value as follows:

(limit-reflect (center + (center - current-MIDI-pitch)))

''1

235

(2) invert-intervals, changes the signum of every pitch interval and (3)

complement-intervals produces the a new interval according to:

(if (intv < 0) then (12 - (abs intv)) else (* -1 (12 - intv))))

7) Scaling functions: scaling is often applied to the velocity and duration

dimensions to modify the articulation of events in time. One can scale using a

multiplicative factor or use the scale-by-shape method. The latter allows

modifying any numerical list by a second data list (of arbitrary length) that

represents a shape made of scaling factors. A shape element is between 1 and

100 with a reference at 50 meaning that a value of 50 introduces no change, 1

divides by 2 and 100 multiplies by 2.

8) The density of events is manipulated by the remove-conditional function,

removing events and leaving a gap, or by the insert-rest function that adds

entry delays to given events. Both functions carry probability arguments.

9) The extend-melody function appends variations of existing events in a given

melody to that melody. The arguments are: (1) a list of read-pointers for

"reading" the value of the event dimensions viewed as independent data layers

and (2) a list of intervals of arbitrary length to modify the pitches, (3) a

circular list of Booleans conditioning the action of the algorithm; i. e., a NIL

will skip the event just read and, (4) the channel number that must function as

a source (or NIL meaning that all existing events are considered).

10) The basic music processing class in Oscar is called a single-function:

236

class single-function ()

id ;; unique ID

transformer ;; name of a processing function

arguments ;; list of arguments for transformer

A transformer in the single-function object is one of the nine functions listed above.

The arguments is a separate instance variable. Most of the functions outlined above

offer fairly simple functionality. However, when they amalgamate into compound-

functions we get much more complex, often unexpected results that emerge from the

interaction of the constituting melodic transformers as described next.

6.3 Compound-function Definition

A compound-function class is defined as follows:

class compound-function-class (subclass of circular-melody)

id ;; 0 to 15, position in CF-pool

owner ;; CF-pool object is the owner

novelty ;; density of new events vs. existing events

source ;; borrow from that melody

size ;; default nr of events to generate, typically 7

performance-processes ;; list of single-functions

performance-sources ;; data sources for performance-processes

nrt-used ;; nr of times used

past-melodies ;; list of 5 instances of melody-class

last-time-used ;; clock time when this function was last invoked

critics-fitness ;; fitness towards critics

fitness-integration ;; how well this CF contributes to integration

fitness-expression ;; how well this CF contributes to expression

channel-zero ;; instances of melody-class

;; pointers for reading in source melody

pointers ;; 4-elm vector, current values of pointers

read-pointers ;; 4-elm vector

237

read-length ;; 4-elm vector

;; private data

pintervals ;; private pattern

pdurations ;; private pattern

pvelocities ;; private pattern

pgaps ;; private pattern

Most instance variables of the compound-function class are self-explanatory. The

performance processes are single-function objects. These functions address the data

currently available in the performance-sources. In the single-CF performance mode,

performance sources are WM and private patterns. In agents performance mode, the

sources are three fold; WM, the agent's private patterns and private patterns borrowed

from a neighbouring agent. The input deliberation algorithm documented in section

6.5.4 regulates the relative chances for selecting a particular source.

Section 6.5.2 describes how the information in a typical compound-function is

being used to generate a response melody. However, the principle of multiple

influences is detailed first; it shows that single sources are not just "selected" but that

information emanating from different sources may offer a graded set of referenced

source materials.

6.4 The Principle of Multiple Influences

When creating a machine response, Oscar normally borrows material from

different sources simultaneously. Note that the four dimensions of all source melodies

(such as working memory) are thought of as independent data layers: pitch, velocity,

duration and inter-onset-times. In addition, the first derivative is computed of the

pitch layer to be used as source material - this provides deeper information on how

the signal changes rather than surface information of the absolute values of the data

238

profile. A typical situation arises when the machine wishes to musically connect to a

context suggested by the last few events performed by the human interactor: this

machine motivation is called integration. However, one could imagine a degree of

connection, between totally connected to totally disconnected. In practice, there is a

scale of 16 alternatives, implemented as a 4-bit pattern. Oscar sorts the 16 patterns

according to the number of "on" bits and obtains a Gauss-like distribution in groups

of 1-4-6-4-1 patterns. A "1" bit means borrow from human (i. e., working

memory), a "0" bit means borrow from ego; i. e., private-patterns.

An argument between 0 and 4 will select a group of bit patterns and instruct a

degree of integration. Group number 0 specifies no integration at all (use only private

patterns) and group number 4 specifies perfect integration (total dependence on WM).

The pattern finally in charge is selected at random from a particular group. Four items

further condition the strength of the effect of connection:

A) The value of the start-position of the read-pointers (pl-p4). When close to the

beginning of the buffer, the past is addressed, events that were input long time

ago, when taking data close to the most recent event in working memory, one

connects more effectively to the present. Note that the reference for

connectedness with private-patterns starts at the beginning of the data layers.

B) The amount of information borrowed from a given dimension; the ranges

(rl-r4). Obviously, short ranges potentially introduce more diversity while

large ranges will generate an emphasis of a given dimension.

. ýý

239

C) Eventual synchronisation of start-positions. A higher degree of recognition

and connectedness will result when some or all of the data layers are

addressed in perfect synchronisation.

D) Eventual synchronisation of ranges. In figure 6. I, the data for pitch and

velocity in the private-patterns is perfectly synchronised. In the absence of

synchronisation, combined data patterns may interlock in interesting ways.

Given the situation in figure 6.1, working memory supplies data lists for pitch and

duration, private-patterns provide data lists for velocity and inter-onset-time, both

sources supply 50 percent of the information. The duration data is strictly connected

to the most recent events and this will be reflected in the resulting response.

The principle of multiple influences works very well to generate melodies that

suggest the combined efforts of two different musical entities. The sorted-patterns

idea makes it easy to steer the generative process leaving ample promise for delicate

interplay of information taken from the respective data layers.

240

Working memory

sorted-patterns

((0000))

((0 00 1)
(0 01 0)
(0 10 0)
(1 00 0))

((0 0 1 1) II
(0 0)
(1 1 0 0) p4 p1' p2
(1 0 0 1)

(101 0)
(01 01))

((0 11 1)
(111 0)
(1011)
(1 10 1))

((1 11 1))

ref

/

Figure 6.1: Exemplary situations of multiple influences in four dimensions. A

new sequence is constructed from material in two potential sources according to a

binary weighting scheme.

Finally, note that the elements in data layers are read from the start-pointer and

taking items modulo the size of the range. This guarantees automatic cycling through

a data list, irrespective of the length of that list and the size of the range.

(1010)

p3 p1, p2 p4

241

6.5 Definition of the Output Model

6.5.1 Overview

Oscar functions in two distinct performance modes; the first uses a single

compound-function (CF) as selected from the current contents of the compound-

function-pool, the second mode makes use of a society of interacting agents. The first

mode is used exclusively to study the effect of a single compound-function while

avoiding the additional complexity in the second mode introduced by having multiple

options (agents) for playing a machine response.

1. In the single-CF mode, the resources (performance processes and performance

arguments) of a single CF are at play. At any time, the melodic distance

between man and machine is measured by computing the similarity between

the events in the most recently addressed short-term-memory, in case the

number of events in STM is lower than 4, the contents of working memory are

used. The performance-sources are either human; i. e., the human-performer

(via the current contents of working memory) or ego, a set of private-patterns.

2. In the agents-mode, the current drive object will distribute a number of

compound-functions drawn from the current contents of the CF-pool to every

agent. The agents configure themselves into a series of clusters, the cluster

with highest energy is located and the first agent of that cluster is designed as

a reference-agent. That agent plays its contents when triggered by the

scheduler. In addition, that agent's melody is used to compute the musical

distance between man and machine. The performance-sources in this case

offer three options: human and ego (as above), and other meaning musical

material borrowed from another fellow agent belonging to the current cluster.

242

The predictor coordinates timing of the scheduler according to the current global

orientation (chapter 9, section 9.5). The top function make-and-play-response offers

two options: to create a new response or to modify the existing, most recent response.

The first option maintains relative continuity, the second breaks continuity.

The apparently simple scheme depicted in figure 6.2 entails however sophisticated

behaviour. Human-responsiveness (HR) acts as a regulating device, when positive,

HR will again function as a threshold for a random number R between 0 and 100.

When R< HR the current response is manipulated by the feedback algorithm, if not, a

fresh response is constructed. Thus, high HR levels forces relative continuity in

musical processing; i. e., novel variations of the current response are generated. Low

HR levels will generate alternative responses, the rationale being that unexpected

machine melodies may trigger fresh input from the human performer; i. e., a projected

increase in HR. In itself, this idea is another example of circular thinking; a type of

implied coupling between activity in man and machine. In case HR equals zero, only

a small probability of 20 percent exists for a new response, the system will mainly

create a continuous series of variations feeding on its most recent output.

6.5.2 Initial Construction of a New Response

The initial contents of a new response are computed using the principle of

multiple influences explained above. The novelty parameter specifies how many

events to generate, explained in a moment. The human-responsiveness parameter is

remapped with a threshold of 25 to a range of 0 to 4- for pointing to a group of bit-

patterns in the *sorted-4 * list of lists of all 16 bit-patterns (figure 6.1). There is

however 20% chance that a random pattern will be created with density of 80% of

243

ones, suggesting a stronger openness to human influences than a connection to the

private-patterns. In pseudo-code, a bit-patterns is obtained as follows:

human-responsiveness

1
yes no

___.

(
Hn>0

yes [-\ no yes /\ no
coin HR F-n r-1 coin HR

change new
response response

Figure 6.2: Top most decision triggering a machine response

HR = human-responsiveness

if (coin 20)

(loop repeat 4 if (coin 80) collect 1 else collect 0)

else

(choose (take sorted-patterns (round (remap HR 25 100 0 4))))))

Figure 6.3 documents the creation of a new response in the single-CF mode (no

agents). The read-pointers and the read-ranges (instance variables of the current

compound-function) are initialised with appropriate random values. As an alternative,

one can, introduce a weighting scheme to condition the number of read-start-pointers

and/or the number of read-ranges (in total 16 values) to be attributed fresh random

values or just keep the current values. The amount of change can also be influenced

244

probabilistically via 16 Booleans derived from the histograms of change (described in

chapter 5, section 5.5.9).

novelty human-responsiveness

initialize
read-pointers

select
sources

picth

velocity

duration

IOT

update
pointers

result

compute-response
single CF

working
memory

private
patterns

select 1., ý past
melody melodies

FIFO
result

Figure 6.3: Creation of a new response using the principle of multiple influences.

Example with two sources only; working memory and private patterns. The block

"select sources" refers to the format in figure 6.1.

The novelty parameter specifies how many new events should be generated.

Novelty is based on the system's motivation i. e., the current drive's global-

orientation. When the global-orientation is integration, then the number of events to

245

generate is instructed to be approximately equal to the number of events in short-term

memory; i. e., the last-sequence performed by the human interactor. The rationale is

twofold: (1) when wishing to integrate, man and machine produce comparable

amounts of output and (2) melodies of similar length provide more accurate musical

distance calculation than melodies of significant different lengths. In case the global-

orientation is expression or unknown, the number of events to generate is inverse

proportional to the amount of contrast between the three values in the input-

deliberation-vector (figure 6.7); decreasing contrast entails more output events. This,

in turn, may trigger increased engagement of the human interactor and this will

influence contrast of the values in the input-deliberation-vector.

The algorithm iterates the respective data sources using the read-pointers as

explained in section 6.4. However, rather than just two options (working-memory and

private-patterns) a third one is available: the past-melodies option. Every compound-

function has an instance variable called past-melodies. It consists of a FIFO (First-In-

First-Out) data structure that holds the five last melodies generated by that CF. This

allows the CF to look back in time and retrieve aspects of a previous response and

mix them with data from private-patterns. The past-melodies are updated

automatically to reflect the last five melodies computed by the CF.

One important implementation detail: a CF has an instance variable called

channel-zero that is an instance of the melody-class, as the name implies, it holds

only events on channel zero (MIDI channel 1). It represents the musical backbone of

the CF while the events in the CF itself hold the same events of channel-zero plus an

arbitrary number of events on MIDI channels 2 to 8. Channel-zero is used as input to

the musical distance algorithm to compute the similarity between working-melody

246

and the CF in question. Channel-zero is thus drawn on as a reference while the total

contents of the CF is what is being performed.

This terminates the first step in the creation of a new response: the basic material

is now available in the CF. The next step is to apply the musical processing functions

that are also instance variables of the CF.

6.5.3 Definition of the Feedback-Algorithm

A fluid container metaphor serves as the basic structure of the feedback-algorithm.

Basically, a compound-function is thought of as a self-regulating melodic container

conditioned by three parameters. (1) Novelty specifies the amount of new events

entering the container, (2) sink specifies the relative amount of events leaving the

container and (3) the feedback loop with transformer identifies the number of events

being transformed and fed back into the container. From early work in systems theory

(Von Bertalanffy 1973; Beishon and Peters 1976) it is learned that the relationships

between the respective settings of the three variables will pull the system in variable

dynamic state spaces, from predictable, cyclic behaviour to utterly unpredictable,

chaotic behaviour. These relationships can the thought of as yet another type of

coupling conditioning interesting non-linear behaviour.

247

reset
feedback-algorithm

single CF Critics

I

remove past
events melody

performance performance
processes sources

append
events

F

apply
cffm

update
past melodies

play CF

Figure 6.4: Information flow in the feedback-algorithm.

248

edback ý

Figure 6.5: A fluid container metaphor underpins the feedback-algorithm.

Musically speaking, while referring to figure 6.4, the abstract container model is

interpreted as follows. First, the critics are reset. The critics are a list of simple

heuristics (in the form of five if-then rules) used to filter out melodies that are

unacceptable in flagrant ways. Important, the critics constitute the only place in the

whole system where a knowledge-based component is put to work. The CF keeps a

249

critics-fitness inverse proportional to the number of rules that fire. Experiments

showed the following filters to be useful:

A) Too many events (nr-events > capacity)

B) Too few events (nr-events < 1)

C) Lowest pitch too low (lowest-pitch < 36)

D) Highest pitch too high (highest-pitch > 96)

E) Contains note-events with a duration less than 100 milliseconds

Counting the number of rules that fire returns a value between 0 and 5 and remaps

to a critics-fitness of 100 to 0.

The auto-delete-events method first creates room: the number of events to be

deleted is exponentially proportional to the number of present events and inverse

proportional to the capacity of the melody. Number of events to delete equals:

(round (/ (* (nr-events self)

(/ (- (capacity self)

(- (capacity self) (nr-events self)))

(capacity self))))

2))

The algorithm iterates over all the performance-processes (maximum five) in

parallel to the performance-arguments. The feedback-events function takes five

arguments:

(feedback-events-source self ;; CF method

source

(transformer func)

(arguments func)

250

percentage

(choose (list 'append 'insert 'prepend)))

When observing the arguments in the pseudo-code above:

Source is the source melody from which events are taken. When the source is

present, the current content of the CF is assumed to be its own source for the creation

of additional events. When the source is past, the algorithm will take events from an

earlier version of the same CF, a previous-melody is selected at random from the

collection of five potential past-melodies.

Transformer: the music processing function taken from the performance-processes

Arguments: a list of arguments (if any) used with the transformer

Percentage: the percentage parameter represents the strength of the feedback, how

many events are fed back relative to the present contents of the melody:

percentage-1 - (round (* 100 (/ (- (capacity self) (nr-events self))

(capacity self))))

percentage-2 = (min 100 (max 0 (+ (- percentage-1 noise)

(random (* 2 noise))))))

Percentage-1 is the basic amount of feedback, it is further clipped to a value

between 0 and 100 and a slight amount of noise is added, typically ±10 percent.

Percentage-2 then represents the quantity of feedback. The last argument of the

feedback-events-source method instructs the new, regenerated events to be appended,

inserted at a random insertion point or to make the new events the heading events of

the final result.

,\

251

The quality of the feedback is conditioned by the nature of the transformers inside

the performance-processes; the list of all potential processing functions is given in

paragraph 6.2. The global quality and effectiveness of the compound-function

depends on the transformers and their arguments in addition to a number of further

arguments. Referring to the compound-function-class format given in section 6.3, a

typical CF instance is listed below.

name : CP 2

source : #<ppm-melody "events-pane-melody">

novelty : 50

fitness-I : 0.0

fitness-E : 4.9

fitn-critc: 100

nr-events :6

nr-events-channel-zero: 6

nrt-used :2

last-used : 184502

past-ev : (4 688 8)

pintervals: (0 122 -3 -2 -2 1)

pvelocities: (55 55 110 44 44 55 60)

pdurations: (0.2 0.8 0.1 0.1 0.2 0.1 0.1 0.8)

pgaps : (0 0.1 000 0)

read-pntrs: (0 18 0 0)

read-leng : (5 63 5)

pntrs : (0 18 0 0)

1: 7 PRESENT SCALE-DURATIONS-SHAPE (70 60 50 45 40 35 30 25 20)

2: 2 PRESENT SCALE-DURATIONS 1.25

3: 5 PRESENT REMOVE-CONDITIONAL (0 00 1)

4: 3 PRESENT INVERT-INTERVALS NIL

The source in this case is WM, itself an instance of the PPM-melody class. This

CF instance was applied twice and accumulated an expression-fitness of 4.9%. The

252

past-ev shows a list documenting the number of events for every melody in the past-

melodies variable. The private patterns are: pitch-intervals, velocities, durations and

gaps (event entry-delays). Finally, this CF contains a sequence of four simple-

functions all addressing the present (not a past melody) as a source. The function

name and its argument are shown. The output of the CF conforms to the accumulated

effect of the four sequential transformers in conjunction with the modifications

introduced by the feedback algorithm (figure 6.4).

So far we described a scenario with processing functions in a single CF being

integrated with the feedback-algorithm. The CF functions process a hybrid mix

(according to the sorted-patterns) of input material emanating from either the human

performer (via WM) or a collection of private-patterns. The feedback-algorithm adds

further complexity because existing and newly processed events merge in non-linear

ways.

Now, in practice, not a single CF is in operation at any time, in contrast, a

collection of CF is addressed. The agent's player agency described in the next chapter

explains how every agent contains a CF. At any moment in time, a particular agent

will generate the next machine response by running its CF. One extra potential input

source is now available; a neighbouring agent may provide its private patterns as

source material for the player agent in question. Thus, an additional self-regulating,

adaptive procedure is required to create sensible probabilities for source selection, a

process know as input deliberation as described next.

253

6.5.4 Input Deliberation

As it will be explained in chapter 8, every agent features two related instance

variables; input pressures and input-pressures-adapted. Both variables are three-

element vectors specifying three weights that hold specific preferences as to which

source will provide initial material (short fragments of pitch-intervals, rhythmic

figures and lists of loudness values) to compute the backbone melody of the current

reference agent. The three weights refer respectively to:

1) Human: the pressure to borrow material from the current contents of working

memory, resident in the ear-object.

2) Ego: the pressure to exploit some of the agent's private patterns. Every agent

has access to a small stylistic database holding lists of intervals, durations and

velocities, all of independent length. These patterns are generated at random

at instantiation time.

3) Neighbour: pressure to extract stylistic information from the patterns of a

neighbouring agent

254

HR

yes
11`

HR<10and
coin 5

yes no
pain 5 yes

random native
input-pressures

I reset to native
input-pressures

act II inh

HR pHR

no

no
HR>pHR

yes

act II inh

NN pNN

4

NN>pNN

act II inh

Human Ego Neighbour

65 12 25

Input-pressures-adapted vector

no

Figure 6.7: Adaptation of an agent's input-pressures vector. The three weights are

modified proportional to changes in human-responsiveness and changes in the agent's

number of neighbours. Weight range is 0 to 100.

Figure 6.7 illustrates the chain of decision-making in the adaptation process of the

agent's input-pressures vector. Highest priority is to consider the current level of

human-responsiveness (HR), when below 10% and the coin (5%) function returns

255

Boolean true, action is taken to change the complete contents of the input-pressures-

adapted vector. This destroys all accumulated information implied in the current

values of the respective weights. The following coin (5%) function decides whether a

fresh random vector is computed or whether the input-pressures-adapted vector is

reset to its original settings; i. e., the values in the input-pressures vector. The reason

for having two vectors rather than one is the ability to occasionally reinstall the native

input-vector weights. Note that this action takes place when the human interactor is

relatively inactive as reflected in an especially low level of human-responsiveness.

The rationale is that when HR is low, the built up results of the adaptation process are

considered unsuccessful; apparently, the systems musical output influenced by the

momentary weights does not manage to draw the attention of the human performer.

The idea, then, is to either (1) try another distribution of weights; i. e., compute new

random weights or (2) attempt one more application of the weights provided by the

original input-vector (copy its contents to the input-vector-adapted) and observe how

the adaptive process might build up new, possibly more profitable preferences.

256

Exp e7 Agent a1 input-pressures

-Human -Ego -Neighbour

100
90 LI 11,
80
70
60
50

v
40
30
20
10

0
0 200 400 600 800

time

Figure 6.8: Adaptation of the input-pressures-adapted vector of a single agent in

experiment e7.

Exp e7 Agent al input-pressures (detail)

-Human Ego Neighbour

100
g0

80

70

60 -
50

CU
40

30

20

10

0
0 10 20 30 40 50 60 70

time

Figure 6.9: Mutual influence of three weights during generations 560 to 630 in figure

6.8.

257

When HR is above 10%, the sign of the interval between the current HR and its

value in the previous system process cycle (pHR) is considered. When HR > pHR it is

concluded that the human interactor is asking for increased attention and this should

be reflected in the weights. The first element in the input-pressures-adapted vector

receives activation while the other elements receive inhibition. All experiments use an

activation-factor of 1.2 and an inhibition-factor of 0.9. However, the multiplicative

increase of the first slot (human) implies the creation of positive feedback; when the

machine performer borrows musical fragments more frequently from the material

generated by the human performer (the contents of working memory), and these

choices are reflected in the machine produced responses, that performer might

consequently ask for ever more attention and the situation may escalate; the performer

has managed to grab the attention of the system.

In the event that HR < pHR, the neighbourhood of the agent is addressed. If the

current number of neighbours (MV) is higher than the previous number of agents

(pNN), one must take action to accommodate more pressure from those neighbours;

the 3rd slot of the input-pressures-adapted vector gets activated, the first and second

are inhibited. If NN < pNN, the final option is considered, the activation of Ego and

the inhibition of Human and Neighbour.

Whatever the contents of the vector, a list of probabilities is generated

proportional to the current weights and a source is selected, and its basic patterns

become building blocks for the synthesis of a new machine response.

The fluctuations and mutual influence of the three weights is shown in figure 6.8.

After some initial complex interaction between all three weights, the Ego pressure

quickly dominates. Around generation 200, a new random vector is computed and a

258

slow oscillation starts involving Ego and Neighbour weights. Just before generation

400, the human becomes very active and his influence supersedes all others. At about

generation 550, another instance of complex interplay take place that lasts nearly 70

generations; figure 6.9 zooms in on the data depicted in figure 6.8 starting at

generation 560.

6.5.5 Evaluation of the Compound-Function Pool

A typical snapshot of a temporary status of a compound-function-pool:

COMPOUND-FUNCTION-POOL

id: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fitn-I: 0.0 4.8 0.0 0.0 0.0 0.0 6.9 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0

fitn-E: 0.0 17.7 4.9 0.0 0.0 0.0 6.7 4.9 0.0 0.0 4.9 0.0 0.0 0.0 0.0 0.0

nr-evs: 9 13 6 4 5 8 8 9 6 9 15 6 5 5 5 9

nrt-used: 0 11 2 0 0 1 6 1 0 0 1 0 0 0 0 0

Integration-expression-ratios: (0 22000120020000 0)

Integration :1

Expression :4

No experience: 11

epoch-nr :0

Integration: [66.9821 110 4.802] [14.8021

Expression s[1 17.732][66.779] [10 4.9] [74.91 [24.9]

The first row shows the ID of every CF. Second and third rows show the current

fitness values for the purpose of respectively the integration and expression. Rows

four and five document the number of events in the CF and the number of times every

CF was applied in the current epoch. Next, the integration-expression-ratios reveal

that only a single CF is better for the job of integration (ID = 6) and four CF excel for

259

the purpose of expression. When both fitness levels equal zero, the CF is considered

to carry no experience. The bottom rows show the individual CF sorted according to

fitness for the respective goals. This information is consulted when genetic

programming is invoked. Now, let us consider the evaluation of the CF-pool.

A compound-function is considered fit if it contributes effectively towards the

realisation of a given target behaviour. There are two options here corresponding to

two potential machine inclinations: selfish or social, as depicted respectively in

figures 6.10 and 6.11.

Given a selfish inclination, the target behaviour is derived from the output of the

current drive, a value between -100 and 100, positive values indicate a wish for

integration, negative values imply a desire for expression. The output value is called

the drive's global orientation; it is computed from the proportional combination of the

drive's current integration and expression levels (please refer to chapter 8). A global

orientation level always returns a single value reflecting the proportional strength of

two competing pressures; the integration level and the expression level.

In case of a selfish inclination, the drive's output is also considered the system's

global orientation since the drive functions as a machine suggestion (representative of

global systems behaviour) for either integration with the human performer or

expresses an individual opinion.

260

Memory

Comparator

AQI, "Qt
--, dSim

SAN

Drive select
CF pool

Act/Inh
global

orientation?
r

Compound
Function

Patch i
i

adjust fitness

Figure 6.10: Adjusting CF fitness according to selfish machine inclination.

Figure 6.11: Adjusting CF fitness according to social machine inclination.

"k

L--------------ý
adjust fitness

261

F WM

current vs. system selfish/
increment -factor =1.25
decrement -factor = 0.95

previous similarity inclination? social stationary -factor = 0.98

global integration/

rata on expression

orientation? tolerance

Integration expression

distance distance distance distance current =
decreases increases Increases decreases previous

Increment decrement increment decrement decrement both
integration-fitness integration-fitness expression- expression- fitnessec fitness fitness

Figure 6.12: The fitness of a compound-function is updated according to the systems
global orientation and the change in melodic distance between human and machine.

Given a social inclination, the system's global orientation is computed from the

consideration of two components: the combination of the output of the current patch

and the output of the current drive. The output of the patch - as part of the perception

network - provides an interpretation of the activity of the human performer. The

output of the drive provides the same information for the machine performer. Both

combine into a system's global orientation. A social inclination thus implicitly

considers the level of social agreement between man and machine in order to create

an opinion about the appropriateness of the current compound-function. Whatever the

262

inclination, the fitness of the current compound-function is adjusted using the adjust-

fitness method summarized in figure 6.12.

The adjust-fitness method dealing with the CF-pool accepts two arguments; the

current-similarity and the previous-similarity between the most recent statements by

man and machine, the difference, in particular the sign of the difference will scale the

fitness levels accordingly. Note that we address the CF that is contained in the agent

that is currently performing; i. e., the CF inside the reference agent of the players-

agency. The orientation-value is computed according to the machine inclination as

explained above. When an orientation happens to be available, three options are

considered. First, when man and machine are getting musically together; i. e., (>

current-similarity previous-similarity) and the orientation equals integration, the

integration-fitness is incremented because this CF was successful in attaining the

required functionality. In case the distance increases, the integration-fitness is

downscaled. A similar procedure considers the change in distance given an

orientation equalling expression. Finally, a tolerance of 5 is introduced to judge the

delta-similarity; i. e., the absolute value of the difference between the current and the

previous man-machine similarity. If less than 5, the stationary-decrement-factor is

applied to both fitness levels. The global result is that fitness levels are pushed up and

down according to the correlation between current orientation and changes in musical

distance. The rationale, then, is to balance the selection of particular compound-

functions according to their accumulated fitness and the intended functionality; i. e.,

either expression or integration. This introduces the archetypal difficulty of biased

selection: either select the fittest function obtained so far or, in contrast, select a

'ýe.

263

random function that may prove to develop improved functionality in the future. This

typifies the problem of exploration vs. exploitation that will be addressed in chapter 9.

6.6 Optimisation of the Compound-Function Pool

The exploration/exploitation dilemma plays a crucial role in the breeding process

supported by the evolutionary algorithms employed here. A method of genetic

programming (Koza 1995) views the simple-functions and their arguments as

genotype susceptive to the standard operators of cross-over and mutation.

Before breeding the next generation of processing functions, the current

generation is analysed, one list is created of CF that feature positive integration-

fitness, a second list collects CF with positive expression-fitness. These lists are

sorted (high to low) according to the magnitude of the respective fitness and the first

two CF are considered parents in the breeding process. For breeding to take place, it is

imperative that candidates exist for both types of fitness. Next, the sum of the lengths

of both lists is computed. A simple weighting scheme is developed to decide which

pair of parents provides genotype for crossover. For example, given a typical

population size of 16 CF, two pairs of parents leaves (16-4) or twelve CF available

for crossover and mutation - the parents themselves are not considered for crossover,

however, they are modified by the mutation operator. Now, the number of offsprings

created from genotype from either group of parents is proportional to the length if the

respective list of candidates. For instance:

Integration

Candidates: (#<compound-function-class "CP_3"> #<compound-function-class

"CP_15"> #<compound-function-class "CP_2"> #<compound-function-class "CP_9">)

fitness: (6.5718 5.0000 4.9000 4.8020)

264

Parents: (#<compound-function-class "CP_3"> #<compound-function-class

"CP_15">)

Expression

Candidatess (#<compound-function-class "CP_12"> #<compound-function-class "

CP_10">)

fitness: (18.4635 4.9000)

Parentss (#<compound-function-class "CP_12"> #<compound-function-class

"CP_10">)

Total-nr-candidates: 6.

Nr-offsprings-integrations 8.

Nr-offsprings-expression: 4.

In this example, twelve new compound-functions are generated with eight of them

mixing genotype from the integration-parents and four mixing genotype from the

expression-parents - this ratio being reflected in the number of respective candidates

rather than the total sum of the fitness of the candidates. A single point crossover is

used:

pointer a random(nr-integration-candidates + nr-expression-candidates)

According to the position of that pointer, performance-processes are taken from

the respective parents and mingle into a new offspring.

The resulting offsprings are mutated with a typical mutation-chance of 10 percent.

The impact of mutation is double; (1) an existing simple-function may be replaced by

a new random one (section 6.2) or (2) the arguments of any existing or a newly

265

generated simple-function may be modified. Of course, the new arguments are chosen

as to be appropriate for the function in question.

In the end, the offspring CF's bookkeeping parameters are reset including the two

fitness levels.

The rationale of the evolutionary approach here is to cultivate fitness levels

according to expertise gained during the time span of one epoch of actual man-

machine interaction. The process of reproduction merges aspects of the functionality

that led to the current ratio of expertise aimed towards integration and expression.

This process repeats forever because a single optimal solution does not exist and input

from the human performer remains totally unpredictable. Therefore, the breeding

procedure is a process of perpetual adaptation.

6.7 Conclusion

It is important to appreciate the disposition, the potential and the limits of the

output model developed here. The output model embodies generative algorithms that

combine external influences as independent information strata. The feedback-

algorithm is a self-regulating system in itself that both maintains the level of events in

machine melodies and coordinates the application of the musical processing functions

as specified in a compound-function.

Without, at this point, even considering genetic activity and learning, such a

system is not designed to offer predictable responsive behaviour. There is no tactic to

obtain a clean one-to-one reaction, and consequently, its is very difficult to draw final

conclusions from the evaluation of machine behaviour. The system functions as a

platform for the expression of mutual influence rather than control, therefore, it offers

266

ways of intimate man-machine interaction rather than supporting question-answer-

like conversational modes of interaction.

267

Chapter 7: Output Section: a Distributed Agents Model

The present chapter outlines Oscar's output agency, organised as a collection of

animated player agents situated in a two-dimensional space. We first introduce the

general systems layout and provide a definition of an agent and how it is

implemented. Next, the behaviour inside the agency is addressed and how it connects

with the music the system generates. Two pilot experiments offer insight on the scope

of the behavioural space of the agency in terms of spatial structures and their musical

interpretation.

7.1 Introduction

Every agent expresses social affinities towards other agents, this variable network

of mutual affinities results in complex behaviour since every agent aims to minimise

the stress in the global agents society. In addition, agents may interact (exchange

information) with neighbouring agents. This results in the creation of spatiotemporal

clusters viewed as instances of temporal structural associations between specific

agents. The cluster with the highest energy (sum of its agents' energy levels) is further

analysed and serves as the basis for the creation of a reference melody using the

feedback algorithm described in the previous chapter. The strength and sign of the

activation of a cluster agent will guide the orchestration of this reference melody;

complex polyphonies are generated from the application of contraction or expansion

of existing reference events. A series of experiments provide evidence of the self-

organising potential of the model suggested here. Complex structures do emerge from

the combination of internal social pressures and external influence accommodated as

agents' activations.

268

The proposed model offers an operational continuum: from total autonomy (no

external input) to a performance mode that accommodates arbitrary influence from an

external human interactor. Thus, interest is expressed in (1) the quality of the

dynamics of the interaction inside the society and (2) the quality of the dynamic

interaction patterns that emerge from the human-machine interplay.

Agents do not take musical material directly from a human since a listen/transform

methodology is avoided. In contrast, agents are subject to external activations

(normalised on a scale between -100 to +100). The sign and amplitude of these

activation signals is derived from the outputs of sensors that receive interpretation in

the current patch (as explained in chapter 5). Figure 7.1 shows a simplified layout of

the three main system components: the listening network, the internal motivations

generator and the agents output section. The curves issuing from the patch symbolize

the agents' activation. The curves issuing from the compound-function pool denote

the critical distribution of musical processing functions from that pool according to

the systems current motivation (integrate or express) - please refer to chapter 9,

section 9.7.1 for details.

In order to study the behavioural state space in an organised way and without the

necessity of having a human interact for extended periods of time, we set up a series

of pilot experiments where a simulated external environment produces fluctuating

activations impacting on individual agents. However, the proposed model even

develops interesting structures without any external activation at all. In that case, the

society performs as an autonomous system that continuously rearranges the positions

of its agent-components. Agents form temporary structural associations that are

translated to MIDI streams, the music thus reflects the structural changes (variable

clusters) in time while global structural integrity is guaranteed.

269

Figure 7.1: Simplified representation of complete system. Red curves depict the

transmission of an activation signal from a patch to an agent. Black curves represent

the distribution of specific compound-functions towards the agents.

A second series of experiments (documented in chapter 10) feature a single person

interacting with the system. The main objective there is to interpret global systems

behaviour in terms of the individual orientations of both partners - human and

machine. The changes in musical distance are continuously measured in terms of the

270

degree of similarity between man and machine produced musical material. The

changes in distance reflect to what degree the system manages to comply with its

current motivation: expression or integration -a full explanation follows in chapter 8.

7.2 Definition of an Agent

An agent is implemented as a graphic object in 2D space equipped with a complex

musical processing function. The agent class is defined as follows (for clarity, only

vital instance variables are shown):

class agent (subclass of view)

id ;; unique ID

cf ;; compound-function executed by this agent

status ;; active or asleep

master-p ;; agent with highest energy

activation ;; -100 to +100 set by patcher

energy

orientation ;; 0 or 1

delta ;; step in space, used to compute the stress

critical-distance-1

critical-distance-2

angle ;; angle of movement

neighbours

input-pressures ;; native: human - ego - neighbour

input-pressures-adapted ;; adapted: human - ego - neighbour

xy-position

history ;; 400 el. vector: bonding, angle, energy, activation

intervals ;; innate stylistic patterns

durations

velocities

gaps

The following instance variables play an important role:

,ý

271

7) Physical position in the action pane and angle of movement. These values are

equivalent to the initial conditions of a complex dynamical system.

8) Energy level. Agents dissipate less energy when their position remains stationary

than when they are moving. An agent becomes stationary when the net sum of all

affinities impacting on it sum to zero or when its energy level is lower than a

given threshold. The energy dissipation factor when active and the recovery factor

when asleep are not equal; this contributes to global non-linear behaviour.

9) Critical-distance-1: Determines the sensitivity of an agent to communicate with

any neighbour.

10) Critical-distance-2: All agents within a radius of critical-distance-2 of an agent

are considered neighbours of that agent (CritGap fader in the interface).

1) Activation: The activation is a signed quantity (-100 to 100) intended to function

as a source of qualitative information. It has a major impact on the musical

interpretation of clusters in which an agent happens to be associated. Activation, it

is subject to changes forced by pressure from the human performer. In addition, a

threshold algorithm may be used to create slowly changing activation levels that

move in the range -100 to +100 (please refer to program listing). The threshold

algorithm is only used to study the impact of activation when the system is run in

non-interactive mode, such as in the pilot experiments documented in section 7.6.

272

12) Orientation: The orientation bit designates two types of interaction between any

two agents. If zero, the agent will address the stress problem; it will attempt to

move to an alternative location that will result in less stress impinging on it. If

one, it will engage in interaction with all other agents in its immediate proximity.

13)Personality dataset (innate stylistic patterns): A list of pitch-intervals, durations,

velocities and gaps (duration of rests) from which sub-lists are taken to construct

melodies.

14)Input-pressures: A three-element vector holding probabilities (0 to 100%). Each

value specifies the degree of input-pressure acting on the agent from respectively

the human performer, pressure generated inside the agent and finally, pressure

sent by a neighbouring agent, if any. The three pressures generate weighted

preferences as to which source will be selected to generate the backbone melody

of the reference agent. The input-pressures instance variable specifies random

native values for every agent; they provide a given initial personality to the agent.

The input-pressures-adapted instance variable first copies the original data from

the input-pressures and is consequently subject to adaptation. The original values

are modified in proportion to changes in human-responsiveness. If human-

responsiveness is very small, there exists a chance of 5% that the input-pressures-

adapted are reset to the native values in input-pressures - from here on, the

adaptation process may start again possibly taking the values in another mutual

balance proportional to further human input. See chapter 6, section 6.5.5 for

further details.

273

7.3 Description of Agents' Implementation

As a simulated physical object, the agent moves in two-dimensional space while

dissipating energy proportional to the distance travelled. When energy becomes lower

than a given threshold, it enters a sleep state for a number of clock cycles. When

waking up, the agent's new full energy level is set according to an external global

parameter. Both the energy ceiling and the sleep cycle length introduce non-linearity

and unpredictability in the system. Since agents condition each other's movement,

they also influence each other's energy consumption.

Every agent has two options for local interaction, controlled by the value of its

orientation bit. If zero, it will try to lower its perceived stress by changing its physical

position. If the orientation bit is one, it will interact only with some of its neighbours.

The list of actual neighbours is computed by considering all agents within a critical

distance from a referent agent. Both alternatives are detailed next.

274

15: 1 :1 013: 1: 1

10: -35: 0

1
r2: t: 1

11: 0: 0

Agents [idle]

5: 1: 1

6: 1 :1

012: 1: 1

e"e '1: 1

8: 1: 1 4: 1: 2

((10 15) (8 9) (5 6) (3 14) (1 2 11) (0 4)) [61

14: 1

" 7: 8: a

QQ
40 45 - 99 M 17

CritGap CritDist Energy Orientation
1515I10
Delta Step Sparkle Diversity

Start Stop Draw Step RIGG Print FS View PP Hide

Matx Rand) Edit Eves Init Trks Info Strs PCF J Hghb

Figure 7.2: Main interface showing action pane with six temporary clusters.

275

Agents [idle]

2: 0: 2

5: 0: 3
41643

15: -44: 3

.
ý2*30: 3

((3 7 11 14) (2 8 13) (1 56 10) (0 49 12 15)) 141 LI LI

20 54 - 99 0
Cr1tGop CritOist Energy Orientation
1515110
Delta Step Sparkle Diversity

Start Stop Draw Step R100 Print FS View PP Hide

Matx Rand) Edit Evns Init Trks Info Strs PCF NgI

Figure 7.3: Main interface showing regular, diamond-like emergent pattern.

276

human &
private-patterns

human
responsiveness

0-100

coin HR
1

responsive
behaviour

compute
melody

schedule
melody

agents compute melody

0

autonomous
behaviour

neighbour-agent &

compute pttvate"pattems
melody

Figure 7.4: Basic scheme: responsive and autonomous behaviour.

277

7.3.1 Behaviour with Orientation Bit Equal Zero

0 D68 - all D86

a6

0
P1It ---------- It p2

ý do- ein

a1

a12

p43g---------- - p3

90

7.

0
a5

äa a2

8. Figure 7.5: Interaction according to global stress.

8.3. Agents are viewed as a society in which a social climate exists, a climate that

is in constant flux because of a specific affinity that every agent expresses

towards every other fellow agent. This approach is inspired on the Party

Planner project (Dewdney 1987, Gold 2007), an example of animated design

based on principles of asymmetric social tension. Affinity is articulated as a

scalar value, which forces the agent to be at a certain preferable distance from

all other agents. Since these affinities might be conflicting, the result is

emergent push-pull behaviour. In addition, the net impact on any given

individual agent is made up of contributions of the affinities from all agents

that are not asleep. An agent thus moves spontaneously because it aims to

minimize its own individual tension towards the rest of the society.

278

8.4. The algorithm works as follows; every agent considers a position at a distance

(given by the delta parameter, typically a value between 5 and 20), relative to

its current spatial position in the 2D field of action. Eight neighbouring

positions are considered (equivalent to the Von Neumann neighbourhood in a

cellular automaton) and the new tension is computed and catalogued. Finally,

the agent will select the position that guarantees the least stress. Since all

agents follow the same uniform rule, the network of mutual tensions is pulled

towards local minima. In other words, the agents all contribute at minimizing

the stress in their society, an example of emergent functionality. Affinities for

16 agents are represented by a matrix of 16 by 16 elements holding values

between 0 and 400. This matrix can be inspected and edited in its private

interface. High values will produce the effect of agents spreading away from

each other. Small values will tend to cluster the agents into dense

configurations. By intuition, it is understood that a particular mix of random

values will implicitly impose complex, animated behaviour. The society

becomes a complex dynamical system that exhibits all kinds of cyclic and

chaotic attractors. By providing certain matrix contents, the society as a

whole produces a wide range of interesting oscillations. Agent experiments 1

and 2 (described in section 7.6.1) reveal different evolutions of structural

changes over 40 process cycles.

279

7.3.2 Behaviour with Orientation Bit Equal One

' D68

9
all D86

0

a6

D78
Dl

C D2 D87

1
D82 a12

7

a5

ä4

Figure 7.6: Interaction according to local proximity.

When its orientation bit is set, an agent will consider its proximity and possibly

engage in a bonding process (Hofstadter 1995). All agents within a given critical-

distance-1 are addressed - the agent acts as a catalyser; i. e., only its neighbours will

execute local rules, not the agent itself. For every agent within that range, its

respective neighbours are collected in turn. The collect-neighbours function has its

own sensitivity parameter: the critical-distance-2. Referring to the situation depicted

in figure 7.6, as a neighbour of agent a], agent a3 will interact with one of its

neighbours, in this case, agent a9.

Every agent in the subset (a3, a6, a9, a12) will exchange information with one of

its own neighbours; they swap the current value of their private angles of movement.

Complex global behaviour emerges from local information interchange between

individual agents. In addition the difference between the two critical-distance values

280

introduces considerable complexity. One may tune both sensitivities independently

and so influence global behaviour. By changing the relative proportions of the agents'

orientations, structural development in the society will either (1) follow from the

expression of affinities or (2) any two interacting agents will interfere with a subset of

their immediate neighbours and exchange information on how they move in space.

The sparkle parameter acts as a probabilistic source introducing noise in the

system. It is intended to keep the system away from point attractor behaviour and

follows the knowledge that organic networked systems, like human brains, produce

random firing patterns even without any apparent external stimulation (Harth 1995).

When sparkle fires, the orientation bit of the current agent is temporarily inverted.

Two performance modes exist: the agents' animation process and the MIDI player

process can either be synchronised or run independently. By definition, the animation

process (running the simulation and real-time visualisation) updates at a chosen rate,

typically 500 milliseconds to 5 seconds. The player process computes a new melody

when the previous one just finished playing. When running independent, many

simulation cycles may pass while a melody is played, thus when a next one is

computed, its contents will echo how much the world has changed since it was last

sampled. Otherwise, when in sync, the simulation waits until the player has finished

playing the current melody. In that case, changes in the society will be reflected

immediately in the music rendering process.

Figure 7.7 documents the information flow according to the agents' orientation

bit. The final instruction is to analyse the clustering activity in the agency (described

in the next section) and to decide which agent will temporarily serve as the reference

agent; i. e., the agent that manages the backbone melody addressed by the comparator.

281

The consequent melody construction inside the reference agent is further depicted in

figure 7.8.

threhold,

ages

maximum, _D
handle

fading-factors energy

7
chance handle

-D sparkle

its sequential evaluation

sleep/action
cycle

temporary change
of orientation bit

orientation
on bit off

critical gap distance <
critcal-gap? consider follow global

stress affinities
yes

local consider delta interaction movement

L

evaluate
I

neighborhood

critical distance
collect

neighbours F reposition
agent

choose
neighbour

deviation swap
angles

set reference
agent

Figure 7.7: Agent activity according to the status of its orientation bit.

282

However, we first describe the activity inside the agency (in pseudo code) without

oversimplification. The first part describes the stress and orientation-bit conditioned

animation procedure, the second part documents how a global melody is computed.

energy-parameter = 100 ;; typical value, set in GUI

activation-thresh-percent = 20 ;; typical value

activation-thresh-value =0;; initial value

11 Animation procedure

for every agent a in society a

if status - active ;; update status according to energy

if energy < 50

status - asleep then

else

energy - energy * 1.25

if energy > energy-parameter

status - active then

then

if orientation-bit -0;; consider orientation bit

;; consider stress, physical XY location and delta-parameter (set in GUI)

compute-stress for 8 XY-locations around the current XY at a distance delta

move agent to XY location with lowest stress

else

;; consider proximity

for every agent b in society s

if distance a, b< critical-distance-2 a

;; local interaction

n- neighbours of b- all agents within critical-distance-1

unless n- nil

;; visually connect all n

c- neighbour with highest energy

exchange angle of b and c

then

then

loop

then

283

if position a- previous-position a ;; check if agent is stationary

energy - energy * 0.97 ;; decay when stationary

else

energy - energy * 0.83 ;; decay more when moving

then

loop

11 Melody construction

is - compute list of stationary agents

unless is - nil

reposition one randomly selected agent in 2d space then

;; draw agents and update history

if player-finished

cl - compute-clusters

sc - cluster with max average energy

al - first agent in sc ;; compute new melody for agents pane

cl - MIDI channel of al ;; cl is reference-channel

;; create backbone melody: use energy and the private dataset

make-reference-melody

;; add parallel voices according agent activation

for every agent ax in sc except al

if status ax - active

if activation - positive ;; 1 to 100

add-grouping-events ;; apply contraction

then

if activation - negative ;; -100 to -1

add-ungrouping-events ;; expansion

then

then

play melody

unless cl - nil ;; adjust agent activations

if random 100 < activation-thresh-percent

invert activation-thresh-status

then

for every agent a in cl

284

;; use threshold algorithm to control agents' activation

if activation-status -0

increment activation of a by 10 %

else

decrement activation of a by 10 %

then

loop

then

then

285

human
responsiveness

human or compute
private sources

responsive behaviour

collect working private clusters memory patterns

pick strongest autonomous behaviour
cluster --- -

neighbouring private
agent patterns

set nr-events
remap HR

set density
remap HR

rosponsivo or
autonomous

set reference- J., J
agent

for every dimension: pitch,
velocity, duration & IOT

compute ref- consider individual source
melody

apply feedback compound
algorithm function

add parallel
events

Figure 7.8: Creation of a machine response: a hybrid mix of autonomy and

responsiveness in melody generation.

286

Figure 7.8 combines the various data structures contributing to the synthesis of a

single polyphonic machine statement. The current value of human-responsiveness

(HR) influences the choice between responsive and autonomous behaviour, the

options are weighted using a simple probabilistic algorithm: if (random(100) < HR)

responsive else autonomous. Note that the agents private patterns are engaged in both

options. Also, the principle of multiple influences (described in chapter 6, section 6.4)

directs further choices of source material for the construction of the backbone melody

residing inside the reference agent. Section 6.5 of the previous chapter details the

functioning of the feedback algorithm and how it is integrated with the melodic

processing functions held in the reference agents' compound-function.

At this point, the player-agency managed to elect a reference agent and develop its

monophonic melodic content according to a delicate balance of internal and external

forces. The very last step is to acknowledge the interpretation of changes in the

behaviour of the human performer as reflected in the output of the current patch. This

is the subject of the next section.

7.4 Musical Articulation

Musical output should reflect the history of the relationships between individual

agents; i. e., the structural changes of the system in time. The resulting melody is

computed as follows. Every agent first creates a list of its neighbours; i. e., all agents

within a physical distance set by its critical-distance-1 instance variable. In order to

evaluate many sensitivity schemes, the critical-distance-1 value is tuneable: a bias

value plus a diversity value (deviation from bias, in percent). Next, the neighbour-

clusters function isolates individual groups of agents according to their neighbours.

The result is a variable series of temporary structures known as "clusters". Clusters

are visualized by drawing segments between agents falling in each others zone of

287

influence; i. e., their distance below a given critical distance threshold. Such clusters

are viewed as emergent structures. They reflect how individual agents create

temporary alliances, very similar to the "flickering clusters" described by Hofstadter

(1995).

. FII, fail
... +ý

jF

V.

IIII rý
Figure 7.9: Example of emergent cluster orchestration.

Next, the energy of all clusters is computed by averaging the energy of all its

constituent agents. The cluster with the maximum energy is further selected. Note that

short clusters (few agents) may provide more energy than long clusters - size and

energy are thus interacting in subtle ways. A reference melody is created next, it will

serve as a musical backbone. The ID of the first agent in the strongest cluster (the

reference agent) provides the MIDI channel (1 - 8) for all events to be added to the

reference melody. In addition, the private stylistic data of that agent is borrowed to

compute events. The data includes a list of pitch-intervals, durations and velocities.

The energy of the reference agent will influence the number of events generated as

well as the density (articulation by way of rests) of the events. Next, the other agents

in the cluster are considered, we shall examine their activation rather than energy.

Only when the status of a remaining agent is active it will contribute events in

parallel to the reference melody. Two options exist: expansion or contraction.

Expansion signifies that supplementary events are generated from a single source

event. Contraction, in contrast, creates a single new events from the data supplied by a

group of existing backbone events. The results coalesce as a form of emergent

musical orchestration.

288

7.4.1 Musical Event Generation by Contraction

Contraction is computed using a grouping-algorithm; it typically produces

additional events characterized by features of specific groups of events in the

reference melody. Its parameters include: groupings-list, source-channel, intervals,

groups-flags-list, transposition and destination-channel. All argument lists are of

different and arbitrary size; items are addressed cyclically using an incremental,

global pointer, taken modulo the length of the list in question. (This implies that

arguments interact in irregular ways). A minority of argument lists are created on the

spot from a collection of candidate values - these values as a whole constitute a small

database of stylistic information. This is one of the very few instances where factual

knowledge (expressed as numerical data) is specified by an external human designer.

Otherwise, stylistic data is borrowed from the private data of every next agent in the

cluster: pitch-intervals, durations, velocities, activation and energy level.

The algorithm first scans the reference melody and creates groupings of 2,3 or 4

source events - only considering events with MIDI channel equalling the source-

channel - summing the duration of the groups for use by the shadow events to be

generated. In addition, pitches are at an offset (from the first pitch in the group)

guided by the intervals parameter while transposition argument provides a global

pitch offset. The groups-flags-list is a Boolean list conditioning the new event to be

added to the backbone or not, using the specified destination-channel. The length and

the number of true items in the groups-flags-list are proportional to the absolute value

of activation of the agent.

289

7.4.2 Musical Event Generation by Expansion

The expansion algorithm performs as functionally opposite to the contraction

algorithm, it spawns many events from one source event. It applies the eight

following parameters: source-channel, intervals, transposition, minimum-duration,

duration-dividers, group-flags-list, new-channel and delay-list. All events of duration

equal or higher than the minimum-duration are collected - conditioned by the group-

flags-list. The particular mix of Booleans may thus partition the source material in

asymmetrical ways. The duration-dividers (typically 2,3 or 4) split up the collected

durations into that many new values. Now the start-time of the nascent event is

postponed by a delay, the product of the new duration and the value taken from the

delay-list argument. This method yields automatic synchronization: start-times and/or

end-times of source and destination events will align in most cases. The application of

intervals and transposition arguments is similar as in the contraction algorithm above.

Finally, the sign of the activation of the agent acts as a switch for either the

contraction (positive) or expansion (negative) procedure to be selected. Figure 7.9

shows a prototypical example of emergent cluster orchestration. Colours refer to eight

individual MIDI channels. The accumulative effect of the clusters is clearly observed.

Figure 7.10 summarizes the expansion and contraction activity as a function of the

sign and relative amplitude of the agents' activation.

ZW

collect pane melody:
clusters expansion and contraction

for every
agent

agent
active? level & sign

positive activation
sign?

n>1

apply
contraction

Grouping

negative

1 >n

apply
expansion

Ungrouping

1 groupings
2 source-channel
3 intervals
4 group-flags-list
5 transposition
6 destination-channe

1 source-channel
2 intervals
3 transposition
4 minimum-duration
5 duration-dividers
6 group-flags-list
7 new-channel
8 delay-list

Figure 7.10: Creation of parallel-events by contraction and expansion. Specification

of the arguments of the grouping and ungrouping algorithms.

7.5 Visualisation of Stress

Figures 7.11 to 7.13 exhibit three different stress views, all as seen from the

perspective of a single reference agent. Figure 7.11 shows the stress field produced

with a uniform matrix; all 256 cells of the (16 by 16) matrix contain value 100. The

other two figures result from an affinities matrix filled with random values between 0

and 400 - the upper limit is derived from the size of the action pane. Figures 7.12 and

7.13 show the effect of two different spatial configurations of the agents while the

291

affinity matrix remains unchanged. The total stress of the reference agent is computed

by summing the differences of ideal position (guaranteeing minimum stress) as

compared to current position, for all agents in the society. This provides the

magnitude of stress of a single agent towards all other agents given their current

physical positions.

Figure 7.11: Stress view 1, uniform matrix.

Figure 7.12: Stress view 2: random matrix.

292

Figure 7.13: Stress view 3: random matrix.

7.6 Experiments

7.6.1 Experiments Investigating Autonomous Behaviour: Part one

The next two experiments document systems behaviour under specific parametric

conditions and include a visualisation of the internal structural changes and the

resulting score.

Figure 7.14 shows a free running simulation over 40 generations, with a snapshot

of every temporal structure. The affinity matrix is filled with random numbers in the

range 50 to 200 (the upper limit is half the size of the action pane). All agents receive

initial random energy in the range 50 to 100. All orientation bits are zero, so only the

critical-distance-1 parameter is significant and no bonding can occur.

Critical-distance-1 is 27 for every agent. Delta and step parameters equal 5. The

frames of the behavioural history are read top left to bottom right.

The simulation starts with random positions of all agents. Three clusters of two

agents each are visible in the first generation. All agents move one step according to

the social forces expressed in the affinities matrix. The average pull is strong and all

293

agents gradually collide in a single cluster. From here on, the local push/pull activity

on the individual agents disintegrates the cluster and makes it shift in space. The

following pages show the resulting score orchestrated - over eight MIDI channels -

according to the contraction/expansion algorithm described above. The temporal

articulation of the density of the events and how they relate vertically reflect the

structural couplings between the agents over time.

Lim-

r4

r-
-

_

. r

ý
al-- e m Ye

Figure 7.14: Agents experiment 1, structural changes with random contents of

affinities matrix.

The score in the following twelve pages shows a musical interpretation of the

behaviour shown in figure 7.14. Measures 1 to 20 correspond to generations 1 to 27 in

figure 7.14.

J
=60

I-I

-t --ýü 1

6
ý3

19)

00

4m 0 7K-

IA

6ý r -3 IOL l*

r-3 -I

*N

ýýý

, 15 1'

17 10

..

L3
la

306

TL

__ __
Ii

__
__ __ __

ao
Figure 7.15: Agents experiment 2, structural changes with uniform contents of

affinities matrix.

Figure 7.15 documents an experiment where the affinity matrix is filled uniformly

with the value 150, thus every agent expresses the same social preferential distance

towards every other agent. The orientations vector is (0 0 10 10 1 10 01 10 00 0).

Thus 6 out of 16 agents may engage in a bonding process with a neighbour agent

within the critical-distance-2 (value 22 in this simulation) from that agent. The

critical-distance-1 is 39 for every agent. Frame 1 shows the initial random positions of

the agents. All agents express strong attraction at the start of the simulation resulting

in the creation of a single complex cluster. This cluster gradually disintegrates and

transforms itself into a diamond-like shape clearly visible as from generation cycle 17

and remains relatively stable during the next few generations. The critical-distance-1

is increased to 67 at generation 33 and a single cluster emerges.

Since the affinities matrix remains uniform, the cluster does not change

dramatically over the next generations. The musical interpretation in next score

307

reveals more articulated coherence between neighbouring MIDI channels and a much

more regular overall picture than the previous score (experiment 1). However, it is

difficult to detect where respectively the contraction and expansion algorithms were

applied because their musical effect is functionally complementary.

The subsequent series of 10 pages show an interpretation of behaviour shown in

figure 7.15. Measures 1 to 22 correspond to generations 1 to 30 in figure 7.15.

J
=60

10 II

12 13

f ; 31

14 15

16 17

I-3 -1

,ý

15 .ý

21 22

13 I

318

7.6.2 Experiments Investigating Autonomous Behaviour: Part two

A larger series of twelve systematic experiments (see table 8.1) were run in order

to study the behavioural complexity of the system with variable settings of just four

systems parameters: the critical-distances one and two, two concentrations of

orientation bits and finally, two different settings of the affinities matrix. Each

experiment takes 200 generations to complete and twelve QuickTime movies were

produced by tracking activity in real-time. Experiments 1 to 11 employ fixed

parameters, experiment 12 features occasional dynamic parameter changes while the

simulation is running.

Experiment Critical-

distance

(CD1)

Critical-

gap
(CD2)

Orientation Matrix contents

1 30 n. a. 0% random (density= 100%)
2 30 n. a. 0% fixed (value= 100)
3 45 n. a. 50% random
4 45 n. a. 50% fixed (value = 100)
5 30 30 50% random
6 30 30 50% fixed (value = 100)
7 60 60 50% random
8 60 60 50% fixed (value = 100)

9 30-60 30-60 50% random
10 30-60 30-60 50% fixed (value = 100)

11 80-160 20-40 25% fixed (value = 40)

12 variable variable 25% random

Table 8.1: Parameter settings for twelve experiments aiming systematic exploration

of behavioural complexity in the output agency.

319

Maximum energy is 100, minimum energy is 50, delta and step equal 10. This

means that the agents' status becomes asleep when energy is lower than 50. The agent

recovers when asleep, its energy is scaled up by a factor 1.5 at every process step,

when energy becomes higher than maximum energy (the value set by the energy fader

in the GUI), agents' status is set to active. Spark is zero percent throughout. Random

matrix values are between 0 and 400.

Note that with 0% chance of orientation bits to be "on", the n. a. in column three

denotes "not applicable".

Every history tracks window documents the behaviour of an agency with 16

interacting agents so we may study both global emergent patterns as well as eventual

relationships between individual data tracks. The following colour code applies: (1)

orange is bonding activity, (2) red and (3) blue reflect respectively the x and y

positions of the agent in question, (4) green shows the current angle of movement, (5)

black shows the activation (-100 to +100, zero activation thus corresponds to a point

exactly half the height of the visualisation pane) and (6) the gray-colored lines show

the evolution of the energy level of the respective agents. All data is scaled to fit the

size of the visualisation pane. The activation-threshold-percentage is 20.

320

I _

I

I

_

--

II

I

I

_ý 'I

I

-1
ý

-
I IC -- I J

-
I

ýl

I -

ti

I
I

O I ý ý
! I -

- -

I -ý

_ _ _

_ _

k
Y

. Ný.
y

i. 4

ýI

Ohl

. ti

C
ýN

Qý

W

ýl

N
ýI

V/J

w

321

i II i I'

L - ý I 1

A
I, i. d

ci E
L>'

ei
E
10
ci

I-

i.

ß.
Yý

W

C
dA

tý
r

w
C
OA

W

322

Let us compare the results of experiments 10 to 12 as depicted in respectively

figures 7.16 and 7.17.

The most critical difference in parameter settings between both experiments (see

table 8.1) is the contents of the affinity matrix, in experiment 10 it is filled with a

fixed value of 100 which specifies that the optimal social distance between any two

agents is exactly 100 pixels in 2D space. The matrix in experiment 12 holds random

values between 0 and 400, this implies the existence of asymmetric social forces

between any two agents; Agent A might specify a preferential distance to Agent B

that differs from the preferential distance expressed from Agent B to Agent A.

Experiment 10: agents are scattered at random at the start of the simulation, a

relatively moderate bonding activity is observed. The bonding density is variable

which follows from the values of the critical-gap-1 parameter; random between 30

and 60. One sees how the bonding activity propagates by creating moving spatial

associations between agents. About halfway the simulation, the relatively dense

bonding activity gradually fades and its character changes. Regular patterns appear

indicative of a cycle attractor being hit. In particular, observe the regular oscillations

in agent 5,7 and 11 - these three agents are clearly engaged in spontaneous

coordinated activity. The relative periodicity and shape of the energy data trace (gray

colour) are further evidence the amount of agents' interaction.

The activation-levels of all agents that participate in any cluster are modified

according to the threshold-algorithm; agents that live in isolation do not modify their

activations. This activity is visible in the variations of the black data lines.

Sporadic oscillations also appear and are most visible in the green data lines

documenting variations in the agents' angle of movement. Some of these oscillations

323

are very regular and signal a temporary cycle attractor. All agents seem to move into a

regime of high degrees of stability towards the end of the simulation; x and y

positions remain stationary. Note that the parameter settings also remain untouched

while the program is running, also there is no external influence from a human

interactor. One concludes that the agents manage to spin out interesting

spatiotemporal structures over a time span of 200 generations while gradually

evolving towards a more stable regime as implied from the operation of a uniform

affinity matrix.

Experiment 12: external changes in parameter settings are taken up in this

experiment and the impact is noticeable in figure 7.17. The overall behavioural

complexity is higher that in experiment 10 because of the random affinity matrix. One

may identify a number of behavioural phases in this simulation. Bonding activity is

soaring at the beginning because critical-gap-1 is relatively high. When critical-gap-1

is lowered, complex spatial behaviour results, evident from the complex changes in

the xy-coordinates of nearly every agent. When external changes occur, the agency as

a whole, tries to accommodate the new settings - the changes in the behaviour of

individual agents are clearly coupled. In the final part of the simulation, one observes

a relatively complex cycle attractor in which six agents participate: agents 7,8,11,

12,15 and 16. The agency finds itself in a behavioural regime that alternates between

a series of points of temporal stability.

7.7 Conclusion

The agents are thought of as virtual musicians with private MIDI channels,

floating in a two dimensional space. They create highly complex temporal

superstructures of great plasticity. This interesting non-linear behaviour is a

consequence of the expression of inter-agent affinities and the dissipation of energy.

324

This simple A-life inspired model combines two essential functionalities: (1) the

synthesis of complexity from self-organising behaviour in the agency and (2) the

accommodation of external input in terms of activation by an external human

interactor. In other words, it provides musical behaviour that seamlessly integrates

subtle external activation in an otherwise completely self-organizing system.

Also, we may exert influence over the quality of the internal interactions by using

only a very limited number of control parameters: in particular, the critical distances,

the affinity matrix and the orientations vector. In terms of musical control theory we

speak of a strong control structure implying coherent, minimal control over maximal

complexity. Since all parameters are continuous rather than discrete, the implied

behavioural space is virtually infinite. Yet one can easily tune the system to function

within specific behavioural boundaries. Subsequently, characteristic musical

structures do surface from the inter-agent interactions either involving a human

interactor or not.

In conclusion, the system described here views improvisation as a process of

perpetual renewal driven by forces of attraction and repulsion, as present in the

expression of social affinities amongst people (Gold 2007) or the fluid dynamics

theory developed by Hofstadter (1995). From a musical point of view, the evolving

associations between individual and group behaviour are particularly interesting.

Even without any external activation, the society can sustain complex interactions for

hundreds of generations.

