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A B S T R A C T 

Physiological and Biochemical Responses to Cadmium Exposure in Fucus serratus 
(Phaeophyceae) 

Soon Jeong Lee 

Marine macroalgae can accumulate metals from the surrounding waters. But 
their responses to metals, especially non-essential metals like cadmium, are not well 
known and require further investigation. Therefore, the effects of cadmium exposure on 
the physiology and biochemistry of Fucus serratus collected from metal-contaminated 
(Restronguet Point) and clean (Bantham Quay) habitats were investigated. 

Although exposed to high concentrations of metal pollution throughout their life 
cycle, F. serratus from Restronguet Point accumulated similar concentrations of total 
and non-exchangeable cadmium to those of the reference population from Bantham 
Quay. Total and non-exchangeable contents of cadmium increased with increasing 
cadmium concentrations and time of exposure, without demonstrating accumulation 
limits or any visible signs of stress. More than 50% of total cadmium was accumulated 
intracellularly in both populations and the avoidance and excretion of cadmium were 
not demonstrated by this research. 

Cadmium exposure inhibited the growth of F. serratus at 10 |xg ~ 10 mg L ' ' and 
relative growth rates decreased significantly with increasing cadmium exposure. 
Cadmium treatment increased the contents of some photosynthetic pigments 
(chlorophyll a and c and fiicoxanthin), as well as the activities of antioxidant enzymes 
(catalase, ascorbate peroxidase and glutathione reductase), and the concentrations of 
glutathione and phytochelatin. However, most parameters of chlorophyll a fluorescence 
did not respond to either cadmium treatment or to the different concentrations used. 
This suggests that F. serratus may have utilised the energy from photosynthesis on 
preventing cadmium damaging to photosynthetic apparatus at the expense of reduced 
growth. 

This is the first report of phytochelatin production by F. serratus under the stress 
of copper and the wide range of cadmium. Both increased cadmium concentration and a 
prolonged exposure time produced higher values of phytochelatin, longer chain lengths 
(PC2 ~ 5) and higher contents of glutathione. The copper treatment also induced 
phytochelatin in the alga, however it produced weaker induction than the treatment of 
cadmium. The two populations showed different responses to combined metal 
treatments (cadmium + copper). 

Although similar cadmium concentrations were accumulated, the Restronguet 
Point population showed less diminution and faster recovery of growth, higher levels of 
chlorophyll a, chlorophyll c and fucoxanthin, higher activities of catalase and 
glutathione reductase, and a more rapid biosynthesis of phytochelatin. However, 
oxidative damage in membrane lipids was higher in the Restronguet Point population 
and antioxidant activities measured by CUPRAC test and DPPH radical scavenging 
ability test were higher in the Bantham Quay population. 

Therefore F. serratus demonstrates strong cadmium tolerance to cadmium 
exposure resulting from the production of antioxidative enzymes, glutathione and 
phytochelatin. The tolerant population possessed more efficient abilities to defend 
against cadmium stress, however the reference population also showed different 
protective strategies. 
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Chapter 1. General introduction 
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1.1. Trace metals as pollutants in the marine environment 

Environmental contamination by metals is not a recent subject threatening 

wildlife and humans. It has been widespread since the late 19* century due in the main 

to anthropogenic sources, such as mining activities and smelting ores, industrial 

effluents and wastes, burning fossil fuels, agricultural fungicide or fertilizer runoff, 

urban runoff, sewage treatment plants, domestic waste dumps, etc. (Lobban and 

Harrison, 1994, MacFarlane and Burchett, 2001, Pinto et al., 2003). The worldwide 

mine production of Cd, Cu, Pb and Hg is extensive and the impact of heavy metals on 

people's daily life is considerable (Kennish, 1996). Although metal pollution used to be 

considered a regional problem, it is now becoming a global matter of concern (Mallick 

and Mohn, 2003). 

Although metals are known to be common pollutants in aquatic environments as 

well as terrestrial and atmospheric environments, they are normally found at low 

concentrations in oceanic surface waters (Pinto et al., 2003). Metal levels are usually 

much higher in coastal waters due to river runoff, sewage outlet, and the release of 

industrial effluents, while those by atmospheric transport and upwelling are lower in 

oceanic surface waters (Pinto et al., 2003). Therefore exposure to low concentrations of 

metals for long periods is described as chronic pollution whereas short exposures to 

extreme levels of metals are described as acute pollution. In contrast to most other 

pollutants, metals are among the most common non-biodegradable and persistent 

pollutants in the environment (MacFarlane and Burchett, 2001, Mallick and Mohn, 

2003). Therefore, a number of metals, particularly those non-essentials to plant and 

animal metabolism, can affect aquatic organisms even in low concentrations (Baker, 

1981, MacFarlane and Burchett, 2001). In addition, the eutrophication of available 
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nutrients from anthropogenic sources often occurs simuftaneously in coastal areas. 

Since accumulation of metals by algae can be dramatically increased by nutrient 

availability (particularly nitrogen), metal pollution by river runoff, agricultural runoff or 

industrial effluents increases the entry of metals into the food web (Pinto et al., 2003). 

A wide range of environmental factors are associated with the biological 

availability of trace metals in water to aquatic organisms. Among these factors are 

chemical speciation of the metal, presence and concentration of other metals and anions, 

water and sediment pH, salinity, water temperature, light intensity, organic chelators, 

particles and complexing agents, oxygen levels and thereby the redox potential 

(Forstner and Wittmann, 1979, Brinkhuis et al., 1980, Wahbeh, 1984, Kautsky, 1998, 

Ralph and Burchett, 1998, Greger, 1999). 

1. 2. Cadmium 

Cd is a well-known pollutant and a non-essential trace element for plants and 

animals with no known homeostasis mechanism in organs and tissues (Nriagu, 1988, 

Myklebust and Pedersen, 1999). 

1.2.1. Distribution and concentrations of Cd 

In most unpolluted natural waters which are not exposed to metal elements, such 

low levels of Cd are reported that they were generally below the standard of allowable 

concentration of Cd (10 ppb) set by the World Health Organisation for drinking water 

(National Research Council Canada, 1979). Cd concentration varies with nutrient level 

and location of the water column (Ray and McLeese, 1987, Lobban and Harrison, 1994). 

Higher values of Cd can be found in coastal waters near industrial districts or in water 

3 



circulation-limited areas and the values can reach to several i^g L" (Ray and McLeese, 

1987, Lobban and Harrison, 1994). In uncontaminated soils, the levels of Cd are 

commonly below 0.5 ppm, however levels can reach up to 3 ppm depending on the 

geological background (Schachtschabel et al., 1984, Hagemeyer, 1999). Native Cd has 

not been reported yet and the metal is mostly found with native Zn with 250 of the Zn / 

Cd ratio in terrestrial rocks (National Research Council Canada, 1979). Most of Cd has 

been won from Zn deposits, such as limestones, dolomites, skam, tuff, basalt and other 

volcanic rocks (National Research Council Canada, 1979). Two oxidation states of Cd 

have been found in nature, the metallic state and the Cd^* state. There are eight stable 

isotopes that have been reported with conventional abundances as follows: "̂ ^Cd 

(1.21%), '°^Cd (0.88%), "°Cd (12.39%), ' "Cd (12.75%), "^Cd (24.07%), "^Cd 

(12.26%), '̂ '̂ Cd (28.86%), "^Cd (7.58%) (National Research Council Canada, 1979). 

Much higher levels of Cd are accumulated by physiochemical processes in the 

tissues of marine organisms when compared with the levels in the surrounding 

environment. Ray and McLeese (1987) mentioned three possible sources of Cd for 

marine organisms: (1) in solution or in colloidal suspension; (2) in food or in suspended 

particulate matter; and (3) in bottom sediment. In case of marine macro- and microalgae, 

unlike filter feeding invertebrates, metal elements in the water may be the only source 

of Cd supply. Reported bio-concentration factors of Cd are various depending on the 

materials: plankton 10''; seaweed 10^ ~ 10 ;̂ mollusc 10^ ~ lO'*; crustacean 10 ;̂ and fish 

10 ,̂ respectively (Preston, 1973). Bryan (1976) determined the Cd concentrations in 

marine organisms as follows: phytoplankton 2; seaweed 0.5; zooplankton (copepods) 4; 

bivalve molluscs 2; oysters 10; gastropod molluscs 6; decapods crustaceans 1; and fish 

0.2 |ig g"' dry weight, respectively. These values can vary with habitats or areas 

(Adriano, 1986). Knauer and Martin (1973) reported <1 ~ 7 )ag Cd g"' dry weight in 

phytoplankton in Monterey Bay, California. 
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1. 2. 3. Environmental factors affecting bioaccumulation of Cd 

The accumulation of Cd by marine organisms and the degree and nature of Cd 

complexation rely on a wide range of physiochemical factors, such as salinity, 

temperature, pH, season, light, nutrient concentration, redox potential, sorption, 

chelation, complexation, precipitation, hydrolysis and the interactions of those factors 

(Ray and McLeese, 1987, Topcuoglu et al., 2003). Here, some of these factors are 

discussed. 

1. 2. 3. 1, SaUnity 

Salinity shows considerable variability, especially in estuarine and coastal 

environments. There have been some reports of increased uptake rate of Cd coincident 

with reduction of salinity (Coombs, 1979, Ray and McLeese, 1987). Several causes of a 

salinity effect were postulated: (1) Increased oxygen consumption by organisms may 

enhance metal uptake (Bass, 1977, Taylor, 1977); (2) The lower the salinity, the higher 

total amount of biologically available Cd̂ "̂  (Mantoura et al., 1978, Engel et al., 1981); 

and (3) A higher level of Ca at higher salinities diminishes uptake of Cd (Wright, 1977a, 

Wright, 1977b). 

L 2. 3. 2. Temperature 

Increasing temperature results in increase of bioaccumulation of Cd, which is 

possibly related to the stimulation of metabolic activity by higher temperatures. 

Significantly higher accumulation of Cd has been analysed in algae Stichococcus 

bacillaris Naegli, Vaucheria compacta (F.S. Collins) F.S. Collins ex W.R. Taylor and V. 

debaryana Woronin, clams Mya arenaria Linnaeus, Mulinia lateralis Say and Nucula 
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proxima Say, oysters Crassostrea virginica Gmelin and Saccostrea echinata Quoy and 

Gaimard, crab Callinectes sapidus M . J. Rathbun, prawn Leander adspersus Rathke, 

shrimp Lysmata seticaudata Risso and coelenterate hydrozona Laomedea loveni Allman, 

except mussel Mytilus edulis Linnaeus, with increased temperature (Jackim et al., 1977, 

Theede et al., 1977, Denton and Burdon-Jones, 1981, Hung, 1982, Skowrohski, 1986, 

Ray and McLeese, 1987, Skowrohski et al., 1998). 

L 2. 3. 3. pH 

pH in the surrounding water may have an indirect effect on bioaccumulation of 

Cd since this factor is closely related to the migration of Cd. While Cd has a high 

mobility in acidic waters, the element is largely adsorbed or precipitated by sediments 

or organic / inorganic colloids in neutral and alkaline waters (National Research Council 

Canada, 1979). 

1. 2. 3. 4. Interactive effect 

The accumulation of trace metals including Cd is not often explained as a simple 

factor and a number of environmental parameters are often closely related to each other. 

Life stage (such as gametogenesis and age), seasonal variation, etc. can produce 

combined factors and several different outcomes can be expected. Coombs (1979) 

reported an additive effect of salinity and temperature on accumulation of Cd by marine 

organisms. 

1.2.4. Toxicity of Cd 

Lobban and Harrison (1994) reported the general order of metal toxicity to algae 

as Hg > Cu > Cd > Ag > Pb > Zn. This order can show wide variations dependent on a 
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number of factors, such as the algal species, experimental conditions, ionic speciation, 

chemical interactions and algal mobility (Lobban and Harrison, 1994, Ralph and 

Burchett, 1998). Indeed Lyngby and Brix (1982) published a slightly different order of 

metals with seagrass Zoster a marina, Hg > Cu > Cd > Zn > Cr > Pb and Kennish (1992) 

postulated similar list of metals with marine flora and fauna, Hg > Cd > Cu > Zn > Ni > 

Pb > Cr > A l > Co. Cd is one of the most toxic trace metals in all of these orders and 

has a number of biochemical effects, mostly adverse to aquatic organisms. 

1. 2. 5. Phytochelatin (PC) and metallothionein (MT) activity against 

Cd toxicity 

Some living organisms have specific cellular mechanisms detoxifying metal 

stress. Chelation of metal elements by high-affinity ligands is one of the key 

mechanisms for metal detoxification and tolerance (Hall, 2002). Amino acids, organic 

acids, and peptides are the potential ligands and phytochelatins (PCs) and 

metallothioneins (MTs) are the cysteine-rich, metal-binding peptides (Rauser, 1999, 

Clemens, 2001, Hall, 2002). Although both are low-molecular weight cytoplasmic 

peptides, their synthetic processes are different. MTs are gene-encoded proteins and are 

found in animals, plants, algae and fungi (Rauser, 1990). On the other hand, PCs are 

enzymatically synthesized peptides in higher plants, algae, fungi and lichens (Rauser, 

1990, Pawlik-Skowrohska et al., 2007). PC synthase is known to be activated in the 

presence of metal ions (Cobbett, 2000) and has been reported to be hypersensitive to Cd 

among many potential PC inducers in many reports (Grill et al., 1985, Ahner and Morel, 

1995, Cobbett and Goldsbrough, 2002, Inouhe, 2005). 
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1. 2. 6. Production of reactive oxygen species (ROS) and antioxidative 

enzymes against Cd stress 

Cd-induced antioxidative mechanism is not yet well understood (Lee and Shin, 

2003) since Cd has a different oxidative process from transition metals like Cu and Fe 

(Robinson, 1989). However toxicological research has suggested that Cd could induce 

oxidative stress in different tissues of both animals and some algae (Reed and Gadd, 

1990, Okamoto et al., 1996). Nevertheless, there is much less information about Cd-

induced oxidative stress and the defence systems in marine algae (Lee and Shin, 2003). 

Most research has been focused on microscopic algae. Cd increased superoxide 

dismutase (SOD), ascorbate peroxidase (APX) and P-carotene levels, increased 

oxidation of protein and lipids, and decreased GSH levels in the marine dinoflagellate 

Gonyaulax polyedra, which may be due to Cd-induced reactive oxygen species (ROS) 

metabolism (Okamoto et al., 2001b, Okamoto and Colepicolo, 2001). The marine 

microalga Nannochloropsis oculata showed enhanced lipid peroxidation and H2O2 

content, and increased activity of APX, glutathione peroxidase (GPX) and catalase 

(CAT) after Cd exposure (Lee and Shin, 2003). In the prasinophyte Tetraselmis gracilis, 

increased SOD activity by generating ROS was reported (Okamoto et al., 1996). 

Moreover, the red macroalga Gracilaria tenuistipitata showed increased lipid 

peroxidation, oxidation of protein and activity of CAT and SOD (Collen et al., 2003). 

Al l of these results indicate that Cd can induce oxidative stress in which ROS 

production may be involved. 

Antioxidative responses varied according to the status of Cd stress. Significant 

increases in SOD and APX activities and high GSH content were shown in Gonyaulax 

polyedra under chronic stress; however no significant change in APX, a slight increase 

in SOD, increased oxidation of proteins and lipids, and a reduced GSH pool were 

detected under acute stress (Okamoto et al., 2001b). Therefore a higher antioxidative 
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capacity was run in cells under chronic stress and hyperoxidative cellular status was 

attacking cells under acute stress (Okamoto et al., 2001b). GSH and free cysteine levels 

were increased according to Cd dose and time of exposure in Euglena gracilis 

(Coppellotti, 1989), indicating Cd toxicity depends on various factors such as Cd 

concentration, period of exposure, and the test organism (Okamoto et al., 1996). 

1. 2. 7. Bioavailability of Cd 

Although Cd has no known metabolic function in organisms, Cd is readily 

taken up by plants and algae (Pinto et al., 2003). In contrast to cupric ions, Cd cannot 

supply OH in the Fenton reaction (Pinto et al., 2003, Halliwell and Gutteridge, 2007). 

However, Cd increased the growth of the diatom Thalassiosira weissflogii in Zn-

deficient culture and the alga showed 90% of their maximum growth rate with Cd-

replete condition (Price and Morel, 1990). Price and Morel (1990) proposed that the 

depleted Zn was replaced by Cd and the substitution was done in one or more 

metalloenzymes such as carbonic anhydrase based on the similar size distribution of Cd 

and Zn in cytoplasmic proteins. Zn depletion reduced the activity of carbonic anhydrase, 

which inhibited the growth of the diatom due to the reduced bicarbonate uptake (Morel 

et al., 1994). Although Cd replacement restored part of carbonic anhydrase activity in 

Zn-limited cultures (Morel et al., 1994) and Cd shifted with the band of carbonic 

anhydrase in gel electrophoresis (Lee et al., 1995), it was not clear i f Cd merely 

substituted for Zn in the enzyme (Kupper and Kroneck, 2005). Later, the protein size of 

Cd-carbonic anhydrase of T. weissflogii was analysed and it revealed a much larger 

structure (43 kD) than Zn-carbonic anhydrase (27 kD) (Lane and Morel, 2000). In 

addition, the fact that T W C A l , the diatom's major intracellular Zn-requiring isoform of 

carbonic anhydrase, remained low when Cd replaced Zn but the growth rate increased 
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showed Cd-carbonic anhydrase is indeed specifically synthesized as a Cd enzyme (Lane 

and Morel, 2000, Kupper and Kroneck, 2005). 

Another substitution by Cd is related to the Mg^* in chlorophyll molecules. 

Some toxic metal elements (such as Cu, Zn, Hg and Cd) can replace the Mg ion during 

metal stress. Since metal-chlorophylls are not suitable for photosynthesis, these new 

compounds can produce much lower fluorescence quantum yield and energy transfer 

from the antenna pigment complexes to the reaction centres (Kupper et al., 1996, 

Kiipper et al., 1998). Therefore the formation of metal-chlorophylls due to metal 

contamination can finally cause a fatal collapse of photosynthesis (Kupper et al., 1996). 

1. 3. Responses of aquatic organisms to metal pollution 

For several decades the toxicity of metals on plant and animal metabolic 

processes has been one of main topics in biology (Femandes and Henriques, 1991, 

Kupper et al., 1998). Simpson (1981) and Myklebust and Pedersen (1999) presented 

heavy metals as one of the worst forms of pollution in the marine environment. Marine 

organisms can accumulate metals to levels several fold higher than found in the water, 

which becomes more serious in higher trophic levels of the food chain due to biological 

magnification (Lobban and Harrison, 1994). 

Some of trace metals, such as Cu, Fe, Mn, Zn, and Mg are vital for the metabolic 

processes of plants while other metals like Cd, Pb, Ag and Hg do not have any known 

biochemical functions (Lyngby and Brix, 1982, Ralph and Burchett, 1998). Although 

essential metals are required for the physiology of organisms, both essential and non­

essential metals can be toxic i f accumulated in excess (Vallee and Ulmer, 1972, Van 

Assche and Clijsters, 1990). 
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Accumulation of metals by aquatic organisms is normally related to the metal 

concentrations in the water, which shows initial rapid uptake followed by equilibrium 

(Ralph and Burchett, 1998). A generalised model of metal uptake for macrophytes has 

been proposed: exchange adsorption by passive uptake, diffiasion across the 

plasmalemma into the protoplast, and active accumulation into the cell (Malea, 1994). 

This whole process of metal uptake by seagrasses and seaweeds is known to be 

influenced by the levels of biologically available metals in the water rather than by the 

metal loads in the sediment (Ralph and Burchett, 1998). Although, as a result of 

complexation and precipitation, there are much higher loads of metals in the sediment, 

correlation between accumulation by organisms and levels in the sediment was often 

limited (Luoma et al., 1982, Ralph and Burcheft, 1998). Luoma et al. (1982) reported 

that concentrations of Cu, As, Pb, Zn and Ag in Fucus vesiculosus have close mutual 

relationship with the total levels of these metals in sediment while concentrations of Cd, 

Co, Hg, Fe and Mn in Fucus lack any correlation with the levels of these metals in 

surface sediment. 

Aquatic organisms may be expected to undergo various different reactions to 

metal stress because different species have different characteristics and different 

detoxifying mechanisms (Payne and Price, 1999). To date, many researchers have 

reported that toxic levels of metals affect the cellular and biochemical processes of 

aquatic algae, such as photosynthesis, nucleic acid production, protein and lipid 

biosynthesis, uptake of inorganic nutrients, and nitrogen fixation (Boyle, 1984, Pinto et 

al., 2003, Garcia-Rios et al., 2007). Stunted growth, chlorosis, necrosis and 

discoloration of thalli are the first symptoms of phytotoxicity (Van Assche and Clijsters, 

1990). Inhibition of photosynthesis, reduction in pigment concentrations, inhibition of 

nitrate uptake and the production of nitrate reductase, and the loss of other cations (such 
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as K*) are some of the harmful effects of metals, which may result in the previously 

mentioned symptoms (Rijstenbil et al., 1994, Gledhill et al., 1997). 

Metal toxicity may be caused by the binding of metals to sulphydryl groups in 

proteins or the displacement of essential elements (such as Mg^" )̂ (Van Assche and 

Clijsters, 1990, Hall, 2002). Accumulated metals can disrupt electron transport in 

photosystem I I (PS II), ruin development of the gametophyte or disturb the allocation of 

proteins, lipids, sterols, sterol esters, and free fatty acids (Smith et al., 1986, Anderson 

et al., 1990, Gledhill et al., 1997). Another adverse effect is that of stimulating the 

formation of fi-ee radicals and oxidative stress. Both an increase in the cellular levels of 

ROS and a reduction in cellular antioxidative ability can be expected by metal stress 

(Sies, 1999, Pinto et al., 2003). 

Therefore aquatic organisms, especially marine macroalgae as used in this study, 

have unique mechanisms of defence against metal toxicity. A series of mechanisms 

enabling metal toxicity tolerance have been elucidated to date, namely detoxifying 

antioxidants (such as GSH, ascorbic acid, tocopherols, polyphenol, MT and PC), 

antioxidative enzymes (such as CAT, SOD, glutathione reductase (GR), APX and GPX), 

exudation of metal ions and intracellular compartmentation of metal ions. 

1. 4. Marine macroalgae as bioindicators 

Because metal levels in seawater are very low and variable and levels in 

sediments are altered by many factors, such as pH, grain size, organic matter content, 

and oxidation-reduction potential, concentrations of metals or changes in their 

availability in the environment have been frequently monitored by measuring metal 

levels in marine organisms (Kautsky, 1998, Topcuoglu et al., 2003). Therefore research 
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on organisms which are suitable for monitoring the surrounding environment has been 

developed. These organisms are known as biological indicators (bioindicators), 

bioaccumulative indicators, biomonitors or sentinel organisms (Phillips, 1994), and 

represent one or more properties of the ecosystem to which they belong (Ferrat et al., 

2003) . They accumulate information on variations in the environment and provide data 

which would be unobtainable by chemical analyses (Lyngby, 1990). 

Metal ions in the environment cannot be destroyed by microbial processes but 

can be modified, immobilized or detoxified by following methods: biosorption, 

bioaccumulation, reduction, solubilisation, precipitation, and methylation (Gavrilescu, 

2004) . Biosorption (= adsorption) is defined as the passive uptake of metals to cell walls 

or extracellular polymers, such as polysaccharides, proteins and nucleic acids. 

Bioaccumulation is defined as the energy-requiring uptake of metal cations, which 

comprises a two step process: passive binding to the cell wall and energy-consuming 

transfer associated with Mg and K transport (Gavrilescu, 2004). 

Three different strategies of metal uptake by plants were proposed by Baker 

(1981). The first category is an excluder which takes up low levels of metals at quite 

high external metal concentrations. Certain kinds of barriers or protective mechanisms 

operate (such as exudation of metal complexing ligands) in these plants to prevent 

uptake of metals. However, under extremely high metal concentrations, this protection 

collapses and massive uptake occurs. The second group of plants, which accumulates 

metals even at very low external concentrations, is known as an accumulator. Some 

mechanisms of detoxification in tissues may allow the plants to accumulate metals 

without serious problems. Nevertheless, under extremely high external metal 

concentrations, they cannot increase the uptake due to competition of metal ions at the 

cell wall. The final type of plant uptake is found in plants which increase their uptake 

linearly with increasing external metal concentrations. They are known as indicators 

14 



owing to the linear relationships between their metal uptake and the external metal 

concentrations. 

Benthic marine macroalgae have been used to evaluate metal pollution in the 

environment since they meet many of the requirements of bioindicators. Many algal 

species are easy to collect and to identify taxonomically. They are widespread 

geographically, available year-round and are tolerant of changes in salinity and turbidity 

(Phillips, 1994). They are considered to be useful biomonitors since the metal contents 

in the algal tissues are directly linked to the dissolved metal concentrations in the 

surrounding water (Bryan, 1983). Since algae do not have a dietary route for metal 

uptake and do not use particulate metals, these organisms exhibit only dissolved metals 

from solutions (Luoma et al., 1982, Bryan et al., 1985). They can accumulate levels of 

metals in the tissues several thousand times higher than those of seawater (concentration 

factor of algae: 10^-10^), providing an indication of metal levels in the water (Forstner 

and Wittmann, 1983, Bryan and Langston, 1992, Phillips, 1994, Muse et al., 2006). 

Macroalgae have been regarded as better indicators than phytoplankton since they are 

sessile and have longer life spans (Bryan, 1971, Forstner and Wittmann, 1983, 

Topcuoglu et al., 2003). The longer life span allows for a longer period of metal 

exposure (Forstner and Wittmann, 1983) and, for that reason, the older part of Fucus 

vesiculosus accumulates considerably higher metal concentrations than the area around 

the growing point (Bryan, 1971). Therefore macroalgae can be useful bioindicators in 

the aquatic environments since they provide a regular and consistent record of changes 

in the metal values of tissues (Fuge and James, 1974). 

Among algal divisions, brown or green macroalgal species have been used most 

frequently (Phillips, 1994, Topcuoglu et al., 2003, Hedouin et al., 2008). Most research 

on green algae was performed with Ulva spp. (including former Enteromorpha) (Say et 

al., 1990, Rijstenbil et al., 1998a, Locatelli, 1999, Topcuoglu et al., 2003, Han and Choi, 
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2005). Red algae and seagrasses were also employed as bioindicators but less frequently 

(Phillips, 1994, Costanzo et al., 2000, Ferrat et al., 2003). Brown algae have been used 

as bioindicators of metal pollution in the costal environment since the early seventies 

(Burrows, 1971, Bryan, 1983, Hedouin et al., 2008). Brown algae are particularly 
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effective and reliable at removing, for example, Cu , Cd , Pb , and Zn , due to their 

abundant extracellular polymers and their high metal tolerance when compared with the 

many types of biosorbents (for example bacteria, fungi and yeasts) (Davis et al., 2003). 

Their strong adsorption capacity (biosorption with polysaccharides such as alginates) 

and absorption (bioaccumulation with polyphenols and PC) make them useful 

bioindicators since concentrations of metal are high enough to detect and stable 

(Phillips, 1994, Hedouin et al., 2008). 

1. 5. Fucus serratus L . 

Among about 1500 species of brown algae (Phaeophyceae), Fucus vesiculosus 

and F. serratus are probably the best known British seaweeds (Knight and Parke, 1950). 

The genus Fucus has been reported in a wide range of intertidal rocky shores in North 

East Atlantic coasts (Williams, 1996, Malm et al., 2001, Cairrao et al., 2004). While 

patches of F. vesiculosus are distributed in the mid-intertidal zone, patches of F. 

serratus are commonly found in the lower intertidal zone (Knight and Parke, 1950, 

Lewis, 1964, Malm and Kautsky, 2003). F. serratus has fronds with serrated edges and 

dichotomous branching thalli (Fig. 1. 1 and 1. 2). These robust thalli are known to grow 

to a maximum of about one meter in length, and average elongation rate of thalli from 

the Devon coast was 0.49 cm per week in a range of 0.31 -0 .71 cm per week (Knight 

and Parke, 1950). F. serratus is a perennial alga and is known to live normally 3 years 
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(Rees, 1932). However it can live the fourth and even fifth year in very sheltered areas 

although the ones in very exposed areas barely live more than 2 years (Knight and Parke, 

1950). Unlike F. vesiculosus which achieve the maximum weight in the third year, F. 

serratus may gain the more weight in the fourth year (Knight and Parke, 1950). 

Fucoid algae have been used as one of the supreme bioassay materials owing to 

their ease of culture, fast growth and relatively quick responses to stress sources (Bond 

et al., 1999, Braithwaite and Fletcher, 2005). Some authors have used fijcoid seaweeds 

as bioindicators of metals in inshore waters (Nickless et al., 1972, Preston et al., 1972, 

Bryan and Hummerstone, 1973, Luoma et al., 1982, Forsberg et al., 1988, Ronnberg et 

al., 1990, Cairrao et al., 2004, Stengel et al., 2004). 

F. serratus, a dioeious species, is actively reproductive throughout the year 

although the peak of reproduction is commonly in the autumn and winter (Knight and 

Parke, 1950, Quatrano, 1980). It has diplontic life cycle, diploid thalli and haploid 

gametes (Quatrano, 1980). Its sexual reproduction, external oogamous fertilization, is 

common to certain angiosperims (Quatrano, 1980). Reproductive structures on the 

receptacles (i.e. conceptacles, ca. 0.5 cm) secrete ripe gametes via the ostiole. 
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5 cm 

Fig. 1.1. Fucus serratus L. Upper, late first year; lower, left, second year with 

receptacles; lower, right, third or fourth year. 
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Fig. 1. 2. Fucus serratus from the Avon Estuary. Upper, natural population patches on 

the rocks; lower, receptacle possessing conceptacles for reproduction. 
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The big immotile egg (ca. 75 \xm) is fertilised by a small motile sperm which has lateral 

biflagellate (ca. 5 yim) (Quatrano, 1980). For over one hundred years, zygotes of the 

Fucales have been utilized for studies of polarity, polar axis determination, cell-wall 

assembly of the wall-less egg (Quatrano, 1974, Quatrano and Stevens, 1976, Nielsen et 

al., 2003a) since the polar development and embryo genesis of Fucus is similar to those 

of other plants, including angiosperms (Quatrano, 1980). 

1. 6. Object of this study 

The use of algae, particularly marine macroalgae, to indicate and monitor 

environmental pollution is no longer new. The increasing use of algae as bioindicators 

as well as bioremediation agents has been shown on many occasions. The genus Fucus 

is composed of vigorous marine macroalgae found in metal-polluted areas and they 

have frequently been selected for many experimental studies. However, most research 

has focused on Cu and Zn as metal sources and F. vesiculosus as the algal species. 

Therefore the physiological and biochemical responses of F. serratus to heavy metal 

pollution have been based on understanding gained from research into F. vesiculosus or 

other brown algae rather than F. serratus itself In addition, the effects of Cd have 

received less attention due to its non-essential role in plant physiology and its lower 

toxicity compared with Cu or Hg. Since each metal element and algal species has 

unique physiological, biochemical and geochemical characteristics, specific and detailed 

information for each algal and metal species is very important. 

In this work, F. serratus from two different areas with completely different 

histories of metal contamination were investigated for photosynthetic performance. 
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antioxidative reactions and detoxification of Cd. In previous research (Nielsen et al., 

2003b, Collen and Davison, 1999a, Collen and Davison, 1999c), stress-tolerant 

populations have been generally shown to possess more efficient mechanisms for 

defence against metal stress therefore comparisons between the two populations were 

addressed in each chapter. 

The bioaccumulation of Cd by F. serratus was measured as well as growth rate, 

chlorophyll a fluorescence parameters and contents of photosynthetic pigments. Total 

and non-exchangeable concentrations of Cd taken by F. serratus and the efficiency of 

the alga as a bioindicator were described. The effects of Cd as a toxic metal element on 

photosynthesis were evaluated with various chlorophyll a fluorescence parameters and 

levels of chlorophyll a and c and two accessory pigments were measured. 

The expression of oxidative stress by F. serratus was determined. Lipid 

peroxidation, CUPRAC, DPPH free radical scavenging capacity and three antioxidative 

enzymes were estimated after Cd exposure. 

Detoxification of Cd stress closely related to the synthesis of PC and the 

precursor, GSH was addressed in Chapter 5. Comparison between two populations and 

compound data with accumulated contents of Cd explained these different strategies 

against Cd stress. 

Finally, in Chapter 6, results from each chapter were discussed as a whole 

process of physiological and biochemical responses of F. serratus exposed to Cd. 
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Chapter 2. General material and methods 
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2.1. Description of collecting sites 

Fucus serratus was collected from two sites in South West England with 

different history of exposure to metal contamination. As a reference population, F. 

serratus from Bantham Quay (BQ; 50°16'70"N; 3°5r05" W ) , at the mouth of the river 

Avon, was selected (Fig. 2. 1 and 2. 2). The Avon Estuary in South Devon has little or 

no industry, very limited domestic sewage input (Bamber and Depledge, 1997), and 

there has been no mineral exploitation (Grant et al., 1989, Bryan and Langston, 1992, 

Bamber and Depledge, 1997). Bryan and Langston (1992) regarded the Avon Estuary as 

one of the least polluted coastal areas in the UK in which 18 \ig g"' of total Cu was 

measured in sediment (Table 2. 1). Diverse algal species were found in this area (Fig. 2. 

3). 

Restronguet Point (RP; 50°11 60 N ; 5 " 4 1 0 ' ^ ) is at the entrance to Restronguet 

Creek, a branch of the Fal Estuary, in South West Cornwall (Fig. 2. 1 and 2. 4). 

Restronguet Creek is the most metal-contaminated area in the Fal Estuary (Pirrie et al., 

2003). This estuary has received long-term contamination as a result of polymetallic 

mining activity; it is also an important marine habitat for invertebrates, fish and algae 

(Pirrie et al., 2003). Research has shown that the flora and fauna inhabiting this polluted 

estuary have evolved to have resistance mechanisms to metals such as Cu and Zn: e.g. 

annelida Nereis diversicolor (Bryan and Hummerstone, 1971, Bryan and Hummerstone, 

1973, Bryan, 1974) and Nephtys hombergi (Bryan, 1976), brown algae Fucus 

vesiculosus (Bryan and Gibbs, 1983) and Fucus serratus (Nielsen, 2002, Nielsen et al., 

2003b), and mollusca Scrobicularia plana (Bryan, 1976). Restronguet Creek receives 
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Fig. 2. 1. Collecting sites for Fucus serratus. A, Bantham Quay; B, Restronguet Point, 

South West England. 
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Fig. 2. 2. Bantham Quay, the mouth of the Avon Estuary, South Devon, England. 
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Fig. 2. 3. Diverse benthic flora of Bantham Quay. Emergence of various species in red, 

green and brown algae can be identified. 
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Table 2. 1. Concentrations of total metals in sediments and water column 

Water (|ag U ' ) Sediment i\ig g"' D.W.) 

Metals \ 
Restronguet 

Creek Camon River Avon Estuary Restronguet Creek Fal Estuary 

Ag 
As 
Cd 
Co 
Cr 
Cu 
Fe 

Hg 
Mn 
Ni 
Pb 
Sn 
Zn 

<0.1 -38 

2 -176 

3 - 1513 
1-18 
< 2 - 4 

7 - 22460 

0.45 
233 
24.8 
70 

593 
5024 

1777 
107 
40 

12470 

19 
19400 

98 

0.06 
13.0 
0.08 
10 
28 
18 

18361 
0.12 
326 
23 
68 
3.9 
82 

3.76 
1740 
1.53 
21 
32 

2398 
49071 
0.46 
485 

58 
341 
55.9 
2821 

3000 

2500 

983 - 2803 

1172 - 5073 

217-570 
752 ~ 3400 
950 ~ 6600 

1467-3939 
2.35-3.76 

1591 -4507 
51228-95418 

439-710 

2332 - 5809 Reference 
Bryan and 

Gibbs(1985) Bryan etal. (1987) 
Bryan and Langston 

(1992) 
Bryan et al. 

(1987) 
Pirrie et al. 

(2003) 
Langston 

et al. (2003) 
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acidic (pH 3.8 ~ 4) and metal-enriched water (such as Fe, Zn, Mn and Cu) from the 

Camon River due to various mining and smelting works and from the erosion of spoil 

heaps (Dines, 1969, Bryan and Gibbs, 1983, Ferryman, 1996). The history of mining in 

Cornwall dates back to the early Bronze Age, with fluvial tin (Sn) deposits being the 

main target (Gerrard, 2000). Hard rock mining for Sn, Cu and a range of other metals 

was performed from the 13* century (Gerrard, 2000). Production of Cu and Sn reached 

at its peak in the 1860s and 1890s respectively and up to 50% of the world's mineral 

supply of Cu, Sn, As, Pb and Zn came from more than 1000 mines in this region (Dines, 

1969, Burt, 1998). However output decreased rapidly during the 20* century and the 

last Sn mine (Wheal Jane, Camon Valley) closed in 1991 (Somerfield et al., 1994). In 

January 1992, sudden discharge of 50 million litres of acidic (pH 3.1), metal-laden mine 

water, the so called 'Wheal Jane incident', happened (Somerfield et al., 1994, Banks et 

al., 1997, Younger, 2002, Pirrie et al., 2003). While there was visual evidence of 

contamination by metals, biological studies with benthic invertebrate community did 

not show significant impacts due to limited mixing of water column, large dispersal 

seawards and metal-tolerance of the species (Bryan and Gibbs, 1983, Somerfield et al., 

1994, Millward and Grant, 2000, Pirrie et al., 2003). Nevertheless, in excess of £20 

million was spent for remediation for contaminated water system after this accident 

(Younger, 2002). Although all metal extract has now ceased, drainage from the old 

mine adits and erosion of the spoil heaps by water continues, resulting in very high 

concentrations of metals in the sediments and waters in the Fal Estuary (Bryan and 

Gibbs, 1983, Pirrie et al., 2003). Among them, Zn, Mn, Cu and Cd remain in solution 

while As, Fe and Pb form insoluble compounds associated with the sediment (Bryan 

and Gibbs, 1983). Bryan and Langston (1992) and Bryan and Gibbs (1983) reported 200 

nM of total Cu and over 153 j i M of Zn in the water of Restronguet Creek and Pirrie et 
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Fig. 2. 4. Restronguet Point, the Fal Estuary, south west Cornwall, England. 
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Fig. 2. 5. Relatively limited benthic flora of Restronguet Point. Ascophyllum nodosum, 

Fucus vesiculosus and F. serratus occupy most of the area. 
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al. (2003) published 2803 ppm As, 5073 ppm Cu, 3400 ppm Sn, 902 ppm Pb and 6600 

ppm Zn in surficial sediments from the Fal Estuary. Compared with the BQ area, the 

seaweed flora is far less diverse with a few brown algae (Ascophyllum nodosum, Fucus 

vesiculosus and F. serratus) dominating in this contaminated area (Fig. 2. 5). Compared 

with those in BQ, frequencies of occurrence of red and green algae were relatively 

lower and only a few (Ulva, Solieria and Rhizoclonium) were found in RP. 

Therefore, Restronguet Creek is an ideal site to study the chronically metal-

exposed population of F. serratus and to compare the effects and responses with that of 

a population from the reference site, Bantham Quay, the Avon Estuary. 

2. 2. Experimental algae 

Vegetative thalli of Fucus serratus were collected at spring tide from October 

2006 to November 2007. Approximately 1 year-old non-reproductive algae were 

selected from two sites in South West England with different levels of metal 

contamination. Algae were transported to the laboratory within 2 hr in the natural 

seawater from their local habitats. 

In the laboratory, materials were rinsed three times in filtered seawater and all 

visible epiphytes and sediment were removed by brushing. Healthy apical tips (c. 400 

mg) were cut from fronds, placed in acid-washed 2 L plastic tanks containing aerated 

filtered seawater obtained from their natural habitats and maintained for 1 ~ 5 days to 

recover from cutting and any trauma caused by acclimatisation to laboratory conditions. 
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2. 3. Culture conditions 

Culture conditions were maintained for up to 14 d at 15 °C, 250 \xmol photons 

m'^ s"' photosynthetically active radiation (PAR) and 12 : 12 h l ight: dark cycle. Light 

was controlled by cool white fluorescent lamps with a time controller. 100 mL plastic 

containers were used for the algal culture. Culture media were mixed and aerated by 

means of a shaker (60 rpm) rather than filtered air injection to avoid contamination by 

air (Fig. 2. 6). The location of each culture container was changed every 48 hr to reduce 

any light gradient effect and eliminate any differences in the shakers. 

2. 4. Culture medium, Aquil 

For experimentation, seaweeds were cultured under the same conditions as 

described above but in the chemically defined seawater medium, Aquil (Price et al., 

1988/89, Gledhill et al., 1997). This artificial medium composition was initially devised 

for study of trace metals in planktonic algae (Morel et al., 1979) and has been 

successfully applied for culture of brown macroalgae (Bond et al., 1999, Gledhill et al., 

1999, Nielsen, 2002). For the medium, Mill i-Q water (Milli-Q water system ZFMQ 230 

04, Millipore Corporation, France) and high quality reagent salts (analytical grade) were 

always used since salts and water are known as the most frequent sources of major trace 

metal contamination (Morel et al., 1979). To avoid adsorption onto the wall of the 

medium container and culture vessels or tanks, high density polyethylene (HOPE) 

polymer or polycarbonate polytetra-fluoroethylene (Teflon) were always used. To 

minimize metallic contamination, all equipments such as flasks, tanks and pipette tips 

were washed with acid (5% HCl) for at least 48 hr (Nriagu, 1988), rinsed 2 times in 
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Fig. 2. 6. Culture apparatus in temperature-controlled room. 
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Distilled water, subsequently rinsed once in ultrapure water and dried in a laminar flow 

hood. 

Chemical composition of Aquil is shown in Table 2. 2. Artificial chelating 

agents, EDTA, were not added since EDTA is known to prevent metals fi-om being 

adsorbed by cell wall of algae (Simkiss and Taylor, 1995, Ma et al., 2003). Medium was 

prepared in three parts, synthetic ocean water (SOW), nutrients and trace metals. For 

SOW, salts were weighed and kept in a dry place as a powder mixture and anhydrous 

and hydrated salts were dissolved separately for complete mixing (Harrison et al., 1980, 

Price et al., 1988/89). Major and minor nutrients of phosphate, nitrate, silicate, etc. were 

made from the individual stocks (xlOOO) and then diluted to their final concentrations. 

Trace metals were also prepared as stock solutions in advance and reagent grade 

chemicals were dissolved in 0.01 M HCl to reduce impurities. Acid-washed materials 

(flasks, stoppers, containers, etc.) and Mill i-Q water were prepared as described above. 

The pH was set to 8.2 as the media were prepared. Medium was prepared at least 24 hr 

before the lab experiment for ionic stabilisation. 

2. 5. Metal concentration in medium 

For metal exposure, stocks of 2 mM cadmium sulphate hydrate (3CdS04 • 

8H2O) and 2 m M pentahydrated cupric sulphate (CUSO4 • 5H2O) were prepared in 0.01 

M HCl. Concentrations of Cd between 0 and 10 mg L"' were added for the elevated Cd 

treatments and those between 0 and 1000 ^g Cd L ' ' were added for lower Cd 
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Table 2. 2. Composition of Aquil, modified from Morel et al. (1979) and Nielsen (2002) 

Amount added g L"' Concentration in Final concentration 
L^onstituent Milli-Q water stock (M) in Aquil (M) 

Synthetic Ocean Water (SOW) 
NaCl 24.03 4.20x10"' 
Na2S04 4.09 2.88x10"' 
KBr 0.10 8.40x10"^ 
KCl 0.70 9.39x10"^ 
H3BO3 0.03 4.85 xlO"^ 
NaHC03 0.20 2.38 xlO"^ 

All anhydrated salts were completely dissolved before adding the hydrated salts. 

CaCb • 6H2O 1.51 1.05 xlO"' 
MgCl2 • 6H2O 11.10 5.46x10"' 

Nutrients 
SrCl2 • 6H2O 1.70 6.38 x 10'̂  6.38 xlO"^ 
NaF 0.30 7.14x 10-' 7.14x10"^ 
K I 0-04 2.40x 10"̂  2.40x10"^ 
NaNOs l-^O 2.00x10"' 2.00x10"^ 
NaH2P04 O-̂ ^S 2.00 X 10-̂  2.00x10"^ 

Each stock was made individually and 1 mL L"' was added to SOW. 

Trace metals 
Solution 1 g L ' 0.01 M HCl 

FeCl3 • 6H2O 0.122 4.51 X 10"* 4.51 xlO"^ 
C U S O 4 • 5H2O 0.249 9.97 X 10"̂  9.97 xlO"'° 

Solution 2A g 100 mL"' 0.01 M H C l 
Na2Mo04 • 2H2O 2.42 1.00x 10"' 1.00 xlO"'' 
C0CI2 • 6H2O 0.595 2.50 x 10"' 2.50x10"* 

Solution 2B g 100 mL"' 0.01 M H C l 
ZnS04 • 7H2O 0.115 4.00 x 10"̂  4.00 xlO"^ 
MnCb •4H2O 0.460 2.30 x 10"' 2.30 xlO"* 

Solution 2A and 2B at 1 mL L"' were added to each to solution 1, Then solution 1 was 
added at 1 mL L"' to SOW. 
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Treatments, since the previous ranges of Cd were extraordinarily higher than contents of 

Cd in natural environment. Physiological responses of F. serratus to Cd exposure were 

determined in material exposed to Cd for different time periods: 6 hr, 12 hr, 24 hr, 7 d 

and 14 d for elevated Cd treatment, and 24 hr, 96 hr and 7 d for lower Cd treatment. The 

medium was exchanged every 48 h to ensure that the seaweeds did not become nutrient 

limited. 

2. 6. Relative growth rate (RGR) 

Relative growth rate (RGR) of fronds was calculated using the following 

equation based on fresh weight (FW, g). Pieces of Fucus thalli washed with filtered 

seawater to remove mud/sand and epiphytes were blotted dry and weighted. Rates were 

expressed as percentage (Hunt, 1982). 

, (ln(m f)-\n(m,)) 
RGR{%d-') = — X 1 0 0 

where ' w / and'm,' are masses of the frond (g FW) on the fmal/initial day of 

measurement and is time in days/hours between measurements. 

2. 7. Statistical analyses 

Data were analysed using the statistical package SPSS version 16.0 for 

Windows (SPSS Inc.). Before all parametric tests, the data were tested for homogeneity 

of variance and normality (Sokal and Rohlf, 1995). Multivariate test of General Linear 

Model (GLM) was used for analyzing the effects of locality, metal concentration. 
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exposure time and their interactions, and Tukey HSD was used for the Post Hoc 

multiple comparisons. When additional analyses were required. One-way ANOVA was 

performed to check for differences, especially within a population or under certain 

treatments. In all analyses, differences were considered to be significant at a probability 

of 5% (p < 0.05). Number of replicates in each experiment varied between 3 and 10. 
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Chapter 3. Bioaccumulation, growth and 

photosynthetic performances of Fucus 

serratus in response to cadmium stress 
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3.1. Introduction 

The toxic effects of metals on plants and algae, and the ways by which 

photosynthetic organisms respond depend on, for example, the metal species, the 

concentration of metal, length of exposure, and the developmental stage of the organism 

(Joshi and Mohanty, 2004). Typically, the effects on growth and photosynthesis have 

been studied to assess the toxicity of metal exposure. This is the approach adopted here 

and reported in the current chapter. To investigate the effects of Cd on different 

components of the photosynthetic apparatus, the technique of chlorophyll (Chi) a 

fluorescence has been used. In addition, the accumulation of Cd by the seaweed has 

been determined, allowing the inter-relationship between bioaccumulation and toxic 

effect to be discussed. 

3.1. 1. Photosynthetic responses of algae to metal stress 

Metals are known to be crucial inhibitors of photosynthesis in higher plants, 

seagrasses and algae (Clijsters and Van Assche, 1985, Prasad and Strzalka, 1999, 

MacFarlane and Burchett, 2001). They have been shown to reduce photosynthesis 

(Rijstenbil et al., 1994, Ralph and Burchett, 1998, Xia et al., 2004), inhibit electron 

transport in photosystem II (PS II) (Shioi et al., 1978, Yruela et al., 2000), influence 

activity of PS I and PS I I (Joshi and Mohanty, 2004, Kalaji and Loboda, 2007), inhibit 

photophosphorylation (Clijsters and Van Assche, 1985, Macinnis-Ng and Ralph, 2002), 

and decrease concentrations of pigments which may be the result of metal-induced 

inhibition of pigment biosynthesis (especially Chi a) (Rijstenbil et al., 1994, Xia et al.. 
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2004). However, the resuhs of various studies would suggest that the main target of 

some metal ions (e.g. Cd'^) is on CO2 fixation as a consequence of the inhibifion of 

Calvin-Benson cycle enzymes (e.g. ribulose-l,5-bisphosphate carboxylase/oxygenase, 

Rubisco) (Clijsters and Van Assche, 1985, Van Assche and Clijsters, 1990, Krupa and 

Baszynski, 1995, Joshi and Mohanty, 2004). Cd-related symptoms include the 

disintegration of chloroplast membrane ultrastructure (i.e. disorganization of the 

lamellar structure, mainly grana stacks) (Baszyhki et al., 1980) and inhibition of protein 

synthesis (Krupa and Baszynski, 1995, Joshi and Mohanty, 2004). 

PS I I is regarded as one of the most sensitive components of the photosynthetic 

apparatus to metal exposure, especially within algae (Mallick and Mohn, 2003). Cd, and 

several other metals including Pb, Ag, and Zn, are known to inhibit electron flow at the 

water-splitting site of PS I I (see review by Mallick and Mohn, 2003), whereas metals 

such as Hg, Ni and Cr reportedly cause inactivation of the PS I I reaction centre directly 

and Cu affects more than one site in electron transport chain of the N2-fixing 

cyanobacterium, Anabaena doliolum (Rai et al., 1995). 

Some metals (e.g. Cu, Zn, Cd and Hg) can subsfitute for the magnesium ion 

(Mg'^) at the reaction centre of Chi PS I I , inhibifing the light harvesting processes of 

photosynthesis resulting in the decay (bleach) of Chls and ultimately the cessation of 

photosynthefic activities (Kupper et al., 1996, Kupper et al., 1998, Prasad and Strzalka, 

1999, MacFarlane and Burchett, 2001, Kupper et al., 2007). These metal-Chl 

compounds are thermally unstable and have much lower fluorescence quantum yields 

than Mg-Chl compounds; therefore, fiirther transfer of energy from the antenna pigment 

complexes to reaction centres is inhibited (Watanabe et al., 1985, Kupper et al., 1998). 

Effects on Rubisco are possibly related to the substitution of Mg'^ in the ternary 

enzyme-C02-metal'* complex (Clijsters and Van Assche, 1985, Stiborova et al., 1986). 

The metal-induced indirect effects on primary photochemistry are known to result from 
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a lower consumption of ATP and NADPH and from a higher thylakoid proton-gradient 

due to a lower photochemical yield (Krupa et al., 1992, Krupa et al., 1993). 

Despite the extensive literature detailing the inhibitory effects of a range of 

metals on various components of the photosynthetic apparatus in algae and plants, there 

have been far fewer studies on how Cd affects the photosynthetic machinery of marine 

macroalgae. Cd is found to disturb the uptake of ''̂ COa and reduce pigment contents but 

the harmfiil effects on marine algae are relatively less studied than other metal ions 

(such as Cu and Zn) (see review by Rai et al., 1981). 

3.1.1.1. Photosynthetic pigments and metal stress 

Exposure to some metals (e.g. Cu, Zn, Cd, Hg, and Pb) is known to affect the 

concentration of photosynthetic pigments (e.g. Chi a, Chi b and carotenoids) by 

inhibiting biosynthesis and/or degrading the pigments already synthesised (Clijsters and 

Van Assche, 1985, Kastori et al., 1998, Prasad and Strzalka, 1999, Macinnis-Ng and 

Ralph, 2002). For example, enzymes involved in Chi biosynthesis, including 6-

aminolevulinic acid (ALA)-dehydratase (EC 4.2.1.24) (Van Assche and Clijsters, 1990) 

and protochlorophyllide reductase (De Filippis and Pallaghy, 1994), can be inhibited 

and iron (Fe) depletion or substitution of the central Mg can limit light harvesting and 

result in the decay of Chi molecules (Prasad and Strzalka, 1999). Lipid peroxidation 

related to changes in membrane permeability and chloroplast ultrastructure by metal 

stress can decline pigment levels due to the increases in peroxidise activity and the 

depletion of other antioxidants such as the carotenoids (Dietz et al., 1999). Therefore 

these increases of peroxides and decreases of photosynthetic pigments may describe the 

potential phytotoxicity in certain environmental conditions (e.g. metal contaminated 

estuary) (MacFarlane and Burchett, 2001). 
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Baker and Walker (1990) reported that the decrease of pigment content is 

directly related to the reduction in photosynthetic activity and carbon fixation, and, 

consequently, can be possibly related to all structures and functions at the whole plant 

level. 

3.1.1. 2. Effects of Cd on photosynthesis 

Though the effects of Cd on the physiology and biochemistry of algae has been 

reported much less than those of Cu and other metals because of its relative rareness 

(Lobban and Harrison, 1994), it was reported that Cd uptake has effects on growth, 

pigment contents, and carbon assimilation in Ulva lactuca and Laminaria saccharina 

(Markham et al., 1980a, Markham et al., 1980b). Moreover, Cd inhibits protein 

synthesis of L . saccharina leading to enzyme deficiencies and a series of secondary 

effects (Kremer and Markham, 1982). Cd is also known to affect Chi biosynthesis, 

disappearance of granal stacks, PS 1 and I I , degradation of thylakoid acyl lipids, release 

of some polypeptides associated with the oxygen evolving complex (OEC), 

disorganisation of OEC and light-harvesting complex I I (LHC II) antenna system. 

Direct effect of Cd on the structure, composition and functionality of PS I I has been 

investigated on thylakoid membranes although Cd exposure is also related to the 

substitution of Mn bound to OEC, inhibition of some enzymes of the CO2 assimilation 

pathway, inhibition of Rubisco activity by decrease of protein biosynthesis or by -SH 

bond destabilisation, and decreases of the stomata density and conductance in higher 

plants (see review by Joshi and Mohanty, 2004, Krupa et al., 1993). 

Primary photochemistry (Fy / Fm) is known to be relatively stable or there is little 

change with Cd exposure (Greger and Ogren, 1991, Krupa et al., 1992) whether the 

thylakoids are exposed to Cd in situ or in vitro (Baszyhki et al., 1980, Krupa et al.. 
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1987). Cd was reported to increase NPQ slightly (Krupa et al., 1993) but qP was 

unchanged. Increased NPQ indicates a higher dissipation of energy without 

fluorescence (Krupa et al., 1993, Skorzynska-Polit and Baszynski, 1997) and stable qP 

indicates a normal rate of photosynthetic electron transport (Joshi and Mohanty, 2004). 

Since extremely high concentrations of Cd can decrease Fv / Fm (greater than 50 mg Cd 

depending on the algal species), the inhibition effect on the photosynthetic electron 

transport of PS I I by Cd stress is regarded as an indirect response to a suppressed 

Calvin-Benson cycle (Krupa et al., 1993). 

3. 1. 2. Chlorophyll a fluorescence 

Light energy in Chi of plant tissue is known to be used or exhausted in three 

different ways. Some is used for photosynthetic activity (photochemistry), some is 

dissipated as heat and the remainder, approximately 1 ~ 2% of total light absorbed by 

photosynthetic pigments, is re-emitted as light. This re-emitted light fi"om Chi a 

molecules in PS I I can be measured by a fluorometer as Chi a fluorescence (Maxwell 

and Johnson, 2000). This can provide information on changes in the efficiency of 

photochemistry and dissipation as heat since these three processes are inter-related. 

Moreover Chi a fluorescence can be used to elucidate the potential of plants to resist 

environmental stresses (commonly abiotic stresses) and to determine the damaging 

effects of such stresses to the photosynthetic apparatus (Maxwell and Johnson, 2000, 

Sarkar et al., 2004, Strasser et al., 2004). 

Fig. 3. 1 shows a typical pattem of Chi a fluorescence quenching after tissue has 

been dark adapted (Table 3. 1 for further information and definition of parameters). 

Kautsky and co-workers (1960) observed that on transferring dark-adapted plant leaves 
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Fig. 3 .1 . Typical fluorescence quenching diagram. For fiirther information and 

definition of parameters, see the text and Table 3 .1 . Reproduced after Schreiber et al. 

(1998). 
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Table 3. 1. Chlorophyll a fluorescence parameters used in this study 

Parameter Measurement Derivation 

Extracted and technical fluorescence parameters 

Fo 

Fo' 

Fioo 

F300 

FJ 
F, 

Fm 

Fv 

Fv/Fo 

Fs 

Tpm 

Area 

Minimal fluorescence level from dark-adapted 

thalli (t = 50 las) 

Minimal fluorescence level when the thallus 

is exposed to actinic light and all PS I I centres 

are open 

Fluorescence intensity at 100 [is 

Fluorescence intensity at 300 [is 

Fluorescence intensity at J-step (at 2 ms) 

Fluorescence intensity at I-step (at 30 ms) 

Maximal fluorescence level from dark-

adapted thalli 

Maximal fluorescence level from thalli in 

light 

The dark-adapted variable fluorescence 

The potential activity of PS I I 

Steady state fluorescence yield 

The time needed to reach Fm 

Area above fluorescence curve between Fo 

and Fm 

Fm - Fo 

(Fm-Fo)/Fo 

Quantum efficiencies or flux ratios 

qP The coefficient of photochemical quenching 

NPQ Non-photochemical quenching 

Fv / Fm The maximum quantum efficiency of PS I I 

^psw Quantum efficiency of PS I I , actual quantum 

(=AF/Fm') yield of PS I I 

= ( F m ' - F s ) / ( F m ' - F o ' ) 

~ (Fm~ Fm ) / Fm 

= (Fm-Fo) /Fm 

= (Dpsii/qP 

= ( F m ' - F s ) / F m ' 
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Table 3 .1 . Continues. 

Parameter Measurement Derivation 

Phenomenological fluxes or phenomenological activities 

ABS / CS Effective antenna size of a cross section (CS). ~ Fo 

Expresses the total number of photons 

absorbed by Chi molecules per CS 

TRo / CS Maximal trapping rate of PSIl. Describes the = cppo (ABS / CSo) 

maximal rate by which an excitation is 

trapped by the CS (at t = 0) 

ETo / CS Electron transport flux per CS (at t = 0) = (pp .̂ y,/̂ . ( A B S / CSo) 

DIo / CS Effective dissipation per CS (at t = 0) - (ABS/CS) - (TRo/CS) 

Density of reaction centres 

R C / CSo Gives the number proportional to the active = cppo / (Vj / Mo) Fo 

reaction centres to the cross-section of the 

measured sample (t = 0) 

R C / CSm Gives the number proportional to the active = cppo / (Vj / Mo) Fm 

reaction centres to the cross-section of the 

measured sample (t = m) 

Performance index or vitality index 

PIABS Performance index, which explains = (RC/ABS)[(ppo/(l-

photosynthetic efficiency (ppo)][^o/(l- ̂ o)] 

* Note: cppo = TRo / A B S = 1 - (Fo / Fm) 
vj/o = ETo/TRo= 1 - VJ 
Vj = (F2ms-Fo)/(Fm-Fo) 
Mo = TRo / RC - ETo / RC 

PFD (photon flux density) is absorbed light (|imol photon m"' s'') (measured using an 
integrating sphere). 
0.5 is a factor that accounts for the partitioning of energy between PS I I and PS I . 
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into the light there is a rapid rise in fluorescence emission termed the Kautsky effect. 

Any additional electrons are not accepted by PS I I (particularly plastoquinone A, QA) 

until the previously accepted one is passed to a subsequent electron carrier 

(plastoquinone B, QB). This 'close' state of the reaction centre causes reduction of the 

efficiency of photochemistry and increment of the yield of Chi a fluorescence (Maxwell 

and Johnson, 2000). However this rapid increase of fluorescence is usually followed by 

the fall termed fluorescence quenching. This phenomenon was explained as ( I ) the 

increased rate of electrons transported from PS I I (photochemical quenching) and (2) 

the increased efficiency of energy converted to heat (non-photochemical quenching, 

N P Q ) . 

Electron transport in plant thylakoids can be inhibited by metal ions either by (1) 

preventing electron flow from H2O to NADPVmethyl-viologen or (2) disturbing light 

trapping complex and membrane structure (Tripathy and Mohanty, 1980, Joshi and 

Mohanty, 2004). 

3.1.2.1. Photochemical processes 

Photochemical processes can be measured by the following three parameters: 

cDpsii, the efficiency of PS II photochemistry; qP, photochemical quenching; Fy / Fm, the 

maximum quantum efficiency of PS II in dark adapted tissue (Maxwell and Johnson, 

2000). 

<Ppsii=(Fm'-Fs)/F„,' 

qP = (F„'-Fs)/(F^'-Fo') 

F,/F„ = (F^-Fo)/F,„ 

Opsii, sometimes expressed in a different way as AF / Fm', represents the proportion of 

absorbed light energy by Chi in PS II , which evaluates the rate of linear electron 
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transport and consequently overall photosynthesis (Maxwell and Johnson, 2000). 

Photochemical quenching (qP) describes the proportion of 'opened' reaction centres in 

PS I I . Some researchers use an alternative term, 1 - qP (excitation pressure) which 

gives the proportion of 'closed' reaction centres in PS I I (Maxwell et al., 1994). 

Changes in qP are related to the closed reaction centres saturated by light. Fy / Fm, the 

intrinsic efficiency of PS I I , is one of the most widely used parameters and provides 

information on the maximum quantum efficiency when all PS I I centres were open. 

Changes in Fy / Fm are related to changes in the efficiency of non-photochemical 

quenching. A value of about 0.83 is considered optimal for most plant species 

(Bjorkman and Demmig, 1987, Johnson et al., 1993) and lower values indicate a stress 

exposed state, particularly photoinhibition (Maxwell and Johnson, 2000). 

3.1. 2. 2. Non-photochemical processes 

NPQ and qN determine changes of heat dissipation related to the dark-adapted 

state. They may increase as a consequence of processes that protect the plant from light-

induced damage or of the damage itself (Maxwell and Johnson, 2000). NPQ commonly 

varies in the range of 0.5 ~ 3.5 at saturating light although the values can be widely 

altered depending on plant species, physiological and environmental state of the plants 

(0 ~ inifinity). 

NPQ = (F,„-F,„')/(F^-Fo') 

where Fo and F^ are minimal and maximal fluorescence levels in dark-adapted thalli 

and Fo' and F^' are minimal and maximal fluorescence levels from thalli in light. 

Another parameter used for quantifying non-photochemical quenching is qN, 

varying 0 ~ 1 (Van Kooten and Snell, 1990); however, this term is no longer widely 

used and was not measured in the present study. Neither parameter is recommended for 
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direct comparisons between plants with different histories or plants of different species 

which may have distinctly different values of Fv / Fm (Maxwell and Johnson, 2000). 

3. 1.2.3. O-J-I-P test 

The JlP-test analysis is a relatively new technique for assessing and 

understanding the stress response of plants by analysing the polyphasic rise of the Chi a 

fluorescence transient (OJIP phases. Fig. 3. 2) (Strasser and Strasser, 1995, Tsimilli-

Michael et al., 1995, Tsimilli-Michael et al., 1996, Strasser et al., 2004). Fig. 3. 2 shows 

a typical Chi a fluorescence transient curve which is plotted on a logarithmic time scale. 

The Chi a fluorescence transient of dark-adapted plant rises from Fo to Fp (= Fm) by a 

red saturating light and on a logarithmic time scale the transient presents fast polyphasic 

behaviour (Strasser et al., 2000). Fq represents fluorescence at 50 \is when all reaction 

centres of PS I I are open and Fp reveals fluorescence under saturating excitation light 

when all reaction centres of PS II are closed. A fluorometer with high time resolution 

(10 p,s), such as the Handy PEA (Hansatech, England), can measure fluorescence values 

at 50 \xs (Fo, step O), 100 \xs (Fioo), 300 s (F300), 2 ms (Step J), 30 ms (Step I) and 

maximal (Fm, step P) (Strasser et al., 1995, Bussotti et al., 2007). 

This new tool is relatively easy and fast to use, providing repeatable and robust 

data (Reddy and Strasser, 2000, Bussotti et al., 2007). The transient curve is derived 

from the physiological state of the plant or alga when exposed to different 

environmental condition. Therefore, the JlP-test can help the understanding of the 

'Structure-Function' relationship of photosynthetic organisms (Reddy and Strasser, 

2000). 
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Time (ms) 

Fig. 3. 2. Typical Chi a fluorescence transient O-J-I-P curve, plotted on a logarithmic 

timescale from 50 îs to 1 s. Each point indicates the fluorescence intensity at the time: 

the fluorescence intensity Fo (at 50 }is); the fluorescence intensities Fj (at 2 ms) and Fi 

(at 30 ms); the maximal fluorescence intensity Fp = Fm (at Tpm)- The inserted graph 

represents the relative variable fluorescence on a linear timescale, from 50 \is to 0.8 ms. 

Reproduced after Tsimilli-Michael et al. (2000). 
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The JlP-test was developed from the theory of energy flow in thylakoid 

membranes (Strasser et al., 2004, Romanowska-Duda et al., 2005, Kalaji and Loboda, 

2007) . The theory of equilibrium between the inflow and outflow of energy for 

photosynthetic pigments can provide information on the probability of the fate of the 

absorbed energy (Kalaji and Loboda, 2007). These indices calculated by the JlP-test are 

termed 'specific' and 'phenomenological' parameters and include absorption (ABS), 

trapping (TR), electron transport (ETR) per reaction centre (RC) or measured area of 

sample (cross section, CS) and performance index (PI) (Kalaji and Loboda, 2007). 

3.1. 2. 4. Applications of Chi a fluorescence and fluometry 

Chi a fluorescence has been applied extensively to studies in agronomy, forestry, 

marine environment, ecotoxicology, plant physiology and plant breeding (Ciscato et al., 

1999, Chaerle and Van Der Straeten, 2000, Strasser et al., 2000, DeEll and Toivonen, 

2003, Christen et al., 2007). This analytical tool has been employed to understand the 

structure and function of the chloroplasts, and biotic and abiotic factors affecting 

photosynthetic yield: e.g. drought (Haupt-Herting and Pock, 2000, Bukhov and 

Carpentier, 2004), light intensity (Haldimann et al., 1996, Bruce and Vasil'ev, 2004), 

nutrient deficiency (Morales et al., 2000), temperature (Fracheboud et al., 1999), 

herbicides or air pollutants toxicity (Pfundel, 2003, Popovic et al., 2003, Dewez et al., 

2008) , and herbivores (Zangerl et al., 2002, Tang et al., 2006). Moreover, this 

measurement has been applied to measure algal biomass (Mallick and Mohn, 2003) and 

physiological responses of plants (Joshi and Mohanty, 2004) and to monitor 

environmental pollution especially based on metal ion toxicity in plants (Sgardelis et al., 

1994). From the 1990s research into Chi a fluorescence transients has been used to 

assess toxic metal stress on photosynthefic responses of seagrasses and algae (Ralph and 
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Burchett, 1998). Varying results have been reported due to the capacity to de-activate 

metal ions, the chemical composition and physiological state of the algae, species 

specificity, ecotypes and exposed algal stage of life history (Boyle, 1984, Stromgren, 

1980, Davies, 1976, Jensen et al., 1974, Stromgren, 1979). 

The recent frequent use of this technique was made possible by the introduction 

of Chi fluorometers, such as the pulse amplitude modulation (PAM) fluorometry or the 

non modulated fluorimeter (plant efficiency analysis, PEA). They make it possible to 

measure the fluorescence yield and to investigate fluorescence quenching processes 

(Mallick and Mohn, 2003). These instruments have been evaluated as sensitive and non­

invasive for studying the photosynthetic efficiency of plants especially for the responses 

to metal stresses (Kupper et al., 1996, Kupper et al., 1998, Macinnis-Ng and Ralph, 

2002) since the extraction of photosynthetic pigments is not required (Kupper et al., 

1996, Kupper etal., 1998). 

3.1. 3. Purpose of this study 

Brown algae are known to be very resistant to abiotic environmental stresses. 

Various approaches to measure physiological responses of Fucus serratus and F. 

vesiculosus to cupric ion have been reported: growth, respiration, Chi fluorescence, 

oxygen evolution, Chi a content, Cu accumulation, early development, osmoregulation, 

inheritance of the tolerance, etc. However, our knowledge on responses of F. serratus to 

Cd exposure is yet limited. Therefore, Fucus serratus, collected from both the 

contaminated and the clean sites in South West England, was exposed to Cd under 

controlled laboratory conditions and the effects of Cd on accumulation, growth and 

photosynthesis were investigated. 
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3. 2. Materials and methods 

3. 2.1. Plant material and culture condition 

Fucus serratus was prepared as described in Chapter 2. 

3. 2. 2. Culture medium, Aquil, and Cd concentration 

The medium and metal concentrations were prepared as described in Chapter 2. 

3. 2. 3. Determination of total and non-exchangeable accumulation of 

Cd 

Cultured algae (ca. 100 mg fresh weight) were prepared in two different ways 

for 1) total (non-exchangeable + exchangeable) and 2) intemal (non-exchangeable) 

metal/metalloid contents. To determine the total concentration of metals/metalloids in 

the samples, Fucus thalli were washed three times with ultrapure water and blotted dry 

with filter paper. To discriminate between extracellular sorption and intracellular uptake 

of metals/metalloids, duplicate seaweed samples, from the same thalli for total contents 

determination, were subjected to sequential chemical treatment (EDTA and ultrapure 

water treatment) prior to digestion by nitric acid (HNO3) (Vasconcelos and Leal, 2001). 

Materials were washed with 5 mM EDTA three times (10 minutes each), rinsed twice 

with ultrapure water and blotted dry with filter paper. 

Washed and dried materials were frozen at -20°C overnight and freeze-dried 

(Super Modulyo freeze-drier; Girovac, United Kingdom). After weighing (mg), the 
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freeze-dried samples were placed in Teflon vessels with 3 mL 70% nitric acid and 

digested in a microwave (CEM-2000; CEM Microwave Technology, United Kingdom) 

at 2 kW for 30 min. Digests were then transferred to borosilicate volumetric flasks and 

diluted to a volume of 25 mL with ultrapure water ready for analyses. Cd, Cu, Pb, Zn 

and As contents were determined by Inductively Coupled Plasma Mass Spectroscopy 

(ICP-MS, PlasmaQuad PQ2+ Turbo, Thermo Elemental, Winsford, Cheshire, UK). 

Metal/metalloid standards were made using certified standard solutions (Merck, UK), 

acidified to the same pH as the samples with HNO3. Results (total and non-

exchangeable concentrations of metals/metalloids) are expressed as means ± standard 

deviations of three replicates. 

3. 2. 4. Physiological responses of Fucus serratus to the presence of Cd 

To observe the effect of Cd on the physiology of F. serratus, growth and 

photosynthetic performances were monitored for different time periods at a range of 

external concentrations. Algae were exposed to either 0 ~ 10 mg Cd L* for 6 h, 12 h, 24 

h, 7 d and 14 d or 0 ~ 1000 ^g Cd L"' for 24 hr, 96 hr and 7 d. 

3. 2. 4. 1. Relative growth rate (RGR) 

Algal growth rates were determined as RGR based on fresh biomass as 

described in Chapter 2. 

3. 2. 4. 2. Chlorophyll a fluorescence for measuring photosynthetic performance 

Changes in fluorescence emission were reported to be related to changes in 

photosynthetic rate (Baker and Oxborough, 2004). Chi a fluorescence was measured 

using a Handy PEA (Handy-Plant Efficiency Analyser, Hansatech Instruments LTD, 
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King's Lynn, Norfolk, U.K.) for algae exposed to 0 ~ 10 mg Cd L ' ' and a pulse 

amplitude modulated fluorescence monitoring system (PAM FMS, Hansatech 

Instruments LTD, Norfolk, U.K.) for algae exposed to 0 ~ 1000 i^g Cd L"'. The 

measured parameters used in this study are given in Table 3 .1 . For some parameters, 

e.g. Fo, Fm, Fv, Fv / Fo and Fv / Fm, thalli were dark adapted for ca. 20 minutes prior to 

taking measurements. 

3.2.4.3. Photosynthetic pigment analysis 

Determination of photosjmthetic pigment of F. serratus followed the protocols 

outlined by Evans (1988) (Fig. 3. 3). Because of their photosynthetic activities under the 

light condition and unstable characters to air (oxidation), analysis of pigments was 

carried out under minimal exposure to air and light. During analyses, a thick black 

cotton cloth was used to keep them under dark (at least dim) conditions. A l l solutions 

were kept in brown glass bottles and stored in the fridge. Freshly opened methanol and 

acetone (analytical grade) were used. 

After harvesting, Cd exposed samples (0.06 ~ 0.2 g FW) were rinsed under 

running tap water to remove any remaining Aquil medium and Cd, flushed with liquid 

nitrogen immediately and stored at -20° in plastic tubes covered by Quminium foil 

until they were analysed. 

Seaweed samples were ground to a powder with a pestle and mortar using liquid 

nitrogen on ice and then extracted in dimethyl sulfoxide (DMSO) three times for a total 

of 25 min (final volume 1 mL). At each step the mixtures were well shaken, and then 

centrifiiged to collect the extracts. The concentrations of pigments in the extract were 
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determined spectrophotometrically (Unicam He>.ios p UV-VIS spectrophotometer, 

Spectronic Unicam, Cambridge, U.K.) using the following formulae (a) (Evans, 1988). 

(a) DMSO Extract 

[Chi a] = A665 / 72.8 

[Chi C] = (A63, + A582 - 0.297 A665) / 61.8 

[Fx] = (A480 - 0.722 (A63I + A582 -0.297 Aees) - 0.049 A665) / J30 

where Chi a, chlorophyll a; Chi c, chlorophyll c; Fx, fiacoxanthin. 

To ensure complete recovery of pigments, the seaweed samples were further 

extracted in acetone. The remaining samples were extracted in acetone four to five times 

for 20 ~ 30 minutes (total acetone volume 2.4 ~ 3 mL). After this treatment, Fucus 

samples were white and acetone extracts were clear. The acetone extracts were 

combined, and 1 mL hexane and 1 mL distilled water were added to it and then gently 

swirled. 

The upper hexane phase and the lower aqueous phase were separated with a 

pipette. The hexane phase was washed with an equal volume of 80% methanol (2 ~ 3 

times) until the washing was colourless and the methanol washing was added to the 

acetone extract. The combined reagent was measured spectrophotometrically with a 

glass cuvette using the following formulae (b) (Evans, 1988). 

(b) Acetone : Methanol : Water extract 

[Chi aj = A664 / 73.6 

[Chi c] = (A63J + A58I - 0.300 A664) /62.2 

[Fx] = (A470 - 1-239 (Aen + A58I - 0.300 A664) - 0.0275 A(,64) / M l 
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Next, the previously separated hexane phase was diluted with fresh acetone (10 

mL) and measured spectrophotometrically using a glass cuvette (formulae (c)) (Evans, 

1988). 

(c) Acetone : Hexane Extracts 

[Chi a] = A66I / 83.3 (or A615 /15.4) 

[P-carotene] = ( A 4 8 0 - 0.033 A^ei) /193 

Each value represents a concentration of pigment in each different volume of 

reagent. Al l the values were combined together after conversion to the same unit, which 

shows total pigment contents in F. serratus thalli. 

3. 2. 5. Statistical tests 

Statistical tests were performed as described in Chapter 2 using SPSS (for 

windows, version 16.0, SPSS Inc.). Three replicates were used for determination of 

metal concentrations and photosynthetic pigments and six ~ ten replicates were used for 

statistical analyses of photosynthetic performances and growth. 
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Fig. 3.3. Protocol for pigment extraction and separation. Modified fi-om Evans (1988). 
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3. 3. Results 

3. 3.1. Metal concentrations in natural thalli of Fucus serratus 

The non-exchangeable and total concentrations of metals in F. serratus collected 

trom Restronguet Point (RP) and Bantham Quay (BQ) are tabulated in Table 3. 2. The 

seaweed samples collected from RP had significantly (p < 0.001) higher concentrations 

of Cu, Zn and Pb than those from BQ, whereas the concentration of Cd in samples from 

the two sites was the same (p > 0.05). 

Most of the accumulated metals were found in the non-exchangeable fraction, 

although the proportions varied between sites (Table 3. 2). Approximately 74.7% of Cd, 

87.9% of Zn, 100% of Cu and 60.9 % of Pb were found intracellularly in samples from 

RP while 49.3% of Cd, 68.4% of Zn, 86.0% of Cu and 75.9% of Pb were found within 

cells in BQ samples. 

3. 3. 2. Metal concentrations of Fucus serratus exposed to higher and 

extended Cd stress 

Accumulated metal contents were analysed with F. serratus exposed to 0 ~ 10 

mg Cd L"' for 7 and 14 d (Table 3. 3 ~ 3. 4, Fig. 3. 4). Description of metal contents is 

focused on Cd concentration, since Cu, Zn and Pb were not additionally supplied except 

for essential levels in Aquil media (Table 2. 1). 

In both populations, total Cd contents increased with increasing Cd 

concentrations in the medium (p < 0.0001) as well as with time of Cd exposure (p = 
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0.012) (Table 3. 3, Fig. 3. 4). No significant difference was discovered between total Cd 

contents of both populations (p > 0.05). Above 50% of the total Cd was found in the 

non-exchangeable fraction within the cells in both populations. The highest ratio 

between non-exchangeable and total Cd concentration was in cells of the control 

treatments and the percentages decreased with increasing Cd contents in the media as 

well as exposure time. 

Non-exchangeable Cd fraction showed the same pattem to total Cd contents. 

Non-exchangeable Cd concentrations were enhanced by increasing Cd concentrations in 

the medium (p < 0.0001) as well as time of exposure (p = 0.005) regardless of the 

population (Table 3. 4). Both the polluted and the reference populations showed the 

similar non-exchangeable Cd concentrations at 7 and 14 d (p > 0.05) (Fig. 3. 4). 

Levels of other measured metals (Cu, Zn and Pb) were significantly higher at RP 

than BQ (Table 3 . 3 - 4 ) . Changes in total and non-exchangeable concentrations of 

metals did not show a pattem of increase/decrease with Cd concentration or time of 

exposure. 
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Table 3. 2. The concentrations (famol g"' DW) of non-exchangeable and total metals in Fucus serratus collected from Restronguet Point and Bantham 

Quay in May 2007. Data are expressed as means ± S. D. (n = 3). RP, Resfronguet Point; BQ, Bantham Quay. 

Location 
Cu 

(Hmol g ' DW) 
Zn 

(ixmol g ' DW) 
Pb 

(nmol g ' DW) 
Cd 

(^mol g"' DW) 
Total metal ions 
(Hmol g"' DW) 

Non-
exchangeable 

RP 0.9143 ±0.1232 3.1070 ±0.2399 0.0042 ± 0.0002 0.0049 ±0.0010 4.3424 ±0.3157 
Non-

exchangeable 
BQ 0.0413 ±0.0166 0.2907 ±0.1245 0.0022 ±0.0015 0.0034 ± 0.0004 0.3376 ±0.1430 

Total 

RP 1.2236 ±0.0739 3.5336 ±0.4897 0.0069 ± 0.0009 0.0062 ± 0.0009 4.4583 ± 0.6140 

Total 

BQ 0.0480 ±0.0033 0.4252 ± 0.0464 0.0029 ± 0.0002 0.0069 ± 0.0002 0.4830 ±0.0501 
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Table 3.3. The concentrations (^mol g DW) of total metals in Fucus serratus after cadmium exposure for 7 and 14 d. Data are expressed as means ± 

S. D. (n = 3). RP, Restronguet Point; BQ, Bantham Quay. 

Location Time 
Cd 

( m g L ' ) 
Cu 

(|.imol g ' DW) 
Zn 

(l^mol g-' DW) 
Pb 

(^mol g ' DW) 
Total metal ions 
(l^mol g ' DW) 

0 0.94 ±0.13 4.24 ±0.41 0.011 ±0.006 5.191 ±0.546 

7d 
1 0.94 ±0.16 4.16± 1.33 0.011 ±0.008 5.111 ± 1.498 

7d 
5 0.98 ±0.17 3.78± 1.10 0.007 ± 0.005 4.767 ± 1.275 

RP 
10 0.63 ± 0.24 3.75 ± 1.31 0.007 ± 0.006 4.387 ± 1.556 

RP 
0 0.58 ±0.35 3.37 ± 1.63 0.011 ±0.008 3.961 ±1.988 

14d 
1 0.71 ±0.14 4.21 ± 1.15 0.011 ±0.003 4.931 ±1.293 

14d 
5 0.64 ± 0.37 3.71 ±1.88 0.008 ± 0.008 4.358 ±2.258 

10 0.71 ±0.08 3.79 ±0.30 0.011 ± 0.002 4.511 ±0.382 

0 0.12 ±0.01 0.59 ± 0.04 0.006 ± 0.001 0.716 ±0.051 

7d 
1 0.13 ±0.04 0.59 ± 0.20 0.005 ± 0.001 0.725 ± 0.241 

7d 
5 0.19 ±0.09 0.64 ±0.51 0.006 ± 0.003 0.836 ± 0.603 

BQ 
10 0.10 ±0.06 0.47 ± 0.04 0.006 ± 0.005 0.576 ±0.105 

BQ 
0 0.13 ±0.04 0.78 ±0.15 0.003 ± 0.000 0.913 ±0.190 

14d 
1 0.09 ± 0.00 0.61 ± 0.29 0.005 ± 0.004 0.705 ± 0.294 

14d 
5 0.11 ±0.02 0.44 ± 0.04 0.004 ± 0.002 0.554 ± 0.062 

10 0.09 ± 0.00 0.62 ±0.16 0.006 ± 0.003 0.716 ±0.163 
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Table 3. 4. The concentrations (|amol g" DW) of non-exchangeable metals in Fucus serratus after cadmium exposure for 7 and 14 d. Data are 

expressed as means + S. D. (n = 3). N.D. represents not detected. RP, Restronguet Point; BQ, Bantham Quay. 

Location Time 
Cd 

(mgL-') 
Cu 

(Hmol g-' DW) 
Zn 

(lamol g-' DW) 
Pb 

(nmol g ' DW) 
Total metal ions 
(lamol g-' DW) 

0 0.45 ± 0.03 3.67 ± 1.30 0.006 ± 0.003 4.126 ± 1.333 

7 d 
1 0.65 ± 0.28 3.92 ± 1.06 0.008 ± 0.005 4.578 ± 1.345 

7 d 
5 0.64 ±0.19 1.94 ± 1.40 0.004 ± 0.007 2.584 ± 1.597 

RP 
10 0.57 ± 0.07 2.46 ± 0.53 N.D. 3.030 ±0.600 

RP 
0 0.45 ±0.12 2.53 ±0.52 0.001 ± 0.003 2.981 ±0.643 

14d 
1 0.65 ±0.14 3.49 ± 0.75 0.003 ± 0.003 4.143 ±0.863 

14d 
5 0.53 ±0.16 3.24 ± 1.14 0.007 ± 0.006 3.777 ± 1.306 

10 0.60 ±0.16 3.37 ±0.71 0.002 ± 0.002 3.972 ± 0.872 

0 0.05 ± 0.01 0.49 ± 0.09 0.001 ± 0.001 0.541 ±0.101 

7d 
1 0.04 ± 0.03 0.41 ± 0.08 0.003 ± 0.002 0.453 ±0.112 

7d 
5 0.07 ±0.01 0.51 ±0.09 0.012 ±0.016 0.592 ±0.116 

BQ 
10 0.08 ± 0.02 0.44 ±0.10 0.002 ±0.001 0.522 ±0.031 

BQ 
0 0.07 ±0.01 0.75 ±0.10 0.003 ± 0.000 0.148 ±0.020 

14d 
1 0.08 ± 0.02 0.36 ± 0.04 0.002 ±0.001 0.442 ± 0.061 

14d 
5 0.08 ± 0.01 0.30 ±0.02 0.004 ± 0.002 0.384 ±0.032 

10 0.08 ± 0.02 0.33 ± 0.06 0.003 ± 0.002 0.413 ±0.082 
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Fig. 3. 4. Total and non-exchangeable cadmium concentrations in Fucus serratus from 

Restronguet Point and Bantham Quay exposed to a range of cadmium concentrations 

for 7 days and 14 days. Values are means and standard deviations (n = 3). 
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3. 3. 3. Metal concentrations of Fucus serratus exposed to lower and 

shorter Cd stress 

Accumulated metal concentrations of F. serratus which was exposed to lower 

Cd doses (0 ~ 1000 \ig Cd U ' ) for shorter period (24 hr, 96 hr and 7 d) were tabulated in 

Tables 3. 5 ~ 3. 8 and Fig. 3. 5. In this experiment likewise, only changes in Cd levels 

were focused since other metals were kept at the levels in the medium. Mean 

concentrations of total and non-exchangeable Cd of both populations significantly 

increased with time of Cd exposure (p = 0.015 for total; p = 0.017 for non-

exchangeable) and Cd concentration in the medium (p < 0.0001 for both non-

exchangeable and total concentrations. Fig. 3. 5). However locality did not affect total 

Cd concentration. Both the contaminated and the reference populations revealed similar 

levels of total Cd concentrations at each 24 hr, 96 hr and 7 d (p > 0.05). Difference by 

locality was shown with non-exchangeable Cd concentration at 24 hr. Intemal Cd 

contents of the RP population exposed to Cd for 24 hr were significantly lower than the 

BQ population. However, except this 24 hr treatment, above 50% of Cd was 

accumulated intracellularly in both populations. 

The RP population accumulated significantly higher levels of Cu, Zn and Pb 

(Table 3 . 5 - 3 . 8 ) . Total and non-exchangeable concentrations of these three metals 

were significantly higher at the RP population. Total and non-exchangeable 

concentrations of As were not different from each population. In the mean time, 

changes of Cu, Zn, Pb and As were not related to the Cd concentration or culture period 

(time of Cd exposure). 
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Table 3.5. The concentrations (^mol g DW) of total metals in Fucus serratus from Resfronguet Point after cadmium exposure for 24 hr, 96 hr and 7 

d. Data are expressed as means ± S.D. (n 3). RP, Restronguet Point. 

Location Time 
Cd Cu 

(Hmol g"' DW) 
Zn 

(^mol g ' DW) 
Pb 

(Hmol g ' DW) 
As 

(^mol g ' DW) 
Total metal/metalloids 

(^mol g ' DW) 

0 0.94 ±0.12 3.64 ±0.46 0.029 ±0.019 0.29 ± 0.07 5.160 ±0.669 

24 hr 
10 1.46 ±0.21 3.79 ± 1.16 0.026 ± 0.004 0.35 ± 0.06 5.626 ± 1.434 

24 hr 
100 0.99 ±0.33 4.14 ±0.56 0.029 ± 0.025 0.29 ± 0.05 5.449 ± 0.965 

1000 1.38±0.10 3.34 ±0.48 0.015 ±0.004 0.37 ±0.02 5.105 ±0.604 

0 1.10±0.14 8.65 ± 0.86 0.022 ± 0.003 0.27 ± 0.03 10.042 ± 1.033 

RP 96 hr 
10 1.15 ±0.09 2.60 ± 0.25 0.014 ±0.005 0.31 ±0.06 4.074 ± 0.405 

RP 96 hr 
100 1.00 ±0.10 5.39 ±0.59 0.016 ±0.003 0.29 ± 0.07 6.696 ± 0.763 

1000 0.81 ±0.08 5.12 ±2.09 0.038 ± 0.007 0.33 ±0.05 6.298 ± 2.227 

0 0.92 ±0.11 3.56 ±0.42 0.013 ±0.012 0.39 ±0.05 4.883 ± 0.592 

7d 
10 1.21 ±0.32 4.71 ± 1.01 0.023 ± 0.009 0.37 ± 0.04 6.313 ± 1.379 

7d 
100 1.14±0.09 4.17 ±0.37 0.016 ±0.003 0.31 ±0.05 5.636 ±0.513 

1000 0.79 ±0.23 4.35 ± 0.20 0.015 ±0.004 0.34 ±0.02 5.495 ± 0.454 
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Table 3. 6. The concentrations (f^mol DW) of total metals in Fucus serratus from Bantham Quay after cadmium exposure for 24 hr, 96 hr and 7 

d. Data are expressed as means ± S.D. (n = 3). BQ, Bantham Quay. 

Location Time 
Cd 

(^g L-') 

Cu 
(^imol g ' DW) 

Zn 
(Hmol g ' DW) 

Pb 
(lamol g"' DW) 

As 
(nmol g"' DW) 

Total metal/metalloids 
(^imol g ' DW) 

0 0.46 ±0.13 0.79 ±0.12 0.014 ±0.008 0.32 ± 0.05 1.584 ±0.308 

24 hr 
10 0.40 ±0.05 0.65 ± 0.04 0.008 ± 0.001 0.23 ± 0.08 1.288 ±0.171 

24 hr 
100 0.54 ±0.08 1.16 ±0.29 0.013 ±0.003 0.34 ± 0.04 2.053 ±0.413 

1000 0.35 ±0.11 0.74 ±0.19 0.013 ±0.005 0.25 ± 0.03 1.353 ±0.335 

0 0.42 ±0.15 0.91 ± 0.30 0.011 ±0.006 0.32 ± 0.03 1.661 ±0.486 

BQ 96 hr 
10 0.49 ±0.12 0.89 ±0.35 0.013 ±0.004 0.28 ±0.10 1.673 ±0.574 

BQ 96 hr 
100 0.59 ±0.10 1.35 ±0.23 0.043 ± 0.007 0.37 ±0.05 2.353 ±0.387 

1000 0.52 ±0.15 0.96 ±0.20 0.013 ±0.009 0.34 ±0.06 2.323 ±0.419 

0 0.37 ±0.03 1.25 ±0.34 0.008 ± 0.002 0.32 ± 0.07 1.948 ±0.442 

7d 
10 0.53 ±0.16 2.22 ± 0.92 0.017 ±0.005 0.42 ± 0.07 3.187± 1.155 

7d 
100 0.37 ±0.15 0.85 ± 0.03 0.009 ± 0.002 0.37 ± 0.04 1.599 ±0.222 

1000 0.54 ±0.26 0.95 ± 0.38 0.014 ±0.003 0.29 ± 0.05 1.794 ±0.693 
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Table 3. 7. The concentrations (|amol g" DW) of non-exchangeable metals in Fucus serratus from Restronguet Point after cadmium exposure for 24 hr, 

96 hr and 7 d. Data are expressed as means ± S.D. (n = 3). RP, Restronguet Point. 

Location Time 
Cd 

(^gL-') 
Cu 

(^imol g"' DW) 
Zn 

(^mol g ' DW) 
Pb 

(^mol g"' DW) 
As 

(lamol g ' DW) 
Total metal/metalloids 

(lamol g"' DW) 

0 0.77 ± 0.09 1.11 ±0.31 0.021 ±0.019 0.26 ± 0.08 2.161 ±0.499 

24 hr 
10 0.83 ±0.17 1.91 ±0.08 0.012 ±0.002 0.34 ± 0.04 3.092 ± 0.292 

24 hr 
100 0.95 ± 0.20 1.77± 1.10 0.012 ±0.004 0.26 ±0.10 2.992 ± 1.404 

1000 0.72 ± 0.08 2.11 ± 1.39 0.014 ±0.000 0.25 ± 0.02 3.094 ± 1.490 

0 0.95 ±0.22 1.57 ±0.64 0.021 ±0.011 0.19 ±0.02 2.560 ±0.891 

RP 96 hr 
10 0.66 ± 0.05 1.98 ±0.46 0.014 ±0.001 0.19 ±0.01 2.844 ±0.521 

RP 96 hr 
100 0.85 ±0.19 1.75 ±0.26 0.014 ±0.003 0.18 ±0.04 2.794 ± 0.493 

1000 0.66 ± 0.09 1.44 ±0.13 0.022 ±0.012 0.17 ±0.02 2.292 ± 0.252 

0 0.79 ± 0.08 2.15 ±0.54 0.013 ±0.002 0.06 ± 0.00 3.013 ±0.622 

7 d 
10 0.87 ±0.09 2.99 ± 1.57 0.016 ±0.004 0.10 ±0.02 3.886 ± 1.684 

7 d 
100 0.80 ±0.05 1.60 ±0.20 0.013 ±0.003 0.10 ±0.01 2.423 ± 0.263 

1000 0.76 ± 0.04 1.57 ±0.44 0.011 ±0.007 0.09 ± 0.02 2.431 ±0.507 
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Table 3. 8. The concentrations (|amol g" DW) of non-exchangeable metals in Fucus serratus from Bantham Quay after cadmium exposure for 24 hr, 

96 hr and 7 d. Data are expressed as means ± S.D. (n = 3). BQ, Bantham Quay. 

Location Time 
Cd 

(HgL-') 
Cu 

(^mol g"' DW) 
Zn 

(l^mol g"' DW) 
Pb 

(^mol g ' DW) 
As 

(^imol g"' DW) 
Total metal/metalloids 

(l^mol g"' DW) 

0 0.27 ±0.00 0.68 ±0.13 0.009 ± 0.006 0.25 ± 0.09 1.209 ±0.226 

24 hr 
10 0.27 ± 0.01 0.53 ± 0.04 0.007 ± 0.002 0.18 ±0.03 0.987 ± 0.082 

24 hr 
100 0.29 ± 0.05 0.70 ±0.12 0.008 ± 0.002 0.33 ± 0.03 1.328 ±0.202 

1000 0.25 ± 0.02 0.61 ±0.15 0.007 ± 0.002 0.18 ±0.07 1.047 ±0.242 

0 0.29 ± 0.04 0.63 ± 0.23 0.011 ±0.002 0.12 ±0.04 1.051 ±0.312 

BQ 96 hr 
10 0.23 ± 0.05 0.67 ±0.16 0.008 ± 0.000 0.15 ±0.02 1.058 ±0.230 

BQ 96 hr 
100 0.33 ± 0.06 0.76 ±0.14 0.007 ± 0.002 0.13 ±0.02 1.227 ±0.222 

1000 0.32 ±0.08 0.89 ± 0.22 0.010 ±0.001 0.10 ±0.02 1.320 ±0.321 

0 0.34 ±0.03 0.67 ± 0.08 0.008 ± 0.001 0.07 ±0.01 1.088 ±0.121 

7d 
10 0.29 ± 0.04 0.49 ±0.11 0.007 ± 0.003 0.06 ±0.01 0.847 ±0.163 

7d 
100 0.30 ±0.04 0.58 ±0.19 0.008 ± 0.000 0.06 ± 0.02 0.948 ± 0.250 

1000 0.31 ±0.08 0.79 ± 0.07 0.011 ±0.003 0.08 ± 0.04 1.191 ±0.193 
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Fig. 3. 5. Non-exchangeable and total cadmium concentrations in Fucus serratus from 

Restronguet Point and Bantham Quay exposed to cadmium for 24 hr, 96 hr and 7 days. 

Values are means and standard deviations (n = 3). 
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3. 3. 4. Relative growth rate (RGR) 

The effect of high concentrations of Cd (1 ~ 10 mg L" ' ) on RGR of Fucus 

serratus was measured on the basis of weight change for 7 ~ 14 d exposure (Fig. 3 . 6 ) . 

In the RP population, RGRs of F. serratus decreased for the first 7 d in all treatments 

except 0 |xg Cd L ' . The higher concentrations showed the more decrease, however 

RGRs were not significantly different between 5 and 10 mg Cd L"' for 7 and 14 d (p > 

0.05). After 14 d of Cd exposure, recovery of weight was shown as increased RGRs in 

RP (Fig. 3 . 6 ) . 5 and 10 mg Cd L"' exposure increased RGRs of F. serratus after 14 d 

even though they were lower than 0 mg L ' ' . 1 mg L'^ showed the latest recovery of 

growth in RP. 

The BQ population also showed drastic decrease in RGRs for the first 7 d. RGRs 

of BQ have also decreased with increasing Cd concentrations however 1 mg L"' showed 

the similar decrease to 10 mg L ' ' (p > 0.05). After 14 d, RGRs were still lower than 0 

except for 0 mg L ' ' A l l Cd treatments above 1 mg L"' demonstrated similar RGRs in 

BQ (p > 0.05). For 7 and 14 d, all RGRs values from Cd-exposed materials were 

significantiy lower than RGRs of the RP population (p < 0.0001). 

F. serratus was cultivated with Cd in the second experiment, however this time 

lower concentrations of Cd and shorter exposure were used, i.e. 0 ~ 1000 \ig Cd L"' and 

24 hr, 9 6 hr and 7 d (Fig. 3 . 7). RGRs decreased with increasing time of exposure and 

Cd treatment in RP, however the effect of concentration was not clear at 24 hr (Fig. 3 . 

7). 1000 \xg L"' showed the lowest growth after 9 6 hr and 10 \i.g L ' ' showed the highest 

RGR after 7 d. 

RGRs in BQ have also reduced with increasing time of Cd exposure and Cd 

treatment (Fig. 3 . 7). After 24 hr, RGRs decreased very significantly with increasing Cd 

concentrations (p < 0.0001). However this significance disappeared at 9 6 hr and values 

of Cd-exposed materials were very similar at 9 6 hr (p > 0.05). The effect of increasing 
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Fig. 3. 6. Relative growth rates of Fucus serratus from Restronguet Point and Banthain 

Quay exposed to cadmium for 7 and 14 days. Values were expressed by means and 

standard deviations (n = 3). 
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Cd concentration on RGRs have reappeared at 7 d (p < 0.05), and RGRs in BQ were 

higher than in RP. 

3. 3. 5. Chlorophyll a fluorescence parameters 

Fo (minimal fluorescence level from dark-adapted thalli) 

Minimum fluorescence of dark-adapted material (Fo) of F. serratus was 

measured in 0 ~ 10 mg Cd U ' for 7 and 14 d (Fig. 3. 8). In RP, Fo levels including the 

control significantly increased with fime of exposure (p = 0.001). The difference 

between 7 and 14 d exposures were more apparent at 5 and 10 mg Cd L"' than the lower 

concentrations (p = 0.001). After 14 d, effects of Cd treatment (1 ~ 10 mg L"') did not 

show a pattem of increase/decrease related to the concentration (p > 0.05). 

In BQ, Fo values were not affected either by Cd treatment ( 0 - 1 0 mg L"') or by 

culture period (p > 0.05, respectively). A l l Fucus materials including the control showed 

the lower Fo levels at 14 d than the levels at 7 d, but no statistical significance was 

estimated because of the wide variations. 

At 7 d, both populations showed similar values of Fo. However, at 14 d, the RP 

population had significantly higher levels than the BQ population (p < 0.0001). 

For evaluating shorter exposure, 0 ~ 10 mg L"' treatment was determined for 6, 

12 and 24 hr (Fig. 3. 9). According to GLM, algae from RP showed significant 

difference by Cd concentrations (p = 0.004) but not by time of exposure (p > 0.05). 

However, the significance was not related to the increasing Cd concentration (0 = 5 < I 

= 10 mg L"'). However, neither time of exposure nor Cd concentration affected Fo levels 

in the BQ population (p > 0.05, respectively). 
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Fig. 3. 8. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 10 mg Cd L"') for 7 and 14 d. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. Fo, minimal fluorescence level from dark-adapted 

thalli (t = 50 |.ts); Fm, maximal fluorescence level from dark-adapted thalli; Fv, the dark-

adapted variable fluorescence. Values were expressed by means and standard deviation 

(n = 8). 
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Fig. 3. 9. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium ( 0 - 1 0 mg Cd L"') for 6, 12 and 24 hr. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. For the definition of parameters, see Fig. 3. 6. Values 

were expressed by means and standard deviation (n = 10). 
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Fig. 3.10. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 1000 ^g Cd L"') for 24 hr, 96 hr and 7 d. Restronguet Point is a polluted 

site and Bantham Quay is a reference site. For the definition of parameters, see Fig. 3. 6. 

Values were expressed by means and standard deviation (n = 6). 
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Fucus from BQ had significantly lower minimum fluorescence than Fucus from 

RP (p < 0.0001). Shorter exposure with 1 ~ 10 mg Cd L"' showed Fo values 

approximately half that of the longer exposures (7 and 14 d). 

Since 1 ~ 10 mg L"' are extremely high Cd concentrations, which may be 

impossible to reach in the natural environment, much lower concentrations of Cd (10, 

100, and 1000 |ag L"') were applied for 24 hr, 96 hr and 7 d. Fo values were variable 

with wide variations in both populations and concentrations of 0 ~ 1000 \ig Cd L"' were 

not found to be related to the changes of Fo in either RP or BQ populations (Fig. 3. 10). 

Values in RP were not affected by exposure time (p > 0.05), however values of 96 hr in 

BQ were lower than other exposure (p = 0.05). Minimum fluorescence in BQ decreased 

at 96 hr and recovered at 7 d (96 hr < 24 hr < 7d). Total values of both populations were 

similar (p > 0.05). When compared with extremely high Cd concentrations ( 1 - 1 0 mg 

L ' ' ) , lower concentrations (10 ~ 1000 |J.g L"') had lower Fo values which were even 

lower than the values for 1 ~ 10 mg L"' with shorter exposure (up to 24 hr). 

Fm (maximal fluorescence level from dark-adapted thalli) 

Maximum fluorescence of dark-adapted materials (Fm) after Cd exposure for 7 

and 14 d did not differ with Cd concentrations of 0 ~ 10 mg L"' in either population (p > 

0.05, Fig. 3. 8). While 14 d exposure showed significanfly higher Fm than 7 d in RP (p > 

0.005), especially at 5 ~ 10 mg L ' , there was no difference in BQ (p > 0.05). As with Fo, 

Fm of 0 mg Cd L ' ' was higher than those of 1 and 5 mg L"' in BQ, however no statistical 

difference was detected (p > 0.05). Fm of F. serratus after 7 and 14 d exposure to 0 ~ 10 

mg L"' did not show any significant differences between the two populations (p > 0.05). 

With shorter exposure (6, 12 and 24 hr), 0 ~ 10 mg Cd L"' had significant effect 

on algae from the polluted site (p = 0.007) and 1 and 10 mg L ' ' increased Fm values 
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compared to the control (Fig. 3 . 9 ) . However, exposure times of 6 , 1 2 and 2 4 hr did not 

cause any significant differences at the polluted site (p > 0 . 0 5 ) . Meanwhile Fm values 

were not affected by Cd concentration with algae from the control site (p > 0 . 0 5 ) . 1 2 hr 

treatment showed an apparent increase compared with 6 hr in B Q , especially with 1 mg 

Cd L ' . Algae from R P showed significantly higher Fm values compared to algae from 

B Q (p < 0 . 0 0 0 1 ) . Compared with values with longer exposure (Fig. 3 . 8 ) , approximately 

from a half to two thirds of Fm values were measured. 

Fm values with lower Cd concentrations ( 1 0 ~ 1 0 0 0 |ig L ' ' ) were also measured 

at 2 4 hr, 9 6 hr and 7 d (Fig. 3 . 10 ) . As Fo, the R P population had widely varied values 

and was affected by neither Cd concentration nor exposure time (p > 0 . 0 5 ) . Fm of B Q 

population also showed similar pattem to Fm of R P and was not affected by Cd 

concentration (p > 0 . 0 5 ) . Fm of B Q significantly decreased at 9 6 hr (p = 0 . 0 0 9 ) and 

increased again at 7 d ( 9 6 hr < 2 4 hr < 7 d). Each population showed similar Fm value 

and no statistical significance was observed (p > 0 . 0 5 ) . When total value of each 

population was compared with values for longer or shorter exposure at higher 

concentration (~ 1 0 mg Cd L ' ' ) , much lower value was evaluated. 

Fv (dark-adapted variable fluorescence) 

Variable fluorescence of dark-adapted algae between Fm and Fo (Fv = Fm - Fo) 

was calculated (Figs 3 . 8 ~ 10) . High Cd concentration ( 0 ~ 1 0 mg L" ' ) did not affect Fv 

values in either population for 7 and 1 4 d (p > 0 . 0 5 ) (Fig. 3 . 8 ) . While there was no 

difference between time of exposure in B Q (p > 0 . 0 5 ) , 1 4 d exposure showed higher Fv 

levels than 7 d in R P , especially at higher Cd concentrations ( 5 and 1 0 mg L" ' ) (p = 

0 . 0 2 5 ) . 
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Although both populations of F. serratus showed similar fluorescence values 

after 7 d exposure to 0 ~ 10 mg Cd L"^ RP showed significantly higher levels after 14 d 

exposure (p > 0.05). 

When F. serratus was exposed to Cd for less than 24 hr, Fv from the RP 

population was affected by Cd concentration (0 ~ 10 mg L"') (p = 0.011) (Fig. 3. 9). Cd 

exposure increased Fv values and the control was statistically different from 1 and 10 

mg Cd (P = 0.039 and p = 0.013, respectively). Exposure of 5 mg L"' was not 

different from the other treatments (p > 0.05). 

While time of exposure did not affect Fv of F. serratus from RP, algae from BQ 

were affected very significantiy (p = 0.001). 12 hr exposure showed the highest values 

and they were significantly higher than 6 hr exposure (p = 0.001). After 24 hr, the 

values were lower than after 12 hr of exposure and were not different from the other 

time conditions (p > 0.05). 

Fv values between the two populations were very distinct and values of RP were 

significantly higher than those of BQ (p < 0.0001). When compared with Fv values for 

longer exposure (7 and 14 d), the values with shorter exposure (24 hr, 96 hr and 7 d) 

were lower. 

F. serratus exposed to 0 ~ 1000 |ig Cd L"' for 24 hr, 96 hr and 7 d showed 

widely varying Fv values in which Cd concentration was not involved in either 

population (Fig. 3. 10) (p > 0.05). In RP, time of exposure also did not affect Fv. In BQ, 

however, exposure time was related to the change of Fv (p = 0.012). Time of exposure 

decreased values at 96 hr, but recovered at 7 d (96 hr < 24 hr < 7 d). 
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Both populations showed similar Fv values and no statistical difference was 

detected (p > 0.05). Total values of Fv with lower Cd concentration showed lower levels 

than values with 1 ~ 10 mg Cd L"' at both longer and shorter exposure. 

Fy / Fm (maximum quantum efficiency of photosystem II) 

The maximum quantum efficiency of PS I I was evaluated by Fm and Fo (Fv / Fm 

= (Fm - Fo) / Fm) (Figs 3 .11-3 .13) . When F. serratus was exposed to 0 ~ 10 mg Cd L"' 

for 7 and 14 d, time of Cd exposure did not affect the efficiency values in either 

population (p > 0.05) (Fig. 3. 11). Fv / Fm increased at 1 and/or 10 mg L ' ' after 7 d 

exposure in both populations, however the values were not significant (p > 0.05, Fig. 3. 

11). 

The BQ population presented significantly higher maximum quantum efficiency 

levels than RP, especially at 14 d (p = 0.001). 

Shorter times of exposure of 6 to 24 hr with the same Cd concentrations ( 0 - 1 0 

mg L"') had a significant impact on Fv / Fm values of F. serratus from both polluted and 

clean sites (p < 0.0001) (Fig. 3.12). Values after the shortest exposure (6 hr) were 

significantly lower than the other treatments in both populations (p < 0.0001, 

respectively), and values after 12 and 24 hr were also similar in both populations (p > 

0.05). While exposure time had significant effect on Fv / Fm in both Fucus populations, 

Cd concentration produced a different effect. Although the RP populations did not have 

any significant effect (p > 0.05), values of the BQ population were changed 
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Fig. 3.11. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 10 mg Cd L"') for 7 and 14 d. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. Fy/Fm, the maximum quantum efficiency of PS I I ; Tf̂  

the time needed to reach F,n; Area, area above fluorescence curve between Fo and F^. 

Values were expressed by means and standard deviation (n = 8). 
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Fig. 3.12. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 10 mg Cd L"') for 6, 12 and 24 hr. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. For the definition of parameters, see Fig. 3. 9. Values 

were expressed by means and standard deviation (n = 8). 
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Fig. 3. 13. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 1000 \xg Cd L' ' ) for 24 hr, 96 hr and 7 d. Restronguet Point is a polluted 

site and Bantham Quay is a reference site. Fv/F^, the maximum quantum efficiency of 

PS 11; Fv/Fo, the potential activity of PS 11. Values were expressed by means and 

standard deviation (n = 6). 
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significantly by Cd concentrations (p = 0.006). 1 and 5 mg Cd L"' in BQ showed lower 

values than 0 and 10 mg L ' ' , especially after 6 hr. 

Total values of Fv / Fm were significantly higher at RP than at BQ (p < 0.0001). 

Values with shorter exposure (up to 24hr) were higher than values with longer exposure 

(7 and 14 d, Fig. 3. 11). 

The maximum quantum efficiency was measured with lower Cd concentration 

of 0 ~ 1000 ^ig L"' for 24 hr, 96 hr and 7 d (Fig. 3. 13). In RP, Cd concenfrafion affected 

Fv / Fm values (p = 0.012) and 100 \ig L"' was significantly lower than 1000 \ig L"' (p = 

0.008). Time of Cd exposure was more significantly related to Fv / Fm values in RP (p = 

0.002). 7 d exposure produced significantly lower values than 24 hr (p = 0.035) and 96 

hr (p = 0.002), however values remained unfil 96 hr (24 hr = 96hr, p > 0.05). 

Meanwhile Fv / Fm values were not affected by Cd concentration in BQ (p > 

0.05) (Fig. 3. 13). Exposure time was significantly correlated with Fv / Fm in BQ (p = 

0.004), and 7d exposure showed significantly lower values than 24 hr and 96 hr 

treatments (p = 0.010 and p = 0.012, respectively). 

Total values from each population were significantly different and values from 

BQ were higher than values from RP (p < 0.0001). Fv / Fm values of 0 ~ 1000 |ig Cd L"' 

were higher than values with long exposure and high Cd concentrations (7 and 14 d, 1 ~ 

10 mg L"') and similar to values with short exposure and high Cd concentrations (6, 12 

and 24hr, 1 ~ lOmg L ' ' ) . 
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Tfn, (time needed to reach Fm) 

The time needed to reach Fm was measured by milUsecond (ms) levels with 

handy PEA (Figs 3. 11 ~ 3. 12). In RP, Cd treatment significantly affected Tfm values at 

7 d (p < 0.0001) but not at 14 d (p > 0.05)(Fig. 3. 11). Cd exposure increased Tfm values 

at 7 d. Time of exposure increased Tfm levels and 14 d exposure showed significantly 

higher values than 7 d treatment (p = 0.002). 

However, Cd exposure did not induce any significant effect on Tfm in BQ at both 

7 and 14 d exposure (p > 0.05). As the RP population, longer exposure (14 d) increased 

time to reach Fm (p = 0.001). 

Total values of each population were similar and no significant difference was 

detected between them (p > 0.05). 

When exposed to shorter Cd exposure (6 ~ 24 hr) with same Cd concentrations 

(0 to 10 gm Cd L"'), Tfm of the RP population was significantly affected by exposure 

time and Cd concentration (Fig. 3. 12). It took much longer time to reach Fm at 24 hr 

than 6 hr and 12 hr, regardless of Cd concentration (p < 0.0001). However 6 hr and 12 

hr exposure did not show significant difference (p > 0.05). 5 mg Cd L ' ' showed 

significantly shorter time to get to maximum fluorescence than 0 and 10 mg L"'. 0 mg L" 

' also showed significantly high values after 24 hr in RP. 

However, the population from BQ was not affected by either exposure time or 

Cd concentration (p > 0.05) (Fig. 3. 11). In addition, values of BQ were significantly 

lower than values of RP (p < 0.0001), indicating it took shorter time to reach Fm in BQ. 

Area (area above fluorescence curve between Fo and Fm) 
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Area above fluorescence curve between Fo and Fm was calculated by the Handy 

PEA automatically (Fig. 3. 11). When F. serratus was exposed to high Cd 

concentrations (0 ~ 10 mg L"'), the area between Fo and Fm did not show a pattem of 

change, although there was a significant difference (p < 0.0001). 5 mg L"' had the 

lowest value at 7 d and 1 mg L"' had the highest value at 7 and 14 d in RP. Time factor 

had a significant effect in RP (p < 0.0001). 14 d exposure had higher values than 7 d 

except the control in RP. While values at RP increased with extended exposure time. 

Area values at B Q were quite stable with extended exposure time (7 and 14 d) and Cd 

treatment (p = 0.05). Considering the dissimilarity of the two locations, area values 

were not different (p > 0.05). 

In the shorter exposure experiment, Fucus from RP did not respond significantly 

until 24 hr with 0 ~ 10 mg Cd L"' (p > 0.05, Fig. 3. 12). Mean values of fluorescence 

curve area increased with extended exposure time and Cd concentration in RP, however 

statistical significances were not detected (p > 0.05). Total area values of B Q were 

significantly lower than values of RP (p < 0.0001). In B Q , 12 hr exposure always 

showed high values in any Cd concentrations (p < 0.0001) and the highest value was 

measured with 1 mg Cd L"' (Fig. 3. 12). Higher Cd concentration enhanced area values 

in B Q (p = 0.042). 

PIABS (performance index) 

The performance Index explaining photosynthetic efficiency was measured 

using the Handy PEA. For 7 and 14 d PIABS values of F. serratus from RP were not 

changed by Cd concentrations (0 ~ 10 mg Cd L"') (p > 0.05, Fig. 3.14), while the 

values increased with higher Cd concentrations in B Q (p = 0.04). PIABS values were 

similar at both 7 and 14 d exposure in B Q however the values decreased significantly 
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with longer exposure time in RP (p = 0.018). The differences between populations were 

significant (p < 0.0001) and PIABS values of RP were much lower than values of B Q , 

especially at higher and longer Cd treatments. 

In both populations the PIABS values measured with shorter exposure (6 ~ 24 hr) 

increased with increased Cd concentrations, however statistical differences between 

them were not present (p > 0.05, Fig. 3. 15). Exposure time had a significant effect on 

PIABS values in both populations. In RP, 24 hr treatment showed higher values than 6 hr 

(p = 0.027) however the 12 hr treatment did not show differences from either 6 hr or 24 

hr (p > 0.05). B Q responded more significantiy to time of exposure (p = 0.003). 12 hr 

exposure produced much clearly higher values than 6 hr (p = 0.002) although the values 

were not significantiy different from values for 24 hr (p > 0.05). Total PIABS values 

were significantiy higher in RP than B Q (p < 0.0001). 

Fv / Fo (potential activity of photosystem II) 

Proportion of active Chi associated with the reaction centre of PS I I (Fv / Fo = 

(Fm - Fo) / Fo) was calculated after Handy PEA or FMS measurement (Fig. 3.14 and 3. 

15). When F. serratus was exposed to 0 ~ 10 mg Cd L ' ' for 7 and 14 d, Fv / Fo ratios 

from RP population increased with increasing Cd concentration (Fig. 3. 14). 10 mg L"' 

treatment was significantiy higher than the control in RP (p = 0.047). Values of RP 

decreased with extended exposure time (7 d > 14 d, p = 0.013). Fv / Fo values from B Q 

population were affected by neither the Cd treatment nor the time of Cd exposure (p > 

0.05, Fig. 3. 14). Values representing each population were very significantiy different 

and B Q population showed significantly higher Fv / Fo ratios than RP population (p < 

0.0001). 
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Fig. 3. 14. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 10 mg Cd L"') for 7 and 14 d. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. PI, performance index; Fv/Fo, the potential activity of 

PS I I . Values were expressed by means and standard deviation (n = 8). 
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Fig. 3. 15. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 10 mg Cd L' ' ) for 6, 12 and 24 hr. Restronguet Point is a polluted site and 

Bantham Quay is a reference site. For the definition of parameters, see Fig. 3.14. 

Values were expressed by means and standard deviation (n = 8). 
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Shorter exposure (6, 12 and 24 hr) with 0 - 1 0 mg Cd L produced a significant 

impact on Fv / Fo ratios (Fig. 3. 15). 12 and 24 hr exposure had much higher ratios of Fv 

/ Fo than 6 hr exposure in RP (p < 0.0001) and values increased with increasing Cd 

exposure time (6 hr < 12 hr < 24 hr). 12 and 24 hr exposure also gave significantly 

higher values than 6 hr in BQ (p < 0.0001), however 12 hr showed higher values than 

24 hr without statistical significance (6 hr < 24 hr < 12 hr). Cd treatment did not have an 

effect on Fv / Fq ratios in RP (p > 0.05) although 10 mg Cd L"' showed significantly 

higher values than other concentrations in BQ (p = 0.001, 5 < 1 < 0 < 1 0 mg Cd L"'). 

The total value of the polluted population was much higher than the total value of the 

reference population (p < 0.0001). 

Fucus serratus fi-om RP and BQ were exposed to lower Cd concentrations of 0 ~ 

1000 |.ig L ' ' for 24 hr, 96 hr and 7 d (Fig. 3. 13). Cd concenfiation had significant effect 

on Fv / Fo ratio in RP (p = 0.03) however significant difference was present between 100 

and 1000 |ag Cd L"' only (p = 0.018). Ratios of Fv / Fo were not affected by Cd treatment 

in BQ population (p > 0.05). Length of Cd exposure had a significant effect on Fv / Fq 

values of RP (p = 0.007), however values were not related to time length. 7 d exposure 

showed the lowest value and 96 hr showed the highest value in RP. Exposure time had 

significant impact on Fv / Fo ratio of BQ (p = 0.006) and longer exposure showed lower 

values (7 d < 96 hr < 24 hr). Total value of RP was very significantly lower than total 

values o f B Q ( p < 0.0001). 

^psii (quantum efficiency of photosystem II) 

Quantum efficiency of PS I I was estimated by Fm' and Fs (<t>ps\i = (Fm' - Fs) / 

Fm'). Cd treatment and the concentrations did not affect changes of Opsn in both 
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populations (p > 0.05, Fig. 3. 16). Meanwhile time of Cd exposure was highly related to 

quantum efficiency in both populations (p < 0.0001). In both populations, values 

decreased as exposure time increased. 24 hr exposure showed the highest values and 

was very significantly higher than both 96 hr and 7 d exposures (p < 0.0001). Total 

value of BQ was significantly higher than total value of RP (p < 0.0001). 

qP (coefficient of photochemical quenching) 

The coefficient of photochemical quenching (qP) was measured by FMS for F. 

serratus which was exposed to 0 to 1000 }xg Cd L"' for 24 hr, 96 hr and 7 d (Fig. 3. 16). 

Both populations showed similar photochemical quenching values for up to 7 d (p > 

0.05). Changes of qP values did not match with changes of Cd concentrations in either 

populations (p > 0.05) however they did match with elapsed time of Cd exposure (Fig. 

3. 16, p < 0.0001). Time of Cd exposure for RP materials significantly decreased qP 

values and 24 hr exposure was very significantly higher than 96 hr and 7 d exposure (p 

< 0.0001). Exposure time also decreased qP levels of BQ and values decreased 

gradually. 24 hr exposure gave significantly higher values than 96 hr (p < 0.0001) and 7 

d exposure (p < 0.0001) and 96 hr exposure again showed produced values than 7 d (p = 

0.012). 

NPQ (non-photochemical quenching) 

The non-photochemical quenching (NPQ) was determined by FMS with Fn, and 

Fm' (NPQ = (Fm - Fm') / Fm') and F. serratus from RP and BQ was exposed to 0 ~ 1000 

|ag Cd L"' for 24 hr, 96 hr and 7 d (Fig. 3. 16). No significance was found between 

polluted and reference populations (p > 0.05). 100 }Ag L"' in RP significantly enhanced 
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NPQ values and 10 |xg L"' showed the lowest values (p < 0.0001). Meanwhile Cd 

treatment in BQ did not give a significant effect on changes of NPQ (p > 0.05). 96 hr 

treatment showed the highest NPQ values and was significantly different from 24 hr and 

7 d treatment in RP (p < 0.0001). Time of Cd exposure had more clear effect in BQ and 

longer exposing time produces higher NPQ values (24 h r < 9 6 h r < 7 d , p < 0.0001). 
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Fig. 3. 16. Changes of Chi a fluorescence parameters in Fucus serratus exposed to 

cadmium (0 ~ 1000 |ig Cd L"') for 24 hr, 96 hr and 7 d. Restronguet Point is a polluted 

site and Bantham Quay is a reference site. Opsn, quantum efficiency of PS 11; qP, the 
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ABS / CS (effective antenna size of a cross section) 

Number of absorbed photons by Chi molecules per cross section (ABS / CS) 

was determined by Handy PEA. ABS / CS was not affected by 0 ~ 10 mg Cd L ' ' in both 

populations (p > 0.05). Meanwhile the values were not changed by exposure time (7 and 

14 d) in BQ, 14 d exposure showed higher ABS / CS than 7 d exposure in RP (p = 

0.001). In addition, RP population showed higher ABS / CS than BQ population (p = 

0.014), and the differences were particularly apparent, at 14 d. When the values were 

compared with the values of each control treatment (0 mg Cd L"' at 7 and 14 d), ABS / 

CS of RP decreased with increasing Cd concentrations but no differences were found 

between Cd treatments after 14 d exposure (Fig. 3. 17). Meanwhile, in BQ, ABS / CS of 

1 ~ 10 mg Cd L"' was much lower than 0 mg Cd L"' at 7 d and the values increased with 

Cd concentrations and were higher than the control at 14 d (Fig. 3. 18). 

Absorbed photons per CS increased with Cd treatment for shorter exposure (6, 

12 and 24 hr, p = 0.004). Although ABS / CS was not respond to exposure time of Cd 

treatment in either populations (p > 0.05), RP population showed significantly higher 

total values than BQ population (p < 0.0001). BQ populafion was not significantiy 

changed by shorter exposure time nor by Cd concentrations (0 ~ 10 mg L"'). When the 

photon values with Cd exposure were compared with the control, in RP, all Cd 

treatments showed similar values and increased with time (Fig. 3. 19). However, in BQ, 

1 mg L"' showed distinctiy higher values, especially at 12 hr and all Cd treatments 

showed similar values to the control at 24 hr (Fig. 3. 20). 
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Fig. 3. 17. Influence of cadmium treatment on several selected functional and structural 

JlP-test parameters plotted relative to the respective controls (set as reference = 1.0). 

Fucus serratus collected from Restronguet Point was exposed to 0 - 1 0 mg Cd L"' for 7 

and 1 4 d. ABS/CS, the total number of photons absorbed by Chi molecules per cross 

section (CS); TRQ/CS, the maximal rate by which an excitation is trapped by the C S (at t 

= 0 ) ; ETo/CS, electron transport flux per CS (at t = 0 ) ; DIQ/CS, effective dissipation per 

CS (at t = 0 ) ; RC/CSO, the number proportional to the active reaction centres to the 

cross-section of the measured sample (t = 0 ) ; RC/CSm, the number proportional to the 

active reaction centres to the cross-section of the measured sample (t = m). 
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Fig. 3.18. Influence of cadmium treatment on several selected functional and structural 

JlP-test parameters plotted relative to the respective controls (set as reference = 1.0). 

Fucus serratus collected from Bantham Quay was exposed to 0 ~ 10 mg Cd L"' for 7 

and 14 d. For the definition of abbreviations, see Fig. 3. 17 or text. 
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Fig. 3. 19. Influence of cadmium treatment on several selected functional and structural 

JlP-test parameters plotted relative to the respective controls (set as reference = 1.0). 

Fucus serratus collected from Restronguet Point was exposed to 0 - 10 mg Cd L"' for 

24 hr, 96 hr and 7 d. For the definition of abbreviations, see Fig. 3. 17 or text. 
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Fig. 3. 20. Influence of cadmium treatment on several selected functional and structural 

JlP-test parameters plotted relative to the respective controls (set as reference = 1.0). 

Fucus serratus collected from Bantham Quay was exposed to 0 ~ 10 mg Cd L'" for 24 

hr. 96 hr and 7 d. For the definition of abbreviations, see Fig. 3. 17 or text. 
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TRo / CS (maximal trapping rate of photosystem II) 

Maximal rate of trapped excitation by the CS at t = 0 (TRo / CS) was quantified 

by Handy PEA. Like ABS / CS, TRo / CS was not developed with 0 ~ 10 mg Cd L"' in 

either population for 7 and 14 d. There were no significant differences between the 

exposure times (7 and 14 d) in BQ, however, in RP, 14 d showed higher TRo / CS than 

7 d. The RP population showed slightly higher TRo / CS than the BQ population (p = 

0.041), especially after 14 d exposure. When factors were plotted as spider web with 

values compared with each control treatment, TRo / CS at concentrations of 5 and 10 

mg Cd L"' was lower than 0 and 1 mg L"' at 7 d. However all Cd treated materials 

showed similar values after 14 d exposure in RP (Fig. 3. 17). In BQ, values of TRo / CS 

were much lower than the control at 7 d. However values were higher at 14 d and the 

higher Cd treatment showed higher trapped energy (Fig. 3. 18). 

Shorter exposure of 6, 12 and 24 hr did not affect TRo / CS levels in either RP or 

BQ with 0 ~ 10 mg Cd L ' (p > 0.05). However the Cd h-eatment showed different 

effects on each population. In RP, TRo / CS values increased by Cd treatments (p = 

0.004), especially by I and 10 mg L ' ' , and 5 mg L"' showed similar levels to all other 

Cd treatments (p > 0.05). In BQ, values of trapped excitation were not different by Cd 

treatments (p > 0.05). Total values of TRQ / CS from RP population were two times 

higher than values from BQ for 24 hr (p < 0.0001). When values were compared with 

the control, trapped excitation by the CS increased with exposure time in RP (Fig. 3. 19). 

However the changes were not clear in BQ population and only 1 mg L"' showed 

significant increase after 12 hr exposure (Fig. 3. 20). 

ETo / CS (electron transport flux per cross section) 
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Electron transport flux per CS was measured by Handy PEA at t = 0 (ETo / CS). 

Neither Cd doses from 0 to 10 mg Cd L ' ' nor Cd exposure time (7 and 14 d) changed 

electron transport flux in either population (p > 0.05). Differences between the two 

populations were also not detected (p > 0.05). The values compared to each control 

were calculated and described in Figs 3. 17 and 3. 18. Only 1 mg Cd L"' was higher at 7 

d, however all Cd treatments (1 ~ 10 mg L' ') raised the values at 14 d in RP (Fig. 3. 17). 

Meanwhile, in BQ, Cd exposed materials had lower ETo / CS than the control at 7 d, 

although the values increased and were higher at 14 d (Fig. 3. 18). There was no 

statistical significance between the two locations from which the algae were collected (p 

> 0.05). 

Exposure time and Cd concentration had different effects on RP and BQ with 

shorter exposures (6, 12, 24 hr). Length of Cd exposure had no effect on electron 

transport flux in RP (p > 0.05) but had an effect in BQ (p = 0.001). 12 hr exposure 

showed the highest ETo / CS in BQ (p = 0.001), especially with 1 mg Cd L ' ' , and 6 and 

24 hr exposure showed similar levels (p > 0.05). Meanwhile, although the RP 

population was not changed by exposure time, this population responded to Cd 

exposure (p = 0.006). ETo / CS increased with Cd concentrations and 5 and 10 mg L"' 

treatment showed significant differences to the control (p = 0.026, p = 0.006 

respectively). 1 mg L ' ' exposure was not different from the other Cd concentrations (p > 

0.05). However Cd concentration did not affect ETo / CS in BQ population and all Cd 

concentrations showed similar values for 6, 12 and 24 hr (p > 0.05). The total values of 

ETo / CS were significantly higher at RP than the values at BQ (p < 0.0001). When each 

value was compared with the control of each exposure time, ETo / CS in RP increased 

with Cd concentration at 6 hr, however the difference was not clear at 24 hr (Fig. 3. 19). 

In BQ, Cd treatments values decreased at 6 hr and increased again at 12 and 24 hr 

except in the case of 1 mg L"'. The 1 mg L ' ' treatment showed significantly higher ETo / 
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CS after 12 hr and decreased again at 24 hr showing lower values than 5 and 10 mg L" 

treatments (Fig. 3. 20). 

DIo / CS (effective dissipation per cross section) 

Effective dissipation per CS at t = 0 (DIo / CS) was estimated by Handy PEA. In 

both populations, all Cd treated algae showed lower values than 0 mg Cd L"' at 7 d, 

however the differences were not significant after 14 d. For the first 7 d of exposure, 

two populations showed similar values, however mean values of RP were much higher 

than those of BQ at 14 d (p = 0.010). Compared with each control, 1 ~ 10 mg L'^ of Cd 

treatments reduced the values after 7 and 14 d of exposure in RP and the decreased rates 

were lower at 14 d than at 7 d (Fig. 3.17). In BQ, unlike RP, DIo / CS was much lower 

than the control at 7 d however the values were boosted with increased Cd treatment at 

14 d (Fig. 3. 18). The values from each population showed significant differences (p = 

0.01). 

DIo / CS was not affected by shorter exposure (6 ~ 24 hr) with 0 ~ 10 mg Cd L ' ' 

in either population (p > 0.05). However Cd exposure had significant effect on DIQ / CS 

in both populations. Cd treatment (1 ~ 10 mg L" ' ) increased DIo / CS in RP and 1 and 10 

mg L ' had significantly higher values than 0 mg L ' ' (p = 0.013, p = 0.010 respecfively). 

In BQ, only a slight difference was found between 1 mg L"' and 10 mg L"' (p = 0.043). 

The total values of DIo / CS in RP were significantly higher than the values in BQ with 

shorter exposure time (p < 0.0001). Each value was compared with each control (Fig. 3. 

19 and 3. 20). The values of DIo / CS increased in RP with exposure time (Fig. 3.19). 

Cd treatment enhanced higher dissipation in RP, however differences between Cd 

concentrations were not significant. In BQ, only 1 mg Cd L"' showed a clear increase at 

6 and 12 hr and the other treatments were similar to the control. After 24 hr, all 
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treatments showed similar values except 10 mg L ' which was lower than the control 

(Fig. 3. 20). 

R C / CSo 

Proportions of the active reaction centres to the CS of the measured sample at t = 

0 (RC / CSo) was measured by Handy PEA. For the first 7 d RC / CSo decreased with 

Cd treatment without statistical significance (p > 0.05), however, the values were very 

similar at all Cd concentrations in both populations (p > 0.05). Neither exposure time 

nor metal-exposure history (location factor) showed significant differences (p > 0.05). 

Compared with each control value, in RP, 5 and 10 mg Cd L ' ' showed lower, but not 

significant values at 7 d, while the values were not different from the control at 14 d 

(Fig. 3. 17). In BQ, the values were much lower than the control after 7 d of Cd 

exposure however were enhanced at 14 d (Fig. 3. 18). 

When Fucus was given shorter exposure times (6 ~ 24 hr) with same Cd 

concentrations (0 ~ 10 mg L"'), active reaction centres to the CS at t = 0 in both 

populations responded to the exposure time. In RP, time of Cd exposure increased 

reaction centre values, with the differences between 24 hr exposure and 6 hr exposure 

being particularly noticeable (p = 0.036). In the case of BQ, 12 hr treatment was higher 

than the other two exposure time (p = 0.036). With Cd concentration of 0 to 10 mg L ' ' , 

the two populations showed a different response. In RP RC / CSo values increased with 

Cd exposure (p = 0.003) and all Cd treatments (1 to 10 mg L"') gave significantly higher 

values when compared with 0 mg L"'. The BQ population did not respond significantly 

to Cd treatment (p > 0.05). Total RC / CSo values were significantly higher in RP than 

BQ (p < 0.0001). When each value was compared with each control, Cd exposure 

increased the reaction centre proportions from 6 hr in RP (Fig. 3. 19) however the 
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values were similar to each other irrespective of Cd concentration (1 to 10 mg L ' ). In 

BQ, RC / CSo values were similar to the control at 6 hr (Fig. 3. 20). At 12 hr exposure, 

only 1 mg L"' showed much higher reaction centre values and, at 24 hr, only 5 mg L"' 

showed slightly higher levels. 

R C / CSm 

The number proportional to the active reaction centres to the CS at t = m (RC / 

CSm) was also determined using the Handy PEA. RC / CSm was affected neither by Cd 

treatment (0 ~ 10 mg Cd L"') nor by exposure time (7 and 14 d). No local difference 

was determined. When the values were compared with each control, only 1 mg Cd L"' 

showed increased values at 7 and 14 d in RP (Fig. 3. 17). In BQ, Cd treatment 

diminished RC / CSm at 7 d however all values were enhanced at 14 d (Fig. 3. 18). 

Fucus responded significantly to shorter exposure times with 0 to 10 mg L ' ' Cd 

in both populations. In RP, RC / CSm was similar until 12 hr, however significantly 

increased values were measured at 24 hr (p = 0.006). In BQ, the response was faster 

than RP and the only significant differences were detected were between 6 and 12 hr 

exposure times (p = 0.002). Like RC / CSo, only the RP population showed significant 

response to Cd concentration (p = 0.012). Cd treatment increased RC / CSm in RP, while 

Cd exposure did not affect the reaction centre values in BQ. 1 and 10 mg L"' showed 

higher RC / CSm values than the control (p = 0.045, p = 0.016 respectively) and 5 mg U 

' was not different from the other treatments (p > 0.05). The total values at t = m was 

very significantly higher at RP than BQ (p < 0.0001). When each value was compared 

with each control, in RP, Cd treatment (1 to 10 mg L"') enhanced values from 6 hr, 

however differences among exposure fime or Cd concentrations were not clear (Fig. 3. 

19). In BQ, 1 and 5 mg L ' slightly decreased values at 6 hr, however they recovered by 
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12 hr, except 1 mg L"' (Fig. 3. 20). Only 1 mg L"' showed significantly higher value at 

12 hr. 

JlP-curve 

Changes of Chi a fluorescence transients were plotted on a logarithmic timescale 

from 50 (is to 1 s (Figs 3. 21 and 3.22). After 7 d exposure in RP, 5 mg L ' ' showed an 

apparent decrease and 10 mg L* had similar pattem and values to those of the control 

(Fig. 3.21). 1 mg Cd L'^ treatment achieved a higher curve than the other treatments. 

However, after 14 d exposure in RP, every curve showed higher values than 7 d 

exposure and all Cd treatments had apparently higher Fp ( = Fm) levels than the control. 

Meanwhile, in BQ, the control of 7 d exposure had much higher values whereas the 

other treatments were relatively similar to one another. In the 14 d exposure, the control 

of BQ decreased and showed the lower Fi and Fp values than the other Cd treatments 

(Fig. 3. 21). 

When F. serratus was exposed to Cd (0 ~ 10 mg L ' ' ) for 6 and 12 hr, the Chi a 

fluorescence transient curves were not changed and any significant differences among 

the treatments were not discovered in RP (Fig. 3. 22). After 24 hr of Cd exposure, Cd 

treated materials showed slightly higher values than the control of RP. BQ populations 

always showed lower curves than the RP population for 6 to 24 hr (Fig. 3. 22). After 6 

hr exposure 10 mg L"' showed different F? levels and after 12 hr exposure I mg L"' had 

different Fp levels in BQ. However after 24 hr exposure, all materials showed very 

similar pattems. 
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Fig. 3. 21. The change of rapid polyphasic kinetics of chlorophyll a fluorescence 

transients plotted on a logarithmic timescale when Fucus serratus was exposed to 0 ~ 

10 mg Cd L"' for 7 and 14 d. Values are expressed by mean (n = 8). 
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3. 3. 6. Pigment 

Changes in contents of some photosynthetic pigments were evaluated in F. 

serratus which was exposed to 0 ~ 1000 ̂ ig Cd L ' ' for 24 hr, 96 hr and 7 d (Fig. 3. 23 

and 3.24). Chi a, Chi c, Fx and P-carotene here are well-known photosynthetic pigments 

of marine brown algae. 

3. 3. 6.1. Chlorophyll a (Chi a) 

Cd exposure significantly increased the contents of one of the main 

photosynthetic pigments, Chi a, in RP (Fig. 3. 23). Extended Cd exposure (time of 

exposure and concentration) increased Chi a values, however no statistical significance 

was estimated between 10 ~ 1000 |ag L"' (p > 0.05). 

In BQ, the effect of exposure time and Cd concentration was not significant (p > 

0.05) (Fig. 3. 23). Chi a in BQ decreased significantly only at 1000 [ig Cd L ' ' exposure 

for 24 hr and 96 hr, however the value increased again at 7 d exposure. 

The polluted population showed very significantly higher values than the values 

from the reference population (p < 0.0001). 

3. 3. 6. 2. Chlorophyll c (Chi c) 

Another main photosynthetic pigment of brown algae, Chi c was also presented 

significantiy higher levels in the polluted population, RP (p < 0.0001, Fig. 3. 23). Like 

Chi a in RP population, Chi c also increased with Cd treatment in RP, however the 

effect of exposure time on Chi c contents was not statistically significant between 10 ~ 

1000 jig L ' (P > 0.05). Meanwhile Cd concentrations in RP showed clear effects and 
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Fig. 3. 23. Chlorophyll a (Chi a) and c (Chi c) contents changes in Fucus serratus 

exposed to cadmium for 24 hr, 96 hr and 7 d. Restronguet Point is the metal-polluted 

site and Bantham Quay is the reference site in South West England. Values are means 

and standard deviations (n = 3). 
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100 and 1000 |ag Cd L significantly increased Chi c values compared to lower 

concentrations (0 < 10 < 100 = 1000, p = 0.005). 

Chi c contents in BQ showed unexplained pattem except the 7 d treatment (Fig. 

3. 23). 96 hr exposure showed significantly low values in 10 ~ 1000 jag Cd L ' ' (p < 

0.0001) and values of 24 hr and 7 d were higher in order (96 hr < 24 hr < 7 d). The 

effect of Cd concentration was also clear (p < 0.0001) and a concentration of 10 |j.g Cd 

L ' was significantly low (p < 0.0001). 

3. 3. 6. 3. Fucoxanthin (Fx) 

Contents of Fx were measured with F. serratus exposed to 0 ~ 1000 jjg Cd L"' 

for 24 hr, 96 hr and 7 d (Fig. 3. 24). Both populations showed significant effects by both 

time of Cd exposure and Cd concentrations (p < 0.0001, respectively). In RP, Cd 

treatment increased the Fx content and all Cd treated materials presented significantly 

higher values than 0 ^g Cd L"' . Cd treatment and longer exposure induced higher Fx 

contents, but there was no difference between Cd concentrations (10 ~ 1000 |ig L" ' ) . 

In BQ, Cd treatment decreased the contents of Fx in F. serratus. Cd treatment 

and time of exposure affected the Fx contents, but there was no significance between Cd 

concentrations (10 ~ 1000 ^g L" ' ) . 96 hr exposure produced the lowest values followed 

by 7 d and 24 hr (p < 0.0001). Cd treatment reduced Fx content in BQ until 96 hr (p < 

0.0001) and levels of Fx significantly decreased with increasing Cd concentrations in 

the media (p < 0.0001, Fig. 3. 24). At 7 d. Fx contents increased again at 100 and 1000 

jig Cd L"' and showed similar values to 10 pg Cd L"' . 

Without Cd treatment, the BQ population possessed higher values of Fx than the RP 

population. However, after Cd treatment, the polluted population possessed very 

significantly higher contents of Fx than the reference population (p < 0.0001). 
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3. 3. 6. 4. P-carotene 

Another accessory photosynthetic pigment measured in the present study was p-

carotene. Cd exposure, concentration and time of exposure were not Hnked to the 

aUeration of P-carotene levels in RP (p > 0.05). However, Cd concenfration affected P-

carotene contents significantly in BQ (p < 0.0001). Values decreased with Cd treatment 

and higher Cd concentration showed lower p-carotene except 10 )ag Cd L"'. Fucus 

treated with 10 i^g Cd L ' ' possessed the highest p-carotene in BQ, followed by 0 ^g L"' , 

then 100 and 1000 ^g L"' (10 > 0 > 100 > 1000 |ag Cd L"'). 

The BQ population contained significantly higher p-carotene than the RP 

population (p = 0.0002, Fig. 3. 24). 
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3. 4. Discussion 

High concentrations of metals, including essential elements, in the environment 

are reported to be inhibitors of plant/algal growth and development (Kalaji and Loboda, 

2007). Although many negative effects of metals on physiological and photochemical 

processes have been published to date, a comprehensive review on the overall 

photosynthetic response to metal stress has not yet been produced (Clijsters and Van 

Assche, 1985, Sujak, 2005, Kalaji and Loboda, 2007). In this chapter, the physiological 

responses of Fucus serratus to Cd stress were studied, with a primary focus on changes 

of photosynthetic parameters, as well as bioaccumulation of Cd by two different Fucus 

populations. 

3. 4.1. Interaction between stress factors 

Under natural environmental conditions, organisms may experience many 

complex, and unpredictable situations. Marine seaweeds, by virtue of their habitat, can 

be exposed to a number of adverse conditions, such as high or low light, high or low 

temperature, desiccation, nutrients, predation or industrial pollution (Davison and 

Pearson, 1996, Hashim and Chu, 2004). These adverse conditions may work together in 

various ways and produce complex compound effects on organisms. Trace metals are 

among the factors that may induce various unpredictable effects when they interact, and 

Berry and Wallace (1981) categorized such combination results. Firstly, an independent 

action is one in which plants exposed to more than one factor show the same responses 

as plants exposed to the greater stress factor independently. Another category, an 

additive action, means that plants show the sum of responses produced by the single 
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stress factors. The third one is an antagonistic action which represents smaller combined 

effect than a single effect of the most active stress. The final category is a synergistic 

action which means that the combined effect is greater than a single effect of the most 

active factor. 

Most research, including the present study, are focused on a single stress factor 

and do not often regard the combined effects in experiments. However, under natural 

circumstances in the field, these complex interactions between various environmental 

factors cannot be ignored, hi the case of metals, high level of Ca is known to moderate 

the toxicity of some trace elements, such as Ni , Cd, A l , Mn or Cu (Rengel, 1992, 

Hagemeyer, 1999, Hashim and Chu, 2004). Furthermore, high levels of Mn or Zn (up to 

1000 g L"') are also able to suppress the uptake of Cd, Co, Ni , Zn or Mn in Fucus 

vesiculosus (Bryan et al., 1985). 

Besides metals, other environmental conditions may induce combined results. 

Seasonal variations of rainfall, temperature, and light intensities, or the life stage of the 

organism, etc. can influence the physiological responses of algae and these factors may 

cause combined effects. Therefore maximum efforts to explain these complex 

conditions are required to minimize any errors and to understand any responses and 

discrepancies. These combined factors have been considered in some parts of this thesis. 

3. 4. 2. Bioaccumulation in natural populations of Fucus sermtus 

Seaweeds have been widely used for monitoring metal concentrations in aquatic 

systems since they can indicate the composition or abundance of metal species present. 

Brown seaweeds were reported to be unable to regulate the uptake of metals and 
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represented the relative and absolute contents of metals in the surrounding water 

(Bryan, 1969, Fuge and James, 1974). Bryan (1969) reported a linear relationship 

between Zn concentrations in Laminaria digitata and those in seawater, and also 

reported considerably magnified metal concentrations compared to contents in seawater. 

Fucus serratus harvested from wild populations at RP contained noticeably 

higher values of metals except for Cd. Both total and non-exchangeable concentrations 

of Cu, Pb and Zn were significantly higher at RP, which must be linked to the highly 

metal-contaminated aquatic system at RP. As mentioned in the previous chapter 

(Chapter 2), Restronguet Creek is an extremely contaminated area caused by a very 

active mining industry that flourished for several hundred years (Bryan and Gibbs, 

1983). Although all the mines are now closed, drainage water from the closed mines 

and the erosion of the slag heaps are still having a serious effect on the area (Bryan and 

Gibbs, 1983). 

Contamination by metal species in Restronguet Creek can be compared with 

other sites in Table 3. 9. Levels of all elements of metals are extremely high at 

Restronguet Creek, therefore any organisms including marine macroalgae from RP must 

have been readily exposed to very high levels of metals for a long time. Compared with 

Restronguet Creek, the Avon estuary is a relatively very clean and conserved area. 

Bryan et al. (1987) made a comparison between Restronguet Creek and the Avon 

estuary and reported 3000 |xg g"' of Cu and 2500 \ig g"' of Zn in the sediment from the 

Restronguet Creek and 20 ^g g"' of Cu and 100 |xg g"' of Zn in the sediment fi-om the 

Avon area (Table 2. 1). Compared with background levels of other sediment data (Table 

3. 9), RP contained much higher levels of Cu and Zn although BQ was in the range of 

those data. 
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Total concentrations of metal species can be compared with previous data. Table 

3.10 shows the normal composition of trace elements in a plant and Table 3.11 shows 

levels of trace metals in Fucus spp. recorded in previous studies. 
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Table 3. 9. Background levels in natural water and sediment (Forstner and Wittmann, 1979) and the upper limit of non-polluted soil (De Temmerman 

et al., 1984). The table was modified from Bryan and Gibbs (1985) and Greger (1999). 

Metal 
Freshwater 

Water (^g L"') 

Seawater 
Restronguet 
Creek 

Soil (Mgg-') 

Sandy soil Loam 

Sediment ( ) L i g g"') 

Lake Sea 

Cd 0.07 0.01-0.07 <0.1 -38 1 1 0.14-2.5 0.02 - 0.43 

Cr 0.5 0.08-0.15 15 30 7-77 11-90 

Co 0.05 0.04 5 15 0.1-74 

Cu 1.8 0.04-0.1 2-176 15 25 16-44 4-250 

Hg 0.01 0.01 0.15 0.15 0.004 - 0.2 0.001-0.4 

Mn <5 0.2 3-1513 500 800 390 - 6700 

Mo 1 10 5 5 0.2-27 

Ni 0.3 0.2-0.7 1 - 18 1 1 34-55 2-225 

Pb 0.2 0.001 -0.015 <2-4 50 50 14-40 7-80 

Zn 10 0.01-0.62 7-22460 10 150 7-124 16-165 
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Table 3.10. Normal composition of trace elements in a plant (Markert, 1992). The table was modified from Markert (1992) and Greger (1999). 

Trace element 

Aluminium 80 

Cadmium 0.05 

Chromium 1.5 

Cobalt 0.2 

Copper 10 

Gold 0.001 

Iron 150 

Lead 1.0 

Manganese 200 

Mercury 0.1 

Molybdenum 0.5 

Nickel 1.5 

Silver 0.2 

Zinc 50 
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Table 3.11. Reported trace metals levels in Fucus spp. (|ag g' dry weight). 

Location Cd Co Cr Cu Fe Ni Pb Zn Authors 

Goury, NW France 0.5- 1.9 0.3- 1.3 0.1 -0.8 0.8-2.0 11 - 278 1.4 -5.5 0.2 - 2.0 32-100 Greger 1999 
Irish sea 1.1 - 1.4 3.2-10.1 127-249 4.1 -6.7 2.1 -4.0 80-171 Preston etal. 1972 

Dorset, UK 0.3 99 
Leatherland 

and Burton 1974 
Bristol Channel'' 3.8- 19.5 3.8-14.3 88 - 262 Fuge and James 1974 
Menai Straits, UK" 1.8-2.1 3.8 -4.5 7.4-10 146-360 7.1 -8.9 2.3-3.2 98-138 Foster 1976 

Looe estuary, UK 0.9 - 2.4 0.6- 10.5 0.6 -3.5 3.5-33 121 -3020 5.7 - 13.6 56 - 340 Bryan and 
Hummerstone 1977 

Tamar estuary, UK*" 1.8-6.4 1.8- 9.0 I.I - 10 20-107 401 -1300 0.7 -4.8 5.9- 109 138- 1330 Bryan and Uysal 1978 
Norway 7-13 39-150 12-250 1590-4700 Melhuus et al. 1978 
Estuaries, UK- 1 -28 0.9- 7.8 1.0 -5.7 4-293 90 - 967 4.5 -36 1.6-29 85 -1360 Bryan 1983 
Estuaries, UK*" 0.7-4.8 1.9- 7.4 2.5 -4.8 7-302 1128 -2045 2.6 -53 2.4-21.6 69- 1120 Bryan etal. 1983 
Restronguet Creek'' 0.81 - 1,41 190-1450 2190-4200 Bryan and Gibbs 1983 
Mersey estuary'' 0.5-2.5 0.7 -6.6 10-42 227- 1533 4.1 -22.5 1.1 - 15.6 209-1964 Langston 1986 
Sweden'' 6-12.3 0.3- 1.2 0.3 -0.6 4.3 - 6.3 67 - 261 5.4 -30.3 1.7-4.0 255 - 815 Forsberg et al. 1988 
Baltic Sea'' 4.1 - 17.2 0.2- 3.2 O.U 1 - 1.44 2.2-8.0 48 - 522 4.1 -46.4 2.0-11.7 181-877 Soderlung et al. 1988 

Restronguet Point" 2.1-2.7 359 - 494 3.4-4.5 437-515 
Pawlik-Skowronska 

et al. 2007 

Restronguet Point'' 1.2-1.9 290-398 2.8-4.0 285-336 Pawlik-Skowronska 
et al. 2007 

Bantham Quay" 4.1 -5 .7 105-164 1.2-4.1 6 4 - 9 7 Pawlik-Skowronska 
et al. 2007 

Bantham Quay*" 1.6-2.8 126-173 1.2-2.3 51 -62 Pawlik-Skowronska 
et al. 2007 

Wembury Beach" 4.4-5.7 117-164 2.9-4.1 82-97 Pawlik-Skowronska 
et al. 2007 

Restronguet Point" 0.9-1.2 78-103 1.3-1.4 336-429 This study 
Bantham Quay" 1.2-1.3 4.6-5.3 0.9- 1.0 40-50 This study 

" F. serratus. F. vesiculosus 
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Different plant species as well as different plant strains have different abilities of 

uptake and accumulation of metals (Greger, 1999). Therefore Markert (1992) tried to 

make a standard example of metal concentrations of a normal plant which can be 

compared with in the other research. Although the 'normal reference plant' was based 

on terrestrial plants, the data was useful to evaluate the contaminated levels of F. 

sermtus in this study. Markert (1992) and other researchers used i^g g'' D.W. (or mg kg" 

' D.W.) as the unit of metal concentrations, therefore data from the present study were 

re-calculated to the same unit for comparison (Table 3. 11). Concentrations of Pb and 

Zn in Fucus from BQ were in the range of Table 3.10, although those of Cd and Cu 

were outside this range. However, all levels of metals in Fucus from RP were 

significantly higher than the normal reference plant (Markert, 1992). 

In Table 3.11, levels of trace metals in Fucus spp. were compared. Natural 

Fucus populations from RP showed high values of trace elements relative to those from 

other sites. However, compared with the previous report by Pawlik-Skowrohska et al. 

(2007), the concentrations of metal elements in F. serratus from both RP and BQ were 

significantly lower in the current study. This difference might have been caused by 

weather changes or collecting season since collection of algal material and analyses of 

metal contents were performed by the same person and instrument. One of the reasons 

related to the weather may be differences in rainfall. Fucus materials were collected in 

Oct. 2005 for Pawlik-Skowrohska et al. (2007) and the reported rainfall during the 

period in South West England was 186.6 mm (http://www.metoffice.gov.uk). For the 

current study, Fucus was collected in Oct. 2006 for the lower concentration exposure 

and in May 2007 for the higher concentration exposure. The rainfall values were 

reported as 169.2 mm (Oct. 2006) and 137.8 mm (May 2007) respectively. Therefore 

the higher rainfall might have released higher metal elements to marine organisms and 

they could have then taken up and accumulated significantly higher levels of trace 
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metals. In addition, the difference in seasons (autumn and spring) might be also related 

(e.g. temperature). 

Interestingly Cd concentrations in RP materials were similar, even slightly 

lower, to those in BQ materials even though Cd contents in the seawater were 

significantly higher in RP. This discrepancy has been reported by some authors (Bryan, 

1983, Bryan and Gibbs, 1983, Pawlik-Skowrohska et al., 2007). Most of them 

highlighted the competition between cations in ion channels and the suppression of Cd 

uptake by other higher metals and metalloids (Bryan and Gibbs, 1983, Bryan et al., 

1985, Hashim and Chu, 2004, Pawlik-Skowronska et al., 2007). They postulated that 

high levels of Zn reduce Cd absorption by algae and high levels of Mn, Cu as well as Ca 

also have similar ability to suppress the uptake of Cd (Bryan, 1983, Bryan and Gibbs, 

1983, Hashim and Chu, 2004). The ratio of Zn and Cd in Restronguet Creek reported 

was 400 : 1 compared with about 10 : 1 in the Severn Estuary (Bryan, 1983). This 

suppression of Cd accumulation was discovered not only in marine macroalgae but at 

all trophic levels (Bryan, 1983). In addition, Malea (1994) reported a lower uptake of 

non-essential metal elements (such as Cd) in seagrass Halophila stipulaceae compared 

with a relatively higher uptake of essential metals (such as Cu and Pb). Active exclusion 

or sequestration of the non-essential elements were regarded for minimizing the toxic 

effect of metals (Ralph and Burchett, 1998). 

3. 4. 3. Bioaccumulation by Cd exposed populations of Fucus serratus 

As mentioned previously, brown algae are known to be incapable of regulating 

their uptake of trace metals. Therefore the concentrations of metals in seaweeds depend 

on prevailing concentrations in the surrounding environment (Fuge and James, 1974). 
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This may explain the linear increase of Cd accumulations of F. serratus exposed to Cd 

in the present study. Bryan (1969) also demonstrated a linear interaction between Zn 

contents in Laminaria digitata and those in the environment. 

Bryan (1980) postulated that lower metal-permeability to Cu by tolerant 

seaweed helped to reduce the intemal Cu concentration and this was also reported by 

Nielsen (2002). F. serratus was exposed to 42.2 ~ 844 nM [Cu "̂̂ ] and the RP population 

accumulated significantly lower levels of Cu (Nielsen, 2002). However values of total 

and non-exchangeable contents of Cd were the same at both polluted and reference 

populations after Cd exposure in this study (except non-exchangeable concentration of 

RP at 24 hr exposure). Landberg and Greger (1994) published differences in the 

accumulation of metals by 103 different clones of Salix viminalis and reported that the 

differences were not correlated with tolerance to that metal. It was related rather to the 

net uptake of Cd including low transport and efflux of the metal (Landberg and Greger, 

1996, Landberg and Greger, 2002). Cd absorption/adsorption by F. serratus in this 

study did not show differences by locality. In addition, no visible symptom (e.g. 

chlorosis, necrosis or death) of Cd toxicity was recognised from either population 

during the experiment. Since the range of background Cd concentration in the 

Restronguet Creek water is known to be <0.1 ~ 38 p,g L"' (Table 3. 9), most of the Cd 

doses used in this experiment are extremely high. However, much higher doses of Cd 

have been used experimentally. Hu et al. (1996) exposed Gracilaria tenuistipitata 

(Rhodophyta) to 12.5 ~ 500 \iM of Cd (i.e. about 1.4 ~ 56.2 mg Cd L"') and LC50 of the 

red alga was 270 \iM (30.0 mg Cd L"'). G. tenuistipitata grew normally in the medium 

with 75 ^ M Cd (8.43 mg Cd L"') and viability was not affected by 100 fiM (11.24 mg 

Cd L"'). Red algae are reported to be more sensitive than brown algae (Hashim and Chu, 

2004), so the LC50 of F. serratus to Cd exposure can be expected to be much higher 

than that of G. tenuistipitata. Therefore the lack of differences in Cd accumulation 
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between the two different populations may be based on strong resistance mechanism of 

this brown alga itself and/or the less toxic characteristics of Cd. The tolerance of F. 

serratus wi l l be discussed in the next two chapters. Moreover, the non-exchangeable 

fraction of Cd comprised more than 50 % of the total Cd burden in the current and the 

previous research (Pawlik-Skowrohska et al., 2007). This relatively high ratio of Cd 

accumulation must be intimately related to effective mechanisms for homeostasis and 

detoxification of Cd (Pawlik-Skowrohska et al., 2007). This was considered at Chapter 

5 with the biosynthesis of thiol peptides. 

3. 4. 4. Brown alga, Fucus serratus as a bioindicator and metal-

remover 

Many researchers have used various marine macroalgae to test their abilities to 

sequester metal ions from media and generally brown algae were recognised the most 

effective removers of metal ions (Bryan and Gibbs, 1983, Bryan et al., 1985, Hu et al., 

1996, Davis et al., 2003, Hashim and Chu, 2004, Pawlik-Skowrohska et al., 2007). 

Hashim and Chu (2004) used seven different species of brown, green and red algae to 

determine their Cd sequestering ability and the Langmuir maximum adsorption capacity 

was red < green < brown algae in order. 

The enhanced performance of brown algae is based on their basic structure and 

biochemical constitution, which is related to the properties of cell wall constituents 

(Davis et al., 2003). Polysaccharides or extracellular polymeric materials are the chief 

metal chelating constituents in the cell walls of brown algae, which is directly related to 

their biosorption capacity (Davis et al., 2003). The alginate, fiicoidan and cellulose 

found in brown algae and the agar and carrageenan are the metal-chelating cell wall 
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structural polymers in red algae (Hu et al., 1996). Laminariales and Fucales are the 

brown algal orders with the best biosorption ability, because they produce abundant cell 

wall matrix polysaccharides and extracellular polymers (Davis et al., 2003). Among 

species in these two orders, Fucus vesiculosus and Sargassum spp. are the most 

frequently used as bioindicators as they are known to reflect the concentrations of 

dissolved metal elements in the water (Forstner and Wittmann, 1983, Bryan et al., 1985). 

Fostner and Wittmann (1983) and Bryan et al. (1985) concluded that other Fucus 

species including F. serratus, F. spiralis and F. ceranoids can also be used as 

bioindicators. F. serratus in the present study accumulated total and non-exchangeable 

concentrations of Cd with a linear relationship with Cd contents in the Aquil medium, 

which is the typical characteristic of metal uptake by plant bioindicators. In addition, F. 

serratus did not have visual symptoms of Cd stress with up to 10 mg Cd L"' for 14 d, 

which presents a hyperaccumulation capacity against Cd exposure. 

3. 4. 5. Effects of Cd on growth oi Fucus serratus 

The presence of Cd in the range of 1 ~ 10 mg L ' ' strongly affected RGRs of F. 

serratus. The decreases of RGRs were more significant in the BQ population although 

the decreases in RP were also significant. RGRs of both populations decreased 

markedly in response to Cd treatment for 7 d, however they partially recovered after 14 

d. Shrunken size and weight loss (or stable weight) of macroalgae caused by metal 

stress have been observed by many researchers (Bryan and Gibbs, 1983, Brown and 

Newman, 2003, Han et al., 2008). Gracilariopsis longissima (Bryan and Gibbs, 1983), 

F. vesiculosus (Brown and Newman, 2003), Ulva pertusa and U. armoricana (Han et al., 

2008) showed decreased RGRs when they were exposed to Cu. Inhibition of cell 
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division and/or expansion are known to be induced by metals (Stauber and Florence, 

1987), which may possibly be related to a decrease of turgor, an alteration of cell wall 

elasticity, any other trauma owing to metal toxicity (Brown and Newman, 2003) or 

acclimatisation. 

More significantly decreased RGRs at 7 d and less recovery (still negative 

growth) at 14 d explained that the BQ population had more serious effects on weight 

growth by Cd treatment. These differences resulted from the varying resistance ability 

between populations, depending on their habitats. The inheritance of metal tolerance by 

marine macroalgae was reported by some researchers (Bryan and Gibbs, 1983, Correa et 

al., 1996, Nielsen, 2002, Nielsen et al., 2003b). Nielsen et al. (2003b) showed that both 

adult and young F. serratus from RP revealed higher resistance to Cu^^ although F. 

serratus from BQ and Wembury Beach were very sensitive to Cu^^. Bryan and Gibbs 

(1983) reported that adult F. serratus from polluted areas had two- to five-fold higher 

RGRs than Fucus from uncontaminated sites. Differences in RGR with high Cd 

concentrations (1 ~ 10 mg L ' ' ) in this study also support those previous studies. 

Nevertheless, unlike higher Cd concentrations of 1 ~ 10 mg L"' , changes of RGRs with 

10 ~ 1000 (ig Cd L ' were less impressive. Clear decreases of RGRs were discovered at 

all Cd treatments at 24 hr and at 1000 \ig Cd L ' ' at all time intervals studied. In addition 

lower Cd concentrations did not show clear differences between populations, which 

may be more easily related to the other physiological responses of Fucus. Compared 

with the higher Cd concentrations, 10 ~ 1000 ^g L"' for 24 hr, 96 hr and 7 d might have 

not affected harmful effects, or common characteristics from both populations, i.e. 

antioxidative enzymes or metal chelating complexes, might have strongly performed 

their duty to resist the environmental stress. 
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3. 4. 6. Effects of Cd on Chi a fluorescence of Fucus serratus 

Chi a fluorescence has been recognized as one of the most useful tools in plant 

stress physiology in the past three decades (Krause and Weis, 1984, Kupper et al., 1998). 

It has been also used as an estimation method for aquatic primary productivity levels in 

situ over the past two decades (Suggett et al., 2007). Chi a fluorescence can present 

various practical information, such as the excitation energy transfer among pigments 

and the complexes, and various electron-transfer reactions, specifically of PS I I 

(Govindjee, 2004). Generally the higher metal dosage as well as the longer exposure 

period are known to cause the greater stress response (more increase or decrease o f Chi 

a fluorescence parameters) of plants (Ralph and Burchett, 1998). 

However it has been reported that Cd stress in terrestrial plants and marine algae 

do not affect the fast kinetic fluorescence parameters, especially Fv / Fn, rafio (Greger 

and Ogren, 1991, Krupa et al., 1993, Di Cagno et al., 1999). The previous researchers 

used similar (but often much higher) Cd concentrations and similar exposure time to 

those of this shady. Di Cagno et al. (1999) used 10 and 20 | i M Cd^^ for 7 d, Greger and 

Ogren (1991) used 1, 5, 20, 50 or 2000 ^iM CdCb for 14 d and Krupa et al. (1993) used 

10, 20, and 50 |aM CdS04 for 1 week. High Cd treatments (1 ~ 10 mg L"') in this study 

did not induce apparent stress responses in most of parameters with longer exposure (7 

~ 14 d) and lower Cd treatment also did not produce clear responses for 96 hr and 7 d. 

Although Fv / Fm ratio was not affected by Cd treatment, some Chi a fluorescence 

parameters showed a clear relationship with Cd concentration in these previous studies. 

Fo from RP in the present research changed with higher Cd concentrations or longer 

time of exposure, which indicated that Fucus was under stress during the Cd treatment 

even though Fv / Fm and other parameters were not changed (Dan et al., 2000, Maxwell 

and Johnson, 2000). Responses of Chi a fluorescence of terrestrial plants and 

marine/freshwater algae can be derived differently by species, age, origination, metal-
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exposure history of the species, metal species, concentration of metal, time of metal 

exposure, light intensity, temperature, nutrient state, etc. (Jensen et al., 1974, Davies, 

1976, Stromgren, 1980, Boyle, 1984, Kupper et al., 1996, Wierzbicka, 1999, Dan et al., 

2000, Kupper et al., 2002, Antosiewicz, 2005, Romanowska-Duda et al., 2005, Sharma 

and Dubey, 2005, Kalaji and Loboda, 2007, Kupper et al., 2007). Brown algae 

including Fucus spp. are known as non-sensitive marine macroalgae and, in general, Cd 

is relatively less toxic metal species to plant and algae than either Cu or Hg (Ralph and 

Burchett, 1998, Xia et al., 2004). Therefore, for these reasons, the insignificant effect of 

Cd on Chi a fluorescence of F. serratus may be understood, at least partially. F. 

serratus from the metal-polluted site and the clean site could survive in much higher Cd 

concentrations than their natural environments for up to 14 d without any serious 

harmfixl effect of Cd on Chi a fluorescence. 

On the other hand, Cd treatment in the range of 1 ~ 10 mg L'^ in the current 

research showed an effect on Chi a fluorescence parameters for the first 24 hr. 

Therefore effects of Cd on Chi a fluorescence of F. serratus may occur so fast that most 

of the responses may happen within 24 hr. Ralph and Burchett (1998) used Chi a 

fluorescence successfiiUy to reveal Cu toxicity (5 m M L"') for 1 hr exposure. In most 

experiments of this research, Chi a fluorescence was significantly affected by time of 

Cd exposure rather than Cd concentration. More apparent changes in PS I I by exposure 

time using Cd and Pb was reported by Kalaji and Loboda (2007) and a different stress 

mechanism to different metal was mentioned since PS I I activity by Chi a fluorescence 

was changed in different manner (Ciscato et al., 1999, Kalaji and Loboda, 2007). They 

also reported rapid effects of metal application (24 hr) for some phenomenological 

parameters, especially for Cd treatment. They referred to these parameters as usefiil 

indicators for the negative influence of metals at early stages of their action. Krupa et al. 

(1993) hypothesized that the Calvin-Benson cycle reaction was the primary target of Cd 

127 



exposure not PS II . Cd-induced inhibition of Calvin-Benson cycle reduced demand for 

ATP and NADPH, which brought a down-regulation of PS I I photochemistry and 

electron transport. 

Changes of Chi a fluorescence is a complex result of adverse effects of toxic 

metals (Kalaji and Loboda, 2 0 0 7 ) . Cd stress can activate the following effects which are 

related to Chi a fluorescence of plant: inhibition of photosynthesis and changes in Chi 

biosynthesis (Krupa et al., 1 9 9 3 ) ; delayed reduction and oxidation of the reduced QA 

(Strasser et al. 1 9 9 5 ) ; changes in intracellular compartmentation (Brune et al., 1 9 9 5 ) ; 

changes in specific transport processes (Gonzalez et al., 1 9 9 9 ) ; down regulation of PS II 

to elude reduction of QA and to lessen electron transport (Vassilev and Manolov, 1 9 9 9 ) ; 

and reduced damage of thylakoid lipids in OEC and LHC II antenna system (Joshi and 

Mohanty, 2 0 0 4 ) . 

3. 4. 7. The effect of Cd on photochemical processes of Fucus serratus 

Photoinhibitory damage in plants, indicated by a decrease of Fv / Fm and increase 

of Fo values (Maxwell and Johnson, 2 0 0 0 ) , can be caused by high or low temperature 

(Gamon and Pearcy, 1 9 8 9 , Groom and Baker, 1 9 9 2 ) , excess PFD (Ogren and Sjostrom, 

1 9 9 0 ) , water stress (e.g. drought) (Epron et al., 1 9 9 2 ) and heavy metal stress (Kupper et 

al., 2 0 0 7 ) . Although many new parameters have been developed to measure the effects 

of various stress conditions on photosynthetic ability, Fv / Fm and Fo remain trustworthy 

diagnostic indices of photoinhibition ((Maxwell and Johnson, 2 0 0 0 ) . The diminution of 

Fv / Fm is understood as interference in the reduction of the electron acceptor QA by PS 

11 (Dan et al., 2 0 0 0 ) . However, changes of these parameters were limited in this research 

and even high Cd concentrations did not cause change of Fv / Fm and Fo in most cases. A 

lack of decrease in the maximal photochemical efficiency of PS II by Cd treatment has 
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been reported by some researchers (Greger and Ogren, 1991, Krupa et al., 1993, Di 

Cagno et al., 1999). They used 10, 20 and 50 i^M Cd for up to 4 weeks and did not find 

any significant changes in these fluorescence parameters. The primary target of Cd is 

sfill under discussion; Greger and Ogren (1991) reported the primary photochemistry of 

PS I I as the primary target and Krupa et al. (1993) postulated Calvin-Benson cycle 

rather than PS I I efficiency. Krupa et al. (1993) hypothesized that Cd induced an 

inhibition of regeneration of RuBP and/or Cd inhibited the light-activated enzymes of 

the carbon reduction cycle. In both cases the results show limited consumption of ATP 

and NADPH (decrease of qP and increase of NPQ). Since high Cd concentration in 

which significantly suppressed the growth of algae did not change Fy / Fm ratios, 

fiinctions of the PS I I reaction centre might not be affected by Cd exposure in this study 

(see as review Prasad and Strzalka, 1999, Kupper and Kroneck, 2005, Kupper et al., 

2007). Therefore, these in vivo effects of Cd on the electron transport system may be 

understood as indirect feedback resulting in the inhibition of the Calvin-Benson cycle 

(Krupa etal., 1993). 

Fv / Fo is an alternative expression of Fv / Fn, and sometimes Fo / Fv can be used 

instead of it (Krause and Weis, 1991, Maxwell and Johnson, 2000, Mallick and Mohn, 

2003). In some cases, it can express data in a better way and it is more sensitive and 

powerful to changes in efficiency at high values than Fv / Fn,, qP and NPQ, especially at 

immediate exposures of metals (Maxwell and Johnson, 2000). Interestingly, the values 

of Fv / Fo were not changed significantiy in most cases and only 1 ~ 1000 f̂ g Cd L"' 

treatment in RP showed an apparent decrease for 24 hr, 96 hr and 7 d. This decrease of 

Fv / Fo (or increase of Fo / Fv) has been attributed to a severe effect on the water-splitting 

site, and the replacement of Mn was strongly suspected in the water-splitting apparatus 

of the oxidizing site, since an abrupt rise of FQ / Fv couples with early Mn deficiency 

(Mallick and Mohn, 2003). However, in this study, the lack of significant changes to Fv 
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/ Fo in most cases suggested no changes in the rate of electron transport from FS I I to 

the primary electron acceptors (Dan et al., 2000). Trace metals are known to prevent the 

absorbed light energy from being using in the electron transport system (Dietz et al., 

1999), therefore the rate of photochemistry can decrease and the pool size of the 

primary electron acceptor can be reduced (Krause and Weis, 1991). Hence Cd treatment 

did not disturb electron transport of F. serratus of the present study as Fv / Fm and Fv / 

Fo rates were not significantly altered. 

Opsii ( = AF / Fm') have been frequently used by some researchers since Fv / Fm 

was less sensitive to photosynthetic stress in certain cases (Ralph and Burchett, 1998, 

Macinnis-Ng and Ralph, 2002). Opsn determines the proportion of the light captured by 

Chi of PS I I , therefore the rate of linear electron transport and an indication of whole 

photosjmthesis can be measured (Maxwell and Johnson, 2000). In this study, rates of 

light energy absorbed by photosynthetic pigments in PS I I were not related to the Cd 

treatment and its concentration for up to 7 d in both populations, which again shows that 

the rate of electron transport and entire photosynthesis of F. serratus were not affected 

by Cd but were affected more probably by exposure time. However the decrease of Opsn 

by exposure time cannot be regarded as the effect of exposure to Cd since the decrease 

was also present in the control (0 )ag L"') of both populations. Therefore other sfress 

factors from the culture conditions, such as high direct (or accumulated) light, etc., may 

be implicated. 

Another parameter measuring photochemistry is qP (= (Fm' - Fg) / (Fm' - Fo')). It 

has very similar equation to that of <l)psii (or AF / Fm' = (Fm' - Fs) / Fm') however it 

determines the proportion of opened PS I I reaction centres while Opsn gives the 

proportion of energy being used in photochemistry (Maxwell and Johnson, 2000). 

Maxwell et al. (1994) used the alternative expression, 1-qP and it relates to the 

proportion of closed reaction centre (excitation pressure of PS II). The closure of the 
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reaction centres is due to light saturation of photosynthesis, which changes the value of 

qP. In the present study, Cd treatment and increase of its concentration was not related 

to the decrease of qP. Di Cagno et al. (1999) published Cd-induced decrease of qP and 

increase of qNP and this was interpreted as a lower capacity of PS I I to re-oxidise QA. 

In the present research Cd did not show any direct effect to the coefficient of 

photochemical quenching, which may show that PS I I has not been affected by Cd or F. 

serratus may have a high capacity of PS I I to re-oxidise QA and a high turnover rate of 

QA oxidafion. 

3. 4. 8. Cd stress effects on non-photochemical processes of Fucus 

serratus 

Under extreme environmental conditions, such as high light or excess metal 

concentrations, permanent photosynthetic damage can occur (Govindjee, 2004). This is 

called photoinhibition in the case of high light stress and strategies for protecting plants 

from the stress are defined as photoprotection (Holt et al., 2004). Elimination of the 

excess absorbed energy as a form of heat (thermal dissipation) is one of the strategies of 

plant survival (Govindjee, 2004) and can be measured as N P Q of Chi a fluorescence by 

the PAM instrument. N P Q represents the ability to execute non-radiative dissipation of 

excess energy (Xu et al., 2008) and is an indicator of the transfer to a light-adapted state 

from the dark-adapted state (Strasser et al., 2000). In many cases of stressfiil conditions, 

the value of N P Q increases, which may be the result of processes to protect the plant 

from stress-induced damage (Maxwell and Johnson, 2000). However, in this research, 

Cd treatment did not show a regular pattem and N P Q values decreased in RP after 24 hr 

of Cd treatment. N P Q in B Q increased with Cd concentration until 100 |ag L"' and then 

decreased again at 1000 |j.g L ' ' at 24 hr exposure. N P Q values seemed more related to 
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the exposure time than Cd concentration in both populations. Non-photochemical 

parameters are related to various processes of thermal dissipation in the photochemical 

apparatus (Krause and Weis, 1991, Vassilev and Manolov, 1999). Hetherington et al. 

(1998) reported that increased NPQ value to 0.4 ~ 0.5 represented forced thermal 

dissipation at the pigment level since the intrathylakoid lumen had been acidified by 

membrane energisation. However all NPQ values in this experiment were much lower 

than 0.4, which suggested that the most of the absorbed energy was used for 

photosynthetic processes (Xu et al, 2008). Han et al. (2008) and Horton and Bowyer 

(1990) explained the Cu-induced NPQ decrease as a reduced electron transport rate in 

the route Peso pheophytin —* QA —^ Q B or increased rate of the back reaction, QA' 

?680^- However, NPQ increase with time of Cd exposure and increase at 0 \ig Cd L ' ' for 

BQ cannot be explained using this view. The results presented here that Cd did not have 

a direct effect on NPQ, which might result from the non-effective Cd characteristics 

and/or the concentrations used in this study. The changes might also be related to other 

possible stresses from culture conditions, e.g. light intensity or medium change (from 

seawater to Aquil). NPQ might be related to the light, especially the accumulated light 

intensity from the beginning of the experiment since NPQ values increased even at 0 p-g 

Cd L"' for BQ. Although two populations that have different metal-exposed history 

showed similar non-photochemical quenching values, the highest values shown with 

exposure time were different. The RP population showed the highest values at 96 hr and 

the BQ population showed highest at 7 d. This could refer to different operation of the 

Xanthophyll cycle, the acidification of thylakoid lumen and the specific components of 

the antenna of PS I I (inclusive of the psbS gene product, some other minor antenna 

complexes and even certain portions of LHC IIB) (Gilmore et al., 1998, Govindjee, 

2004). In addition, NPQ decrease in RP at 7 d might be a result of recovery from Cd 

stress which may be related to any other antioxidative responses of the alga. Exudation 

132 



of Cd was less linked to this because Cd accumulation increased continuously during 

the experiments. These results are discussed later in other chapters in this dissertation, 

such as antioxidation enzymes and metal detoxifying capacity. Moreover, shorter 

exposures to metal ions seemed a more effective way to see toxic metal stress with Chi 

a fluorescence since 24 hr exposure showed the most clear increase/decrease pattem 

with the Cd concentrations used. 

3. 4. 9. JlP-test 

JlP-test is a relatively recently developed technique to understand the Chi a 

fluorescence signal changes (Strasser et al., 2004) and has been exploited successftilly 

in studies using a variety of photosynthetic organisms (Tsimilli-Michael and Strasser, 

2003). This test was derived from the theory of energy flow in thylakoid membranes 

which suggest there is a balance in the inflow/outflow of the total energy in 

photosynthetic pigments (Strasser et al., 2004, Kalaji and Loboda, 2007). Therefore 

information on the stmcture and fiinction of the photosynthetic apparatus can be derived 

from this new test (Strasser and Strasser, 1995, Strasser et al., 1995, Sarkar et al., 2004, 

Strasser et al., 2004, Kalaji and Loboda, 2007). However, different stress conditions 

represent different physiological states and these differences can be validated by the 

JlP-test (Strasser et al., 2004, Romanowska-Duda et al., 2005, Kalaji and Loboda, 2007). 

In the present study, neither Chi a fluorescence transient curves nor any of the JlP-test 

parameters (ABS / CS, TRo / CS, ETo / CS, DIo / CS, RC / CSo, RC / CS^) showed a 

regular pattem or an apparent effect by high Cd concentrations ranged in 1 ~ 10 mg L"'. 

Longer exposure (7 and 14 d) revealed much higher values than shorter exposure (6 ~ 

24 hr) in both populations. Cd stress to JlP-test parameters of F. serratus was not 

obvious and recovery of the Chi a fluorescence transient is the evidence of a weak 
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correlation between Cd and the parameters of the JlP-test. Other physiological and 

biochemical processes commonly known in the plant system, such as detoxification or 

antioxidative mechanisms, and non-effective concentrations of Cd are also possibly 

considered as a reason for the non-significance of JlP-test results. Here, again, the 

possibility of Cd exudation has received little consideration. On the other hand, 

Gonzalez-Mendoza et al. (2007) reported Cd-induced decrease in jdeld for primary 

photochemistry, TRo / ABS and PI of PS I I , PIABS of Avicennia germinans, the black 

mangrove. Therefore species-specific changes by Cd are also possible. Kalaji and 

Loboda (2007) also reported evidence of a fast shift (24 hr) in phenomenological 

parameters (ABS / CRo, TRo / CSo and ETo / CSo) after Cd and Pb treatment and the 

shift was especially quick under Cd treatment. The authors suggested these parameters 

could be used as efficient indicators for monitoring the negative influence at early 

stages of metal action. Although these parameters did not reveal significant changes 

under the Cd treatment and with the concentrations in the present study, some 

differences with exposure time and recovery of the values may be closely related to the 

fast response to the Cd stress and other detoxifying mechanisms of F. serratus. 

3. 4.10. Effect of Cd on photosynthetic pigments of Fucus 

Heavy metals are known to reduce the biosynthesis of Chi pigments and the 

related enzymes (such as photochlorophyllide reductase) (Stobart et al., 1985, 

Somashekaraiah et al., 1992, De Filippis and Pallaghy, 1994). Metal-induced 

diminution of the total Chi content, the Chi alb ratio and the Chl/carotenoid ratio have 

been reported (Ouzounidou, 1993, Ralph and Burchett, 1998, Di Cagno et al., 1999, Xia 

et al., 2004). Greger and Ogren (1991) reported the decrease of Chi concentration was 

associated with Mg and Fe deficiency in the processes of Chi biosynthesis. Some metals 
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such as Cd and Cu can substiUite for Mg^^ in the Chi molecules of the LHC II , which is 

highly unstable (Kupper et al., 1996, Kupper et al., 2007). However, in the current study, 

effect of Cd on contents of photosynthetic pigments showed a different pattem related 

to a population. Cd exposure increased contents of Chi a, Chi c and Fx in the RP 

population, but there was no significant difference between Cd concentrations (10 ~ 

1000 (j,g L ' ) . The contents of these pigments decreased in the BQ population. However 

the content of P-carotene from the BQ materials were higher than those from the RP 

materials, and the content was not affected by Cd exposure except 10 jag L ' ' in BQ. No 

significant changes of Chi and carotenoids contents by Cd freatment have been reported 

by other researchers (Ralph and Burchett, 1998, Macinnis-Ng and Ralph, 2002, Han et 

al., 2008). Xia et al. (2004) reported that 50 and 100 ^iM Cd did not affect Chi a and 

carotenoids contents of a red alga Gracilaria lemaneiformis and only 200 p,M Cd 

induced a marked decrease of Chi a and carotenoids contents. Ouzounidou (1993) found 

an increased Chi content in Silene compacta at low Cu exposure and decreased Chi 

content at elevated Cu levels. Similar results were noted with the marine microaglae 

Phaeodactylum tricornutum (Bacillariophyceae) (Cid et al., 1995). The authors 

suggested a high Cu demand of tolerant species. However, in the current study, algae 

from the polluted site increased the Chi contents and algae from the reference site 

showed significantly lower levels of contents. Significant increases in Chi associated 

with stress resistance have been noticed across a range of environmental stresses (Zhang 

et al., 2005). Ulva armoricana showed an increase in Chi content with no decrease in Fv 

/ Fm or Fo when the RGR was reduced by Cu stress (Han et al., 2008). The authors 

suggest a trade-off relationship between energetic resources for pigment biosynthesis at 

the expense of growth. F. serratus exposed to Cd in this research showed similar results. 

The expensive protective mechanisms might have reduced Cd stress from the reduction 

of photosynthetic pigments. 
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Cd exposure had an apparent effect on the content of Fx in F. serratus. For 

brown algae, Chi c and Fx are known as the main light-harvesting pigments which 

broaden the absorption spectrum to green light relative to other algae (Charrier et al., 

2008). As accessory pigments in plants, these pigment proteins transfer absorbed light 

energy to Chi a in the photosynthetic reaction centre (Grossman et al., 1995). Cd stress 

was shown to be related to the population. Levels of Fx of BQ decreased significantly 

with Cd treatment, increasing Cd concentration and exposure time until 96 hr. However, 

although Cd treatment had an effect, Cd stress increased contents of Fx in RP. 

Therefore significantly lowered levels of Fx in BQ indicate significant damage of 

pigment biosynthesis and its fhnction, designating significantly reduced light harvesting 

ability by Cd exposure. On the other hand, increased Fx contents in RP showed a 

specific tolerance of this population to Cd stress, which could be derived from 

adaptation to the contaminated habitat and inherited tolerance from the previous 

generations. 

3. 4.11. Metabolic responses to Cd in tolerant and non-tolerant Fucus 

populations 

Unfortunately few researchers have reported the inter-population differences of 

photosynthetic activity in response to metal stress. F. serratus had a very low sensitivity 

to Cd exposure and no significant difference between the polluted and the control 

populafion was revealed in most cases of the present research. Non-polluted population, 

BQ also showed very similar Chi a fluorescence with 1-10 mg Cd L"' for 7 and 14 d 

exposure. Brown algae are known to have the ability to hyperaccumulate metal ions, for 

which they were used in biomonitoring programs (Stengel and Dring, 2000). Nielsen et 

al. (2003b) published a study indicating inherited tolerance to Cu^^ in F. serratus. They 
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found that the tolerant population had higher embryo and adult growth rates and lower 

Cu contents in thalli than the non-tolerant population. In addition the tolerant population 

showed more stable results of Chi a fluorescence parameters than the more susceptible 

values in the non-tolerant population. Therefore they concluded that the tolerant 

population from Restronguet Creek was more resistant to Cu'̂ ^ than non-tolerant 

population from BQ and Wembury Beach. However the present study showed no 

significant differences between polluted and non-polluted populations using both Chi a 

fluorescence parameters and bioaccumulation of Cd. Contents of Fx, on the other hand, 

were significantly different and Cd stress caused reduction of this pigment only in the 

BQ population. In addition, the contents of Chi a and c were higher in RP and the 

content of |3-carotene was higher in BQ. Therefore F. serratus may have similar 

photosynthetic response to Cd stress and similar uptake rates of Cd regardless of their 

origin, although there were minor differences in tolerance. This could be derived from 

Cd's less toxic effects when compared with Cu (Ralph and Burchett, 1998). However 

many of the Chi a fluorescence values from BQ showed significant differences in the 

shorter exposure times of less than 24 hr using 1 ~ 10 mg Cd L"'. Therefore the faster 

responses of RP population occurred for less than 24 hr. In conclusion, Chi a 

fluorescence in F. serratus did not respond very sensitively to Cd exposure when 

compared to the stress induced by other metals and this lack of response was not related 

to locality. 
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3. 5. Conclusion and further consideration 

Similar concentrations of total and non-exchangeable Cd were discovered 

between polluted and reference populations of Fucus serratus. Although the RP area is 

seriously polluted by various metal elements and Fucus from RP already contained 

much higher amounts of trace metals, concentrations of Cd adsorbed/absorbed by F. 

serratus from RP and BQ were not significantly different. With these same Cd burdens, 

both populations showed similar responses in photosynthetic performance. Cd had a 

very limited effect on most of the parameters of Chi a fluorescence of F. serratus. 

Photosynthetic pigments were affected by Cd stress, however there was no significant 

difference between Cd concentrations (10 ~ 1000 jxg Cd L ' ' ) . Parameters of Chi a 

fluorescence and photosjoithetic pigments are often affected by exposure time rather 

than Cd treatment or its concentrations. However there might be other effects from 

culture conditions since Chi a fluorescence parameters increased/decreased at 0 |a,g Cd 

L ' at an extended culture period. Therefore photosynthetic responses of F. serratus to 

Cd stress are not independent and many physiological and ecological processes are 

incorporated into a complicated defence system. As the RGRs significantiy decreased in 

both populations, particularly at higher Cd concentrations, the toxic effect of Cd is 

apparent although the harmful effect was not related to photosynthetic mechanisms. 

Chi a fluorescence parameters were more effective at shorter exposure times of 

6 ~ 24 hr than longer exposure of 96hr ~ 14 d. With longer exposures Fucus did not 

show significant damage by Cd, which indicates other physiological and biochemical 

protective mechanisms of detoxification causes a recovery by the algae. Metal-chelating 

thiol compounds, organic acids and inorganic compounds, sequestration of metal stress 

and increase of metabolic rate are possible mechanisms. Avoidance and exclusion may 

be less likely since there was a positive linear relationship between uptake and Cd 
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concentration. To overcome metal stress F. serratus maintained its photosjmthetic 

metabolism and the increased metabolic activity limited damage to photosynthetic 

apparatus while RGRs decreased significantly. 

In conclusion, both Fucus populations have the potential ability to be used as 

indicators of Cd content. Unlike previous reports with other algal species, F. serratus 

from the control site also had similar photosynthetic responses to those of the tolerant 

populations, especially when subjected to longer Cd exposure (chronic exposure). 
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Chapter 4. Evaluation of antioxidant 

defense responses to cadmium stress in 

Fucus serratus (Phaeophyceae) 
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4.1. Introduction 

Accumulated metals from various sources can lead to oxidative stress as well as 

stress on photosynthetic perft)rmances as the previous chapter (Wikfr)rs and Ukeles, 

1982, Rebhun and Ben-Amotz, 1984, Cotte-Krief et al., 2000, Bu-Olayan et al., 2001, 

Esser and Volpe, 2002, Pinto et al., 2003). Although this oxidative stress and the 

defence strategy of plants has been an interest for decades, the cellular protective 

mechanism of marine macroalgae is not yet clearly elucidated (Pinto et al., 2003). 

4.1.1. Reactive oxygen species and oxidative stress 

Reactive oxygen species (ROS) comprise activated oxygen, including free 

radicals (superoxide anion radicals, O^"; hydroxyl radicals, OH) and non free-radical 

species (hydrogen peroxide, H2O2; singlet oxygen 'O2) produced in organisms (Gul9in 

et al., 2002, Gul9in et al., 2003, Gu^lii et al., 2006, Halliwell and Gutteridge, 2007). 

These are obligatory by-products of normal aerobic metabolism, such as photosynthesis 

and respiration (Asada and Takahashi, 1987, Mittler, 2002), or of abiotic stresses 

(Mittler, 2002). Abiotic stresses that disrupt the cellular homeostasis include air 

pollutants (ozone or SO2), chilling, drought and desiccation, heat shock, high light, low 

temperature, nutrient deprivation, salt stress, ultraviolet radiation, pathogen attack, and 

heavy metals (Noctor and Foyer, 1998, Collen and Davison, 1999a, Dat et al., 2000, 

Mittler, 2002, Dummermuth et al., 2003, Gu(?lu et al., 2006). Other pathways relatively 

recently discovered include NADPH oxidases, amine oxidases and cell-wall-bound 

peroxidises (Mittler, 2002). 

Under benign condition the balance between the production and inactivation of 

ROS by the antioxidant mechanism is tightly controlled, but on exposure to 
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environmental stressors over-generation of ROS can lead to oxidative damage (Gul9in 

et al., 2003, Gii9lii et al., 2006, Halliwell and Gutteridge, 2007), including alterations in 

cellular membranes (such as altered permeability and modification; degradation of 

amino acid) and in intracellular molecules (such as deletion or mutation of DNA) (El-

Habit et al., 2000, Gul9in et al., 2003) as well as cell death (Hammond-Kosack and 

Jones, 1996, Asada, 1999, Dat et al., 2000, Mittler, 2002). Therefore, the increase of 

ROS synthesis is considered as an indicator of oxidative stress and the reactive oxygen 

scavenging mechanism for a defence response is focused on plant biology (Knight and 

Knight, 2001, Gul9in et al., 2002, Mittler, 2002, Gul9in et al., 2003, Gu9lii et al., 2006). 

4.1. 2. Effects of metals in the environment as inducers of oxidative 

stress 

Under natural condition, metal exposure may not pose a serious threat to 

organisms since the concentrations of metals encountered are often not high enough to 

be toxic (Pinto et al., 2003). In chronically contaminated areas, organisms are exposed 

to low concentrations of metals for long periods (Pinto et al., 2003). In other situations, 

high exposure to pollutants, mostly anthropogenic, affects organisms around the sources 

in a very short period. Although the mechanisms of metal toxicity are not particularly 

well understood, there is increasing evidence that oxidative damage is involved (for 

review, see Pinto et al., 2003). Oxidative damage from metal exposure can proceed in 

two ways: (1) increase of cellular ROS and (2) decrease of cellular antioxidant capacity 

(Sies, 1999, Pinto et al., 2003). 

One of the main metals which have captured researcher's attention is Cd (Collen 

et al., 2003, Lee and Shin, 2003). Cd does not have a metabolic ftinction in plants and 

algae (Pinto et al. 2003), although it was known as a cofactor of a carbonic anhydrase in 
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a diatom, Thalassiosira weissjlogii (Lane and Morel, 2000) and was required for protein 

synthesis in a red alga, Porphyra umbilicalis (McLean and Wiiliamson, 1977). However 

the antioxidant responses of organisms to Cd stress are not yet understood (Lee and 

Shin, 2003). Transition metals (such as Fe^^ and Cu^^) generate -OH from O2' and H2O2 

in the Haber-Weiss cycle, while oxidative stress by metals without redox capacity (such 

as Cd^^, Pb^*, and Hg^^) may occur via a Fenton-type reaction (Robinson, 1989, Lee 

and Shin, 2003, Pinto et al., 2003, Halliwell and Gutteridge, 2007). The Haber-Weiss 

reaction was named after Fritz Haber and Joseph Weiss and describes the generation of 

hydroxyl radicals ( O H ) from hydrogen peroxide (H2O2) and superoxide ( 0 2 ) . This 

reaction is catalysed by transition metals and composed of a serious of steps, including 

Fenton reaction (Koppenol, 2000). 

Fe'^ + O2 Fe'^ + O2 

Fe^^ + H2O2 Fe^* + OfT + OH (Fenton reaction) 

Therefore the net reaction is 

O2' + H2O2 - ^ 0 2 + OH + OH (Haber-Weiss reaction) 

These reactions are possible sources for oxidative stress since they occur within cells 

(Koppenol, 2000), which is related to disruption of growth, photosynthetic electron 

chain, and ion / water transport and related to increase of enzyme activities and 

glutathione (GSH) pool (Prasad, 1996, Collen et al., 2003, Pinto et al., 2003). 

4.1. 3. Algal responses to metal-induced oxidative stress 

Effects of various metals on plants and algae have been observed by many 

researchers to date, and chlorosis, cell lysis, necrosis, discoloration and encystment are 
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some of visible signs of metal toxicity (Hu et al., 1996, Okamoto et al., 1999, Kupper et 

al., 2002, Collen et al., 2003). In addition, oxidative damage in proteins, lipids and 

DNA can also be caused (Asada and Takahashi, 1987, Collen and Davison, 1999b, 

Halliwell and Gutteridge, 2007). Elstner et al. (1988) defined 'stress point' as the 

threshold level of stress for plant fitness. In the plant/algal tissue, it can be the toxic 

threshold point of metal toxicity and the physiological condition of the cell may be 

permanently changed (Van Assche et al., 1988, Van Assche and Clijsters, 1990). The 

over-production of ROS and imbalance of cellular oxidative status wil l occur at this 

stage (Rijstenbil et al., 1998b, Okamoto et al., 2001a, Okamoto et al., 2001b, Collen et 

al., 2003). Increase in acfivity of certain enzymes, i.e. enzyme induction, and synthesis 

of antioxidants describe this oxidative cellular state (Van Assche and Clijsters, 1990). 

To reduce ROS in sensitive parts of the cellular machinery, low molecular 

weight compounds (e.g. ascorbate, carotenoids, flavonoids, GSH, phenolics, and 

tocopherols) and high molecular weight compounds (enzymatic catalysts) are produced 

as a protective mechanism (Pinto et al., 2003). A sign of the stress and some of main 

protective mechanisms against oxidative stress in plants and algae are outlined below. 

4.1. 3.1. Lipid peroxidation 

Polyunsaturated lipids are ftindamental components for the supporting system of 

cells and are found in cell membranes, endoplasmic reticula and mitochondria (Muriel, 

1997). Therefore oxidation of lipids by metal-induced oxidative stress wil l be critical to 

cellular fiinction and survival. Lipid peroxidation is a complex, free radical-mediated 

chain reaction, composed of three phases: initiation, propagation and termination (Rice-

Evans et al., 1991b). This reaction results in the oxidative degradation of lipids, chiefly 
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polyunsaturated fatty acids (PUFAs) containing multiple double covalent carbon-carbon 

bonds (Rice-Evans et al., 1991b). 

Malondialdehyde (MDA) is a very reactive three carbon/dialdehyde produced 

from lipid hydroperoxides. It is known to be formed by degradation of polyunsaturated 

lipids by ROS, therefore its production has been used as a biomarker for oxidative stress 

(Moore and Roberts, 1998, Del Rio et al., 2005). This oxidative stress has been 

measured by the thiobarbituric acid (TBA) reaction (Kohn and Liversedge, 1944) in 

which one MDA molecule reacts with two 2-TBA molecules stoichiometrically 

(Sinnhuber et al., 1958, Yu et al., 1986, Rice-Evans et al., 1991b). The adduct expresses 

a pink chromogen which can be detected by excitation wavelength of 515 ~ 532 nm and 

emission wavelength of 553 nm spectrophotometrically (Rice-Evans et al., 1991b, 

Moore and Roberts, 1998). Since the thiobarbituric acid-reactive substances (TBARS) 

test is non-specific and the chromogen can be formed with several other aldehydes other 

than MDA, such as carbohydrates, certain antibiotics, and DNA (Halliwell and 

Gutteridge, 2007), more specific and accurate HPLC techniques have been developed 

by which true MDA and other aldehydes can be distinguished (Rice-Evans et al., 

1991b). However, the TBARS test is still the one most frequently performed as it is 

easy and inexpensive (Moore and Roberts, 1998, Halliwell and Gutteridge, 2007). 
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4.1. 3. 2. Cupric ion reducing antioxidant capacity 

There have been many different methods of determining the antioxidant activity 

in plants, including: 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 

2,2'-diphenyl-l-picryl-hydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), 

ferric reducing ability of plasma (FRAP), total reactive antioxidant potential (TRAP), 

Folin-Ciocalteu, and HPLC (Apak et al., 2004, Apak et al., 2007). These (such as ABTS 

and DPPH), based on the assaying radical scavenging capacity of antioxidants, 

encountered difficulties due to the formation and stability of coloured radicals (Miller et 

al., 1993, Apak et al., 2004). On the other hand, FRAP, which is based on ferric to 

ferrous reduction with Fe(II)-stabilizing ligand, is unrealistic since the coloured 

complex needs much lower pH (pH 3.6) than the physiological pH and it is not able to 

detect thiol-type antioxidants such as GSH (Benzie and Strain, 1996, Apak et al., 2004). 

Llesuy et al. (2001) have subdivided methodologies for detecting antioxidant activity 

into five subclasses: (1) measuring the consumption of a stable fi-ee radical (such as 

DPPH); (2) measuring the time required to consume all of the antioxidants (such as 

TRAP assay); (3) the rate decreasing after addition of the antioxidant sample (such as 

ORAC assay); (4) equating the total amount of antioxidants to the reducing capacity of 

samples (such as FRAP assay); (5) the other procedures. 

In 2004, Apak and co-workers published a new methodology (cupric ion 

reducing antioxidant capacity, CUPRAC) for measuring antioxidant capacity of 

polyphenols and vitamins C and E. They used the reagent copper (Il)-neocuproin [Cu 

(II)-Nc] as the chromogenic agent and named it as CUPRAC. 

nCu(Nc)2^* + Ar(OH)„ nCu(Nc)2^ + Ar(=0)„ + nFt 
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where the polyphenol (Ar(OH)„) is oxidized to the corresponding quinon, and the 

reduction product (bis(neocuproine)copper(I) chelate) shows absorption maximum at 

450 nm (Apak et al., 2007). 

Some advantages of the CUPRAC method were summarized by Apak et al. 

(2007): 

(1) Fast enough to oxidize thiol-type antioxidants (such as GSH) which are the major 

low molecular weight thiol compounds in plant and animal cell 

(2) Selective because of the lower redox potential 

(3) Much more stable and easily accessible reagent than ABTS and DPPH 

(4) Easy and diverse application in conventional laboratories using standard 

colorimeters 

(5) Insensitive to air, sunlight, humidity, pH, etc. 

(6) Perfectly linear relationship between the analytical absorbance and wide range of 

concentrations 

(7) Nearly physiological pH of the redox reaction compared with unrealistic acidic 

conditions of FRAP 

4.1. 3. 3. 2,2-diphenyH-picryl-hydrazil (DPPH) free radical scavenging capacity 

Free radicals are known to affect the oxidation of unsaturated lipids and DPPH 

radical has been used as a stable free radical to measure antioxidant activity of natural 

compounds (Abe et al., 1998, Connan et al., 2006, Senevirathne et al., 2006, Ozturka et 

al., 2007). DPPH free radical scavenging assay is one of the electron transfer (ET)-

based assays (Apak et al., 2007). It was first proposed by Blois (1958) and has been 

widely used to evaluate the radical scavenging capacity of plant extracts and 

constituents (Soares et al., 1997, Wang et al., 2005). DPPH accepts an electron or 
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hydrogen radical to become a stable diamagnetic molecule (Soares et al., 1997) and the 

alcoholic DPPH solution can be reduced to form non-radical DPPH-H in the face of 

antioxidant (Giiltin et al., 2003, Gu9lu et al., 2006, Ozturka et al., 2007). 

DPPH + ArOH DPPH + ArO + H" 

where ArOH is the phenol which transferred to the aryloxy radical {ArO ) and the 

hydrogen atom ( / / ) (Apak et al., 2007). 

The ethanolic DPPH solution displays a strong absorption band at 517 nm 

(Soares et al., 1997). Lower absorbance of the reaction mixture at 517 nm represents 

higher free radical scavenging activity (Giil^in et al., 2003, Gu9lu et al., 2006, Ozturka 

et al., 2007). 

4. 1.3. 4. Antioxidative stress scavenging enzymes (CAT, APX and GR) 

Plants are known to have well equipped enzymatic detoxification mechanisms to 

eliminate and reduce ROS (Larson, 1988, Dummermuth et al., 2003) although studies 

on marine macroalgae are relatively limited. Catalase (CAT), ascorbate peroxidase 

(APX), glutathione reductase (GR), superoxide dismutase (SOD), glutathione 

peroxidase (GPX), monodehydroascorbate reductase (MDHAR), dehydroascorbate 

reductase (DHAR) and lipid peroxidase (LP) are the main antioxidant enzymes found in 

plants and algae (Rice-Evans et al., 1991a, Asada, 1999, Dummermuth et al., 2003, 

Pinto et al., 2003, Ratkevicius et al., 2003). Table 4. 1 and Fig. 4. 1 show the reactions 

and localisations of the main enzymes. CAT diminishes H2O2 to water and oxygen in 

two steps in cytosol and peroxisome, and APX, with higher affinity than CAT, also 

reduces it via the ascorbate-glutathione cycle in the cytosol, mitochondria and 
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Table 4. 1. Major antioxidant enzymes in plants and algae and their functions and localizations 

Enzyme Reaction Location 

CAT 2H2O2 2H2O + O2 peroxisome, cytosol 

APX H2O2 + ascorbate 2H2O + DHA cytosol, mitochondria, chloroplast 

GR GSSG + NADPH + H^ ̂  2GSH + NADP^ cytosol, mitochondria, chloroplast 

SOD 202- + 2H"'-^H202 + 02 cytosol, mitochondria, chloroplast, apoplast, peroxisome 

GPX H2O2 + 2GSH ^ 2H2O + GSSG peroxisome, cytosol 

MDHAR MDHA + NADPH ^ ascorbate + NADP^ cytosol, mitochondria, chloroplast 

DHAR DHA + GSH ascorbate + GSSG cytosol, mitochondria, chloroplast 

APX, ascorbate peroxidase; CAT, catalase; DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; GR, 
glutathione reductase; GSH, reduced glutathione; GSSG, glutathione disulphide; MDHA, monodehydroascorbate; MDHAR, monodehydroascorbate 
reductase; SOD, superoxide dismutase 
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Fig. 4 . 1. Reactive oxygen species scavenging pathways in plants and algae. APX, ascorbate peroxidase; CAT, catalase; DHA, dehydroascorbate; 
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chloroplasts (Asada, 1999, Dummermuth et al., 2003, Pinto et al., 2003, Ratkevicius et 

al., 2003, Halliwell and Gutteridge, 2007). APX can produce oxidized glutathione 

(GSSG) and dehydroascorbate which can be reduced to ascorbate by activity of DHAR 

(Ratkevicius et al., 2003). The GSSG can be reduced by GR with consumption of 

NADPH (Asada, 1999, Collen and Davison, 1999b). This cycle including activities of 

APX, DHAR and GR was named as Halliwell-Asada cycle and fianctions as to detoxify 

H2O2 using NADPH (Ratkevicius et al., 2003). 

Under status of metal stress, induction of antioxidant enzymes by plants and 

algae must be related to their metabolic roles to reduce, modulate or remove ROS (Van 

Assche and Clijsters, 1990, Mittler, 2002). Induction of enzymes can be discovered at 

low levels of toxicity, even before evident visible symptoms (Van Assche and Clijsters, 

1990). 

4.1. 4. Purpose of this study 

Stress tolerance and protective mechanisms have been studied in several 

different ways: population-specific in the same species, different parts or different 

development stage in an organism, transgenic plants, species-specific, etc. (Collen and 

Davison, 1999b). Plants increase their tolerance to oxidative stress through modification 

of their antioxidant defence systems (Anderson et al., 1995, Vitoria et al., 2001, Lee and 

Shin, 2003). However, research on antioxidative defence system of marine macroalgae 

is still limited (Whitton et al., 1989, Lee and Shin, 2003). In the previous chapter, 

photosjoithetic responses of Fucus serratus to Cd exposure were very restricted. 

Apparent evidence by Cd treatment was barely evaluated with Chi a fluorescence 

parameters. However, with some parameters (i.e. growth and photosynthetic pigments), 

more efficient responses have been measured in the RP population. Therefore, in this 
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chapter, the reactive oxygen scavenging capacity of F. serratus was examined against 

Cd exposure and two different populations from different metal-exposure history were 

compared. 
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4. 2. Materials and methods 

4. 2.1. Collection of Fucus serratus and culture 

Collection and culture of algal material was followed by Chapter 2. Non 

reproductive, fresh, about 1 year-old (dichotomous) algae were selected from RP and 

BQ. Apical tips (ca. 400 mg) were cultured in Aquil medium at 15 °C at an irradiance of 

250 pmol m' ' s"' on a 12 h light: 12 h dark cycle. Algal materials were exposed to 0 ~ 

1000 \ig L ' ' CdS04 for 24 h, 96 h and 7 d and to 0 ~ 10 mg CdS04 L"' for 7 and 14 d. 

4. 2. 2. Procedure for lipid peroxidation analysis 

10 ~ 20 mg (dry weight) of algae was homogenized with liquid nitrogen and 

extracted with 10% trichloroacetic acid (TCA) for 10 minutes using chilled mortar and 

pestle on ice. The final volume was 2 mL. The extract was centrifiiged at 12,000 g 

(17°C). After 10 minutes centriftigation, 1 ~ 1.5 mL supernatant was collected and 1 ~ 

1.5 mL of 0.6% TBA in 10% TCA was added in it. The combined reagent was 

incubated in an 80°C water bath for 20 minutes. The sample was moved into ice until 

chilled and centrifuged again at 12,000 g for 10 min (17°C). The concentration of MDA 

was determined spectrophotometrically (Unicam He^iios p UV-VIS spectrophotometer, 

Spectronic Unicam, Cambridge, U.K.) and calculated by the following equation: 

MDA-TBA (mmol mL'' of extract) =AA/e 

Here, A A is the difference between absorbance at 532 nm and absorbance at 600 nm 

(A532 -A600) and e is the exfincfion coefficient of 159,200 mM' ' cm"'. The value of 

mmol mL"' was then expressed as i^mol g"' D.W. Three replicates were used for each 

treatment. 
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4. 2. 3. Procedure for cupric ion reducing antioxidant capacity analysis 

4. 2. 3.1. Extraction of polyphenols 

Harvested thalU were rinsed with running tap water to remove salt and 

remaining Cd and were ground to a powder using liquid nitrogen. Ground F. serratus 

(approximately 0.1 g) was extracted with 10 mL 70 : 30 MtOH : H2O at 25 °C, in the 

dark, in a shaking incubator (60 rpm) for 24 hr, followed by centrifugal at 6,500 g for 

10 min (25 °C). These polyphenol extracts were stored for the following analyses for 

antioxidant capacity (CUPRAC and DPPH free radical scavenging assay). 

4. 2. 3. 2. Cupric ion reducing antioxidant capacity (CUPRAC) 

CUPRAC of F. serratus was examined according to Apak et al. (2007). Each of 

1 mL CUCI2 (10 mM), neocuproine (7.5 mM), and NH4AC buffer (1 M , pH 7.0) was 

combined and aliquots of algal extracts (100 j iL) were added to it. Distilled water was 

added to this mixture to a final volume of 4.1 mL. Stoppered tubes were kept in the dark 

for 1 hr at room temperature and the absorbances were recorded at 450 nm against a 

reagent blank. Total antioxidant capacity of F. serratus was expressed as Trolox 

equivalent antioxidant capacity (TEAC). Trolox is an antioxidant, a derivative of 

vitamin E, and is often used as a benchmark for the antioxidant capacity of antioxidant 

mixtures (Apak et al. 2007). The molar absorptivity of Trolox (sjroiox) was 1.67 x lO"* L 

mol"' cm''. 

Capacity (in mmol TEg') = (A/ZST/O (Vf^ Vs) r (Vcup/m) 

where Afis the absorbance, ETR is the molar absorptivity of Trolox, J^is the final volume 

of mixture (i.e. 4.1 mL), Vs is the sample volume taken for analysis from the diluted 

extract, r is the dilution rates, Vcup is the initial volume of Fucus extract and m is the 

154 



fresh weight (g) of algal material. The calibration curve for pure Trolox was a line 

passing through the origin (Fig. 4. 2). 

4. 2. 4. Procedure for DPPH free radical scavenging capacity analysis 

4. 2. 4.1. Extraction of polyphenols 

The same polyphenol extracts were used as CUPRAC method. 

4. 2. 4.1. DPPH free radical scavenging capacity analysis 

Free radical scavenging activity of Cd-exposed F. serratus was assessed by the 

DPPH (2,2-diphenyl-l-picrylhydrazyl) free-radical method (Connan et al., 2006). 300 

pL of polyphenol extract was added to 3 mL of 1 m M solution of DPPH in MtOH : H2O 

(90 : 10). Absorbance was read at 517 nm with a UV-VIS spectrophotometer against 

distilled water after standing in the dark for 1 hr. Lower absorbance of the mixture 

indicates a higher free radical scavenging activity (Ozturka et al., 2007). The DPPH 

radical scavenging capacity was calculated by the following equation (Giil9in et al., 

2003, Ozturka et al., 2007): 

DPPH Scavenging Effect (%) = Z ^ f ^ x l O O , 
control 

where v4̂ o«/ro/ is the absorbance of control and A^^^,^ is the absorbance in the presence of 

the sample of F. serratus. 
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Fig. 4. 2. The calibration curve for pure Trolox. 
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4. 2. 5. Procedures for reactive oxygen scavenging enzyme analyses 

4. 2. 5.1. Enzyme extraction 

Algal materials exposed to Cd were sealed and frozen (-20°C) until the enzyme 

assays. Protocols were based on Collen and Davison (1999a) and Collen and Davison 

(1999c) with minor modification. For the CAT and GR assays, frond pieces 

(approximately 0.1 g F.W.) were ground in liquid nitrogen using chilled mortar and 

pestles on ice and extracted for 10 minutes with five times the fresh weight of 50 m M 

potassium phosphate buffer (pH 7.0) containing 1 % w/v PVP-40 and 0.25% Triton X-

100. APX assay was the same as above with 0.1 m M EDTA and 0.5 mM ascorbate. 

Extracts were centrifuged at 20,000 g at 4°C for 5 min and stored in ice during the 

process. 

4. 2. 5. 2. Catalase assay 

CAT activity was analyzed by decrease measuring in the H2O2. 50 pL extract 

was added to 700 i^L 50 mM potassium phosphate buffer (pH 7.0) and 1000 | iL 10 m M 

H2O2. The reaction was measured in a quartz cuvette using a UV-VIS 

spectrophotometer (HeA.ios P, Spectronic Unicam) at an absorbance of 240 nm 

measured at 25 °C for 1 ~ 3 min. The extinction coefficient was 39.4 mM' ' cm"'. The 

CAT activity was calculated by the following equation: 

, „ ^ . , V X dilute factor xlOOO 
CAT activity {/jmole H^O2 ram mg protein) = 

39.4 X <i X V X protein content 

where Vis total volume in assay mixture (mL), v is volume of enzyme in assay mixture 

(mL), and d is light path of cuvette (1 cm). 

157 



4. 2. 5. 3. Ascorbate peroxidase assay 

For the APX assay, ascorbate consumption was monitored by a decrease in 

absorbance, at 290 nm for 30 s after adding 1000 pL 0.1 m M H2O2 to the assay mixture 

containing extract (30 ~ 100 i^L) and potassium phosphate buffer (pH 7.0, 700 ^iL 50 

mM) with 0.3 mM ascorbate. The assays were performed at 25°C and the extinction 

coefficient was 2.8 mM"' cm"'. The APX acfivity was calculated by the following 

equation: 

APX activity {/jmole H^O^ min mg protein) = 
_, _, V X dilute factor X1000 

l.Sxdxvx protein content 

4. 2. 5. 4. Glutathione reductase assay 

Oxidation of NADPH was measured as GR assay. Changes of absorbance at 340 

nm were measured by adding 20 extract to 1000 pL 100 mM Tris HCl buffer (pH 

7.8) with 2 m M EDTA, 1 mM NADPH and 0.5 m M GSSG at 25°C for 1 min. The 

extinction coefficient was 6.22 mM"' cm"'. The GR activity was calculated by the 

following equation: 

^„ , , ^ . _, _, , V X dilute factor X1000 
GR activity (/jmole H^O^ mm mg protein) = 

6.22 xd xvx protein content 

4. 2, 5. 5. Protein content assay 

Protein content in the algal material was measured spectrophotometrically 

according to Bradford (1976) at 595 nm at room temperature. Bradford reagent was 

prepared with Coomassie Brilliant Blue in phosphoric acid (0.01% w/v). Bovine serum 
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albumin (200 pg mL ) was used as standard and duplicate tests were carried out for the 

standard curve of absorbance versus |ag protein. Undiluted samples ( 1 0 - 300 pL) were 

added to the reagent solution (2.5 mL Bradford reagent and water, total volume 3.5 

mL). The protein content of Fucus extract was measured from the linear part of standard 

curve of bovine serum albumin and calculated in mg mL' ' . 

4. 2. 6. Statistical analysis 

Data were analyzed statistically using SPSS 16.0 for windows (SPSS hic). 

Before all parametric tests, the data were tested for homogeneity of variance and 

normality (Sokal and Rohlf, 1995). Multivariate test of General Linear Model was 

carried out for analyzing the effects of locality, metal concentration and exposure time 

and Tukey HSD was used for the Post Hoc multiple comparisons. In cases where 

additional analyses were needed. One-way ANOVA was performed to check 

differences, especially within a population or under a certain condition. In all analyses, 

differences were considered to be significant at a probability of 5% (p < 0.05). Number 

of replicates in each experiment was from 3 to 6. 
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4. 3. Results 

Oxidative stress expression and antioxidative reaction of Fucus serratus was 

examined with two different Cd concentration categories and time scales. 1-10 mg Cd 

L"' with 1, 7 and 14 d exposure was named as 'high and extended Cd exposure' and 10 

- 1000 pg Cd L"' with 24 hr, 96 hr and 7 d exposure was named as 'low and short Cd 

exposure' for distinction. Assays for lipid peroxidation, CUPRAC, DPPH free radical 

scavenging capacity and reactive oxygen scavenging enzymes were explored. 

4. 3.1. Lipid peroxidation of natural populations 

Lipid peroxidation of F. serratus collected from RP and BQ were compared 

without experimental Cd exposure (Fig. 4. 3). There was no statistically significant 

difference between the populations (p > 0.05). 

4. 3. 2. High and extended Cd exposure 

4. 3. 2.1. Lipid peroxidation 

Peroxidation of lipid of cell membrane showed apparent effects by extended 

time of Cd exposure (7 and 14 d) and high Cd concentration (1 - 10 mg Cd L"') (p < 

0.0001, respectively) but not by locality (p > 0.05, Fig. 4. 4). The higher Cd 

concentrations (5 and 10 mg Cd L"') induced the more peroxidation of lipid in both 

populations with longer exposure time (14 d). 
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Fig. 4. 3. Thiobarbituric acid-reactive substance (TBARS) levels, mainly 

malondialdehyde (MDA), in Fucus serratus harvested from Restronguet Point and 

Bantham Quay. Values represent mean values of three independent replicates ± standard 

deviations. 
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Fig. 4. 4. Thiobarbituric acid-reactive substance (TBARS) levels, mainly 

malondialdehyde (MDA), in Fucus serratus from Restronguet Point and Bantham Quay 

which were exposed to cadmium (7 and 14 days). Values represent mean values of three 

to six independent replicates ± standard deviations. 
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Effects of time of exposure and Cd concentration within each population were 

analysed by One-way ANOVA. In RP, apparent effects of time of Cd exposure and Cd 

concentration were discovered (p = 0.01 and p < 0.0001, respectively). 1 mg Cd L"' 

showed the highest peroxidised value at 7 d albeit it was not different from the control 

(0 mg Cd L"') at 14 d. In the lower Cd concentrations (0 and 1 mg Cd L"'), 7 d exposure 

showed higher values than 14 d. However, the longer exposure time (14 d) and the 

increased Cd concentrations (5 and 10 mg Cd L ' ' ) had a clear synergistic influence (p < 

0.0001). The BQ population showed the same pattem of lipid peroxidation to that of the 

RP population (Fig. 4. 3). The values were lower than RP with 5 and 10 mg Cd L"' at 14 

d however statistical significance was not evaluated (p > 0.05). 

4. 3. 2. 2. Cupric ion reducing antioxidant capacity 

Total antioxidant capacity was measured by reducing the cupric ion. When F. 

serratus was exposed to 1 ~ 10 mg Cd L"' for 1, 7 and 14 d, the reference population, 

BQ, had significantly higher levels than the population from RP at each day (p < 0.0001, 

Fig. 4. 5). 

Additional statistical analyses were performed for each population since time of 

exposure and Cd concentration were significantly related to antioxidant capacity by 

GLM (p < 0.0001 and p = 0.001, respectively). Antioxidant capacity of F. serratus from 

RP was the highest at 1 d, and then 14 d and 7 d in order (p < 0.0001). However 

differences between Cd concentrations were not always significant. 5 mg Cd L"' showed 

the highest CUPRAC values at 1 d and 1 mg Cd L ' ' had the highest values at 7 d. 

Meanwhile all Cd treated materials (1~10 mg Cd L"') showed higher values than 0 mg 

Cd U ' at 14 d(p = 0.002). 

163 



Restronguet Point Bantham Quay 

14d 

• I I I 

14d 

JlhJ 
0 1 5 10 0 1 5 10 

Cadmium concentration in medium (mg L'') 

Fig. 4. 5. Cupric ion reducing antioxidant capacity (CUPRAC) in Fucus serratus from 

Restronguet Point and Bantham Quay which were exposed to cadmium (1,7 and 14 

days). Values represent mean values of three to six independent replicates + standard 

deviations. 
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Time of Cd exposure and Cd concentration had very significant relation to total 

antioxidant capacity of the BQ population (p < 0.0001, respectively). Antioxidant 

capacity decreased with exposure time (1 d > 7 d > 14 d). The capacity was not 

significant between Cd concentrations (10 ~ 10 mg Cd L"') at 1 d and the control 

materials had high capacity values at each day (Fig. 4. 5). However, values of 1 mg Cd 

L ' ' at 7 d and 10 mg Cd L"' at 14 d were significantly lower than other treatments. 

4. 3. 2. 3. DPPH free radical scavenging capacity 

Free radical scavenging capacity of F. serratus measured by DPPH showed 

significant relationships to locality and time of Cd exposure (1, 7 and 14 d) (p < 0.0001, 

respectively) but not to concentration of Cd (1 ~ 10 mg L"', p > 0.05). The values were 

extremely higher at the BQ population than at the RP population (Fig. 4. 6). 

Impacts of exposure time and Cd concentration were different at each population 

therefore they were statistically analysed again by One-way ANOVA. In RP, fi-ee 

radical scavenging ability did not show a regular trend with Cd concentration however 

Cd treated materials had significantly higher capacity than the control at 14 d (p = 

0.001). 1 d treatment showed the highest free radical scavenging capacity and 7 d 

treatment had the lowest value ( 7 d < 1 4 d < l d , p < 0.0001). 

In BQ, the longer time of Cd exposure showed the lower scavenging capacity 

for fi-ee radical (1 d < 7 d < 14 d, p < 0.0001). However, concentration of treated Cd did 

not have an apparent tendency for free radical scavenging capacity even though there 

were significant differences (p = 0.006). 
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Fig. 4. 6. 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical scavenging activity in 

Fucus serratus from Restronguet Point and Bantham Quay which were exposed to 

cadmium (7 and 14 days). Values represent mean values of three to six independent 

replicates ± standard deviations. 
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4. 3. 3. Low and short Cd exposure stress 

4. 3. 3.1. Lipid peroxidation 

Lipids in the cell membranes were oxidised by lower and shorter Cd exposure 

and were affected very significantly by locality, time of Cd exposure (24 hr, 96 hr and 7 

d) and Cd concentration (10 ~ 1000 pg Cd L ' ' ) (p < 0.0001, respectively). RP showed 

significantly higher TBARS values, which represents more damage on membrane lipid 

by peroxidation (Fig. 4. 7). 

Since pattems of TBARS contents were different in RP and BQ, effects by time 

of exposure and Cd concentration were analysed again within each population. In RP, 

TBARS contents were significantly different by time of exposure (p < 0.0001) and were 

highest at 24 hr, decreased at 96 hr and then increased again at 7 d. After 24 hr of Cd 

treatment, 100 pg Cd L"' showed significantly higher levels of TBARS than 10 and 

1000 pg Cd L"'. 0 pg Cd L"' had higher TBARS level than 10 and 1000 pg Cd L"' at 24 

hr, but the value decreased and stabilised after 96 hr. TBARS contents increased with 

Cd concentration at 96 hr, however 10 and 100 pg Cd L"' had lower values than the 

control. After 7 d of treatment, all Cd exposed materials showed higher levels of 

TBARS than the control and 100 pg Cd L* was the highest. 

In BQ, contents of TBARS were always significanfiy lower than those in RP 

(Fig. 4. 7). Like RP, exposure time and Cd concentration were significantly related to 

peroxidation of lipid (p < 0.0001, respectively). However the effects of fime and Cd 

concentration occurred differently from the RP population. 96 hr exposure had the 

highest levels of TBARS and 24 hr exposure had the lowest (24 hr < 7 d < 96 hr). 

Significant differences by Cd concentrations were estimated (p < 0.0001). At 24 hr, 10 

pg Cd L"' showed the highest peroxidised values and over 100 pg L"' showed lower 
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Fig. 4. 7. Thiobarbituric acid-reactive substance (TBARS) levels, mainly 

malondialdehyde (MDA), in Fucus serratus from Restronguet Point and Bantham Quay 

which were exposed to cadmium (24 hr, 96 hr and 7 days). Values represent mean 

values of three independent replicates ± standard deviations. 
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lipid peroxidation values than those with 10 pg V\ At 96 hr 100 pg Cd U ' had the 

highest values and at 7 d every Cd treated material showed significantly higher value 

than the control (p < 0.0001). 

4. 3. 3. 2. Cupric ion reducing antioxidant capacity 

When F. serratus was exposed to 10 ~ 1000 pg Cd L* for 24 hr, 96 hr and 7 d, 

the BQ population had significantly higher levels than the RP population as the 

experiment with higher and extended Cd exposure (p < 0.0001, Fig. 4. 8). 

The influences of exposure time and Cd concentration were different for each 

population therefore additional analyses were performed with One-way ANOVA. At 24 

hr exposure in RP, 10 pg Cd L"' had significantly lower values than the other 

concentrations (p < 0.0001) and the rest of them were similar (p > 0.05). At 96 hr in RP, 

100 pg Cd L"' was the lowest (p < 0.0001) and the others were similar one another (p > 

0.05). However, after 7 d treatment, antioxidant ability decreased with increasing Cd 

concentrations in medium (p < 0.0001). 

Time of Cd exposure as well as Cd concentration had very close relationship to 

total antioxidant capacity of the BQ population (p < 0.0001, respectively) (Fig. 4. 8). 

Antioxidant capacity was highest at 96 hr, 7 d and 24 hr in order (p < 0.0001). 

Differences between Cd concentrations were significant (p < 0.0001) however the effect 

of Cd concentration did not show any particular pattem. 10 pg Cd L ' ' had the highest 

Trolox equivalent capacity after 96 hr and the control and 1000 pg Cd L"' were similar 

each other at 96 hr and 7 d. 
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Fig. 4. 8. Cupric ion reducing antioxidant capacity (CUPRAC) in Fucus serratus from 

Restronguet Point and Bantham Quay which were exposed to cadmium (24 hr, 96 hr 

and 7 days). Values represent mean values of three independent replicates ± standard 

deviations. 
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4. 3. 3. 3. DPPH free radical scavenging capacity 

F. serratus from the polluted site had significantly lower capacity to scavenge 

free radicals than the algae from the clean site (p < 0.0001, Fig. 4. 9). In both 

populations, 96 hr treatment had the highest values and 24 hr treatment had the lowest 

(24 hr < 7 d < 96 hr, p < 0.0001). 

The effect of Cd concentration was analysed again since the impact was not 

identical for the two different populations. In RP, at 24 hr, the capacity showed a clear 

increase with Cd concentrations and 0 and 10 pg Cd were significantly lower than 

100 and 1000 pg Cd L ' ' (p < 0.0001). At 96 hr, all condifions have similar capacity 

including the control with the exception of 100 pg Cd L"' (p < 0.0001). After 7 d of 

freatment, the pattem of free radical scavenging capacity of RP was exactly opposite to 

that of 24 hr treatment. 100 and 1000 pg Cd L * had significantly lower values than 0 

and lOpgCdL" ' (p< 0.0001). 

In BQ, the effect of Cd concentration did not have a typical pattem nor a 

statistical significance (p > 0.05). 96 hr had the highest DPPH scavenging effects (Fig. 4. 

9). 
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Fig. 4. 9. 2,2-diphenyl-l-picrylhydrazyl (DPPH) free radical scavenging activity in 

Fucus serratus from Restronguet Point and Bantham Quay which were exposed to 

cadmium (24 hr, 96 hr and 7 days). Values represent mean values of three independent 

replicates ± standard deviations. 
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4. 3. 4. Production of reactive oxygen scavenging enzymes under low 

and short Cd exposure 

4, 3. 4.1. Catalase activity 

Activities of reactive oxygen scavenging enzymes were evaluated with Fucus 

serratus exposed to 10 ~ 1000 pg Cd L"' for 24 hr, 96 hr and 7 d (Fig. 4. 10 ~ 4. 12). 

Activity of CAT was significantly higher at the RP population, especially at 24 and 96 

h r (p< 0.0001, Fig. 4. 10). 

Individual effects of exposure time and Cd concentration were analysed 

separately in each population since the activity of CAT in each population showed 

apparently different response to them. In RP, Cd treatment increased CAT activity (p < 

0.0001) and Cd treated materials showed significantly higher CAT activities than the 

control, especially at 24 and 96 hr (p < 0.0001). Therefore statistical analysis for the 

effect of time of exposure was done by One-way ANOVA. CAT activities were 

significantly different from each time of exposure (p < 0.0001) and 96 hr showed 

extremely higher values than the other two exposure times (7 d < 24 hr < 96 hr). 

Activities of CAT were not different from each Cd exposure at 24 hr (10 ~ 1000 pg Cd 

L"', p > 0.05), however values of activities decreased with increasing Cd concentrations 

at 96 hr (10 > 100 > 1000 pg Cd L ' ' , p < 0.0001). Nevertheless CAT activity increased 

corresponding to increasing Cd concentrations at 7 d again (p < 0.0001). 

In BQ, generally, Cd treatment increased activities of CAT at 24 hr and 7 d (p < 

0.0001, respectively), especially at high Cd concentration (1000 pg L"'). However CAT 

activity decreased with increasing Cd concentration at 96 hr (p = 0.004). 24 hr showed 

the highest CAT activity and 96 hr showed the lowest values (24 h r < 7 d < 9 6 h r , p < 

0.0001). 
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Fig. 4. 10. Activity of reactive oxygen scavenging enzyme, catalase, in Fucus serratus 

from Restronguet Point and Bantham Quay which were exposed to cadmium (24 hr, 96 

hr and 7 days). Values represent mean values of three independent replicates ± standard 

deviations. 
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4. 3.4. 2. Ascorbate peroxidase activity 

Activity of APX was measured spectrophotometrically with H2O2 and ascorbate 

(Fig. 4 . 11). Both the polluted and the reference populations presented similar values of 

APX activity on each day and no significant difference was evaluated (p > 0.05). 

Since time of Cd exposure and Cd concentration showed significant effects on 

APX activity by G L M (p < 0.0001, respectively), effect of each factor within individual 

population was analysed again by One-way ANOVA. In RP, 9 6 hr had the lowest APX 

activity (p < 0.0001). At 2 4 hr of Cd treatment in RP, 10 and 1000 pg Cd L"' showed 

extremely higher levels of APX activity than the other conditions (0 = 100 < 10 < 1000 

pg Cd L ' ) . Cd treated materials had higher antioxidant capacities at 2 4 hr and 9 6 hr 

except 100 pg Cd L"' (p < 0.0001). However, 1000 pg Cd L"' showed significantiy 

lower values at 7 d although the others had similar values (1000 < 0 = 10 = 100 pg Cd 

In BQ, 1000 pg Cd L"' showed very significantly higher values at 2 4 hr (p < 

0.0001) however Cd treatment and its concentration did not affect APX activity at 9 6 hr 

(p>0.05. Fig. 4 . 11). After 7 d of Cd treatment, 1000 pg Cd L"' showed tremendously 

higher values and 100 pg Cd L"' had exceptionally lower values than the other 

conditions (p< 0.0001). 
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Fig. 4. 11. Activity of reactive oxygen scavenging enzyme, ascorbate peroxidase, in 

Fucus serratus from Restronguet Point and Bantham Quay which were exposed to 

cadmium (24 hr, 96 hr and 7 days). Values represent mean values of three independent 

replicates ± standard deviations. 
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4. 3. 4. 3. Glutathione reductase activity 

Total levels of GR activities of the two populations were not significantly 

different (p > 0.05), therefore the values in the same time period were analysed again to 

compare the two different populations. Generally Cd treated materials of RP showed 

higher activities than the BQ materials on 24 hr and 96 hr but not on 7 d, although 0 pg 

Cd L"' did not have any difference between populations (Fig. 4. 12). 

Impacts of exposure time and Cd concentration were different in each 

population. In RP, 24 hr exposure showed the lowest activity and 96 hr exposure 

showed the highest (24 h r < 7 d < 9 6 h r , p < 0.0001). Generally, the controls showed 

lower activities than the Cd treated materials (10 ~ 1000 pg L ' \ p < 0.0001). The 

differences between Cd treatments and the controls were especially significant at 24 hr 

and 7 d. 

In BQ, responses to Cd exposure were slower than the RP population (Fig. 4. 

12). Only 1000 pg Cd L ' ' showed significantiy higher GR activity after 24 hr of Cd 

exposure (p < 0.0001) however no difference was found at 96 hr (p > 0.05). At 7 d, 

higher Cd concentration increased significantiy higher GR activity and 100 and 1000 pg 

Cd L"' showed significantly higher activities than the others, although 10 pg Cd U ' did 

not show significance from the control (0 = 10 < 100 < 1000 pg Cd L ' ' ) . 
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Fig. 4. 12. Activity of reactive oxygen scavenging enzyme, glutathione reductase, in 

Fucus serratus from Restronguet Point and Bantham Quay which were exposed to 

cadmium (24 hr, 96 hr and 7 days). Values represent mean values of three independent 

replicates ± standard deviations. 
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4. 4. Discussion 

Production of ROS comes from regular aerobic cell metabolisms, such as 

photosynthesis and respiration (Asada and Takahashi, 1987, Asada, 1999, Mittler, 2002, 

Contreras et al., 2005), however the net increase of ROS is considered as a clear signal 

of an oxidative stress (Mittler, 2002, Contreras et al., 2005). Confreras et al. (2005) 

measured ROS levels by determining fluorescence of 2,4-dichlorofluoresceine 

diacetate-incubated Scytosiphon lomentaria and measured antioxidative enzyme 

activities by monitoring oxidation of substrate. They reported the obvious increase of 

ROS levels in S. lomentaria from mine wastes and regarded the high levels of ROS and 

increased antioxidative enzymes (CAT, GP, APX, MDHAR, DHAR) as oxidative stress 

indicators in the Cu-enriched environment. However our knowledge on antioxidant 

mechanism of macroalgae is very limited and just a few cases have been reported to 

date (Collen and Pedersen, 1994, Jervis et al., 1997, Collen and Davison, 1999a, Collen 

and Davison, 1999c, Collen and Davison, 1999b, Ratkevicius et al., 2003). Therefore, 

even though there are some similar protective mechanisms between higher plants and 

macroalgae and ROS scavenging enzymes seems to be a normal phenomenon in algae 

(Ratkevicius et al., 2003), their antioxidant processes to diminish cellular damage are 

not yet well understood. 

4. 4.1. Lipid peroxidation 

Lipid peroxidation has been used as a direct biomarker of oxidative stress 

(Smirnoff, 1995, Choo et al., 2004). TBARS method has widely used for determination 

of oxidative stress in terrestrial plant, micro- and macroalgae (Collen and Davison, 

1999a, Barros et al., 2003, Pinto et al., 2003, Choo et al., 2004). ROS removes a 
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hydrogen atom from a methylene group in polyunsaturated fatty acids in cell 

membranes, which begins membrane peroxidation (Choo et al., 2004). Oxidised fatty 

acids react with two molecules of TBA and give a pinkish red chromogen (Senevirathne 

et al., 2006). Most of TBARS has been known as MDA (Senevirathne et al., 2006). 

Contents of TBARS, mostly MDA, of the two natural populations from RP and 

BQ were similar in this study although the two natural environments have very different 

metal contents (See Chapter 3). Since RP area is very polluted by several metals, the 

similar mean value of lipid peroxidation from the natural RP population may suggest 

the stronger detoxifying ability or less stress from metal exposure. This may indicate 

they have a stronger and more efficient antioxidant protective system to reduce 

oxidative damage by metal exposure. 

Apparent increases of TBARS levels in the present study suggest Cd-induced 

oxidative membrane damage. Heavy metals are known to generate ROS which can 

disturb common cell metabolism very rapidly. Lee and Shin (2003) reported Cd-caused 

lipid peroxidation and H2O2 occurrence in marine alga Nannochloropsis oculata. With 0 

~ 1000 pg Cd L"', the RP population showed a very sensitive reaction and had higher 

TBARS values than the BQ population. The faster and higher responses of RP at 24 hr 

exposure may indicate that the lipids in algal cells were disturbed by oxidative stress 

and the balance of cellular oxidative status has been collapsed. There can be other 

reasons from any trauma or shock by changing the medium, since values did not show a 

typical trend with Cd concentration and the control also showed a relatively high value 

(Fig. 4. 7). Nevertheless gradual increase with Cd concentrations at 7 d exposure of RP 

represents Cd-induced peroxidation in cell membrane lipids. Meanwhile most of Cd 

treated materials from BQ had lower TBARS values than their controls until 96 hr, they 

had higher values than the control at 7 d. Therefore, with lower Cd concentrations (10 ~ 

1000 pg Cd L ' ' ) , it took 7 days for F. serratus from BQ to show membrane damage by 
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Cd contamination. This may help to protect the algae from metal stress, compared with 

the rapid responses in RP. 

Unlike lower Cd concentrations, higher Cd contents (1 ~ 10 mg Cd L"') did not 

induce a difference by locality. Values of controls were stable since the materials 

adjusted to the culture conditions for longer time of exposure (7 and 14 d) for which 

algae exposed to lower Cd concentration have also adapted to the culture conditions. 

Although there was no significance by locality, time of exposure and Cd concentration 

showed apparent effects on lipid damage. The longer exposure (7 d < 14 d) and the 

higher Cd concenfration (0 = 1 < 5 < 10 mg Cd L"') enhanced the higher damage in cell 

membrane lipids. 

In this study, Cd did induce lipid peroxidation although, at the beginning, 

additional stresses might have been included due to the change of culture media (from 

seawater to Aquil medium). The lipid peroxidation with higher Cd concentration was 

similar since the non-exchangeable Cd concentrations were similar at both populations 

(see Chapter 3). However, with lower Cd concentrations, the damage on membrane 

lipids was significantiy higher in the RP population even though the non-exchangeable 

Cd concentrations were still similar (see Chapter 3). This inconsistency between Cd 

accumulation and lipid peroxidation with lower and shorter Cd exposure may results 

from a failure of antioxidative system. Nevertheless, similar lipid peroxidation of F. 

serratus from the two different locations may be due to over-burden of Cd stress. Since 

1 ~ 10 mg Cd L ' ' for 7 and 14 d is extremely high, long and possibly toxic situation 

which the alga may not experience at all in the natural aquatic environment. This 

exceptional status must be very threatening even to the algae from highly metal-

contaminated locations like RP. 

Generally, oxidative stress results in the production of ROS which induces 

peroxidation of lipids (Rusterucci et al., 1999, Contreras et al., 2005). The production of 
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TBARS is often strain-dependent as well as dose-dependent. Randhawa et al. (2001) 

reported that the sensitive strain of green alga Scenedesmus acutus f. alternans suffered 

from higher lipid peroxidation than the resistant strain under the Ni treatment. They also 

reported that the sensitive strain showed high lipid peroxidation when they were in 

absence of Ni . Jin (1998) concluded that the differences of lipid peroxidation between 

different strains possibly are attributed to their differences in antioxidative defence 

systems. However, in this research, the sensitive strain from BQ did not show any 

higher lipid peroxidation values than the resistant strain from RP. The expected 

'sensitivity' with the membrane lipid peroxidation is not matching with the metal-

exposed history of F. serratus. This dissimilarity of ROS production and lipid 

peroxidation has been reported by Collen and Davison (1999a). F. spiralis excreted 

more H2O2 after freezing treatment rather than F. evanescens, however F. evanescens 

showed significantly greater lipid peroxidation (Collen and Davison, 1999a). They 

concluded that F. spiralis could have a more efficient reaction to cease lipid 

peroxidation (Collen and Davison, 1999a). Therefore discrepancy of lipid peroxidation 

in this research may represent a potentially more efficient resistant mechanism by the 

Fucus population from BQ. Unlike the current study, relatively lower lipid peroxidation 

in stressed algae has been commonly reported with green, red and brown algae (Burritt 

et al., 2002, Choo et al., 2004, Contreras et al., 2005). This low lipid peroxidation in 

stressed algae was always regarded as the more efficient antioxidant system, including 

antioxidative enzymes and non-enzymatic antioxidative compounds, or increased 

degradation of ROS, or both (Burritt et al., 2002, Choo et al., 2004, Contreras et al., 

2005). Meanwhile, similar TBARS synthesis in natural populations and in higher Cd-

treated materials and higher TBARS synthesis in RP with lower Cd treatment are not in 

agreement with the previous research. This may be a population-specific characteristic 

of F. serratus. Fucus spp. are known to be very stress-resistant (Jimenez-Escrig et al.. 
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2001). Therefore, F. serratus from BQ may also have sfrong potential to defence 

against oxidative stress. Otherwise the RP population with lower Cd concentrations 

might spend their antioxidative capacity for other factors, not for reducing membrane 

damage. However, this result should be discussed again later with other antioxidative 

mechanisms, such as GSH production, since other protective mechanisms are known to 

reduce lipid peroxidation (Deighton et al., 1999, Thoma et al., 2003, Contreras et al., 

2005). 

4. 4. 2. Cupric ion reducing antioxidant capacity 

Antioxidant activities can be determined by several different ways. Different 

results are possibly acquired according to the chosen methods, since the extracts are 

normally complex mixture of different compounds which have different chemical and 

physical characteristics (Qztiirka et al., 2007). Consequently determination of 

antioxidant potential by multiple assays would lead to more informative and reliable 

results (Qzturka et al., 2007). Therefore, in this study, CUPRAC assay was performed 

by way of addition to DPPH free radical scavenging capacity assay. 

Compared with other analysing methods for antioxidant capacity, the CUPRAC 

assay has not been frequently used. However, this relatively new technique has been 

reported as a very effective method to measure oxidative stress (Giiflii et al., 2006, 

Apak et al., 2007, Oztiirka et al., 2007). Copper(lI)-neocuproine reagent is used for the 

chromogenic oxidising agent in this total antioxidant capacity assay and the results were 

expressed as the Trolox® equivalent antioxidant capacity of the algal (or plant) materials 

(in mmol Trolox® per gram of matter, mmol TE g''). 

Although values of CUPRAC assay were significantly related to time of Cd 

exposure and Cd concentrations, F. serratus with Cd exposure did not show any time-
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dependent or dose-dependent pattem. Differences between two populations were indeed 

significant regardless of the Cd concentration. The reference population from BQ 

always had significantly higher values than the metal-contaminated population from RP, 

indicating the higher antioxidant response by the reference population. Meanwhile, 

values of CUPRAC are not likely closely related to the Cd exposure in the current study. 

No apparent dose-dependent pattem and highly maintained values of the BQ population 

(including controls) represent the loose relationship. The high values of the BQ 

population may present a unique response by the population and are very likely related 

to the other antioxidant mechanisms. Since some responses in the previous chapter were 

less efficient to Cd stress than the polluted population, this may compensate part of it. 

This will be discussed later. 

4. 4.3. DPPH free radical scavenging capacity 

In the current study, compared with changeable activities of the RP population, 

the BQ population maintained relatively stable activities regardless of Cd concentration 

and time of exposure. This indicates that the BQ population has more stable capacities 

to combat increased Cd stress than the contaminated population although both 

populations had oxidative stress. On the other hand, in RP, lower Cd concentrations ( 1 0 

~ 1 0 0 0 pg L ' ) had higher DPPH scavenging effects at 9 6 hr and 7 d than higher doses 

(1 ~ 1 0 mg L ' ' ) after 7 and 1 4 d. hi addition, with lower Cd treatment ( 0 ~ 1 0 0 0 pg Cd 

L ' ' ) , free radical scavenging effects in RP increased at 2 4 hr and decreased again at 7 d 

corresponding to Cd concentrations. These results suggest that antioxidant capacity of F. 

serratus from RP was activated to reduce oxidative stress by Cd with shorter and lower 

Cd exposure and may suggest that the capacity did correspond less closely with longer 
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and higher Cd stress since either it was over the hmit of the algal tolerance or other 

antioxidant activity might be related. 

There have been a few reports on free radical scavenging activity of seaweeds 

and brown algae are known to have a superior radical scavenging capacity to other algal 

groups (Matsukawa et al., 1997, Yan et al., 1998). Jimenez-Escrig et al. (2001) studied 

three brown and two red algal species and the order of activity was Fucus > Laminaria 

> Undaria > Porphyra > Chondrus. Therefore high free radical scavenging effects of 

the reference population, BQ, can be understood as the natural potential of this species 

itself to confront environmental oxidative stress. The lower expression of RP may be 

correlated to other mechanisms for dealing with Cd toxicity. In the mean time, many 

authors have focused on the relation between free radical scavenging activity and 

phenolic compounds (Jimenez-Escrig et al., 2001, Connan et al., 2006, Senevirathne et 

al., 2006, Ozturka et al., 2007). Phenolic compounds are very important secondary 

metabolites in various organisms, e.g. higher plants, lichens and algae (Ragan and 

Glombitza, 1986, Hyvarinen et al., 2000, Connan et al., 2006, Ozturka et al., 2007). Due 

to their hydroxyl groups, they have been understood as strong chain breaking 

antioxidants (Ragan and Glombitza, 1986, Ozturka et al., 2007). Generally linear 

correlation was reported between concentration of phenolic compounds and free radial 

scavenging activity, such as DPPH free radical (Ozturka et al., 2007). The brown algae 

have high levels of phenols, mostly phlorotannins, in vesicles (i.e. physodes) and levels 

of phlorotannin in Fucales and Dictyotales was about 20 and 30% DW (Ragan and 

Glombitza, 1986, Targett et al., 1995, Connan et al., 2006). Some authors discovered no 

drastic oxidative damage in brown algal cells due to the efficient cytoprotective system 

of phenolic compounds (Matsukawa et al., 1997, Connan et al., 2006). Jimenez-Escrig 

et al. (2001) also stated strong radical scavenging activity of F. vesiculosus 

corresponding to high polyphenol contents. Therefore this supports that F. serratus may 
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also possess a high antioxidant potential related to the high polyphenol contents. High 

and stable levels of DPPH radical scavenging capacity in the BQ population may 

represent their insensitivity and high antioxidant activities against Cd exposure. In the 

mean time, protective capacities of other secondary metabolites are also considered, 

which may explain the non-correlation between phenolic contents and antioxidant 

activity (Deal et al., 2003). Carotenoids (especially fucoxanthin), triterpenoids, 

pyrophenophytin a and phytochelatin also reduce oxidative stress in brown algae 

(Anggadiredja et al., 1997, Le Tutour et al., 1998), and these compounds may be related 

to the changeable capacity of the RP population. One of the potential secondary 

metabolites wi l l be considered in the following chapter. 

4. 4.4. Reactive oxygen scavenging enzymes 

ROS produced by oxidative stress can be partially reduced by increased reactive 

oxygen scavenging enzymes, such as CAT, APX and GR. These enzymes have been 

known to play key roles in various oxidative conditions (Collen and Davison, 1999a, 

Collen and Davison, 1999c, Collen and Davison, 1999b). In this research, Cd exposure 

affected the activities of reactive oxygen scavenging enzymes, CAT, APX and GR, 

which represents Cd ions entered algal cells and induced processes of ROS production 

(Mallick and Mohn, 2000, Ratkevicius et al., 2003). CAT always showed higher 

antioxidant activities in RP and GR showed the higher abilities at 24 hr and 96 hr in RP. 

APX showed similar capacities at 24 hr and 96 hr in both populations but was higher in 

BQ at 7 d. High activities of these enzymes are recognised as the high capacities to 

withstand oxidative stress and possibly less production of ROS (Collen and Davison, 

1999b). The BQ population showed the slower and less activities of enzymes, which 

indicates the less effective enzymatic protections and may be related to the lack of metal 
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contamination at the natural site. Therefore, the higher and faster enzyme activities of 

the RP algae could contribute to the survival of the algal population in the heavily 

polluted environment like Restronguet Creek. Collen and Davison (1999c) suggested 

that the higher reactive oxygen scavenging activity in intertidal species is an adaptation 

to the changeable and harsh environment. This hypothesis correlates to the antioxidant 

mechanism of algal species inhabiting metal-contaminated environments (Collen et al., 

2003). Therefore F. serratus from RP has been adapted to the metal-polluted 

environment by increasing antioxidant enzyme capacity. In addition, the scavenging 

capacity of CAT was significantly higher than the other enzymes. Collen and Davison 

(1999b) reported that APX was the most important enzyme for Fucus spp. (F. 

evanescens, F. spiralis and F. distichus) in the natural habitat for reducing H2O2 rather 

than CAT and SOD. However, the conclusion may not be applied to this situation with 

the two different F. serratus populations since the activities of APX were not 

significanfiy different (at least until 96 hr) and the RP population had significantly 

higher levels of CAT than the BQ population. Increased activity of CAT may be more 

efficient to reduce the oxidative stress by Cd exposure since Cd ions wil l cause stress in 

the entire cell, not just the chloroplast (Collen et al., 2003). Some toxic metal ions, such 

as Cu^*, Pb^* and Zn^' , are known to interact closely with the thylakoid membranes in 

the chloroplasts and an increase of APX in chloroplasts wi l l be more efficient in 

controlling harmfial effects by these metals (Collen et al., 2003). CAT fianctions as the 

metaboliser of the peroxide in the peroxisome after the conversion of glycolate during 

photorespiration, not in the chloroplast (Zutshi et al., 2008). Therefore, Fucus cell can 

be better protected by CAT than other enzymes from wide-spread effect of Cd in the 

entire cell. 

APX and GR synthesis is known to be very useful to defend the attack of cupric 

ion in chloroplasts. APX and GR are vital components of the ascorbate-glutathione 
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pathway and scavenge ROS produced mostly in chloroplasts and other organelles 

(Asada, 1992, Noctor and Foyer, 1998, Asada, 1999, Zutshi et al., 2008). APX reduced 

potentially harmful ROS with ascorbic acid and 1000 pg Cd L ' ' showed a large increase 

of APX activity in this study. Activity of GR is known to increase to supply GSH to 

ascorbate-glutathione cycle under oxidative condition (Zutshi et al., 2008). In this 

research, activity of GR increased with Cd treatment, which suggests GR could 

regenerate GSH fi-om GSSG to increase the GSH/GSSG ratio and the total GSH pool 

(Noctor and Foyer, 1998, Zutshi et al., 2008). GSH levels of F. serratus wi l l be further 

discussed in Chapter 5. 

Generally oxidative stress increases the activity of reactive oxygen scavenging 

enzymes including CAT (Ratkevicius et al., 2003), however in some cases the activity 

declines (Schoner and Krause, 1990, Foyer and MuUineaux, 1994, Collen and Pedersen, 

1996, Fadzillah et al., 1996, Combo et al., 1998, Aguilera et al., 2002, Zutshi et al., 

2008). This can be understood as a reduced rate of protein turn-over by stress conditions 

(Hertwig et al., 1992, Zutshi et al., 2008) or direct damage by oxidative stress such as 

UV or metals (Foyer and MuUineaux, 1994). Although Cd treated materials had higher 

CAT activities than the control, the activity of CAT decreased with increasing Cd 

concentrations at 96 hr in RP. In BQ, Cd treated algae had lower activities rather than 

the control at 96 hr. MacRae and Ferguson (1985) regarded the reduced CAT activity as 

a general response to stresses by the inhibited enzyme synthesis or structural change in 

enzyme subunit. Therefore accumulation of ROS by Cd treatment may inactivate 

enzyme activity, possibly partially, according to the environmental conditions. 
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4. 5. Conclusion 

A few reports have been pubUshed on Cd-induced oxidative stress in 

photosynthetic organisms to date. In the present study, increased lipid peroxidation, 

DPPH free radical scavenging effects and antioxidant enzyme activities against Cd 

stress suggest that this non-essential metal caused oxidative stress which was probably 

by generated ROS. TBARS levels, mostly MDA, of the natural F. serratus populations 

from both metal-contaminated and clean sites were similar. In the CUPRAC assay and 

DPPH free radical scavenging assay, the BQ population showed higher antioxidant 

capacities than the RP population, regardless of Cd concentrations. Moreover levels of 

lipid peroxidation were higher at RP than BQ under the stress of 10 ~ 1000 pg Cd L * . 

Al l of these results imply higher antioxidant capacity of the reference population from 

the clean site. Unlike levels of antioxidants, activities of oxidative sfress scavenging 

enzymes were higher in the RP population, except for APX. CAT and GR increased to 

significantly higher levels and were produced more quickly at RP. Therefore the two 

different populations showed different antioxidative strategies against Cd stress, and the 

higher antioxidant capacity of the BQ population represents the potential strength to 

defeat metal stress even though the alga used to live in a clean area. In addition, the RP 

population presented faster (sensitive) and more efficient enzymatic responses although 

the antioxidant capacity measured by CUPRAC and DPPH free radical scavenging 

ability was lower than the BQ population. 
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Chapter 5. Phytochelatin and glutathione 

production in Fucus serratus 

(Phaeophyceae) on exposure to cadmium 

and copper 
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5.1. Introduction 

To combat the toxic effects of metals, photosynthetic organisms have evolved 

effective extra- and intra-cellular mechanisms for metal detoxification. In algae, poly-

anionic polysaccharides associated with cell walls and inter-cellular spaces sequester 

cations, through an ion-exchange mechanism, forming a primary barrier to cellular 

uptake (De Andrade et al., 2002, Talarico, 2002, Salgado et al., 2005). This superficial 

binding can account for up to 95% of the total metal accumulated in some freshwater 

species (Pawlik-Skowrohska, 2000, Pawlik-Skowronska et al., 2004) and between <5% 

and 80% in marine macroalgae, depending on the metals, their external concentrations, 

the species of algae, compositions of cell walls and the environmental conditions under 

which the algae are growing (Vasconcelos and Leal, 2001, Garcia-Rios et al., 2007). 

Metals that enter algal cells do so mainly via energy-dependent transport across the 

plasma-membrane (Hu et al., 1996), but once inside, the processes whereby disruption 

of cellular activities is prevented and metal homeostasis is maintained have not been 

very well elucidated. One commonly encountered intracellular mechanism for 

detoxification of metals in photosynthetic organisms involves chelation and 

sequestration of the metal ions by peptides or proteins such as glutathione (GSH), 

phytochelatin (PC) and metallothionein (MT) (Cobbett and Goldsbrough, 2002, 

Kawakami et al., 2006). 

5.1.1. Glutathione (GSH) and its role 
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Reduced glutathione (GSH) and its homologues are low molecular weight 

polypeptides in eukaryotes (Grill et al., 1986, Zenk, 1996, Prasad, 1999, Cobbett and 

Goldsbrough, 2002). GSH is a thiol, -SH or sulfhydryl group, synthesized in higher 

plants and algae (Wei et al., 2003, Kawakami et al., 2006). Synthesis of GSH is known 

to be closely related to metal stress in the environment (Smith et al., 1984, Smith et al., 

1985, May and Leaver, 1993, Schafer et al., 1998, Wei et al., 2003). This one of the 

major non-enzymatic antioxidants can scavenge free radicals to reduce oxidative stress 

and chelate metals and metalloids to detoxify harmful metal stress (Prasad, 1997, 

Nagalakshmi and Prasad, 2001, Kawakami et al., 2006, Pawlik-Skowrohska et al., 

2007). 

GSH is composed of three different amino acids (Fig. 5. 1); glutamate (Glu), 

cysteine (Cys) and glycine (Gly) (y-Glu-Cys-Gly) (Grill et al., 1985). y-

glutamylcysteine synthetase (EC 6.3.2.2) has been known as the enzyme of GSH 

synthesis and buthionine-S-sulfoximine (BSO) is reported as the inhibitor of the 

synthetic enzyme (Prasad, 1999). GSH is a transpeptidase to catalyse PC (Grill et al., 

1986, Tomsett and Thurman, 1988, Zenk, 1996, Prasad, 1999, Cobbett and 

Goldsbrough, 2002, Pawlik-Skowrohska et al., 2007). GSH has some variants, such as 

homo-glutathione (h-GSH), hydroxymethyl-glutathione (hydroxymethyl-GSH) or y-

glutamylcysteine, to synthesise homo-phytochelatin (h-PC) (Hayashi et al., 1991, 

Klapheck et al., 1995, Schat et al., 2002). Depletion of GSH owing to PC induction was 

reported in tomato cells and Silene cucubalus (Coppellotti, 1989, Prasad, 1999, Pawlik-

Skowrohska, 2000). 
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Fig. 5. 1. Biosynthetic pathway of glutathione and phytochelatins in higher plants, 

reproduced and modified from Hirata et al. (2001) and Inouhe (2005). Isolated genes are 

known to encode key enzymes of PC synthesis. 
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5.1. 2. Phytochelatin (PC) 

5.1. 2.1. MetaUothionein (MT) and PC 

There are two well-known metal detoxifying mechanisms; metallothionein (MT) 

and phytochelatin (PC) (Grill et al., 1985). Both of them are sulphur-rich polypeptides 

with similar intracellular ftinction, i.e. chelating metal ions, however they have different 

biosynthetic pathways and structure and are often found in different kingdoms (hiouhe, 

2005). MTs in vertebrates and ftingi are 6.5 kD proteins and MTs in mammals are made 

of a single polypeptide chain with 61 amino-acid residues (Grill et al., 1985, Kagi, 1991, 

Inouhe, 2005). This metal-chelating protein can be observed in higher plants as well 

(Grill et al., 1985). MTs are known to be synthesized on ribosomes by mRNA 

translation (Rauser, 1990, Rauser, 1995) and were subdivided into three classes 

according to the structures of phenotypically related metal thiolate polypeptides (Rauser, 

1990). 

Class I : polypeptides with cysteine close to those in equine renal MT 

Class I I : polypeptides with cysteine distant to those in equine renal MT 

Class I I I : metal thiolate polypeptides synthesized nontranslationally 

PC was allocated in the Class I I I . It was identified from fission yeast 

Schizosaccharomycese pombe for the first time (Murasugi et al., 1981). For the 

following 30 years, small non-protein cysteine-rich oligopeptides, PCs, were identified 

from plants, algae and some fiangi (Ahner and Morel, 1995, Inouhe, 2005). PC was 

induced by metal fieatments and it was biosynthesised from GSH enzymatically by PC 

synthase, unlike ribosomal protein synthesis of MT (Rauser, 1990). PC is one of trivial 

names of these polypeptides related to GSH (Grill et al., 1985) and cadystin (Kondo et 
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al., 1984), poly(Y-glutamylcysteinyl)glycine or (yEC)nG (Jackson et al., 1987), 

phj^ometallothionein (Rauser, 1987) and y-glutamyl peptides (Mehra et al., 1988) were 

also used by some researchers. Homo-phytochelatins (h-PCs) related to homo-

glutathione (h-GSH, yGlu-Cys-P-Ala) were also observed (Rauser, 1990). 

5.1. 2. 2. Biosynthesis and structure of PC 

The primary structure of PC was described by Grill et al. (1985) with the Cd-

exposed evergreen tree Rauvolfia serpentina (Apocynaceae). These small and simple y-

glutamyl peptides are composed of only three amino acids; glutamate (Glu, E), cysteine 

(Cys, C) and glycine (Gly, E) and form [(y-Glu-Cys)n-Gly] sfructure (n = 2-11) (Grill et 

al., 1985). Compound of Cys and Glu is synthesized to y-glutamylcysteine (y-Glu-Cys, 

yEC) with mediation of yEC synthetase (EC 6.3.2.2) and this compound synthesizes 

GSH (y-Glu-Cys-Gly) with Gly by mediation of GSH synthetase (EC 6.3.2.3) (Inouhe, 

2005). PC is synthesized from GSH with repeated y-Glu-Cys dipeptides by y-glutamyl 

cysteine dipeptidyl transpeptidase (PC synthase) (Grill et al., 1989). The whole process 

is described in Fig. 5. 1 and the chemical structure of PC is drawn in Fig. 5. 2. Most 

commonly observed repetition (n) is in the range of 2 to 4 (Rauser, 1990, Reddy and 

Prasad, 1990, Steffens, 1990) or to 5 (Cobbett and Goldsbrough, 2002). Moreover, there 

are many variations in the structure of PC, e.g. (y-Glu-Cys)n, (y-Glu-Cys)n-P-Ala, (y-

Glu-Cys)n-Gln, (y-Glu-Cys)n-Glu, or (y-Glu-Cys)n-Ser (Cobbett and Goldsbrough, 

2002, Schat et al., 2002). 
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Fig. 5.2. Chemical shTicture of phytochelatin. 

The constitutive enzjone for catalysing biosynthesis of PC (PC synthase) was 

purified from various cells; e.g. Silene cucubalus (bladder campion, Caryophyllaceae), 

Schizosaccharomyces pombe (fission yeast, Schizosaccharomycetaceae), Arabidopsis 

thaliana (thale cress, Brassicaceae), Beta vulgaris (beetroot, Chenopodiaceae), 

Eschscholtzia californica (California poppy, Papaveraceae), Equisetum giganteum 

(horsetail, Pteridophyte, Equisetaceae), Podophyllum peltatum (mayapple, 

Berberidaceae), and Triticum aestivum (wheat, Poaceae) (Grill et al., 1989, Loeffler et 

al., 1989, Clemens et al., 1999, Ha et al., 1999, Prasad, 1999, Vatamaniuk et al., 1999). 

However, plants and some microorganisms were not the only living organisms which 

possessed PC synthase. Researchers identified homologous genes from nematodes 

Caenorhabditis elegans and C. briggsae, slime mould Dictyostelium discoideum, 

aquatic midge Chironomus and earth worm species (Cobbett and Goldsbrough, 2002). 

196 



To the current knowledge, on the other hand, PC or metal-PC complexes have not been 

discovered yet in animal cells (Cobbett and Goldsbrough, 2002). 

5.1. 2. 3. Intracellular role of PC 

Formation of PC is known to be derived from metal stress of the environment 

(Jackson et al., 1987, Kneer and Zenk, 1992, Prasad, 1999). Other environmental 

impacts were not found to be related to the induction of PC, therefore synthesis of PC 

can be applied as a biochemical indicator for metal contamination (Pawlik-Skowrohska 

et al., 2002, Inouhe, 2005). 

Rauser (1990) and Inouhe (2005) reported two major intracellular functions of 

PC; ( I ) metal detoxification and tolerance, and (2) metal homeostasis and sulphur 

metabolism. Most research on metal detoxification of plants has been carried out with 

high concentrations of Cd, generally over 1 pM (Cobbett and Goldsbrough, 2002). Cd-

tolerant cells or plants showed greater Cd uptake than Cd-sensitive organisms, however 

Cd-tolerant organisms had better growth and bioactivities than Cd-sensitive organisms 

(Jackson et al., 1984, Rauser, 1990). Higher capability to survive in Cd-contaminated 

environment was found to be due to the synthesis of metal-chelating complexes of Cd-

tolerant population. Cd-tolerant organisms which have metal-chelating complexes can 

bind more than 80% of the cellular Cd (Jackson et al., 1984, Rauser, 1990). Delhaize et 

al. (1989) reported that 95% of intracellular Cd was bound by PCs for 4 to 24 hr in 

Datura innoxia (moonfiower, Solanaceae, Angiosperms). However Cd-sensitivity can 

be increased as a result of inhibited activity of y-glutamylcysteine synthetase (yEC 

synthetase, EC 6.3.2.2) by BSO (Steffens et al., 1986, Grill et al., 1987, Scheller et al., 

1987). 
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Essential micronutrients, such as Cu and Zn, can also be bound by PC (Rauser, 

1990). Therefore Cu- and Zn-limited situations occur in the cells and apoenzymes (such 

as diamine oxidase and carbonic anhydrase) which need metal ions for their activities 

are inactive. Metal-chelator complexes can supply metal ions as necessary cofactors to 

those inactive apoenzymes (Rauser, 1990, Thumann et al., 1991, Prasad, 1999). Besides 

this metal homeostasis of PC, sulphur metabolism can also be counted as one of the 

roles of PC in the cell. Cd-PC complexes enclose acid-labile sulphide and reduction of 

sulphate was observed where PC was biosynthesized (Robinson, 1989). Therefore 

increase of Cd-PC complexes cause increase of the activities of ATP-sulftirylase (EC 

2.7.7.4) and adenosine 5'-phosphosulfate sulfotransferase as a result of sulphate 

reduction. However this phenomenon has been discovered only with Cd-PC complexes 

to date (Rauser, 1990). 

5.1. 2. 4. Specificity of metal ions to the biosynthesis of PC 

Induction of PC is clearly dependent on presence of excess metal ions (Loeffler 

et al., 1989) and addition of metal immediately activates the PC synthase (Kneer and 

Zenk, 1992, Prasad, 1999). Rauser (1990) reported that metal-binding complexes were 

detected only after the exposure to excess metal not before. Rauvolfia serpentina cells 

produced PC when they were exposed to Cd, Pb, Zn, Sb, Ag, Ni, Hg, arsenate, Cu, Sn, 

selenate, Au, Bi, Te, and W, however no PC induction was detected with A l , Ca, Co, 

Cr, Cs, K, Mg, Mn, molybdate, Na or Ba exposures (Grill et al., 1987). In cases of 

Scenedesmus and Chlorella cells, Cd, Pb, Zn, Ag, Cu and Hg ions induced PC 

production (Gekeler et al., 1988). Cd, Cu, Zn, Ni and As are the most frequently 

investigated metal species for PC production and their tolerance mechanisms. Grill et al. 

(1989) reported that Cd was the best metal activator then Ag, Bi , Pb, Zn, Cu, Hg and Au 
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followed. However sensitivity to metal species is different depending on plant or algal 

species. Most researchers agreed that Cd was the strongest PC inducer among metal 

species regardless of plant or algal cells (Grill et al., 1987, Grill et al., 1989, Rauser, 

1990, Cobbett and Goldsbrough, 2002, Inouhe, 2005) although the order of metals 

totally depends on plant or algal species (Cobbett and Goldsbrough, 2002). 

5.1. 3. Purpose of this study 

While the production of PC in response to metal-exposure has been extensively 

studied in higher plants since the early 1980s (Inouhe, 2005), the literature pertaining to 

algae is more limited, although there is a growing body of evidence to implicate PC in 

the metal resistance of marine phytoplankton and freshwater green microalgae (Pawlik-

Skowrohska, 2001, Tsuji et al., 2002, Tsuji et al., 2003, Pawlik-Skowrohska et al., 

2004, Torricelli et al., 2004, Kawakami et al., 2006). For seaweeds, the production of 

PC has been confirmed for very few species, with examples fi-om all three phylogenetic 

groups: the Chlorophyceae (e.g. Ulva spp.) (Malea et al., 2006), Rhodophyceae (e.g. 

Kappaphycus alvarezzi) (Hu and Wu, 1998, Garcia-Rios et al., 2007) and Phaeophyceae 

(e.g. Sargassum muticum) (Gekeler et al., 1988). Recently Pawlik-Skowrohska et al. 

(2007) reported, for the first time, the presence of PC in natural assemblages of green 

{Rhizoclonium tortuosum), red {Solieria chordalis, Gracilaria gracilis) and brown 

{Fucus spp.) seaweeds growing in waters contaminated with different levels of 

metals/metalloids. From the study it was concluded that a combination of PC production 

and maintenance of high concentrations of GSH allowed Fucus serratus, F. vesiculosus 

and R. tortuosum to thrive in environments impacted by high levels of metal pollution. 

To date, most studies on seaweeds have investigated inter-specific differences in 

the producfion of PC with none addressing intra-specific variation in response to metal 
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exposure, despite evidence for differential metal-resistance in populations of some 

species of seaweeds. In the present study, inter-population differences in the production 

of PC, and its precursor GSH, on exposure to Cd and Cu were analysed for the brown 

seaweed F. serratus. Cd was chosen for this study as it is considered to be the most 

effective inducer of PC (Cobbett, 2000) and it was previously shown to induce PC in 

this species (Pawlik-Skowrohska et al., 2007). Cu is an essential trace metal for plant 

growth (Goransson, 1998, Tokamia et al., 1999), however it is also known as one of the 

most toxic metals to aquatic organisms above the required levels for growth and 

maintenance (Gledhill et al., 1999). Cu was reported as one of PC inducers for marine 

algae (Gekeler et al., 1988, Hu and Wu, 1998, Rijstenbil et al., 1998a), and it was used 

to compare with Cd stress in this study. 
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5. 2. Materials and methods 

5. 2.1. Algal collection and culture 

Collection and preparation of algal materials were described in Chapter 2. 

Seaweeds were cultured under 15°C, 250 pmol photons m"̂ s"' photosynthetically active 

radiation (PAR) and 12 : 12 h lightrdark cycle in the chemically defined medium Aquil 

(Price et al., 1988/89, Gledhill et al., 1997), to which cadmium sulphate hydrate 

(3CdS04-8H20) and pentahydrated cupric sulphate (CUSO45H2O) were added. 0 - 1 0 

mg L"' of Cd was added into prepared Aquil medium for the elevated Cd treatment, and 

0 - 1000 pg Cd L ' ' was added for lower Cd treafinent. 0 and 10 pg Cd L"' and 0 and 

100 pg Cu L"' were mixed for Cd / Cu combination effect. 10 pg Cd L"' was chosen 

from a preliminary experiment, which showed apparent PC and GSH synthesis in F. 

serratus. 100 pg Cu L"' was derived from the natural Cu concentration of Restronguet 

Creek area. The concentrations of metals and thiols were determined in material 

exposed to Cd and Cu for different time periods: 7 d and 14 d for elevated Cd treatment, 

4 d and 7 d for lower Cd treatment, and 7 d for combined metal treatment. The medium 

was exchanged every 48 h to ensure that the seaweeds did not become nutrient limited. 

5. 2. 2. Total and intracellular metal concentrations 

Algal samples were frozen (-20°C), freeze-dried (Super Modulyo Freeze-drier, 

Girovac, United Kingdom) and then re-weighed. To determine the total concentration of 

metals in the samples the dried seaweed was placed in Teflon vessels containing 3 mL 

of concentrated nitric acid (HNO3) and digested in a microwave oven (CEM-2000, 
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CEM Microwave Technology, UK) at 2 kW for 30 min. Digests were then transferred 

to borosilicate volumetric flasks and diluted to an exact volume of 25 mL with nano-

pure water ready for analysis (Milli-Q water system ZFMQ 230 04, Millipore 

Corporation, France). To discriminate Cd between extracellular adsorption and 

intracellular uptake, duplicate seaweed samples were subjected to sequential chemical 

treatment in 30 mL of 5 mM ethyl enediamine tetra-acetic acid (EDTA) for 10 min prior 

to freezing and digestion by HNO3 (Vasconcelos and Leal, 2001). Concentrations of Cd 

in digests of seaweeds were determined by inductively coupled plasma-mass 

spectrometry (ICP-MS; PlasmaQuad PQ2+; Turbo; Thermo Elemental, UK). Metal 

standards were made using certified standard solutions (Merck, UK), acidified to the 

same pH as the samples with HNO3, Results are expressed as means ± standard 

deviations of 3 replicates. 

5. 2. 3. Phytochelatin and glutathione concentrations 

Frozen algal samples were freeze-dried and maintained under vacuum until 

analysed for GSH and PC concentrations. Determination of GSH and PC followed the 

protocols outlined in Pawlik-Skowrohska et al. (2007). Briefly, samples (c. 20 mg DW) 

were extracted for 10 min with ice-cold 5% (w/v) 5-sulphosalicylic acid (SSA) 

containing 5 m M diethylentriamonopentaacetic acid (DTPA). Homogenised samples 

were centrifuged at 17 °C, 14,000 rpm for 10 min and assayed by high pressure liquid 

chromatography (HPLC, Beckman, USA). Post-column derivatization with 

5,5'dithio(2-nitrobenzoic acid) (DTNB) was used for identifying thiol-containing 

peptides at 412 nm, based on their retention time with standard GSH (Merck, Germany) 

and PC standards from Silene vulgaris (Moench) Garcke. Results of PC and GSH are 

expressed as means ± standard deviations of 3 replicates. 
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5. 2. 4. Statistical analysis 

Data were analysed using the statistical package SPSS version 16.0 for 

Windows (SPSS Inc.). Before all parametric tests, the data were tested for homogeneity 

of variance and normality (Sokal and Rohlf, 1995). Data for accumulation of Cd and 

concentrations of total PCs and GSH were subjected to the GLM three-way ANOVA 

(population, Cd concentration and time as main effects, and their interactions) and 

differences between individual means were determined by the post hoc Tukey's 

multiple comparison tests at p < 0.05 for this procedure. 
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5. 3. Results 

5. 3.1. Elevated Cd treatment (1 ~ 10 mg L'^) 

GSH and PC production of Fucus serratus which was exposed to elevated Cd 

concentrations ( 1 - 1 0 mg L ' ' ) were measured (Fig. 5. 3, black bar). GSH synthesis 

increased with Cd concentration in both populations (p < 0.0001). However, time of 

exposure showed different effects (p > 0.05). With longer Cd exposure time, higher 

GSH was produced in the polluted population (7 d < 14 d) but lower GSH was produced 

in the reference population (7 d > 14 d). Both populations synthesized the same values 

of GSH during the experiment (p > 0.05). Over 14 days, the values of GSH were 

maintained during Cd exposure in both populations. 

Total PCs were produced higher with increasing Cd concentrations (p = 0.005) 

(Fig. 5.3, grey bar). Time of Cd exposure also had significant effect on production of 

total PCs (p < 0.0001). In both populations, 5 and 10 mg Cd L ' ' treatments showed 

significantly higher PC productions than 0 and 1 mg Cd L'^ treatments (p < 0.0001). 

Meanwhile differences between populations were also apparent. In RP much higher PCs 

were synthesized than in BQ (p < 0.0001) and production continued with longer Cd 

exposure (14 d), even though the differences with time were not clear at BQ (p > 0.05). 

PC2--5 were identified from both Fucus populations and all of them were 

increased by rising Cd concentrations (Fig. 5. 4), however up to 7 days there was no 

difference in PC production between populations. RP produced much higher values of 

each PC chain in 14 d than BQ (p < 0.0001) since the latter has showed the same PC 

values to 7 d exposure (p > 0.05). With increasing time of exposure, longer PC chains 

increased. In both populafions, PC3 was the most highly produced thiol. Fig. 5. 5 shows 
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Restronguet Point Bantham Quay 

Fig. 5. 3. Concentrations of glutathione (GSH) and total phytochelatin (PC) of Fiiciis 

serratus from Restronguet Point and Bantham Quay exposed to cadmium for 7 days (7 

d) and 14 days (14 d). Values are means and standard deviations (n = 3). 
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Fig. 5. 4. Production of different phytochelatin chains by Fucus serratus collected from 

Restronguet Point and Bantham Quay after 7 days (7 d) and 14 days (14 d) exposure to 

cadmium. Values were expressed by means and standard deviations (n = 3). 
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Fig. 5.5. The relationship between the concentrations of phytochelatins of different 

chain-length and non-exchangeable cadmium accumulation in Fucus serratus from 

Restronguet Point and Bantham Quay exposed to cadmium in the range of 0 ~ 10 mg L ' 

' for 7 and 14 days. Data of cadmium concentrations were taken from Chapter 3. 
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the relationship between the concentrations of PCs of different chain-length and intemal 

Cd concentrations in F. serratus. Data of intemal Cd concentrations were taken from 

Chapter 3. RP, the polluted population, produced higher PC chains than BQ in the 

response to relatively less intemal Cd contents (Fig. 5. 5). The slopes of trend lines in 

RP were steeper than in BQ, which indicates higher PC production in lower intemal Cd 

contents (Fig. 5. 5). 

With high Cd treatments (5 and 10 mg Cd L"'), an unidentified additional peak 

was discovered around 23 ~ 24 min of retention time in both populations (Fig. 5. 6 and 

5. 7). RP population had higher values (Fig. 5. 6) than BQ (Fig. 5. 7) with 5 and 10 mg 

Cd L'^ (p < 0.05). h was found on both 7 d and 14 d (p > 0.05) and increased with rising 

Cd concentrations (p < 0.0001) (data not shown). 

5. 3. 2. Lower Cd treatment (10 ~ 1000 \ig L"^) 

To confirm the effect of Cd on GSH and PC production in F. serratus, Cd 

concentrations of lower than 1 mg Cd L"' were used with the same procedure as 

elevated concentrations but with shorter time of Cd exposure. GSH synthesis was 

enhanced by time of Cd exposure and higher GSH was measured at 7 d than 4 d in both 

locations (Fig. 5. 8, black bar). The level of GSH was generally increased by Cd 

concentration in medium at 4 d, however levels were not affected by Cd concentration 

at 7 d in both populations (p > 0.05). The polluted population has similar values of GSH 

contents to the reference population at each exposure time (p > 0.05). During the 

experiment, GSH levels were maintained and did not decrease, however the values were 

higher than elevated Cd treatment. While GSH levels with 0 pg Cd L"' were maintained 

208 



Fig. 5. 6. HPLC chromatogram of phytochelatin from Fucus serratus collected from 

Restronguet Point exposed to 10 mg Cd L"' for 7 days. The arrow head shows 

unidentified peak around 23 ~ 24 minutes of running. 
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Fig. 5. 7. HPLC chromatogram of phytochelatin from Fucus serratus collected from 

Bantham Quay exposed to 10 mg Cd L"' for 14 days. The arrow head shows 

unidentified peak around 23 - 24 minutes of running. 
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Fig. 5.8. Concentrations of glutathione (GSH) and total phytochelatin (PC) of Fucus 

sermtus irom Restronguet Point and Bantham Quay exposed to cadmium for 4 days (4 

d) and 7 days (7 d) at lower cadmium concentration range up to 1000 pg Cd L"'. Values 

are means and standard deviations (n = 3). 
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without change with extended exposure time in BQ, the values in RP increased 

significantly at 14 d. 

Total PC contents increased with Cd concentrations in the medium, so higher Cd 

treatment encouraged higher PC production (Fig. 5. 8, grey bar). Significantly higher 

PC was produced over 100 pg Cd L"' than 0 and 10 pg L"' in both populafions (p < 

0.0001). However, even control treatments (0 pg Cd L"') contained PC in both polluted 

and unpolluted populations. Longer time of Cd exposure also enhanced more PC 

production and this was shown more apparently in BQ. Algae from RP produced 

significanfiy higher PC than BQ, especially at 4 d, and differences between populations 

were significant as elevated Cd treatment (RP > BQ). With Cd concentration, RP 

presented significanfiy higher PC contents over 100 pg L * after 4 d and at 10 pg L'^ 

after 7 d. 

PC2 ~ 5 were idenfified from both of the populations with Cd treatment after 4 d 

and PC2 ~4 were isolated from 0 pg L"' treatment from both RP and BQ populations (Fig. 

5. 9). Rising Cd concentrations and exposure times increased each PC chain level and 

enhanced longer PC chains. In RP, higher PC values were produced than in BQ during 

Cd exposure and PC3 was always the highest PC chain with all Cd fieatments (10 ~ 

1000 pg Cd L"'). BQ, however, showed much slower and lower PC production and 7 d 

exposure had lower PC values even than 4 d exposure of RP. PC3 was the highest at 

1000 pg Cd L"' of 4 d and at 100 ~ 1000 pg Cd L"' of 7 d exposure in BQ. 1000 pg L"' 

of 7 d produced much lower each PC level when they were compared with those of the 

same conditions with elevated Cd experiment (1 mg L ' with 7 d exposure). PC 

production vs. non-exchangeable Cd contents shows the same pattem as elevated Cd 

treatment (Fig. 5. 10). The contaminated population responding to less non-
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Fig. 5. 9. Production of different phytochelatin chains by Fucus serratus collected from 

Restronguet Point and Bantham Quay after 4 days (4 d) and 7 days (7 d) exposure to 

lower concentration of cadmium in the range of 10 ~ 1000 pg L"'. Values were 

expressed by means and standard deviations (n = 3). 
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Fig. 5. 10. The relationship between the concentrations of phytochelatins of different 

chain-length and non-exchangeable cadmium accumulation in Fucus serratus from 

Restronguet Point and Bantham Quay exposed to cadmium in the range of 0 ~ 1000 pg 

L"' for 4 and 7 days. Data of cadmium concentrations were taken from Chapter 3. 
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exchangeable Cd contents produced higher PC2 ~4 chains than the reference population. 

Nevertheless the contents of produced PC5 were not different (p > 0.05). 

5. 3. 3. Cd and Cu interaction 

Induction of PC and GSH by Cu and by interaction of Cd and Cu were also 

studied with Fucus serratus from both polluted and non-polluted sites. Similar levels of 

GSH were produced by RP and BQ materials after 7 days of Cd and/or Cu exposure 

(Fig. 5. 11, black bar). GSH values were maintained with/without metal treatments in 

both populations. In RP, PC was already produced at 0 pg CdCu L ' ' (Fig. 5. 11, grey 

bar). The values of total PC at RP were not significantly different from those 

with/without Cd or Cu exposure, except with the combined metal treatment (10 pg Cd 

L' ' + 100 pg Cu L"') (p < 0.016). Algae from BQ had also already synthesized PC 

without metal treatment as algae from RP, however the levels were significantly lower 

than those in RP (Fig. 5. 11). Cd treatment induced higher levels of PC than Cu 

treatment in BQ. The highest PC production was found in combined metal treatment in 

BQ as in RP. 

Fig. 5. 12 shows production of each PC chain (PC2 ~ PC5) in both populations. 

Trimer (PC3) was the highest PC chain, except with Cu treatment, in both populations. 

RP contained higher levels of each PC chain than BQ in most cases (Fig. 5. 12). Algae 

from RP already possessed considerable PC2~4 without experimental metal exposure. 

Unlike algae from RP, algae from BQ contained significanfiy lower and shorter PC 

chains at 0 pg CdCu L"'. However the lower values of each PC chain in the BQ 

population were enhanced by metal treatment and Cd showed a larger effect than Cu. 
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BQ population showed similar values of PC production to RP population with 

combined metal treatment, hiterestingly Cd treatment encouraged the production of PC5 

in BQ materials, which was not identified in any case of RP materials. 
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Fig. 5. 11. Concentrations of glutathione (GSH) and total phytochelatin (PC) of Fucus 

serratus from Restronguet Point and Bantham Quay exposed to combined metal 

(cadmium and copper) for 7 days. Values are means and standard deviations (n = 3 ~ 6). 
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Fig. 5. 12. Production of different phytochelatin chains by Fucus serratus collected 

from Restronguet Point and Bantham Quay after 7 day-exposure to combined metals 

(cadmium and copper). Values were expressed by means and standard deviations (n = 3 

~6). 
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5. 4. Discussion 

5. 4.1. GSH and PC production by Fucus serratus from two different 

locations 

To survive in metal-contaminated environment, plants and algae have adapted 

with a wide range of strategies (Prasad, 1999). Synthesis of PC and MT may be the 

most major mechanisms to overcome the stress and to thrive in the polluted ecosystem 

(Rauser, 1990, Reddy and Prasad, 1990, Steffens, 1990, Prasad, 1999). However, to 

date, research on PC production of marine macroalgal species are yet very limited 

(Inouhe, 2005, Pawlik-Skowrohska et al., 2007). Most of studies have been focused on 

terrestrial plant cells and freshwater microalgae although a few were reported on PC 

production in seaweed, e.g. Sargassum muticum (Gekeler et al., 1988), Kappaphycus 

alvarezii (Hu and Wu, 1998) and Enteromorpha prolifera (Rijstenbil et al., 1998a). 

Recently Pawlik-Skowrohska et al. (2007) reported metal-complexing thiol peptides in 

natural populations of some marine macroalgae. Eight species of red, green and brown 

algae from four natural habitats (RP and its upstream as contaminated sites; Wembury 

Beach and BQ as reference sites) were analysed. GSH production was observed in all of 

the eight algal species and PC production was verified in five species among them. 

Fucus serratus was one of the five PC producing brown algae. The polluted population 

contained higher PC levels and longer PC chains than the reference population, which 

shows the relationship between PC contents and contamination history of algal habitats 

or total metal stress of the species. Historically the Restronguet Creek area is 

contaminated by Cu and Sn mining works (Bryan and Gibbs, 1983, Bryan et al., 1987). 

At the present time all mines have been closed even though the area is still highly 

contaminated by many metals from old mines and other industrial sources (Bryan and 

Gibbs, 1983, Bryan et al., 1987, Nielsen, 2002, Pawlik-Skowrohska et al., 2007). 
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Therefore higher and longer PC synthesis by F. serratus from the contaminated area 

without metal exposure in the present research is regarded as a result of acclimatisation 

to the metal-polluted natural habitat. PCs verified at 0 pg Cd L"' may be the result of a 

defence system to defeat stress from the retained metals in the thalli which were 

accumulated prior to the experiment. Therefore lower PC contents and shorter PC 

chains in BQ materials at 0 pg Cd L' ' can be explained by a lower metal burden from 

the natural environment which is not contaminated by metals. The reason of PC 

induction in the BQ control (0 pg L"') with significantly lower metal contents can be 

understood by Grill et al. (1988), at least partially. They reported that low 

concentrations of essential micronutrients, Cu and Zn (0.1-1 pM Cu, 2.1-37 pM Zn), 

could also cause the appearance of PC. The contents of Cu and Zn in the current study 

were in the range of their scale (Table 2. 1 and 2. 2). 

5. 4. 2. Effects of time of Cd exposure and Cd concentrations on PC 

production 

Rising Cd concentration and prolonged time of Cd exposure increased synthesis 

of PC in F. serratus regardless of the collected site. In this study, however, Fucus from 

RP presented higher and faster PC synthesis than Fucus from BQ with similar non-

exchangeable Cd concentrations. This indicates that RP materials might have inherited 

more effective strategies for a metal stressful environment. The metal resistance process 

by seaweed is not yet well understood, even though some researchers commented on 

avoidance and tolerance (Hall et al., 1979, Correa et al., 1996), metallothionein-

encoding gene (Morris et al., 1999), intemal and extemal complexation with ligands 

(Smith et al., 1986, Gledhill et al., 1999), population-specificity with metal-exposed 

history of habitats, and exclusion mechanisms (Nielsen et al., 2003b). With PC 
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synthesis F. serratus presented strong tolerance by detoxifying Cd, and more effectual 

PC activation by the contaminated population can be understood as one of their 

surviving strategies. 

5. 4. 3. Chain length of PC in Fucus serratus 

Metal chelating ability of PC is known to be related to the length of its chain. 

The longer chain possesses the stronger metal-binding capacity than the shorter (Zenk, 

1996). The longest PC chain to be synthesised is known as P C H (Gekeler et al., 1988) 

however most of studies on freshwater/marine algae have revealed that algae produce 

generally up to PC4 (Hu and Wu, 1998, Pawlik-Skowrohska, 2000, Hirata et al., 2001, 

Pawlik-Skowrohska, 2001, Pawlik-Skowrohska, 2002, Pawlik-Skowrohska, 2003, Wei 

et al., 2003, Pawlik-Skowrohska et al., 2004, Malea et al., 2006, Garcia-Rios et al., 

2007). In the current study, PCi-s were identified by HPLC in most cases. Therefore, 

this brown alga possesses vigorous chelating potentials than previously studied algal 

species. The potential use of PC production and PC chain lengths for in situ biomarkers 

of metal exposure and bioavailability has been considered by some researchers (Pawlik-

Skowrohska et al., 2007). Therefore, it may be possible to use this brown alga as a 

metal remover or a bioindicator in coastal waters. Brown algae Fucus serratus and F. 

vesiculosus produced significantly higher PCs than red algae Solieria chordalis and 

Gracilaria gracilis and green alga Rhizoclonium tortuosum (Pawlik-Skowrohska et al., 

2007). Since PC production of marine macroalgae has not been studied in enough detail 

yet, however, there may be other algal species possessing the greater ability to chelate 

metal ions. 

In the mean time, complex polysaccharides in cell walls of red and brown algae 

are known as effective barriers to metal toxicity (Garcia-Rios et al., 2007). Among them. 

221 



alginic acid in brown macroalgae was thought to be more competent to chelate Cd 

than agar and carrageenan in red algae (Hashim and Chu, 2004). On these grounds there 

is high potential to use this brown alga as an environmental metal remover. 

The unidentified additional peak after PC5 around 23 ~ 24 min could possibly be 

PCe or other thiols along with some proteins (Pawlik-Skowrohska, peronal. 

communication). Therefore additional fiirther work on identification is required with 

liquid chromatography-electrospray mass spectrometry (LC-ESIMS). 

5. 4. 4. GSH production by Fucus serratus exposed to Cd 

Unlike differential PC generation, GSH was maintained equally in both 

populations whether elevated or lower Cd concentration. GSH is one of the well-known 

antioxidants in algae (Rijstenbil, 2002) and an important thiol in eukaryotic cells to 

maintain reduced states for amino acids and proteins (Kawakami et al., 2006). Generally 

it decreases with increasing PC formation since it is consumed for PC production as the 

precursor of PC in freshwater (Coppellotti, 1989, Pawlik-Skowrohska, 2000) and 

marine microalgae (Ahner et al., 2002), and marine macroalgae (Pawlik-Skowrohska et 

al., 2007). F. serratus maintained the GSH values for up to 14 days without decrease in 

the present study, which suggests their consistent high antioxidant potentials to respond 

to metal exposure. Maintaining high GSH values was considered as a tightly regulated 

intracellular procedure for other cellular fiinctions (Ahner et al., 2002, Pawlik-

Skowrohska et al., 2007). Therefore highly sustained GSH levels can be another useful 

strategy of F. serratus to thrive in metal-contaminated environment. Some other 

researchers also reported constant intracellular GSH levels and their role for production 

of PC by healthy phytoplankton (e.g. Phaeodactylum tricornutum) (Tang et al., 2000, 

Ahner et al., 2002, Kawakami et al., 2006). Kawakami et al. (2006) indicated that GSH 
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is not an appropriate parameter to use as a biomarker of metal stress in phytoplankton 

since intracellular GSH contents can either increase or decrease depending on which 

phytoplankton species. However they also mentioned that intracellular GSH contents 

are controlled by different mechanisms in different species and in different strains of the 

same species (Kawakami et al., 2006). GSH concentrations increased and/or sustained 

in this study and the maintained GSH concentration can be regarded as consistent 

antioxidant ability and potential to be converted to PC. 

5. 4. 5. Effects of Cu and combined metals (Cu + Cd) on PC production 

by Fucus serratus 

The natural marine environment does not contain single metal species and more 

than two metal species often make up complicated interactions in various physiological, 

chemical and biological situations. Combined metals fi-equently cause synergistic or 

antagonistic interactions, which makes it hard to forecast their effects and algal 

responses (Wei et al., 2003). Among various trace metals, Cu, Zn and Cd are the most 

common contaminants and excess of these metals are toxic to marine organisms (Wei et 

al., 2003). Cu is also known to be one of the PC inducing metals and the strength to 

induce PC depends on the algal/plant species (Ahner and Morel, 1995). In the present 

research, 100 pg L ' ' of Cu induced significant GSH and PC production in both 

populations. However the PCs induced by Cu in BQ were lower and shorter than PCs 

induced by 10 pg L"' of Cd. Like in many plants and other algal species, Cd showed a 

stronger capability in PC induction than Cu (Rauser, 1990, Ahner and Morel, 1995, 

Pawlik-Skowrohska et al., 2002, Kawakami et al., 2006). PC and GSH produced in 0 pg 

CdCu L"' of both populations are regarded as responses to metals which were 

accumulated in thalli prior to this study. PC production with combined metal effect with 
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BQ algae was similar to the sum of each PC production from the two single metal 

effects (i.e. additive effect), on the other hand, RP algae showed a slight increase with 

both metals compared to each alone (i.e. synergistic effect). F. serratus is known to 

inherit Cu^^ resistant character (Nielsen et al., 2003b). Algae from polluted site have 

been shown to resist harmfiil effects of Cu significantly more than algae from reference 

site (Nielsen et al., 2003b). Considering results from the present study, the inherited Cu 

resistance character of F. serratus may be related to the highly sustained GSH levels 

and higher PC production in polluted site. 

5. 4. 6. Differences in PC and GSH production depending on season 

Fucus serratus produced higher PC and GSH levels with 1 mg Cd L"' in the 

elevated Cd treatment experiment than 1000 pg Cd L'* in the lower Cd treatment 

experiment at the same time period (7 d). With the same Cd concentration and the same 

time of exposure, this alga synthesised significantly different values of metal-binding 

peptides and GSH. There may be seasonal factors which affect PC and GSH production, 

since collections were done in two different seasons (October and May). These could 

account for the overall different levels of induction of the PC and GSH. Future research 

should examine any trends. 
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5. 5. Conclusion 

In conclusion, this is the first report of differences in PC production between 

populations of F. serratus in response to various experimental Cd treatments and Cu 

exposure. Metal resistance in F. serratus involves effective cellular detoxification of the 

metal by thiols. Greater production of intracellular PC (of longer chain length), and 

maintenance of concentrations of GSH are responsible, at least in part, for tolerance of 

the population growing in Restronguet Point which is a metal-contaminated area. 

Although this study covered both elevated and lower Cd concentrations and CdCu 

combined exposure for PC production by F. serratus in laboratory conditions, the 

natural populations wil l be exposed to much lower and extremely complex metal 

conditions. Therefore further research with various metal conditions more closely 

representing natural environments would be desirable. 

225 



Chapter 6. General discussion 
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Environmental pollution affecting marine organisms is not a recent issue. It has 

been of global concern since the 1950s (Kennish, 1996). Pollution can occur from 

various different sources including industry, mining activities, urban sewage, and 

agricultural runoff. Metals, including Cd, are one group of pollutants that have been 

prevalent since the late 19"' century (Pinto et al., 2003). Metal pollution changes the 

chemical conditions of the marine environment, which affects the constituents of the 

ecosystem. Organisms living in different environmental backgrounds have their own 

strategies for adaptation and adjustment to stress. However, some species are found in 

many different locations regardless of the contamination. The genus Fucus is one of the 

marine macroalgae found in both contaminated and clean areas and thrives in the 

coastal waters of South West England. Therefore, in the present study, the physiological 

and biochemical responses of Fucus serratus from Restronguet Point (RP) and Bantham 

Quay (BQ) in South West England were determined under a wide range of Cd exposure. 

RP is known to be a part of the most metal-contaminated area in the Fal Estuary, 

although BQ is regarded as one of the least polluted coastal areas in the UK (Bryan and 

Langston, 1992, Pirrie et al., 2003). The objectives of this research were to investigate 

the effects of non-essential Cd which have received less attention in studies of marine 

algae than metals such as Cu and Zn (Eklund and Kautsky, 2003). More specifically, the 

study examined the photosynthetic and antioxidative responses of F. serratus, the metal 

chelating ability of thiols, the responses of two populafions with different metal-

exposure histories, and the potential of this alga as a biological indicator. 

Natural populations of F. serratus of RP and BQ with no experimental Cd 

exposure have similar total and non-exchangeable Cd concentrations. Since RP is 

heavily contaminated by various metals from a long history of mining activity, the 
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accumulated concentrations of other metals (i.e. Cu, Pb and Zn) in F. serratus were 

significantly higher than those of BQ. Al l metal species, including Cd, showed 

significantly higher levels in RP seawater compared with data from other sites (Table 3. 

9). Therefore relatively less accumulated Cd by F. serratus might result from the 

suppressed interaction by other metal species, the competition for binding sites between 

cations in ion channels of cell membranes, and/or the binding to cell walls (Ralph and 

Burchett, 1998, Pawlik-Skowrohska et al., 2007). Moreover, since Cd is not required for 

algal growth and development, it may be relatively less actively accumulated by plants 

and algae. A lower uptake of non-essential metal elements (e.g. Cd) was reported in the 

seagrass Halophila stipulacea (Malea, 1994). Interestingly, although the native RP 

population has suffered from significantly higher levels of various metals in the habitat, 

oxidative stress expressed by lipid peroxidation indicating membrane damage was 

similar in each population. Different antioxidative responses to different metal 

conditions were anticipated and the RP population may have a unique and efficient 

protective mechanism. Inherited tolerance characteristics of F. serratus against Cu have 

been reported and adaptations to the photosynthetic apparatus and exclusion of cupric 

ions were considered as the tolerance mechanisms (Nielsen et al., 2003b). 

Although Cd is not an essential metal for the physiology of marine macroalgae, 

Cd is known to be readily taken-up by plants and algae (Pinto et al., 2003, Clemens, 

2006). Both total and non-exchangeable Cd concentrations increased with exposure to 

increasing Cd concentrations in the medium and with time of exposure. Lack of metal 

regulation ability has been reported in brown seaweeds (Bryan, 1976). For this reason 

brown algae have been used as bioindicators and the relative composition of metals in 

the surrounding seawater can be determined for measurements of metal contents in the 

seaweed (Fuge and James, 1974). In the present study, a limitation for Cd accumulation 
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was not discovered up to 10 mg Cd L for 14 d. In addition, no visual symptoms of 

metal stress (such as chlorosis, discoloration, and necrosis) were observed for up to 14 d, 

which agrees with the previous reports that brown algae are a very tolerant algal group 

to extemal abiotic stress (Phillips, 1994, Hashim and Chu, 2004). Regardless of the Cd 

range, over 50% of Cd was accumulated within the cells (non-exchangeable vs. total). 

The ratio of intracellular accumulation of metals is species-specific. It depends on the 

cell wall composition (i.e. polysaccharides) and intemal concentrations of thiol peptides 

(Garcia-Rios et al., 2007). Marine macroalgae can intemally accumulate <5 ~ 80% of 

total metal burden and algae which can produce glutathione (GSH) and phytochelatin 

(PC) are known to accumulate more metals intemally (Hu et al., 1996, Garcia-Rios et al., 

2007). Therefore, over 50% of Cd was accumulated intracellularly and might have 

sequestered into the vacuoles as a tolerance mechanism. The rest was bound to 

extracellular polysaccharides of F. serratus. However, Cd ions are less likely to be 

excluded in F. serratus, i f so very partially, since the non-exchangeable Cd 

concentration increased without inhibition up to 10 mg Cd L"'. 

Cd accumulation by F. serratus was the same for both populations, regardless of 

the Cd range (10 pg L ' ' ~ 10 mg L ' ' ) . However responses of growth were significantly 

different depending on populations and Cd concentrations. Cd exposure inhibited the 

algal growth. Response of reduced growth rate occurred within 24 hr. However, in the 

range of 1 ~ 10 mg Cd L"', significantly different relative growth rates (RGRs) were 

obtained for the two populations although non-exchangeable Cd concentrations were 

similar. Both populations showed negative growth after 7 d exposure at 1 ~ 10 mg L ' ' 

although the reduction was greater in BQ materials and there was no sign of recovery 

after 14 d. By contrast in RP materials recovery was apparent with positive RGRs after 

14 d exposure at 1 ~ 10 mg Cd L"'. Therefore, Cd inhibited the growth of F. serratus 
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and higher concentrations caused more inhibition, although the alga did not show visual 

signs of Cd stress. The high RGRs and faster recovery in growth in terms of weight of 

the RP population indicate higher tolerance to Cd stress in the RP population. Metal 

stress can induce shrinking and weight loss of macroalgae, which is related to decreased 

turgor, the changed elasticity of the cell wall and indirect impact (e.g. the decreased 

photosynthesis, protein biosynthesis, and uptake of inorganic nutrients) of metal toxicity 

(Bryan and Gibbs, 1983, Boyle, 1984, Brown and Newman, 2003, Pinto et al., 2003, 

Han et al., 2008). 

Metal-induced changes in pigment contents have often been observed in 

macroalgae (Han et al., 2008, Lobban and Harrison, 1994). In most cases metals 

decrease the pigment content as a result of the inhibition of biosynthesis of 

photosynthetic pigments (De Filippis and Pallaghy, 1994, Xia et al., 2004). However, in 

some cases, an increase in pigment contents resulting from metal exposure results in 

resistance to the stressfiji condition (Cid et al., 1995, Han et al., 2008). Besides, Cd and 

Cu are known to substitute for Mg'^* in the chloroplast (Chi) molecules, and this 

consequently reduces photosynthetic efficiency (Kupper et al., 1996, Kiipper et al., 

2007). Cd treatments over the range of 10 ~ 1000 pg L"' in the present study increased 

the Chi a, Chi c and fiicoxanthin (Fx) in RP, but it did not significantly alter the 

contents of either of these pigments in BQ, nor P-carotene in either population. There 

have been previous reports of Cd treatments in the range of 50 and 100 p M (5.6 and 

11.2 mg L"'); for example Xia et al. (2004) reported the lack of effect on Chi a and 

carotenoid concenfrations in Gracilaria lemaneiformis. Han et al. (2008) also reported 

the increased contents of Chi a and Chi b in Ulva armoricana with no decrease in Fy / 

Fm or Fo with Cu exposure (50 and 100 pg L"'), although the RGR was significantly 

reduced. Therefore the increased contents of photosynthetic pigments with the 
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significantly decreased RGRs of F. serratus of RP in the present research and U. 

armoricana in Han et al. (2008) represent a tolerance mechanism against metal stresses 

with an expensive energy trade-off. These two marine macroalgae spend the available 

energy from photosynthetic activity for the biosynthesis of photosynthetic pigments at 

the expense of growth. However, this hypothesis cannot explain the much lower RGRs 

and the unchanged pigment contents of BQ compared with the relatively higher RGRs 

and the increased pigment contents in RP. Therefore the BQ population seems to be less 

tolerant to Cd exposure than the population from the more polluted site. The 

significantly higher contents of the accessory pigments in RP support this view. Higher 

concentrations of Chi c and Fx in RP indicate a greater and more efficient transfer of the 

absorbed light to the Chi a of the reacfion centre, which is most likely related to 

tolerance to the contaminated waters of its natural habitat. 

Most parameters of Chi a fluorescence measured by Handy PEA and PAM FMS 

did not show effects of Cd exposure or increased Cd concentration. Chi a fluorescence 

of plants and algae has been known as a practical, non-invasive technique to measure 

primary productivity and environmental stress, however responses of the parameters are 

closely related to metal elements, concentration of metals, plant/algal species, exposure 

fime to stress, etc. (Kupper et al., 1998, MacFarlane and Burchett, 2001, Suggett et al., 

2007). No significant changes of Chi a fiuorescence by Cd exposure has been reported 

(Greger and Ogren, 1991, Krupa et al., 1993, Di Cagno et al., 1999). The lack of effect 

on most of Chi a fluorescence parameters and no significant differences between 

populations in the present research may imply the strong tolerant character of this 

brown alga regardless of their natural habitats, and the effectiveness of the metal 

chelation and antioxidative sfrategies. In addition, the main target of Cd in plant 

photosynthesis was suggested to be the process of Calvin-Benson cycle rather than the 
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light reaction (Clijsters and Van Assche, 1985, Van Assche and Clijsters, 1990, Krupa 

and Baszynski, 1995, Joshi and Mohanty, 2004). 

Chi a fluorescence transient parameters were altered by time of Cd exposure 

rather than by the Cd treatment or the Cd concentrations. This was shown by changes of 

the controls. Therefore, Chi a fluorescence parameters might be affected by other 

factors (most likely culture conditions) rather than by the Cd treatment. F. serratus 

responded to Cd exposure rapidly since fluorescence parameters showed clear 

differences at 24 hr. After 24 hr treatment, changes in Chi a fluorescence did not show 

any noticeable pattem or differences. Cd seems, therefore, to have a rapid significant 

effect related to the growth and photosynthetic performances of F. serratus. 

Conclusively acute Cd effect and shorter time intervals between measurements are 

required to produce conclusive evidence of the effects of Cd exposure on the 

photosynthetic performances of F. serratus. 

One of the most effective protective mechanisms in plants and algae against 

oxidative stress is reactive oxygen scavenging enzymes, such as catalase (CAT), 

ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase and 

superoxide dismutase (SOD). They eliminate reactive oxygen species (ROS) in cytosol, 

peroxisome, mitochondria and chloroplasts of plant/algal cells and reduce harmflil 

impacts of ROS (Dummermuth et al., 2003, Ratkevicius et al., 2003, Halliwell and 

Gutteridge, 2007). F. serratus produced CAT, APX and GR and generally higher Cd 

concentrations and longer times of exposure induced higher activities of antioxidative 

enzymes. The RP population produced significantly higher levels of CAT and GR at 24 

hr and 96 hr than the BQ population. Therefore F. serratus from the polluted area is 

able to remove more ROS and diminish the toxic effects better than the alga from the 

clean area, since higher activities of enzymes imply higher antioxidative capacity and an 
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advanced protective mechanism. Intertidal algal species are known to produce greater 

activities of antioxidative enzymes than subtidal species since they are normally 

exposed to more changeable environmental conditions. Collen and Davison (1999c) 

postulated that the effective response with antioxidant enzjmies was an adaptation to the 

prevailing environmental conditions and Collen et al. (2003) added Cd as one of the 

environmental stresses, including mechanical disruption, CO2 limitation, high light, 

freezing and desiccation, epiphytic bacteria and algae, and Cu (Collen and Pedersen, 

1994, Collen et al., 1995, Collen and Pedersen, 1996, Collen and Davison, 1997, 

Rijstenbil et al., 1998a). Therefore, F. serratus from RP, which has been exposed to 

relatively high concentration of metals, is better adapted to deal with exposure to Cd by 

having greater activities of reactive oxygen scavenging enzymes. 

However the levels of APX were similar at 24 hr and 96 hr in both populations. 

Collen and Davison (1999b) suggested that APX was the main enzyme for reducing 

ROS (i.e. H2O2) in the three Fucus species {F. evanescens, F. spiralis and F. distichus) 

in the natural habitat. Their finding is not supported for this species in the current study. 

The activity of APX was similar in both populations with the pattem of the synthesis 

irregular with Cd concentrafions. However, exposure to 1000 pg Cd L ' ' did result in 

significanfiy increased activity of the enzyme. In the case of Cu, Pb and Zn stress, APX 

in chloroplasts might have been important since these metals would affect the thylakoid 

membranes of chloroplasts (Collen et al., 2003). In contrast, when the alga was exposed 

to Cd, CAT may be the most important antioxidant enzymes. As a metaboliser of 

peroxide in the peroxisome, CAT may be a more effective enzyme for reducing Cd 

stress since this metal interferes with metabolic processes in the entire cell (Collen et al., 

2003). However there may be other enzymes which have better reactive oxygen 

scavenging abilities than CAT since only three major enzymes were measured in this 

study; other enzymes may also be involved in scavenging ROS. 
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Oxidative stress has frequently been measured by peroxidised membrane lipid 

and the levels of thiobarbituric acid-reactive substances (TBARS), mostly 

malondialdehyde (MDA), which can show the degree of oxidative stress in plants, 

micro- and macroalgae (Collen and Davison, 1999a, Pinto et al., 2003, Choo et al., 

2004). Higher Cd concenfrations and longer exposure times induced higher lipid 

peroxidation in F. serratus. The alga from the RP population showed higher lipid 

peroxidation than the BQ materials under the lower Cd concentrations (10 ~ 1000 pg L ' 

' ) although no significant difference was found under the higher Cd concentrations (1 ~ 

10 mg L ' ' ) . Results from CUPRAC and DPPH free radical scavenging activity were 

similar to the results from lipid peroxidafion. The BQ populafion had higher antioxidant 

capacity than the RP populafion. However all values of CUPRAC and DPPH free 

radical scavenging activity including the controls were always higher at BQ and the 

pattems of changes were not linked to Cd treatment nor to Cd concentrations. These two 

parameters provide evidence of the higher and effective antioxidative mechanism in the 

BQ population, and the lipid peroxidation under lower Cd concentrations reveals the 

less sensitive response in membrane lipid peroxidation of the BQ population. Therefore 

the reference population may have its own strategies to confront oxidative stress. 

Research on the chelation and sequestration of metal ions by thiol group 

peptides in marine macroalgae is currently in the early stages. This is the first report of 

PC production in F. serratus on exposure to Cu and to various concentrations of Cd. PC 

is a polypepfide with metal detoxifying fiincfion (Grill et al., 1985, Rauser, 1990). PC 

has been found in terrestrial plants, freshwater and marine algae and some fungi (Ahner 

et al., 1995, Inouhe, 2005), however, informafion on PC production by marine 

macroalgae is very limited (Inouhe, 2005, Pawlik-Skowrohska et al., 2007). Cd is the 
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most frequently investigated metal element in studies of PC production since it has been 

shown to be the strongest PC inducer in plants and algae (Grill et al., 1987, Grill et al., 

1989, Rauser, 1990, Inouhe, 2005). Although some other metals, e.g. Cu, Pb, Zn, Ni and 

Ar, are also known to induce PC in plants and freshwater microalgae, the effects of 

these metal elements on PC synthesis by marine macroalgae are not yet clear (Grill et al., 

1987, Gekeler et al., 1988, Pawlik-Skowrohska, 2002, Pawlik-Skowrohska, 2003, 

Pawlik-Skowrohska et al., 2004). In the present study, F. serratus from both 

populations produced considerable concentrations of PC with Cd exposure; higher Cd 

concentrations and longer exposure times induced more PCs with longer PC chain 

lengths. The RP population responded faster to Cd exposure and produced higher total 

PCs at lower intemal Cd concentrations. Interestingly the controls (0 pg Cd L ' ' ) of F. 

serratus from both populations also contained the metal-chelating peptides and the 

control algae of RP possessed higher and longer PCs than the control of BQ. Production 

of PC by the control is most likely the result of metals accumulated from their natural 

habitats prior to the experiment. Therefore, the biosynthesis of higher PC values and 

longer PC chain lengths by the RP population is a protective mechanism to chelate and 

sequester metal ions accumulated from the surrounding environment. The population 

from the polluted site possessed a faster and greater ability to reduce metal burden as 

one of their survival strategies. Although the BQ population also produced considerable 

amounts of PC and the same chain lengths under Cd stress, it did so at a slower rate and 

totals accumulated were lower. This greater detoxifying characteristic in the RP 

population might have been inherited from predecessors as an adaptation to a 

contaminated environment, since the total and non-exchangeable Cd accumulations 

were similar to those of the BQ population. 
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GSH and its homologues are low molecular thiols that act as antioxidants 

(Landberg and Greger, 2002, Rijstenbil, 2002, Kawakami et al., 2006). In addition, 

GSH is a precursor of biosynthesis of PC (Grill et al., 1986, Zenk, 1996, Pawlik-

Skowrohska et al., 2007). Therefore the levels of GSH are closely related to the 

antioxidative ability and the production of metal-chelating PC. GSH is a part of the 

ascorbate-glutathione cycle and is generated from oxidised glutathione (GSSG) by GR 

under oxidised situations (Fig. 4. 1) (Zutshi et al., 2008). Higher GSH values represent 

higher antioxidant potential. In the present study, F. serratus produced GSH with or 

without Cd exposure and Cd treatments from 10 pg L ' ' to 10 mg L ' ' increased the levels 

of GSH. Both populations had similar values of GSH and the values were maintained 

without decreasing for up to 14 d. Since GSH is consumed as a precursor in PC 

synthesis, the concentrations commonly decrease with PC production (Pawlik-

Skowrohska, 2000, Coppellotti, 1989). Highly maintained GSH concentrations in F. 

serratus represent consistent antioxidant ability, potential biosynthesis of PC and metal-

sequestration. This potential was not population-specific since both possessed the 

sustained high concentrations of GSH. F. serratus from RP and BQ accumulated similar 

Cd concentrations within the cells and produced similar levels of GSH. However the 

population from the polluted site produced higher concentrations of PC more rapidly 

than the reference population but not at the expense of GSH which remained similar to 

those of BQ with the aid of higher GR activity (at least at 24 hr and 96 hr). 

Consequently both populations have antioxidant capacity against Cd stress, but the RP 

population possessed a more effective mechanism. 

Metal-specific activation of PC synthase in vitro has been reported for various 

plants and yeasts, e.g. fission yeast Schizosaccharomyces pombe, budding yeast 

Saccharomyces cerevisiae, and bladder campion Silene cucubalus (Cobbett and 
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Goldsbrough, 2002). Induction of PC in vivo also showed a metal-specific formation of 

PC-metal complexes (Cobbett and Goldsbrough, 2002). Cd, Cu, Ag, Hg, Zn, Pb, Au and 

As were reported as activators of the PC synthase and Cd, Cu, Ag, Pb and Zn produced 

the PC complexes in vivo (Pawlik-Skowrohska, 2000, Cobbett and Goldsbrough, 2002, 

Pawlik-Skowrohska, 2003, Pawlik-Skowrohska et al., 2004, Pawlik-Skowrohska et al., 

2007). In most cases Cd was the strongest activator for the enzjone and inducer for the 

PC complexes (Grill et al., 1985, Grill et al., 1989, Cobbett and Goldsbrough, 2002, 

Inouhe, 2005). Activation of the enzyme and formation of the PC-metal complexes are 

not only metal-specific but also strain-specific (Grill et al., 1985, Ahner and Morel, 

1995, Cobbett and Goldsbrough, 2002, Inouhe, 2005). In the present sttidy, PC was 

produced upon exposure to both 10 pg Cd L"' and 100 pg Cu L ' ' and there was an 

addifive effect of the combined metals (Cu + Cd) in BQ. On the other hand, in RP, the 

single metal treatments of Cd and Cu did not show increased PC production with 

concentrafions similar to the confiol. The combined metal treatment in RP showed a 

synergistic effect in PC production. The PC production by Cu was lower than that by 

Cd in BQ; therefore Cu has a weaker influence than Cd in production of PC by F. 

sermtus. Vatamaniuk et al. (1999) reported that PC synthase 1 of Arabidopsis thaliana 

(AtPCSl) had a higher affinity {K^ = 0.54 ± 0.20 pM) and higher capacity 

(stoichiometric ratio = 7.09 ± 0.94) for binding Cd ions than for other metals (such as 

Cu). Higher sensitivity to Cd exposure than other metal species has been found in PC 

synthase-deficient mutants of Arabidopsis and S. pombe (Ha et al., 1999). These two 

PC-deficient mutants have high sensifivity to Cd and As, but display litfie or no 

increased sensifivity to other metals, such as Ag, Cu, Hg, Ni and Zn. Similar results 

have been reported with PC synthase of Caenorhabditis elegans, with the suppressed 

PC synthase having a Cd-sensitive response (Vatamaniuk et al., 2001). However, 

response of the suppressed PC synthase in C. elegans to other metals has not been 
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reported (Cobbett and Goldsbrough, 2002). These reports support the role of PC in 

detoxification and strong sequestration of Cd ions rather than other metal species. PC-

Cu complexes may be sequestered relatively poorly to the cell vacuole, or there may be 

a more effective detoxifying mechanism against Cu (Cobbett and Goldsbrough, 2002). 

According to habitats in which an alga has been adapted or transplanted, the 

physiological and biochemical responses can be different and a new or modified 

mechanism may be developed for adaptation or acclimatisation. Different responses or 

mechanisms by different populations to the same factors have been reported (Dietz et al., 

1999, Hall, 2002, Nielsen et al., 2003b). Some researchers have poshilated that tolerant 

species or ecotypes are less likely to have a better oxidative defence but more likely 

have better avoidance and homeostatic mechanisms to prevent the stress (Dietz et al., 

1999, Hall, 2002). However, avoidance and exclusion mechanisms of Cd ions were not 

identified with similar non-exchangeable and total Cd concentration in the two 

populations of F. serratus. Equal accumulation of Cu in ship-fouling thalli and non-

fouling thalli has been reported and tolerance was suggested as a primary intemal 

detoxification rather than an exclusion mechanism (Lobban and Harrison, 1994). It 

should also be noted that Fucales and Dictyotales are known to contain the highest 

phlorotannin levels in Phaeophyceae (Targett et al., 1995, Connan et al., 2006). Since 

levels of phenolic compounds (mainly phlorotannins) and polysaccharides (mainly 

alginic acids) have not been measured in the present research, other potential effects 

cannot be discussed. As free radical scavenging activity is relevant to the presence and 

abundance of polyphenol (Jimenez-Escrig et al., 2001, Connan et al., 2006), the 

contents of polyphenol of F. serratus from both populations should be examined under 

the stress of various ranges of Cd in a fiature study. Therefore the relatively high DPPH 
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free radical scavenging effect of BQ and lack of visual effects of metal stress may be 

concerned with the phlorotannin levels. 

Hall (2002) concluded that no single mechanism can account for tolerance to a 

wide range of metals. RP population was characterised by higher tolerance and 

oxidative defences as shown by the higher activities of reactive oxygen scavenging 

enzymes (CAT and GR). The better homeostatic potential of the RP population was 

indicated by higher and faster PC synthesis. Faster growth and quicker recovery from 

Cd stress, and higher levels of Chi a, Chi c and Fx were also components of the 

tolerance mechanism of the population from the polluted site. However Chi a 

fluorescence, the activity of APX for 24 hr and 96 hr, the total and non-exchangeable 

Cd concentrations and GSH level were the same in both populations. On the other hand, 

the BQ population showed higher antioxidant ability measured by CUPRAC and DPPH 

free radical scavenging ability test. Therefore the BQ population also appears to have 

developed strategies against Cd stress. Although the reference population has lower 

efficiencies in some parameters, it has considerable levels of GSH and PC. 

Consequently F. serratus has a strong tolerance and homeostatic capacity against Cd 

exposure whether it is growing in a polluted or a clean location, although the population 

from the polluted site does possess higher tolerance, faster recovery, and better 

homeostatic control. 

Since Cd accumulation increased with Cd concentration in the medium and the 

time of exposure, F. serratus did not regulate the uptake of Cd. In addition, the alga 

took up Cd ions without demonstrating visual stress symptoms or mortality across a 

wide range of Cd exposures. Therefore the linear increase of intemal Cd contents and 

the strong tolerance to it suggest F. serratus may be a useftil biological indicator and 
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hyperaccumulator in the coastal environment. Even though further studies are required, 

F. serratus may be able to be used to remove Cd from the environment. The 

hyperaccumulating character of this species, along with polyphenol, alginic acid and PC 

could make this alga an effective environmental protector. 

The present research presented the basic data on Cd accumulation and 

antioxidative defence, further information on PC production by this marine macroalga, 

and potential uses of this species. In addition some topics for further studies were also 

discussed. Firstly, shorter time intervals for measurement and comparisons between 

acute and chronic Cd exposure should be performed. This is because of the fast effects 

of Cd and the quick responses of F. serratus. The alga responded very quickly within a 

24 hr time span. Although Chi a fluorescence could not estimate the effects of Cd, 

antioxidative enzymes and PC production are required to be estimated with shorter 

exposure. Secondly, the location of PC-metal complexes in the cell and the molecular 

approach on PC synthase gene of F. serratus wi l l fill the knowledge gaps. Thirdly, 

antioxidant enzymes which were not determined in this study (such as superoxide 

dismutase), ROS production, and contents of polyphenol and polysaccharides against 

Cd exposure will provide a useful discussion with the data in the present study. Fourthly, 

transplantation and studies on the early life stages of development may confirm the 

inheritance of tolerance to Cd. Cross transplantation or transplanting to a third area 

might provide changed responses to changed environmental condifions. The early stages 

of F. serratus may possess inherited tolerance to Cd, since a similar effect has been 

observed with Cu (Nielsen et al. 2003). Furthermore, algal responses to mulfi-metal and 

lower metal levels close to real field conditions should be determined. The final goal of 

the research is to find an applicable realistic parameter or assay to examine the complex 

actual environment. 
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APPENDICES 

APX ascorbate peroxidase 

BQ Bantham Quay 
BSO L-buthionine- [ S ,R] -sialphoximine 
CAT catalase 
Cd cadmium 
Chi chlorophyll 
Cu copper 
CUPRAC copper reducing antioxidant capacity 
DMSO dimethyl sulfoxide 
DPPH 2,2-diphenyl-l-picryl-hydrazil 
FMS fluorescence monitoring system 
Fx fucoxanthin 
GLM general linear model in SPSS 
GR glutathione reductase 
GSH reduced glutathione 
h-GSH homo glutathione 
h-PC homo phj4;ochelatin 
kD kiloDalton 
LHC light harvesting complex 
MDA malondialdehyde 
MT metallothionein 
OEC oxygen evolution complex 
PC phytochelatin 
PEA plant efficiency analyser 
PFD photon fiux density 
PS photosystem 

QA plastoquinone A 
RGR relative growth rate 
ROS reactive oxygen species 
RP Restronguet Point 
SOD superoxide dismutase 
TBA thiobarbituric acid 
TBARS thiobarbituric acid-reactive substances 
TCA trichloroacetic acid 
TWCAl an isoform of carbonic anhydrase (CA) in the marine 

diatom Thalassiosira weissflogii 

263 


