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Detecting Phytoplankton Size Class using Satellite Earth Observation 

Robert J. W. Brewin 

A new range of multi-plankton biogeochemical models have recently been devel
oped, designed to advance our understanding of the ocean carbon cycle to improve 
predictions of its future influence on climate. Synoptic measurements of the dif
ferent phytoplankton communities are required to validate and ultimately improve 
such models. Measuring ocean colour from satellite is the only method currently 
available for synoptically monitoring wide-area properties of ocean ecosystems, such 
as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical methods 
have been established that use satellite data to identify and differentiate between 
either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). 
In this thesis, several of these techniques were evaluated against in situ observa
tions (6504 samples) to determine their ability to detect dominant phytoplankton 
size classes (micro-, nano- and picoplankton). Results show that spectral-response, 
ecological and abundance-based approaches can all perform with similar accuracy. 
However, abundance-based approaches provide better spatial retrieval of PSCs. 

Based on insights into the abundance-based models, and by utilising a large 
pigment database, a new three-component model was developed which calculates 
the fractional contributions of three phytoplankton size classes (micro-, nano- and 
picoplankton) to the overall chlorophyll-a concentration. Using a globally repre
sentative, independent, coupled pigment and satellite dataset the model estimates 
fractional contributions with a mean accuracy of 9.2% for microplankton, 17.1% 
for nanoplankton and 16.1 % for picoplankton. The effect of optical depth on the 
model parameters was also investigated and explicitly incorporated into the model. 

Using the three-component model, the two-component absorption model of 
Sathyendranath et al. (2001) and Devred et al. (2006) was extended to three-
component populations of phytoplankton, namely, pico-, nano- arid microplank
ton. The new model infers total and size-dependent phytoplankton absorption as 
a function of the total chlorophyll-a concentration. A main characteristic of the 
model is that all the parameters that describe it have biological or optical inter
pretation. The three-component model performs better than the two-component 
model, at retrieving total phytoplankton absorption. Accounting for the contribu
tion of pico- and nanoplankton, rather than the combination of both used in the 
two-component model, improved significantly the retrieval of phytpplankton absorp
tion at low chlorophyll-a concentrations. 

The three-component model was applied to a decade of ocean colour observa
tions. In the equatorial region of the Pacific and Indian Oceans, phytoplankton 

- size class anomalies (% total chlorophyll-a) were highly correlated with indices of 
both the El Nino (La Nina) Southern Oscillation and the Indian Ocean Dipole. 
Furthermore, in these regions, micro- and nanoplankton size class anomalies were 
negatively correlated with anomalies of the sea surface temperature, sea surface 
height and stratification. Whereas, the picoplankton size class anomalies were posi
tively correlated with these physical variables. Results from this thesis indicate that 
phytoplankton size class can be retrieved from Earth Observation with reasonable 
accuracy. It is recommended that such information can now be assimilated into 
multi-plankton biogeochemical models, or alternatively, verify them. 
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DOAS Differential Optical Absorption Spectroscopy 

DPA Diagnostic Pigment Analysis 

EM ElectroMagnetic spectrum 

ENSO El Niiio (La Nma) Southern Oscillation 

EO Earth Observation 

ERS-2 European Remote-Sensing Satellite number 2 

ESA European Space Agency 

EUC Eastern Equatorial Undercurrent 

COM General Circulation Models 
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GMES Global Monitoring for Environment and Security programme 

GSM Garver-Siegel-Maritorena lOP algorithm 

HOTS Hawaii Ocean Time-Series 

HPLC High Performance Liquid Chromatography 

lOD Indian Ocean Dipole 

lOP Inherent Optical Property 

ITCZ InterTropical Convergence Zone 

JAMSTEC Japanese Agency for Marine-Earth Science and Technology 

LUT Look-Up Table 

MBA Marine Biological Association 

ME Mean Absolute Error, ME% refers to ME in relative values 

MEI Multivariate ENSO Index 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectrometer 

MOS Modular Optical Scanner 

NAO North Atlantic Oscillation 

NASA National Aeronautics and Space Administration U.S.A. 

NCEO National Centre for Earth Observation 

NEODAAS NERC Earth Observation Data Acquisition and Analysis Service 

NERC National Environmental Research Council UK 

NCAA U.S. National Oceanic and Atmospheric Administration 

NOMAD NASA bio-Optical Marine Algorithm Dataset 

NPOESS National Polar-orbiting Operational Environment Satellite System 

NPZD Nutrient Phytoplankton Zooplankton and Detritus model 

NSF U.S. National Science Foundation 

OBPG NASA Ocean Biology Processing Group 

0C2 Ocean Chlorophyll version 2 algorithm 

0C4 Ocean Chlorophyll version 4 algorithm 

0C4-SD Ocean Chlorophyll version 4 Species Dependent algorithm 

OCTS Ocean Color and Temperature Sensor 

PAR Photosynthetically-Active Radiation 

PDO Pacific Decadal Oscillation 

PFT Phytoplankton Functional Type 

PHY Phytoplankton 

PML Plymouth Marine Laboratory 

PSC Phytoplankton Size Class 

PSD Particle Size Distribution 

QAA Quasi-Analytical Algorithm (Lee et al., 2002) 

QS NASA QuikSCAT sensor 
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RSPSoc Remote Sensing and Photogrammetry Society 

SeaBASS SeaWiFS Bio-optical Archive and Storage System 

SeaWiFS Sea-viewmg Wide Field-of-view Sensor 

SO-CPR Southern Ocean Continuous Plankton Recorder 

SODA Simple Ocean Data Assimilation 

SPM Suspended Particular Matter 

SSH Sea-Surface Height 

SSHA Sea-Surface Height Anomaly 

SST Sea Surface Temperature 

T865 Optical aerosol thickness 

VIIRS Visible Infrared Imaging Spectro-Radiometer Suite 

X X 



Symbols 

a 

O'CDOM 

am 

On 

Op 

a' 

^SPM 

a-t 

a 
^CDOM 

a„ 

a: 

a: p,n 

^sol 

^SPM 

A 

b 

bsPM 

bt 

b( 

bw 

b* 

b SPM 

Absorption coefficient of phytoplankton (m~-̂ ) 

Absorption coefficient of CDOM (m~-̂ ) 

Absorption coefficient of microplankton (m~^) 

Absorption coefficient of nanoplankton (m~^) 

Absorption coefficient of picoplankton (m~-̂ ) 

Absorption coefficient of phytoplankton derived from Rrs (ni~^) 

Absorption coefficient of microplankton derived from Rrs (m"-̂ ) 

Absorption coefficient of nanoplankton derived from Rrs (ni~^) 

Absorption coefficient of picoplankton derived from Rrs (m"-̂ ) 

Absorption coefficient of SPM (m"-"-) 

Total absorption coefficient (m~^) 

Absorption coefficient for water (m~^) 

Specific absorption coefficient of phytoplankton (m^ [mg C]~^) 

Specific absorption coefficient of CDOM (m^ mg"-̂ ) 

Specific absorption coefficient of microplankton (m^ [mg C]~^) 

Specific absorption coefficient of nanoplankton (m^ [mg C\~^) 

Specific absorption coefficient of picoplankton (m^ [mg C]~^) 

Specific absorption coefficient of combined pico-nanoplankton 

(m2[mgC]-i) 

In vivo weight-specific absorption coefficient of a particulate pig

ment (m^mg~-̂ ) 

Specific absorption coefficient of SPM (m^mg~-̂ ) 

Numerical constant for a power-law model (Equation 5.9) 

Scattering coefficient of phytoplankton (m~-̂ ) 

Scattering coefficient of SPM (m~-̂ ) 

Total scattering coefficient (m"-"̂ ) 

Backward scattering coefficient (m~-̂ ) 

Forward scattering coefficient (m~-̂ ) 

Scattering coefficient for water (m~^) 

Specific scattering coefficient for phytoplankton (m^ [mg C]~^) 

Specific scattering coefficient for SPM (m^ mg~^) 
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B 

c 

C 

C 

CaCOg 

CDIM 

Cn 

CO2 

Op 

OsUT 

Czp 

Qra 

C\ 
p,n 

CI 

c 

ct 

ct 

CL 

Ed 

Numerical constant for a power-law model (Equation 5.9) 

Speed of hght (ms"-^) 

Total chlorophyll-a concentration derived from High Performance 

Liquid Chromatography (mg-m~^) 

Carbon (mgm~^) 

Calcium carbonate (mgm~^) 

Dimensionless chlorophyll-a concentration for the model of Uitz 

e t a l (2006) 

Chlorophyll-a concentration of microplankton (mgm~^) 

Represents the maximum vertical chlorophyll-a concentration for 

the vertical dimensionless C profile of Uitz et al (2006) 

Chlorophyll-a concentration of nanoplankton (mgm~^) 

Carbon dioxide 

Chlorophyll-a concentration of picoplankton (mg m~^) 

Chlorophyll-a concentration of combined pico-nanoplankton 

(mgm-^) 

Surface chlorophyll-a concentration where r < l (mgm~^) 

Total chlorophyll-a concentration (mgm~^) derived from P and W 

according to Uitz et al (2006) 

The average chlorophyll-a concentration withm the euphotic layer 

(mgm"^) 

Chlorophyll-a concentration at a particular dimensionless depth C, 

(mgm-2) 

Maximum chlorophyll-a concentration of a particular size class 

(mgm-^) 

Maximum chlorophyll-a concentration of combined pico-

nanoplankton (mgm~^) 

Maximum chlorophyll-a concentration of picoplankton (mgm~^) 

Total chlorophyll-a concentration derived from i?rs(A) following 

O'Reilly et al. (1998) (mgm'^) 

Chlorophyll-a concentration of picoplankton retrieved from satellite 

(mgm-^) 

Chlorophyll-a concentration of nanoplankton retrieved from satel

lite (mgm~^) 

Chlorophyll-a concentration of microplankton retrieved from satel

lite (mgm~^) 

Surface value for the vertical dimensionless C profile of Uitz et al 

(2006) 

Downward Irradiance (Wm~^sr~-^) 

Microplankton fraction of total chlorophyll-a 
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Fn Nanoplankton fraction of total chlorophyll-a 

Fp Picoplankton fraction of total chlorophyll-a 

Fp,n Combined pico-nanoplankton fraction of total chlorophyll-a 

Fp Picoplankton fraction of total chlorophyll-a retrieved from satellite 

F^ Nanoplankton fraction of total chlorophyll-a retrieved from satellite 

F^ Microplankton fraction of total chlorophyll-a retrieved from satellite 

Proportionality factor describing the directional effect at the air-
g 

surface interface 

k The decrease in the vertical mass flux of carbon with depth 

K Diffuse attenuation coefficient for downwelling irradiance (m~^) 

L Radiance (Wm~^sr~-^) 

L-u, Water-leaving radiance (Wm~^sr~-^) 

Lym Normalised water-leaving radiance (Wm~^sr~-^) 

m Microplankton 

ME% Relative mean error [%] 

ME Mean absolute error 

n Nanoplankton 

N2 Nitrogen gas fixation 

A'' Refers to the number of samples 

p Picoplankton 

Diagnostic Pigments (fucoxanthin; peridinin; 19'-

P hexanoyloxyfucoxanthin; 19'-butanoyloxyfucoxanthin; alloxanthin; 

chlorophyll-b and divinyl chlorophyll b; zeaxanthin) 

PAR Photosynthetically-active radiation (E m~^ d~^) 

PCO2 Partial pressure of CO2 in the atmosphere and the ocean 

q Beam attenuation coefficient (m~^) 

r Pearson correlation coefficient 

Size-specific slopes describing the variations in the size-specific 

a* (A) of the Uitz et al. (2008) model along the vertical z/Zp 

Rrs Remote sensing reflectance (sr~^) 

Linear decrease in slope for the dimensionless C proflle of Uitz et al. 

(200B) 

Slope describing the rate of increase in the chlorophyll-a concentra-

S tion of a particular size class as a function of the total chlorophyll-a 

concentration 

ScDM The spectral slope of CDM absorption 

Size parameter of phytoplankton which represents the fractional 

contribution of picoplankton to a according to Ciotti et al. (2002) 

Si Silica 
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w 

Slope describing the rate of increase in the chlorophyll-a concen-

Sp tration of picoplankton as a function of the total chlorophyll-a con

centration 

Slope describing the rate of increase m the chlorophyll-a concen-

Sp^n tration of combined pico-nanoplankton as a function of the total 

chlorophyll-a concentration 

SSH Sea-surface height (cm) 

SSHA Sea-surface height anomaly (cm) 

SST Sea surface temperature {°C) 

T865 Optical aerosol thickness (dimensionless) 

u Standard deviation of all samples for a type of phytoplankton 

V Frequency (Hz or s"-̂ ) 

w Phytoplankton cell count 

Chlorophyll-a to diagnostic pigment ratios derived by Uitz et al. 

(2006) (1.41, 1 41, 1.27, 0 35, 0 6, 1 01; 0 86) 

X A concentration 

X Overall mean of all cell counts for each type of ph5rtoplankton 

X A particular variable 

z Geometric depth (m) 

Z Z-factor 

Zjn. Mixed-layer depth (m) 

Zp Euphotic depth (m) 

Pa Represent the change m C^^ with increasing r 

/?6 Represent the change in Sp^n with increasing r 

pc Represent the change m C^ with increasing r 

Pd Represent the change m Sp with increasing r 

Depicts the width of the peak for the dimensionless C profile of 

Uitz et al (2006) 

X Volume scattering function (m~^) 

A Wavelength (nm) 

r Optical depth (m) 

^ Dimensionless depth (z/Zp) 

The depth at which Cjnax occurs for the dimensionless C profile of 

^""^ U i t ze t a l (2006) 
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Chapter 1 

Introduction 

1.1 Thesis introduction and motivation 

Global climate change is one of the major concerns facing human society in the 21̂ * 

Century (Patz et al., 2005). Since the estabhshment of the industrial revolution at 

the beginning of the IQ**" Century there has been a vast increase in anthropogenic 

emissions of carbon dioxide (CO2) from the burning of fossil fuels and deforestation 

(Sabine et al., 2004). CO2 released into the atmosphere may have three possible 

fates: it may be absorbed by the terrestrial ecosystem, absorbed by the ocean, or 

it may continue to reside in the atmosphere (Nair et al., 2008). The process of 

photosynthesis is partly responsible for the absorption of atmospheric CO2. It has 

been estimated that the ocean absorbs approximately 26% of anthropogenically 

emitted CO2 acting as an essential component of the carbon cycle (House et al., 

2002; Canadell et al., 2007; Le Quere et al., 2009). 

The majority of oceanic photosynthesisers are microscopic single or multi celled 

free-floating algae called phytoplankton, from the Greek word phyton, meaning 

plant, and planktos, meaning wandering (Jeffrey and Mantoura, 1997). They are 

globally distributed, consisting of tens of thousands of species, and contribute to 

over 25% of the total planetary vegetation (Jeffrey and Hallegraeff, 1990). Phyto

plankton use inorganic carbon to photosynthesise organic matter, which in turn is 

recycled in the water column or exported towards the sediments. 

Phytoplankton are responsible for between 40-50 % of the total primary produc

tion on Earth (Longhurst et al., 1995; Field et al., 1998; Falkowski et al., 2004) and 

contribute to modulating the total CO2 concentration and pH of the ocean, which 

together with physical processes (e.g. solar energy input, sea-air heat exchanges, 

upwelling of subsurface waters and mixed layer thickness) dictates air-sea CO2 gas 

exchanges (Takahashi et al., 2002). Improving models of the flux of atmospheric 

carbon dioxide to the oceans depends on the accurate depiction of phytoplankton 

community abundance, distributions and physiology, which ultimately dictates the 

drawdown of CO2. Phytoplankton, therefore, play a major role in the ocean carbon 
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cycle. In light of rising concern about the accelerating greenhouse effect, there is 
an increasing urgency to advance our understanding of the ocean carbon cycle to 
improve predictions of its future influence on climate 

Traditionally, simple Nutrient Phytoplankton Zooplankton and Detritus (NPZD) 
models have been coupled to General Circulation Models (GCM) to study the 
ocean's carbon cycle (e g Sarmiento et al, 1993, Six and Maier-Reimer, 1996, 
Oschlies and Garcon, 1998, Palmer and Totterdell, 2001). Such coupled ocean-
ecosystem models manifest many essential aspects of the pelagic ecosystem (An
derson, 2006) However, NPZD models categorise phytoplankton under a single 
group (P) when, in reality, phytoplankton groups can differ greatly in their bio-
geochemical functions More recently, biogeochemical models have been developed 
that use different phj^toplankton functional types (PFTs) (e.g Taylor et al, 1993, 
Vanden Berg et al, 1996, Gregg et al, 2003, Blackford et al, 2004, Le Quere et al., 
2005) PFT-based models have been criticized for being both unnecessarily complex 
(Anderson, 2005) and for not mirroring natural complexity (e.g neglecting trophic 
functionality, Flynn, 2006) Such models, however, present a major development in 
ecosystem analysis as they have the potential to improve our understanding of how 
phytoplankton interact with their environment (Hood et al, 2006; Le Quere, 2006) 

In regard to primary production and the ocean carbon cycle, cell size, hereafter 
referred to as phytoplankton size class (PSC), has been used to classify the func
tional groups (Sieburth et al., 1978) The size of the phytoplankton is intimately 
linked with a variety of processes that influence the ocean carbon cycle (Probyn, 
1985, Michaels and Silver, 1988, Chisholm, 1992, Bricaud et al, 1995, Raven, 1998, 
Boyd and Newton, 1999, Laws et al, 2000, Bouman et al, 2005, Piatt et al, 2005, 
Marafion, 2009). To verify and improve PFT-based (or PSC-based) models, synop
tic measurements of the different PFTb (or PSCs) are required This has typically 
been conducted by use of m situ measurements However, sampling limitations of 
ships and buoys which involve comparing measurements widely separated in space 
and time, limit their use in validating such models 

Earth Observation (EO), defined as the gathering of information about planet 
Earth's physical, chemical and biological systems (GEO, 2010), can be used to 
monitor wide areas synoptically which is not possible by conventional m sztu-hased 

methods This has led to the development of a variety of bio-optical models that 
are designed for use in remote sensing to map PFTs or PSCs on global and regional 
scales (e g Sathyendranath et al , 2004, Alvam et al, 2005, 2008, Ciotti and Bricaud, 
2006; Devred et al, 2006, Uitz et al, 2006, Raitsos et al, 2008; Hirata et al., 2008a) 
Piatt et al (2006) describe the detection of different phj^oplankton communities 
from satellite as a major challenge in ocean optics, which is further complicated by 
the sparseness of m situ data required to validate these algorithms. 

Phy1;oplankton size class measurements from satellite have been incorporated 
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into primary production EO models, resulting in a greater understanding of the 

contribution of different PSCs to global ocean primary production (Claustre et al., 

2005; Mouw and Yoder, 2005; Uitz et al., 2008, 2009, 2010; Silio-Calzada et al., 2008; 

Hirata et al., 2009b). Of particular importance to such models, is the absorption 

coefficient of phytoplankton which is influenced by pigment composition and size 

structure (Morel and Bricaud, 1981; Sathyendranath et al., 1987; Lohrenz et al., 

2003; Bricaud et al., 2004). There is evidence to suggest that models of phyto

plankton size structure may be used to improve the retrieval of the phytoplankton 

absorption coefficient (Devred et al., 2006). 

In order to confidently use sateUite models that estimate PSCs, as with any 

satellite derived geophysical or biogeochemical product, validation exercises need to 

be conducted to ascertain accuracy and limitations. This is especially important 

when a field of research, such as the detection of phytoplankton communities firom 

satellite data, is in its early stages of development, known as the research mode (Piatt 

et al., 2008). In such cases, validation exercises may be used to raise questions that 

can guide future efforts in the field. 

EO models that accurately depict phytoplankton communities from satellite have 

enormous potential in viewing how marine ecology may be adapting in the face 

of our changing climate. With access to over a decade of ocean colour satellite 

observations, researchers have begun to investigate interannual and decadal trends 

in phytoplankton biomass and link such trends with climatic variability (McClain 

et al., 2004; Gregg et al., 2003, 2005; Antoine et al., 2005; Behrenfeld et al., 2006; 

Martinez et al., 2009). However, little work has been conducted on interannual 

trends in phytoplankton size structure and its relationship with physical forcing. 

This thesis intends to take the field of detecting PSCs from sateUite one step 

further. By applying these PSC-based satellite models to 10-years of ocean colour 

data and by comparing the results with in situ data, a better understanding of the 

performance of these algorithms can be gained. The results of this intercomparison 

could then be used to develop a new modified PSC model, with advantages over its 

predecessors. Furthermore, equipped with over a decade of satellite ocean colour 

observations, EO PSC models can be used to assess relationships between interan

nual climatic variability and phytoplankton size structure. Such information could 

be hugely beneficial for future carbon cycle studies. 

1.2 Thesis aims, research questions and objectives 

The primary aim of this thesis is to compare a variety of existing approaches that 

have been designed to detect phytoplankton size class from EO. As an outcome of 

this comparison, a new modified approach can be developed and applied to 10-years 

of satellite ocean colour observations to investigate relationships between phyto-
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plankton size structure and physical forcing. Based on the aim of this thesis, the 

following research questions will be addressed 

• How accurately can we detect phytoplankton size class from EO m the global 

ocean' 

• What IS the most robust method for detecting phytoplankton size class from 

EO m the global ocean'? 

• Can EO estimates of phytoplankton size class be used to improve estimates 

of phytoplankton light absorption needed for input to satellite-based primary 

production models'? 

• How IS phytoplankton size structure influenced by climate variability? 

In order to answer the above research questions, several objectives have been set: 

• Conduct an intercomparison of the current bio-optical techniques for detecting 

phytoplankton size class from EO through use of a concurrent and co-located 

m situ and satellite database of phytoplankton size measurements 

• Based on the results from the intercomparison, and through either merging 

the output of several techniques or developing a modified version, produce 

an improved bio-optical technique for detecting phytoplankton size class from 

EO 

• Investigate methods for improving estimates of the phytoplankton absorption 

coefficient from EO by mtroducmg phytoplankton size structure 

• Implement and run the new improved bio-optical technique for detecting phy

toplankton size class from EO on 10-years of satellite data to investigate sea

sonal cycles, mterannual variability, and compare the relationship between 

mterannual variability and climatic indices 

• Draw conclusions and make suggestions for future work. 

1.3 Thesis structure 

This thesis adheres to the following structure: A literature review of the current state 
of knowledge in the context of the aims and objectives of the thesis is provided m 
Chapter 2 In Chapter 3, an intercomparison of bio-optical techniques for detecting 
dominant phytoplankton size class from EO is conducted Based on the results 
from Chapter 3, a new model is developed in Chapter 4, designed to calculate 
the fractional contributions of three phytoplankton size classes for a continuum 
of chlorophyll-a concentrations. In Chapter 5, the model developed m Chapter 4 
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is used to estimate size-fractionated phytoplankton absorption as a function of the 

total clilorophyll-a concentration, and in Chapter 6, the model developed in Chapter 

4 is run on a decade of oc«an colour observations to investigate seasonal cycles and 

the relationship between intcrannual \'ariability and physical forcing. Chapters 3 to 

6 are synthesised with existing research in Chapter 7, in addition to summarising 

the main findings of the thesis and outlining future work. A flow chart of the thesis 

methodology is given in Figure 1.1, guiding the reader through Chapters 3 to 6. 
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Chapter 2 

A Review of the Current State of 

Knowledge 

2.1 Introduction 

In this chapter, a comprehensive review of the subject area is undertaken in the 

context of the aims and objectives of the thesis. The chapter is partitioned into four 

sections; the first section address the determination of phytoplankton communities 

in situ, including a description of a variety of long-term biological programmes; the 

second section focuses on the underlying bio-optical knowledge required for detect

ing phytoplankton communities from EO; the third section introduces methods for 

detecting phytoplankton communities from EO; and the final section assesses cur

rent research into decadal and interannual changes in phytoplankton biomass and 

community structure. 

2.2 Phytoplankton classification 

2.2.1 Phytoplankton Functional Types 

Phytoplankton functional types (PFlb) refer to phytoplankton that have a specific 

function with regard to the scientific question being addressed (Le Quere et al., 2005; 

Nair et al., 2008). In terms of primary production and the global carbon cycle, cell 

size, or phytoplankton size class (PSC), has previously been adopted to classify 

the functional groups (Sieburth et al., 1978). According to the conceptual model 

of Sieburth et al. (1978), the autotrophic pool is split into picoplankton (<2/im), 

nanoplankton (2-20 jxra) and microplankton (>20 ixxn) contributions. 

While from a biogeochemical perspective the cell size functional classification 

may not be fully satisfactory (see Nair et al., 2008), many ecological and biogeochem-

ical processes are related to cell size. These processes include light absorption, as 

influenced by the cellular pigment composition and packaging effect (Duysens, 1956; 
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Kirk, 1975, Morel and Bricaud, 1981, Prieur and Sathyendranath, 1981; Bricaud 

et a l , 1995, 2004), nutrient uptake (Probyn, 1985; Sunda and Huntsman, 1997), 

sinking rate and export (Michaels and Silver, 1988, Boyd and Newton, 1999, Laws 

et a l , 2000) There is also an established connection between the size and the phys

iology of phj^oplankton (Piatt and Denman, 1976, Geider et a l , 1986; Chisholm, 

1992; Raven, 1998), the marine food web (Parsons and Lalli, 2002), areas of high fish 

production (Caddy et al., 1995) and various metabolic rates (Piatt and Denman, 

1977, 1978) Strong links have also been established between size and environmen

tal characteristics (availability of nutrients and light) that regulate photosynthesis, 

phytoplankton selection and succession (Chisholm, 1992, Bouman et a l , 2005, Piatt 

et a l , 2005, Aiken et a l , 2008) The phytoplankton taxonomic and functional groups 

are closely related to size class (Table 2 1). 

This thesis concentrates on three phytoplankton functional types according to 

the conceptual model of Sieburth et al. (1978); picoplankton (<2^m), nanoplankton 

(2-20//m) and microplankton (>20/im) (Note that from this point onward the terms 

picoplankton, nanoplankton and microplankton refer specifically to phytoplankton) 

Table 2 1 Linkages between phytoplankton taxonomy, functional group 
and size class (adapted from Hirata and Brewm (2009)) 

Taxonomic group 

Diatoms 

Dmofiagellates 

Haptophytes 

Cyanobactena 

Major biogeocheraical function 

C, Si 

C, DMS 

C, CaCOs, DMS 

C,N2 

Typical Cell Size 

Micro (> 20 ^m) 

Micro (>20/im) 

Nano (2-20/im) 

Pico (<2^m) 

Si = sihca, C = carbon, DMS = dimethyl sulfide, CaCOg = calcium carbonate, 
Ng = nitrogen gas fixation 

2.2.1.1 Microplankton 

Microplankton consist mainly of the diatoms and dinofiagellates and form the largest 

celled phytoplankton m the ocean Microplankton generally prosper m high-nutrient 

environments, have high photosynthetic rates, carbon biomass, total chlorophyll-a 

and export rates, and generally account for most of the phytoplankton biomass 

in regions where light or nutrients are not limiting (Sze, 1993, Aiken et al., 2009, 

Maran6n, 2009) Diatoms are taxonomically partitioned into the centncs, which 

are radically symmetric, and the pennates, which are bilaterally symmetric (Miller, 

2004) Diatoms are responsible for ^20 % of global carbon fixation (Nelson et a l , 

1995) and are major contributors to the biogeochemical cycling of silicon (Falci-

atore et a l , 2000) Dinoflagellates can contribute to the production of dimethyl 



A Review of the Current State of Knowledge 

sulfide (DMS) (Keller, 1988) which can effect cloud and aerosol production in the 

atmosphere which may alter the Earth's radiation budget (Charlson et al., 1987). Di-

noflagellates have also been known to produce toxins, possibly for competition with 

other algal groups (Sze, 1993) and are responsible for some harmful algal blooms in 

coastal areas (Millie et al., 1997). 

2.2.1.2 Nanoplankton 

Nanoplankton are generally abundant in environments with some inorganic nutri

ents and additional re-cycled nutrients (organic). According to Aiken et al. (2009) 

and Maranon (2009), they generally have moderate photosynthetic rates, carbon 

biomass, total chlorophyll-a and export rates. They incorporate the nanoflagellates, 

which includes Prymnesiophytes, Chrysophjdjes and Cryptophytes. Nanoplankton 

include both calcifying phytoplankton such as coccolithophores, and also dimethyl 

sulfide producers such as Phaeocystis. The coccolithophore Emiliania hvxleyii is 

generally considered to be abundant in a number of areas of the ocean ranging 

from high latitude eutrophic waters to oligotrophic areas of the ocean such as the 

subtropical gyres (Brown and Yoder, 1994). 

2.2.1.3 Picoplankton 

Picoplankton are generally abundant in low nutrient environments. According to 

Aiken et al. (2009) and Maranon (2009), they are associated with lower photosyn

thetic rates, carbon biomass, total chlorophyll-a and export rates, when compared 

with the larger size classes. In the open ocean, picoplankton consist mainly of 

the cyanobacteria {Prochlorococcus and Synechococcus) and picoeukaroytes (Zubkov 

et al., 2000). Prochlorococcus use chlorophyll-a in its di-vinyl form, as opposed 

to the mono-vinyl form used by all other phytoplankton groups (Partensky et al., 

1999). Nitrogen-fixing phytoplankton, such as the cyanobacterium Trichodesmium, 

the dominant nitrogen-fixing organism in the oligotrophic oceans, utilise atmospheric 

nitrogen as a raw material for growth and thus impact the nitrogen cycle (Nair et al., 

2008). 

2.2.2 Identification of phytoplankton size class from in situ 

data 

Phytoplankton groups can be identified firom various types of in situ measurements 

with each method exhibiting limitations and advantages. Common approaches in

clude microscopic analysis, flow cytometry, High Performance Liquid Chromatog

raphy (HPLC) analysis of marker pigments, size-fractionation and deoxyribonucleic 

acid (DNA) sequencing. 
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2.2.2.1 Microscopic analysis 

Traditionally phytoplankton have been identified using a light microscope. Nair 

et al. (2008) highlight that microscopes (including both light and electron) are un

surpassed in the information they can provide on the type and species of phyto

plankton However, the disadvantage with such techniques is that they can be time 

consuming (unsuitable for analysis of a large number of samples) and often rely on 

the taxonomic skill of the observer, using morphological characteristics to identify 

the phytoplankton Picoplankton can be difficult to identify to the species level due 

to the lack of distinct morphological characteristics (Nair et al, 2008) To overcome 

this, epifluoroscence microscopes and electron microscopes have been used to differ

entiate picoplankton from heterotrophs (e g Li et al., 1983) Once the taxonomic 

groups have been identified using a microscope, the plankton can be partitioned into 

typical size classes (as in Table 2 1) 

2.2.2.2 Flow cytometry 

During the 1980's there was a rapid development m the use of flow cytometry to 
analyse photosynthetic plankton, both m the laboratory and in the field (Chisholm 
et al., 1986, 1988, Burkill, 1987, Vaulot et al., 1989) Flow cytometry involves par
titioning cells in liquid suspension and allowing them to individually pass though 
a light field. The fluorescence and scattering properties are then recorded, in ad
dition to cell size, and used to differentiate between the different phytoplankton 
communities. Flow cytometry is particularly useful at identifying different types 
of picoplankton such as Prochlorococcus, Synechococcus and picoeukaroytes, due to 
their unique fluorescence and scattering signatures. 

Flow cytometers are capable of making rapid measurements of cells, with typ
ical commercial instruments making measurements at rates of up to 1000 cells per 
second, while specialised instruments can make measurements at rates m excess of 
25,000 cells per second (Davey and Wmson, 2003) This is a clear advantage of 
flow cytometers over microscopes The disadvantage of flow cytometers is that they 
generally have a limited particle size range (upper limit is typically 15-20 jCim) which 
poses a problem when obtaining information on the larger size classes of phyto
plankton. However, recent efforts have been made to enumerate and characterise 
microplankton and larger filamentous phj^oplankton (Sieracki et al., 1998, van Dijk 
et al, 2010) Autonomous fiow cytometers have also been developed (Olson et al , 
2003; Olson and Sosik, 2007) allowing long-term flow cj^ometric measurements 

10 
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2.2.2.3 High Performcince Liquid Chromatography (HPLC) analysis of 

diagnostic marker pigments 

Phjiioplankton groups can also be separated on the basis of their marker pigments 

(Jeffrey and Mantoura, 1997). This is usually conducted by performing chromato

graphic analysis of pigments using HPLC. The total chlorophyll-a concentration (C) 

(which includes, chlorophyll-a, di-vinyl chlorophyll-a, chlorophyllide-a, chlorophyll-a 

allomers and epimers) is a ubiquitous pigment in all phytoplankton. However, other 

accessory pigments vary depending on the taxonomic group. Automated HPLC al

lows for the rapid processing of pigments to determine phytoplankton groups from 

in situ data. Various methods have been proposed to determine phytoplankton taxa 

and size class using HPLC data. Mackey et al. (1996) proposed a method known 

as CHEMTAX which is a matrix factorization program that derives the taxonomic 

structure of phytoplankton from pigment ratios. This has been used throughout 

the world's ocean to determine phytoplankton taxonomic groups (e.g. Wright et al., 

1996; Wright and van den Enden, 2000; Landry et al., 2000; Muylaerta et al., 2006). 

HPLC analysis has the advantage to be comprehensive in terms of phytoplankton 

size range (Claustre, 1994) and has been used to derive phytoplankton size structure 

from diagnostic pigments (diagnostic pigments are defined as biomarker-pigments 

of specific phytoplankton taxa). 

Table 2.2: Diagnostic pigments of phytoplankton and their taxonomic and 
size class association (adapted from Uitz et al. (2010)) 

Diagnostic Pigment Taxonomic Association Typical Cell Size 

Fucoxanthin Diatoms Micro {>20fim) 

Peridinin Dinoflagellates Micro (>20^m) 

19'-Hexfucoxanthin Prymnesiophytes Nano (2-20/xm) 

19'-Butfucoxanthin Pelagophytes Nano (2-20 ̂ m) 

AUoxanthin Cryptophytes Nano (2-20 yiim) 

Zeaxanthin Cyanobacteria, Prochlorophytes Pico (<2/im) 

Total chlorophyll b* Chlorophytes, Prochlorophytes Pico (<2 ̂ m) 

* Total chlorophyll b = chlorophyll b + divinyl-chlorophyll b 

Vidussi et al. (2001) selected seven diagnostic pigments to obtain the fractions 

[F] of picoplankton (Fp), nanoplankton (F„) and microplankton (Fm) from in situ 

HPLC pigment data (see Table 2.2). These diagnostic pigments include fucoxan

thin, peridinin, 19'-hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin, alloxan-

thin, chlorophyll-b and divinyl chlorophyll-b and zeaxanthin. Uitz et al. (2006) 

carried out multiple regression analyses of chlorophyll-a and the seven diagnostic 

pigments, to calculate the chlorophyll-a concentration from the combined sum of the 

11 
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diagnostic pigments proposed by Vidussi et al. (2001) According to this approach, 

the chlorophyll-a concentration (C) can be reconstructed from the coefficients [W] 

and the pigments [P] according to 

7 

C^ = Y,W,P,, (21) 

where, [W] = {141, 141; 127; 0.35; 0 6, 101, 0 86}, [P] = {fucoxanthm; 

peridimn; 19'-hexanoyloxyfucoxanthin; 19'-butanoyloxyfucoxanthin, alloxanthm, 

chlorophyll-b and divinyl chlorophyll-b, zeaxanthm} and C^ refers to the recon

structed chlorophyll-a concentration. According to Uitz et al (2006), the fractions 

[F] of the chlorophyll-a concentration (C) associated with each size class can be 

inferred as 

J"™ = ^ " ' ' ^ • ^ • , (2.2) 

F . ^ ^ ^ , (2 3) 

F, = S L s J ^ , (2 4) 

where, the subscripts p, n and m refer to picoplankton, nanoplankton and mi-

croplankton respectively. Furthermore, following Devred et al. (2006), the pi

coplankton and nanoplankton fractions can be combined into a single class F^^n-

Applying the method of Vidussi et al (2001) as modified by Uitz et al (2006), 

the fractions of each size class can then be applied to the m situ chlorophyll-a 

concentration (C) to derive the size-specific chlorophyll concentrations 

C^ = FmC, (2 6) 

Cp^ji = Fp^nC, (2.7) 

Cn^FnC, (2 8) 

Cp = FpC. (2 9) 

Hirata et al (2008a) developed a slight modification to the method proposed by 

Vidussi et al (2001) and Uitz et al (2006), extended to account for picoeukaryotes. 

In the Hirata et al. (2G08a) approach, the pigment total chlorophyll-b is included m 

the discrimination of the nanoplankton size class, as opposed to the picoplankton size 

class, as higher levels were found in moderate chlorophyll-a waters Furthermore, 

all samples with chlorophyll-a <0 25 mg m~^ are defined as picoplankton 

12 
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The HPLC diagnostic pigment aiialysis (DPA), as highhghted by Vidussi et al. 

(2001) and Uitz et al. (2006), does not strictly reflect the true size of phytoplankton. 

Diatoms, for example, have been observed in the nano-size range, whereas, in this 

procedure, they are only identified as microplankton. Some taxonomic pigments 

might be shared by various phytoplankton groups, such as fucoxanthin (the main 

indicator of diatoms) which may also be found in some prymnesiophytes. Despite 

these disadvantages, in recent years HPLC data has been extensively used as a proxy 

for size class (e.g. Vidussi et al., 2001; Bricaud et al., 2004, 2007; Claustre et al., 

2005; Devred et al., 2006; Uitz et al., 2006, 2008, 2009; Hirata et al., 2008a; Ras 

et al., 2008; Aiken et al., 2008, 2009). 

2.2.2.4 Size-fractionation, determining the particle size distribution and 

DNA sequencing 

A common approach used to determine the chlorophyll-a biomass or the absorption 

coefficient of different size classes of phytoplankton is through filtration (Glover 

et al., 1988; Clarke and Leakey, 1996; Ciotti et al., 2002). This involves filtering 

water (normally under low pressure) though filters of different sizes (e.g. 20//m 

and 2;um). The concentration of chlorophyll-a and particulate absorption in each 

size fraction is then determined. Size-fractionation has advantages in that the sizes 

of phytoplankton are explicitly partitioned. However, there are also disadvantages. 

The filtrates often retain a certain portion of particles smaller than the determined 

pore size, which in turn depends on the filter types and the cohesive properties of 

the particles (Sheldon, 1972; Logan, 1993; Logan et al., 1994; Chavez et al., 1995; 

Knefelkamp et al., 2007; Dall'Dlmo et al., 2009). The clogging of filters and the 

inability to accurately define the pore size of filters appears to be the main reason 

for the mismatch between retained particles and nominal pore sizes (Droppo, 2000). 

Other techniques to estimate the size of phytoplankton include determining the 

particle size distribution (PSD). Common methods include the Coulter counter 

(Sheldon and Parsons, 1967; Sheldon et al., 1972; Milligan and Kranck, 1991), using 

a laser scatter particle size instrument to determine the scattering properties of the 

sample and associate this with a particle size distribution (Agrawal and Pottsmith, 

2000; Slade and Boss, 2006; Karp-Boss et al., 2007), video (Eisma and Kalf, 1996; 

Manning and Dyer, 1999) or holographic imagery (Nimmo Smith, 2008; Graham 

and Nimmo Smith, 2010) and using acoustics (Thome et al., 2007). 

There are advantages and disadvantages to all these approaches. Coulter coun

ters are sensitive to particle volume (Sheldon and Parsons, 1967; Milligan and 

Kranck, 1991), furthermore edge and shape effects can cause errors in diameter 

estimation of up to 14% (Boyd and Johnson, 1995). A laser scatter particle size 

instrument relies on inversion algorithms between particle size and scattering sig

natures. These inversions often use Mie theory which assumes particle sphericity 
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and is sensitive to deviations from sphericity (Karp-Boss et a l , 2007) Digital and 

holographic imagery often involves a large amount of computer processing and the 

systems tend to be restricted to particles greater than 10 ^m m size. Deriving 

particle size distributions from acoustic backscattering signatures is also lirmted to 

particles greater than 10-100 ̂ m m size (Libicki et a l , 1989) A further limitation 

of approaches that determine the particle size distribution, is difficulty differentiat

ing between biogenic and non-biogemc particles, a limitation that is of considerable 

importance when applying such approaches to determine field estimates of phyto

plankton size 

Molecular methods use genetic variations in the phytoplankton to distinguish at 

taxonomic levels These include DNA sequencing and probing techniques (Puller 

et a l , 2006, Bouman et a l , 2006, Zwirglmaier et a l , 2007, 2008) Such approaches 

are not available for all possible phytoplankton taxonomic groups and specificity of 

probes remains an area of ongoing research (Nair et a l , 2008) 

There are positives and negatives to using any of the proposed methods for 

determining phytoplankton size class m situ This leads to the conclusion, also 

noted by Nair et al (2008), that the use of any one of these techniques, m isolation, 

may not be entirely dependable Therefore, when determining phj^toplankton size 

class m situ, it would seem sensible to incorporate different types of %n situ methods 

which should lead to a more accurate diagnosis. Nonetheless, HPLC analysis has 

the advantage to be comprehensive in terms of phytoplankton size range (Claustre, 

1994) and, despite having limitations, it is the only method for which a sufficient 

amount of globally representative data is currently available. 

2.2.3 Available in situ biological datasets 

Long-time-period m situ observations are recognised as being extremely important in 

an era of accelerated global change (Harris, 2010) The true capabilities of EO data 

can be realised when used m conjunction with m situ measurements, for calibration 

and validation purposes There are a variety of decade-long in situ monitoring 

programmes that have been used for such purposes, and have the potential to be 

used to validate and improve available methods for detecting phytoplankton size 

class from EO 

2.2.3.1 Continuous Plankton Recorder (CPR) survey 

The longest multi-decadal plankton monitoring programme in the world is the Con

tinuous Plankton Recorder (CPR) survey (Richardson et al., 2006) First tested to 

sample Krill m the Antarctic on the "Discovery" cruises of 1925-27 (Hardy, 1926), 

then initiated by Ahster Hardy in 1931 (Hardy, 1939), the CPR has measured near-

surface phyto- and zooplankton for nearly 80 years (207,619 samples were recorded 

by late 2004 (Richardson et al., 2006)) It is considered to be one of the largest and 
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most valuable biological databases in the world (Exiwards, 2001). Data have been 

available in paper form since 1931. and from 1946 a computerised database was cre

ated. The survey has particular value since 1948, as it has been based on consistent 

methods of sampling and analysis (Warner and Hayes, 1994). As a result it provides 

unique information on the spatial and temporal distribution, annual and interannual 

cycle, and abundance of plankton over a large time scale, and has been used as a 

baseline to assess impacts of global change on marine ecosystems (Beaugrand et al., 

2003, 2002; Edwards and Richardson. 2004: Raitsos et al., 2005). 

Pro peter 

f 
Entrence apeftut 

E'H iptrtur* 
Covering tltk 

FNtertniiit 

• P f t ^ ^ - ^ ^ i ^ 

Figure 2.1: A cross-section of the CPR, its internal mechanism and CPR body, 
taken from Richardson et al. {2006). 

Measurements of plankton abundance (cell counts) from the CPR are collected by 

a high-speed plankton recorder towed behind "ships-of-opportunity" in the surface 

layer of the ocean -^6-10m deep. The CPR device filters plankton on a constantly 

moving band of mesh silk (mesh size 270 ̂ m). As water enters the CPR body, 

plankton is filtered on a band of filtering silk (see Figure 2.1) and then a second 

band of silk (the covering silk, sec Figure 2.1) sandwiches the first band of silk in 

order to enclose the plankton. This is then rolled into the storage chamber and 

the plankton is preserved in a formaldehyde solution (SAHFOS. 2010). Once the 

tow has finished, the CPR body is taken back to the laboratory and analysed for 

phytoplankton binmass. phytoplankton taxa, and zooplankton taxa (Warner and 

Hayes, 1994). The CPR device can operate at speeds of up to 25 knots and it is 

designed to operate in rough sea states with successful tows taken in wind force 11 

(Beaufort sc:ale) conditions (SAHFOS, 2010). 

Each measurement represents -^18km of tow. Post 1997, ships typically moved 

at 14.8 knots meaning each measurement is representative of ~32 minutes of tow. 
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and each sample equates to '^3m'' of filtered seawater (Richardson et al., 2006). 

The CPR has been used extensively in the Atlantic Ocean and the North Sea since 

1946. The sampling routes taken in this area from the period 1946-2005 are shown 

in Figure 2.2. 

Figure 2.2: CPR sampling routes for the North Sea and Atlantic Ocean (1946-2005), 
taken from (SAHFOS. 2010) 

In 1991 the Southern Ocean CPR (SO-CPR) Survey was established with its 

primary purpose to map and monitor zooplankton patterns as a means of assessing 

the status and health of the region (Hosie et al., 2003). Since 1997 an average of 6946 

nautical miles of CPR tows have been completed per annum aboard the Australian 

research vessel "Aurora Australls", and since 1999 a further 3414 nautical miles per 

annum have been collected aboard Japanese vessels (Hunt and Hosie, 2003). 

Theoretically, CPR samples are more effective at filtering microplankton and less 

effective at filtering nano- or picoplankton. which can slip between the silk mesh. 

However, species smaller than lOfim have been identified repeatedly in the CPR 

samples (Hays et al., 1995) which h thought to be a result of plankton clogging up 

the filter and the capture on the finer threads of silk that constitute the mesh-weave 

(Raitsos et al., 2006). The proportion of cells captured by the silk has been shown 

to reflect the major changes in abundance, distribution and community composi

tion of large-celled {>10/im) ph>-toplankton (Robinson. 1970). and has been shown 

to be consistent and comparable over time (Batten et al., 2003). Furthermore, 

molecular analysis of the CPR samples has indicated its use for genotyping smaller 

phytoplankton sizes (Ripley et al., 2008) at a resolution comparable to traditional 

sampling techniques (D, Schroeder, pers. comm.). 

Recently, the CPR dataset has been used for development and validation of 

satellite techniques for determining phrtopiankton biomass and taxa (Raitsos et al., 
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2005, 2006. 2008}. Due to the nature and quantity of samphng, the CPR dataset 

provides is an excellent dataset to compliment satellite measurements. 

2.2.3.2 T h e At lant ic Meridional Transects ( A M T ) 

The Atlantic Meridional Transect (AMT) Programme is a UK National Environmen

tal Research Council (NERC) funded project consisting of a time-series of oceano-

graphic stations along a 13.500 km north-south transect (50°N-52°S) in the Atlantic 

Ocean, which moved southward in September and northward in April each year 

from 1995-2001 (Aiken and Bale, 2000: Aiken et al., 2000: Robinson et al.. 2006), 

and more recently moving southward once a year (October to November). AMT 

began in 1995, with the aim to quantify the nature and causes of biogeocheniical 

and ecological variability in plankton of the Atlantic Ocean, and to assess the ef

fects of this variability on air-sea gas and aerosol exchange and biological carbon 

cychng [Robinson et al.. 2006). It was also designed for the calibration and valida

tion of measurements and produrt.s from the Sca-vicwing Wide Field-of-vicw Sensor 

(SeaWiFS) (Hooker and McClain. 2000). 

The AMT transect crosses a range of ecosystems, from the eutrophic subpolar 

shelf seas and upwelling systems to the oligotrophic gyres of the North and South 

Atlantic (Figure 2.3). The programme has so far been divided into three phases, 

11 cruises were completed in phase 1 (AMT 1-11 for details see Aiken and Bale, 

2000) and 6 cruises in phase 2 (AMT 2-17 for details see Robinson et al., 2006). 

Phase 3 is currently underway having completed 3 cruises (AMT 18-20). which will 

continue until 2012. Data from phases 1 and 2 are available through the British 

Occanographic Data Centre (BODC). 

The first two phases of the AMT programme led to several important discoveries 

concerning the validation of ocean colour algorithms (O'Reilly et al., 1998: Hooker 

and McClain, 2000: Tilstone et al., 2009). distributions of picoplankton (Zubkov 

et al., 1998, 2000: Heywood et al., 2006: Tarran ct al.. 2006) and pigments specific 

to ph>-toplankton functional types (Aiken et al., 2009), identification of oceanic 

provinces (Hooker ct al.. 2000), the identification of regional sinks of pC02 (Lefevre 

et al., 1998)- and variability in rates of primary production (Maranon et al.. 2000; 

Tilstone et al., 2009: Serret et al., 2009) and respiration (Serret et al., 2001; Robinson 

et al., 2002; Scrret et al.. 2006; Gist et al., 2009). The dataset is arguably the 

most coherent set of repeated biogeochemical observations ever made on ocean basin 

scales. 

2.2.3.3 The L4 s ta t ion 

The L4 station was originally founded by the Marine Biological Association (MBA) 

over 100 years ago (Harris, 2010), and plankton and copepod studies were conducted 

in the early part of the 20th century (Harvey ct al., 1935; Mare, 1940; Digby, 1950). 
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Figure 2.3: Sampling route for AMT transects 1-17, overlain on province bonndaries 
from Loiighurst (1998) (adapted from Robinson et al. (2006)). 

The L4 time-scries was set up by Plymouth Marine Laboratory (PML) in 1988 (10 

nautical miles offshore of Plymouth, UK in the English Channel 50°15^N. 4''13"W, 

see Figure 2.4) and, since 1992, phytoplankton species, abundance and biomass have 

been collected on a weekly basis. To mark the 20th anniversary of the L4 time-series 

a collection of papers were published in the Journal of Plankton Research (Harris, 

2010), which provide an overview of the L4 station in a physical, biological and 

chemical context. 

The planktonic community has been well studied at L4 over the past 20 years 

(Llewellyn and Harbour. 2003; Aiken et al., 2004; Llewellyn et al., 2005: Fishwick 

et al,, 2006). Widdicombe et al. (2010) provide a very comprehensive analysis of 

long-term phytoplankton dynamics at the L4 station. They show long-term de

creases in the abundance of diatoms and Phaeocystis and long-term increases in 

coccolithophorids, and some dinoflagellates and ciliates. Phytoplankton data from 

the L4 station have also been used for gloijal-scale meta-analyses of biodiversity pat

terns in phytoplankton (Irigoien et al.. 2004) and to better understand the spring 

bloom composition in the English Channel (Irigoien et al., 2005). A recent study by 

Groom et al. (2009) highlights the optical complexity of the L4 station and conclude 

that L4 can be considered as case 1 or case 2 (see section 2.3.5 for definition of case 

1 and 2 waters) depending on the time period, the optical parameter or even the 
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Figure 2.4: The location of station L4 with the bathymetry overlaid (adapted from 
Litt et al. (2010)). 

wavelength in question. 

The Western Channel Observatory was set up in 2005 (Harris, 2010), 

with the aim to draw together long-term in situ measurements made at sta

tions L4 and El (1903 to the present date), ecosystem modelling studies and 

EO. Data on phj^toplankton cell counts using microscopic analysis is available 

from the L4 station through the Western Chaimel Observatorj' from 1992-2009 

(http://www.westernchannelobser\'atory.org.uk ). Furthermore, the NERC Earth 

Observation Data Acquisition and Analysis Service (NEODAAS) provide near real 

time EO data at the L4 site, making the L4 station an ideal site for combining 

satellite and in situ measurements. 

2.2.3.4 T h e Be rmuda Atlant ic Time-series S tudy (BATS) and t h e 

Hawaii Ocean Time-Series (HOTS) 

In 1988. supported by the U.S. National Science Foundation (NSF), as a goal of the 

US JGOFS time-series research, two ocean time-scries stations were set up (Karl and 

Lukas, 1996). The Bermuda Atlantic Time-series Study (BATS) was established in 

the North Atlantic Ocean (Michaels and Knap, 1996} and the Hawaii Ocean Time-

Series (HOTS) was set up in the subtropical North Pacific Ocean near Hawaii (Karl 

and Lukas, 1996) (see Figure 2.5). These two stations are operated by the Bermuda 

Biological Station for Research and the University of Hawaii, respectively. 
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Figtire 2.5: The location of the BATS and HOTS stations. 

The aim of setting up the BATS and HOTS time-series was to improve our 

understanding of the processes that control ocean biogeochemistry on both sea

sonal to decadal tiniescales (SCOR, 1987). BATS is a long-term time-series study 

examining biogeochemica! cycles in the Sargasso Sea near Bermuda. Monthly 

measurements are taken of important hydrographic, biological and chemical pa

rameters. Biological measurements taken from BATS include HPLC pigments 

and fluormetric ehiorophyil-a measurements (of which some are available online 

http://bats.bios.edu/data). The site has been monitored extensively over the past 

few decades and been at the base of many important discoveries (see Steinberg 

et al., 2001) including long-term changes in plankton community structure (Karl 

et al.. 2001: DuRand et al., 2001), primary production (Ondrusek et al., 2001; Siegel 

et al., 2001: Saba et al., 2010), ocean colour (MeGitlicuddy et al.. 2001) and biogco-

chemical model development (Doney et al., 1996: Hurtt and Armstrong, 1996: Hood 

et al.. 2001). 

The primary objective of HOTS was to design, establish and maintain a deep-

water hydro-station in the North Pacific oligotrophic gj'rc, which could be used 

for observing and interpreting physical and biogeochemical variability (Karl and 

Lukas, 1996). Repeat measurements of a suite of physical, biological and chemical 

parameters are taken at monthly intervals and made available online for use by 

the scientifie community (http:/;'hahana.soest.hawaii.cdu/hot/). Like BATS, the 

HOTS time-series has been extensively used in ocean biogeoehemistry research and 

for comparison with EO data (e.g. Campbell et al., 1994; Mitchum, 1996; Lawson 

et al.. 1996; Saba et al., 2010). 

20 

http://bats.bios.edu/data


A Review of the Current State of Knowledge 

2.2.3.5 T h e Nat ional Aeronaut ics and Space Adminis t ra t ion (NASA) 

biological and b ioop t i ca l in situ da tase ts 

The NASA Ocean Biology' Processing Group (OBPG) maintains in situ oteano-

graphic and atmospheric data to support scientific work. When the SeaWiFS sensor 

was developed, NASA initiated the SeaWiFS Bio-optical Archive and Storage Sys

tem (SeaBASS), which was designed to catalogue radiometric and phytoplankton 

pigment data that could be used for calibration and validation activities (Werdell 

and Bailey, 2002). The databa.se includes measurements of phytoplankton pigment 

concentrations, apparent and inherent optical properties and other related oceano-

graphic data, such as water temperature and saUnity (SeaBASS, 2010), and is freely 

available online (http://seabass.gsfc.nasa.gov/). The SeaBASS dataset has been 

extensively used for satellite validation and vicarious calibration, in addition to 

bio-optical algorithm development (O'Reilly et al.. 1998. 2000: Hooker et al.. 2000; 

Maritorena et aJ., 2002: Schwarz et al., 2002) 

Recently NASA developed a subset of the SeaBASS dataset specifically for bio

optical research. The NASA bio-Optical Marine Algorithm Dataset (NOMAD) is 

a global, high-quality, in situ, bio-optical dataset publicly available for algorithm 

development and validation activities (Bailey and Wcrdell, 2006: Werdell and Bailey, 

2005). NOMAD has been used extensively in the development of bio-optical models, 

in particular the development and validation of satellite models designed to map 

PFTs (e.g. Alvain et al., 2006, 2008; Hirata ct al.. 2008a). 

From analysing methods for identifying phytoplankton size class from in situ 

data, and assessing available long-term datasets. it becomes apparent that a wide 

variety of in situ data has been gathered over the past decade on phytoplankton 

commimity structure. This data could potentially be used to help scrutinise, validate 

and improve available methods for detecting phytoplankton size class from EO. 

2.3 Light in the aquatic environment 

2.3.1 The colour of the ocean 

Ocean colour has long been used by scientists to help understand oceanography. For 

instance, in the 19*'' and early 20*'' centuries oceanographers used ocean colour as 

an indicator of water masses and, indirectly, ocean currents (Robinson, 2004). This 

was conducted through qualitative methods such as the Forel Scale (Fairbridge, 

1966), used to determine the colour of seawater. and the Secchi disk used to quan

tify the transparency of seawater (Secchi, 1866). Through pioneering developments 

of the 20"' century (Jeilov, 1968, 1976: Preisendorfer, 1976), this principle has since 

resulted in the discipline of optical oceanography or ocean optics which has exten

sively been used for a variety of topics from photochemistry to marine pollution 
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(Robinson. 2004). 

2.3.2 The Electromagnetic Spectrum 

In order to obtain data from an object through remote sensing it is necessary to mea

sure some parameter that relates directly to the particular scene. This is usually 

done through measuring the absorption, reflectance, and scattering of electromag

netic radiation. Electromagnetic radiation is made up of a continuum of wavelengths 

ranging from very short (gamma rays, typically 0.1 nanometres) to very long (radio 

waves, typically in the order of meters). 

Assuming that the speed of light (c) remains constant in a given medium, electro

magnetic radiation varies in wavelength (A) which is inversely related to frequency 

(v). This can be expressed according to 

A - - . (2.10) 
V 

The speed of light (c) is 3 x 10^ ms"^ and the units of wavelength are typically 

nanometres (nm) (for visible light) and the units of frequency are typically Hertz 

(Hz) or inverse seconds (s~'). 

The sun emits all forms of radiation within the electromagnetic spectrum (EM). 

The Earth's atmosphere protects the planet by filtering out harmful radiation, thus 

makhig the planet fit for habitation. Atmospherir windows (parts of the EM where 

the atmosphere has a small influence on the transmission of light) dictate which 

wavebands are available for oceanography. 

Between approximately 400-700 nm. referred to as the visible portion of the EM 

(see Figure 2.6), the atmosphere is particularly transparent to light. In fact, the 

visible portion of the EM accounts for approximately 45 % of total solar energy (Kirk, 

1994). Evolution has resulted in many organisms utilising the visible proportion of 

the EM whether for sight, as with the case or humans, or for energy, as in the case 

of photosynthetic organisms (Falkowski and Raven, 1997). 

2.3.3 Apparent optical properties and inherent optical prop

erties 

Preisendorfer (1961) defines inherent optical properties and apparent optical prop

erties of the water, according to their in\'ariance properties under changes in the 

radiance distribution about the point at which the property is measured. According 

to Preisendorfer (1961), if the property is invariant with respect to changes in the 

radiance distribution, it is said to be an inherent optical property, otherwise it is an 

apparent optical property (Gordon et al., 1975). 
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Figure 2.6: The Electromagnetic Spectrum (adapted from Sabins (1987)). 

2.3,3.1 Apparen t optical p roper t ies (AOPs) 

Apparent optical properties (AOPs) are optical properties that are influenced by, 

in addition to the nature and quantity of substances present in the medium, the 

angular distribution of the light field. They typically encompass tlie normalised 

water leaving radiance (I.„T,(A)), the remote sensing reflectance (firs(A)) and the 

downwelliug diffuse attenuation coefticient (A'(A)). Note that all optical properties 

of oceanic waters are wavelength (A) dependent (Kirk. 1994), 

Radiance iL{X)) is the measure of light energy leaving an extended source 

(Robinson, 2004). Water leaving radiance (Lu,(A)) is, therefore, the measure of 

light energy leaving the water. As ^^.(A) depends on both the viewing and sun 

geometry, remote sensing scientists have sought to normalise this radiance to a sin

gle sun-viewing geometry, forming the normahzed water leaving radiance (Lt.n(A)) 

(Gordon, 2005). Normalized water leaving radiance is the radiance that would be 

measured leaving the flat surface of the ocean, with the atmosphere absent and the 

sun directly overhead (i.e. at zenith). 

Reflectance is a measure of how much of the downwelling light {Ej{X)) is reflected 

back up from the water below (Robinson, 2004). For the remote sensing reflectance 

(ftrg(A)), it is common to use the ratio of the upward normalized water leaving 

radiance {L^„(X)) and the downwelUng irradiance {Ed(X)) such that 

(2.11) 
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The downwelling diffuse attenuation coefficient {K{X)), dictates the amount of 

downwelling irradiance {Ed{X)) that is lost due to absorption or scattering as it 

travels through the water column. It can be expressed according to 

K{\) = - E : , \ K Z ) ^ - ^ , {2.12) 

where z is depth in metres. The normalised water leaving radiance (Lu,„(A)), the re

mote sensing reflectance {Rrs{X)) and the downwelling diffuse attenuation coefficient 

(A'(A)), are frequently used in ocean colour research to detect water constituents 

and for determining inherent optical properties. 

2.3.3.2 Inherent optical properties ( lOPs) 

Inherent optical properties (lOPs) depend only on the substances comprising the 

aquatic medium and not on the geometric structure of the aquatic light field 

(Preisendorfer, 1961: Robinson, 2004). This typically relates to how the water con

stituents present in the medium, absorb and scatter light. These comprise the ab

sorption coefficient (a((A)}, the beam attenuation coefficient (9(A)) and the volume 

scattering function (x{-\)), where the integration of x over all directions leads to the 

scattering coefficient {b,) (Robinson, 2004). Further integration over the forward and 

backward hemispheres defines the forward and backward scattering coefficients {h' 

and b\ respectively). As stated by Robinson {2004}, x ^ îfl cither ^{A) or at(A) define 

completely the optical properties of the water since bt = b, + b\ and Q = a, -|- bt. Note 

that, as stated by Kirk (1994), the beam attenuation coefficient (q) is the fraction 

of the incident flux which is absorbed and scattered, divided by the thickness of the 

layer. 

The inherent optical properties can be further divided according to the differ

ent water constituents influencing them. These typically include scawater itself, 

phytoplankton, suspended particulate matter (SPM) and coloured dissolved organic 

matter (CDOM). Such that the absorption and scattering coefficients can be ex

pressed according to 

at{X) = fltt, -I- aspM + o-CDOM + a, (2.13) 

bi{\)^b„. + bs-PM + b, (2.14) 

where, a^, and b^. is absorption and scattering by water, a^pM and hsp.\i absorption 

and scattering by suspended particulate matter, acooM absorption by coloured dis

solved organic matter and a and b are absorption and scattering by phytoplankton. 

Note that there is no scattering by coloured dissolved organic matter. All these co

efficients are bulk inherent optical properties, whereby each constituent in the water 

column is considered as a composite entity with no regard as to specific component 
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contributions. Equations 2.13 and 2.14 can be further partitioned according to their 

specific inherent optical properties, which are attributed to the individual scattering 

and absorption components, such that 

at{X) — ayj + a*sPM^sPM + CLCDOM^CDOM + (^^XPHY, (2-15) 

bt{X) =bw + b*sp2^^XsPM + bcDOM^CDOM + b*XpHY, (2.16) 

where a; refers to the concentration of a particular constituent (e.g. SPM, CDOM 

or phytoplankton (PHY)), and the absorption and backscattering coefficients super

scripted by an asterisk indicate the absorption and scattering components of each 

constituent per unit concentration. For phytoplankton, XPHY is often replaced by 

the chlorophyll-a concentration (C). 

From an EO perspective, the bulk backscattering coefficient (bf) from the ocean 

may be attributed mainly to bubbles, submicron particles and viruses (Stramski 

and Kiefer, 1991; Zhang et al., 1998), and some larger particles. Phytoplankton 

groups such as Coccolithophores and Trichodesmium can have a particularly strong 

influence on backscattering of light (Balch et al, 1996; Subramaniam et al., 2002). 

Absorption, however, has been found to be the main optical property that can 

be used to identify phytoplankton (Ciotti et al., 2002), as phytoplankton absorb 

light for photosynthesis. However, recent evidence does suggest the influence of 

phytoplankton on the backscattering signal may be higher than first thought (see 

section 2.4.4 for further discussion). 

2.3.3.3 Deriving lOPs froiii AOPs 

Satellite sensors cannot measure lOPs of the sea directly, instead they measure 

AOPs. In order to determine lOPs they must be estimated from AOPs. In order to 

estimate lOPs from AOPs, assumptions must be made about the directionality of the 

underwater light field. Radiative transfer equations have been shown to precisely 

define the incident light field (Preisendorfer, 1961), providing the lOPs and the 

directionality of the incoming light field are known (Robinson, 2004). However, as 

these are integral equations they do not permit an easy solution. This has resulted 

in the development of a variety of numerical and analytical techniques involving 

approximations in order to produce a solution (Robinson, 2004). Empirical, semi-

empirical and analytical techniques have arisen that directly estimate lOPs from 

AOPs using satellite data (see Garver and Siegel, 1997; Maritorena et al., 2002; Lee 

et al., 2002; Smyth et al., 2005). 

The Rrsi^) can be described from the lOPs according to 

i2r.(A) = p ® ^ , (2.17) 
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as Rrs{^) IS proportional to 6j(A) and inversely proportional to at(A) The propor

tionality factor (g) describes the directional effect at the air-surface interface and 

forms the basis of lOP modelling (Morel and Gentih, 1993, 1996) In cases where 

6j(A) is greater than at{X) (such as coastal waters with high levels of inorganic parti

cles such as SPM), Gordon et al (1975) suggests that the relationship may be better 

represented as 

2.3.4 Ocean colour sensors 

Satellite data of ocean colour first became available in 1978 with the launch of 
the Coastal Zone Color Scanner (CZCS) instrument onboard the Nimbus-7 satellite 
(Mitchell, 1994) As part of the Nimbus programme (1964-1972), Nimbus 7 was 
launched into a 995 km near polar sun-synchronous orbit m 1972 (Gibson et al., 
2000). The CZCS obtained reflected radiation in five bands m the 433-800 nm 
range and had a spatial resolution of 825 m for a 1,556 km wide swath (Gibson 
et al, 2000) The CZCS saw the beginning of a revolution m ocean colour research, 
because for the first time biological oceanographers were able to assess synoptic 
satellite observations over huge geographic areas which was not previously possible 
with measurement techniques such as buoys, aircraft or research ships 

The German Modular Optical Scanner (MOS) was launched in March 1996 on the 
Indian remote sensmg satehite IRS-P3 (Martin, 2004), 28 years after the CZCS be
came operational It was the first satellite to fly into space with a purely ocean colour 
measurement role The next marine sensor to be launched was the Japanese Ocean 
Color and Temperature Sensor (OCTS) onboard the ADEOS-1 satellite (Kawamura 
and OCTS Team, 1998) This operated from August 1996 to June 1997, m the 412-
866 nm range, having a spatial resolution of 700 m (Kawamura and OCTS Team, 
1998) 

The Sea-viewmg Wide Field-of-view Sensor (SeaWiFS) was launched on the 
ORBVIEW-2 satellite in August 1997 (Robinson, 2004), and has been operating 
between the 412-865 nm range since September 1997 to the present day (with the 
exception of a few periods of time when it has not collected data, e.g February-
March 2008), providing daily global imagery at a spatial resolution of 1 km and 9 km 
for over 12 years. A major aim of the SeaWiFS sensor is to examine oceanic factors 
that affect global change, particularly the role of phytoplankton m the biogeochem-
ical cycle (Hooker et al., 1992) The SeaWiFS sensor is still in operation providing 
the longest ocean colour dataset on record, and at the time of writing it is the most 
extensively used satellite dataset for biological oceanography (McClam et al, 1998; 
McCIam, 2009). 

The Moderate Resolution Imaging Spectrometer (MODIS) was launched on the 
TERRA satellite m December 1999 and on AQUA satellite m May 2002 (Martm, 
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2004). MODIS was NASA's third ocean colour sensor to be sent into space following 

SeaWiFS and CZCS. Like SeaWiFS, it caters for both ocean colour and atmosphere 

products, and it continuously supplies daytime data which is supported by a rapid-

processing ground segment. The sensors have a spatial resolution of 250 m in the 

UV band, 500 m in the visible waveband in the red, and 1 km in the ocean colour 

wavebands (Robinson, 2004). In March 2002 the European Space Agency (ESA) 

launched its first ocean colour sensor the Medium Resolution Imaging Spectrometer 

(MERIS), onboard the ENVISAT platform (Rast and Bezy, 1999). Its primary 

goal was to monitor ocean colom:. However, it was also designed to determine 

atmospheric and land surface information. MERIS has five parallel arrays to gain a 

swath width of 1150 m, offering ocean colour and geophysical products at a resolution 

of 1200 m with a capability of 300 m (Robinson, 2004). It is in a descending sun-

synchronous orbit with 15 observing bands between 400 and 900 nm (Martin, 2004). 

There are a number of ocean colour satellites to be launched in the coming years, 

including the Visible Infi-ared Imaging Spectro-Radiometer Suite (VIIRS), set to 

be launched by NASA under the National Polar-orbiting Operational Environment 

Satellite System (NPOESS) Preparatory Project Mission, and the Sentinal-3 satel

lites as part of the European Union-ESA Global Monitoring for Environment and 

Security (GMES) programme. Recently, research has also focused on merging satel

lite ocean colour observations, including the GlobColour project (GlobColour, 2010) 

and the NASA SIMBIOS Program (McClain et al., 2002; Maritorena and Siegel, 

2005). The benefits of data merging include the development of unified, consistent 

ocean colour time-series from multiple sensors, improved spatial and temporal cov

erage, and a more diverse ocean colour product with lower uncertainties (Maritorena 

and Siegel, 2005). However, there are disadvantages. As sensors are not identical, 

there are differences in design, calibration, algorithms and accuracies, which make 

merging particularly difficult. 

As the majority of PFT satellite algorithms have been developed using the Sea

WiFS sensor, and as it is the only sensor with over a decade of satellite ocean colour 

observations, this thesis uses the SeaWiFS dataset for ocean colour observations. 

In addition to ocean colour, physical parameters such as sea surface temperature 

(SST), wind stress data and sea-surface height (SSH), can also be observed from 

satellite. Sea surface temperature is typically recorded using NASA's Advanced 

Very High Resolution Radiometer (AVHRR), in the thermal wavebands of the EM 

(although it can also be determined in the microwave waveband, e.g. NASA's Ad

vanced Microwave Scanning Radiometer (AMSR)). Windstress can be derived us

ing scatterometers, such as the European Remote-Sensing Satellites (ERS-2) and 

NASA's QuikSCAT sensor (QS), and sea-surface height is usually derived using al-

timetry, such as from NASA's TOPEX/Poseidon satellite mission which determines 

ocean surface topography. Additional physical data from these satellite missions 
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can compliment the ocean colour observations (Raitsos et al, 2006, 2008) and are 

therefore also utilised throughout this thesis 

2.3.5 Optical classification of water types 

Ocean waters can be partitioned into two classiflcations based on their optical prop

erties, referred to as case 1 and case 2 waters According to Morel and Prieur (1977), 

case 1 waters are waters whose variations m optical properties are mainly driven by 

the abundance of phytoplankton. In case 2 waters, the optical properties are in

fluenced, in addition to phytoplankton, by variable concentrations of CDOM and 

SPM. Case 1 waters are typically m the open ocean and case 2 waters are typically 

in coastal areas which are heavily influenced by the terrestrial environment (e g 

riverme runoif) 

2.3.5.1 Chlorophyll-a detection 

The phj^oplankton pigment total chlorophyll-a (C) absorbs light in the blue and red 
proportions of the visible spectrum and reflects light at green wavelengths. As the 
chlorophyll-a concentration increases, light is absorbed more strongly m the blue and 
red proportions and reflects more strongly in the green Therefore, as chlorophyll-a 
increases, the reflectance m the blue regions decreases and in the green it increases 
slightly. Thus a ratio of blue to green water reflectance can be used to derive 
quantitative estimates of the satellite-derived chlorophyll-a concentration (C) 

Following the launch of the CZCS onboard the Nimbus-7 satellite, which had 
spectral bands in the blue and green regions of the visible spectrum, "blue-green" 
band ratio algorithms were used to estimate the chlorophyll-a concentration from 
EO (see Gordon et al, 1983) Targeted toward the launch of SeaWiFS, NASA set
up the SeaWiFS Bio-optical Algorithm Mini-workshop (SeaBAM, O'Reilly et al, 
1998), designed to identify chlorophyll-a algorithms suitable for operational use by 
SeaWiFS. A database was developed with simultaneous measurements of n̂ situ 

chlorophyll-a (derived from HPLC data) and tn situ Rrs{^) Based on the results 
from the workshop, empirical "blue-green" band ratio algorithms were adopted The 
Ocean Chlorophyll 2 (0C2) algorithm performed with the highest accuracy in the 
SeaBAM and was chosen as the SeaWiFS operational algorithm It is based on a 
modified cubic polynomial function which uses i?rs(490)/i?rs(555) This was later 
updated to the Ocean Chlorophyll 4 (0C4) algorithm (O'Reilly et al , 1998, 2000), 
expressed as 

ps _ •] A ( 0 366-3 037a:+l 930x^+0 649x^-1 532a;^) / Q I Q \ 

where 

X = Iogio(i2rs443 > Rrs'^90 > Rrs510/Rrs5b5) (2.20) 

Caution must be taken when using band ratio algorithms to derive the chlorophyll-a 
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concentration as they will only function in waters whose variations in optical proper

ties are mainly driven by the abundance of phytoplankton, i.e. case 1 waters. In more 

optically complex waters (case 2 waters), where RrsW is more heavily influenced by 

CDOM and SPM, band ratio algorithms are likely to break down. Various authors 

have attempted to used semi-analytical models to derive the chlorophyll-a concen

tration in more optically complex waters (e.g. Maritorena et al., 2002). Nonetheless, 

band ratio algorithms are still the preferred choice for deriving chlorophyll-a using 

the SeaWiFS sensor. 

2.3.6 The absorption coefficient of phytoplankton 

The absorption coefficient of phytoplankton (a(A)) is a fundamental quantity in 

marine primary production models because (i) it alters the transmission of light 

underwater (Morel, 1978, 1988; Sathyendranath and Piatt, 1988); (ii) it modifies 

the photosynthetic response of phytoplankton to available light (Piatt and Jassby, 

1976; Kiefer and Mitchell, 1983; Piatt and Sathyendranath, 1988); (iii) it can be 

used as a direct indicator of phytoplankton abundance (Smyth et al., 2006; Marra 

et a l , 2007) and phytoplankton size (Ciotti et al., 2002; Devred et al., 2006; Hirata 

et al., 2008a); and (iv) it can be used as an indicator of environmental variability 

(Marra et al., 2007; Hirata et al., 2009b). 

Several regional and global studies to assess the phytoplankton absorption coeffi

cient have been undertaken in the past few decades (e.g. Prieur and Sathyendranath, 

1981; Sathyendranath and Piatt, 1988; Cleveland, 1995; Lutz et al., 1996; Bricaud 

et al., 2004) and it is well established that the phytoplankton absorption coefficient 

is controlled by changes in both pigment composition and size structure (Morel and 

Bricaud, 1981; Sathyendranath et al., 1987; Lohrenz et al., 2003; Bricaud et al., 

2004). Figure 2.7 shows how different (weight-specific) phytoplankton pigments 

can have contrasting absorption features. Despite these variations, the influence 

of both pigment composition and size structure on the phytoplankton absorption 

coefficient can be linked with the trophic status of the water (as indexed by the 

chlorophyll-a concentration), and it is generally admitted that from oHgotrophic to 

eutrophic waters there is an increase in phytoplankton cell size and a decrease in the 

relative concentration of accessory pigments (Malone, 1980; Yentsch and Phinney, 

1989; Chisholm, 1992; Bricaud et al., 1995, 2004). Therefore, the phytoplankton 

absorption coefficient can be estimated directly as a function of the dominant phy

toplankton pigment, chlorophyll-a. 

Power-law or polynomial expressions have proven useful predictors of the phyto

plankton absorption coefficient as a function of the chlorophyll-a concentration (e.g. 

Prieur and Sathyendranath, 1981; Morel, 1991; Cleveland, 1995; Bricaud et al., 1995, 

1998, 2004). Alternatively, models have been proposed based on MichaeUs-Menten-

type equations (e.g. Sathyendranath and Piatt, 1988; Lutz et al., 1996). However, 
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Figiure 2.7: The assiuned in vivo weight-specific absorption spectra of the main pig
ments. fl*o/(A) (in ni'̂  nig~'). as derived from absorption spectra of individual pig
ments in solvent (taken from Bricaud et al. (2004)). Bricaud et al. (2004) calculated 
«;,j(A) of the individual pigments by scaling the absorption spectra of individual 
pigments in solvent (measured in relative values by HPLC), to the weight-specific 
absorption coefficients proposed by Goericke and Repeta (1993). and then shifting 
the positions of maxima to their in vivo positions, as in the work of Bidigarc et al. 
(1990). 

such approaches liave limitations at extreme values of rhlorophyll-a concentrations 

and the interpretation of the model parameters is difficult (Lutz et al., 1996: Devred 

et al., 2006). 

Recently, total phytoplankton absorption has been expressed as the contribution 

of two populations of optically-distinct phytoplankton (e.g. Sathyendraiiath ct al.. 

2001: Ciotti et al,. 2002: Devred et al., 2006). Such approaches ensure reahstk 

\-alues of the specific absorption coefficient of phytoptankton (absorption per unit 

chlorophyll-a, a*(A)) when applying the model to extreme values of chkjrophyU-

a concentration, since the range of values of a'{X) is bounded by the two values 

associated with the two populations. Furthermore, the parameters of the model 

have bio-optical interpretation. 

Devred et al. (2006) extended the Sathyendranath et al. (2001) model to de

rive a*(A) for the two optically-distinct phytoplankton populations. Assuming that 

a"(440) of large-celled populations of phytoplankton would be smaller than 0.05 (m^ 

[nig C]"^), Devred et al. (2006) related the large-celled population to microplankton 

and the small-celled population to combined nano-picoplankton that constitute the 

remaining autotrophic pool. Brewin et al. (2010c) identified problems in using the 

two-component model of Sathyendranath et al. (2001), in that it failed to reproduce 
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the spectral shape of the absorption coefficient at low chlorophyll-a concentrations. 

It is well documented that small phytoplankton have a higher specific absorp

tion coefficient and a steeper spectral shape than large phytoplankton (Duysens, 

1956; Morel and Bricaud, 1981; Sathyendranath et al., 1987; Ciotti et al., 2002; Uitz 

et al., 2008). Uitz et al. (2008) calculated a*(A) of micro-, nano- and picoplankton. 

In their model, the proportions of the three size classes in the autotrophic pool are 

determined according to a small number of class intervals in chlorophyll-a concen

trations (Uitz et al., 2006), which may introduce unreaHstic spatial discontinuities 

when satellite data are used to map the distribution of these size classes. Nonethe

less, the Uitz et al. (2008) model does reproduce the expected spectral shape of the 

absorption coefficient at low chlorophyll-a concentrations when compared with other 

laboratory and field studies (see Uitz et'al., 2008). 

By combining the approach of Uitz et al. (2006), that uses HPLC data to help 

identify phytoplankton size structure, with the two-component model of Sathyen

dranath et al. (2001), it may be possible to improve the capability of the two-

component model when retrieving the spectral shape of the phytoplankton absorp

tion coefficient at low chlorophyll-a concentrations. Thus having the advantages of 

the Uitz et al. (2008) model, in that it can accurately retrieving the spectral shape 

of the phytoplankton absorption coefficient at low chlorophyll-a concentrations, but 

also like the two-component model of Sathyendranath et al. (2001), be applied to a 

continuum of chlorophyll-a concentrations. 

2.4 Review of current approaches for detecting 

PFTs and PSCs from EO 

In this section a review of the current approaches for identifying and detecting 

multiple PFTs and PSCs from EO is conducted. Such approaches can be cate

gorised into four groups that: (i) use the spectral response of optical properties 

to distinguish between different phytoplankton groups; (ii) rely on phytoplankton 

abundance to infer information on the size structure or taxonomic group; (iii) rely on 

other information in addition to ocean colour data to distinguish between different 

phytoplankton groups; or (iv) estimate the particle size spectrum from the satellite 

derived backscattering signal and associate it with the phytoplankton community. 

2.4.1 Spectral-response-based approaches 

Spectral-response algorithms utilise differences in the optical signatures of specific 

phytoplankton groups to distinguish among them. Alvain et al. (2005) (extended 

in Alvain et al., 2008) developed an AOP-based method that used a large set of in 

situ pigment inventories with coincident ocean colour spectral measurements. The 
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method is designed to detect satellite pixels that are dominated by nanoeukary-
otes (and separately PkaeocysUs and coccolithophores), two types of picoplankton 
{Prochlorococcus, and Synechococctis-like cyanobacteria) and diatoms. The method 
involved producing a look-up table (LUT) of the mean normalised water leaving ra
diances Ljj,n{X), for a given chlorophyll-a concentration L^„(A, C). Then the satellite 
Lwni^) was normalised by L.ujn{\ C) m order to develop empirical correlations be
tween spectral characteristics and HPLC-based diagnostic pigments The technique 
was developed using Lwn{K C) measured in case 1 open ocean waters, therefore, it 
IS only applicable to such an area 

Ciotti et al (2002) assessed the dominant cell size of phytoplankton and their 
absorption spectra for a wide variety of surface waters The phytoplankton were 
characterised according to their dominant cell size and taxonomic group, and the 
relationship between this classification and the spectral shape of the phytoplankton 
absorption coefficient (a(A)) for the whole assemblage was described Using a two-
component mathematical model, a dimensionless "size factor", varying between 0 
(100 % microplankton) and 1 (100 % picoplankton), was adopted to specify the com
plementary contribution to the normalised a(A) of the smallest and largest cells in 
the dataset It was found that, by classifying the cell size of the dominant organism 
into pico- (<2^m), ultra- (2-5/im), nano- (5-20^m) or microplankton (>20)Um), 
more than 80 % of the variability in spectral shape of a{X) from 400 to 700 nm could 
be explained Ciotti and Bricaud (2006) used the lOP model of Loisel and Stramski 
(2000) to retrieve total absorption from EO (SeaWiFS reflectances) A non-linear 
optimisation method was used to decompose the total absorption into phytoplank
ton and coloured dissolved and detntal matter (CDM) absorption The non-lmear 
optimisation method also retrieved the phytoplankton size factor and the slope of 
the exponential decrease of the absorption coefficient of CDM with wavelength. 

Using a similar approach to Ciotti and Bricaud (2006), Mouw and Yoder (2010) 
estimated phytoplankton cell size distributions from satellite imagery of SeaWiFS 
reflectances In their model, the chlorophyll specific absorption spectra for pico- and 
microplankton are weighted by the percentage of microplankton The percentage of 
microplankton is then derived using a forward optical model LUT that incorporates 
the range of absorption and scattering variability due to the chlorophyll-a concen
tration, the size of the phytoplankton and the influences of dissolved and detrital 
matter Bracher et al (2009) determined whether satellite pixels were dominated 
by cyanobacteria or diatoms using the SCIAMACHY sensor which flies onboard 
the European satellite ENVISAT The technique involves adapting Differential Op
tical Absorption Spectroscopy (DOAS) to retrieve the absorption and biomass of 
cyanobacteria or diatoms. Brewin et al (2010c) developed a model that uses the 
spectral shape of a(A) to determine satellite pixels dominated by pico-, nano- or 
microplankton. The model is based on the assumption that larger size classes have 
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a flatter a{X) spectral shape than smaller size classes. The spectral shape of a(A) 

was estimated using the lOP model of (Lee et al., 2002) (that made no assumptions 

about the derivation of a(A)), and directly from an abundance-based parameter 

(chlorophyll-a). Therefore, the algorithm can also function as an abundance-based 

model. 

Spectral-response approaches rely on the covariation between some spectral fea

tures of optical properties and the dominant PFTs or PSCs. Accurately exploiting 

the spectral characteristics of different phytoplankton groups to identify and distin

guish among them may not always be successful. Previous research into the vari

ability of particulate absorption spectra has suggested that differences in the shape 

of the phytoplankton absorption spectra for different communities of phytoplank

ton are too small to detect from satellite (Garver et al., 1994). In the Brewin et al. 

(2010c) study, it was found that estimating the shape of the absorption coefficient of 

phytoplankton directly from chlorophyll-a was more accurate than estimating it us

ing the lOP model of Lee et al. (2002). Problems with spectral-response algorithms 

can also occur when distinguishing among different phytoplankton groups with the 

same or similar optical signatures. Furthermore, there are difficulties dealing with 

variations in the spectral characteristics of the same phytoplankton group or species 

due to gro^vth conditions, nutrient availability and hght regimes (Nair et al., 2008). 

However, unlike abundance-based approaches, spectral-response approaches can de

tect different phytoplankton groups with the same chlorophyll-a biomass providing 

they have contrasting optical signatures. For example, coccolithophores produce 

calcite plates, or coccoliths which are highly reflective (Holligan et al., 1983) and 

algorithms have been proposed to identify them from other phytoplankton with sim

ilar biomass based on their spectral characteristics (Ackleson et al., 1994; Brown and 

Yoder, 1994; Brown and Podesta, 1997). Other satellite spectral-response algorithms 

have been proposed for distinct phytoplankton groups, for instance, the cyanobac-

terium Trichodesmium (Subramaniam et al., 1999) and diatoms (Sathyendranath 

et al., 2004). 

2.4.2 Abundance-based approaches 

Abundance-based approaches rely on typically-observed relationships between the 

trophic status of the environment and the type of phytoplankton (Margalef, 1967, 

1978). The trophic status can be linked directly to biogeochemical parameters such 

as chlorophyll-a or related to variables such as the magnitude of a(A). 

Devred et al. (2006) extended the two-population absorption model of Sathyen

dranath et al. (2001) to retrieve a(A) from the chlorophyll-a concentration, assuming 

the assemblages of the two populations vary as the phytoplankton biomass changes. 

The model was applied to in situ data collected from six regions during 34 cruises. 

Significant seasonal and regional changes in the spectral form and magnitude of the 
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specific absorption coefficients of small- and large- celled populations were identi
fied, which were then related to changes m species composition (micro- and combined 
nano-picoplankton) The model was also found to be consistent with pigment anal
ysis performed on the same datasets The parameters of the model provide direct 
bio-optical and biological interpretation. 

Uitz et al (2006) examined the potential for using near-surface chlorophyll-a to 
infer the column-integrated phytoplankton biomass, its vertical distribution and its 
community composition They analysed an extensive set of HPLC determined pig
ment data collected m open ocean waters Using the detailed pigment composition 
and specific diagnostic pigments, the chlorophyll contribution and vertical distri
bution of three size classes (micro-, nano- and picoplankton) were assessed. The 
results led to an empirical parameterisation enabling vertical chlorophyll-a profiles 
of each size class to be inferred from the knowledge of satellite-based chlorophyll-
a, the euphotic depth (Morel and Maritorena, 2001) and the mixed-layer depth 
(de Boyer Montegut et al., 2004) 

Aiken et al (2007) used ranges in the absorption coefficient and chlorophyll-a 
to classify phytoplankton into three different size classes m the Benguela upwellmg. 
They used the backscattermg characteristics to sub-divide the size classes into func
tional types. The distributions of the dominant phytoplankton types compared well 
with the observations from station HPLC data Diatom and dmofiagellate popula
tions were located m shallow, recently upwelled water (cold, with high nutrients) 
while flagellates (and prokaryotes) occurred m nutrient-poor offshore water The 
validation demonstrated that an empirical analysis of remotely sensed data can be 
used to determine the distributions of PFTs 

Hirata et al (2008a) used HPLC data to explore the relationship between the 
direct optical properties of ph5^oplankton and size class. Phytoplankton were clas
sified into their dominant taxonomic size classes of pico-, nano- and microplankton 
using diagnostic pigment analysis (Vidussi et al, 2001; Uitz et al, 2006) extended 
to account for picoeukaryotes. Two models were then developed relating either phy
toplankton absorption at 443 nm (a(443)) or chlorophyU-a (C) to the spectral slope 
of absorption m the range 443-510 nm The models were then validated against m 
sttu data and contemporary SeaWiFS 8-day composite data, which indicated good 
agreement The distributions were found to be consistent with previous basin-scale 
observations (Aiken et al, 2008) Using a global HPLC dataset, Hirata et al (2011) 
estimated the fractional contribution to the total chlorophyll-a of three size classes 
(pico-, nano- and microplankton) which were further partitioned into the contri
butions of diatoms, dinoflagellates, green algae, picoeukaryotes, prokaryotes and 
Prochlorococcus Pan et al (2010) used polynomial equations to describe the rela
tionship between phytoplankton pigments and remote sensing reflectance (similar 
to that of O'Reilly et al (1998) for deriving chlorophyll-a from satelhte). In total 
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11 phytoplankton pigments were empirically derived using a ratio of blue to green 

reflectance (e.g. ilrs(490)/i?rs(555)), and the relationships were apphed to MODIS 

satellite data to map the pigment distributions off the northeast coast of America 

in 2006. 

Abundance-based algorithms assume that a given indicator of abundance, either 

the surface chlorophyll-a or a(A), covaries with the dominance of, or the fraction of, a 

particular PFT or PSC. While such approaches can be robust at extremes (high and 

low), they may be limited in intermediate regions where variations in the proportions 

of different groups could confound the signal. In such regions, abundance-based 

algorithms may fail to distinguish between blooms of different PFTs or PSCs that 

have the same biomass. Furthermore, variability of optical properties within-species 

or within functional types according to growth conditions could introduce additional 

classification errors. Despite this, abundance-based approaches have relevance to 

primary production models that produce estimates based on phytoplankton biomass. 

2.4.3 Ecological-based approaches 

Ecological approaches blend spatio-temporal and physical data, in addition to bio-

optical information, to help detect different phytoplankton groups. Raitsos et al. 

(2008) developed an approach based on knowledge of the physical and biological 

regime to infer PFTs in the North Atlantic. The dominance of different groups 

was determined from 3,732 CPR match-ups based on cell counts, and then com

pared to spatio-temporal information: SST, chlorophyll-a, photosynthetically-active 

radiation (PAR), wind stress and I/^„(A). 

The approach used an Artificial Neural Network (ANN) to discriminate among 

diatoms, dinoflagellates, coccolithophorids and silicoflagellates. Results showed that 

70 % of PFT dominance derived from the CPR was explained by the input data, 

and that specific PFTs dominate based on a different blend of physical, ecological 

and biological factors. The chemical regime was not assessed in this study as no 

satellite offers such data. However, it may have been indirectly tested through wind 

stress which is partly responsible for vertical mixing of the water column and may 

be an indication of nutrient availability (Raitsos et al., 2008). Overall, the model 

indicated that spatio-temporal information (latitude, longitude, and month) and 

SST were the most important factors determining PFTfe. 

An advantage of the ecological approach is that it utilises additional information 

to bio-optics to detect different phytoplankton groups. This could potentially lead to 

better results. Furthermore, this approach may provide an insight into how different 

phytoplankton groups react to changing environmental conditions and which envi

ronmental parameters have the largest influence on specific phytoplankton groups. 

However, advanced statistical approaches are intricate, involving hidden layers and 

complex interactions. Therefore, fi:om an analytical perspective they can be difficult 
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to interpret and are heavily dependent on the quality and quantity of the input data 

2.4.4 Backscattering-based approaches 

A number of approaches have recently been introduced that estimate the particle 
size distribution (PSD) from the satellite derived backscattenng signal Hirata et al 
(2008b) developed a model that retrieves the Junge parameter, which characterises 
the PSD of total suspended particles, and then links it to the dominant phytoplank-
ton size class. Hirata et al (2008b) showed that the Junge parameter can be derived 
from a ratio algorithm following the radiative transfer theory of Zaneveld (1995), 
Hirata and H0jerslev (2008) and Hirata et al. (2009a) The model was compared 
with the abundance-based absorption model of Hirata et al (2008a) and indicated 
good agreement 

Kostadinov et al. (2009) developed a bio-optical algorithm that first involved re
trieving the particle backscattermg coefficient spectrum (6̂  (A)) following the method 
of Loisel et al (2006) Kostadinov et al (2009) then used Mie modelling to estimate 
the parameters of a power law PSD (the PSD slope and the particle differential 
number concentration for a given reference diameter) as a function of the partic
ulate backscattermg spectrum Particle number and volume concentrations were 
then partitioned into pico, nano and micro size particles and then associated with 
the same size classes of phj^oplankton Kostadinov et al (2010) validated the ap
proach against HPLC data, which indicated considerable discrepancies but reason
able agreement for pico- and microplankton, and applied the approach to 10-years 
of satellite measurements to investigate seasonal and mterannual variations 

Methods that estimate the particle size spectrum from the satellite derived 
backscattermg signal and associate it with the phytoplankton make the assumption 
that the ocean assemblage is biogenic, when m reality it is a mixture of biogenic 
and non-biogenic material The bulk backscattermg coefficient (&f (A)) is influenced, 
m addition to phytoplankton, by viruses, heterotrophic bacteria, microzooplank-
ton, nonliving particles m the colloidal size range, and larger non-living (separately 
biogenic and minerogenic) particles (Stramski et al, 2004) It has been suggested 
that within the euphotic layer only between 20-43 % of the particle beam attenu
ation coefficient can be attributed to phytoplankton, with the remaining fraction 
attributed to non-vegetal components (Claustre et al, 1999) Therefore, as high
lighted by Westberry et al (2010), there has been a reluctance in the past towards 
using 6j(A) to study phytoplankton due to the prevailing paradigm suggesting that 
small, non-hvmg particles determine the magnitude of backscattermg m the open 
ocean. Methods that use Mie modelling to infer the PSD unrealistically assume 
particle sphericity, and such approaches are sensitive to deviations from sphericity 
(Karp-Boss et al, 2007). The parameters used m Mie theory, such as the index 
of refraction and the maximum particle diameter, can also vary depending on the 
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phytoplankton community and physiological adaptations. 

Despite these disadvantages, recent evidence suggests that the influence of phyto

plankton on the backscattering signal is higher than previously thought (Behrenfeld 

et al., 2005; Westberry et al., 2008; Dall'Olmo et al., 2009), and that phytoplankton 

may in fact contribute more to &t(A) than is currently apportioned based on Mie the

ory alone (Kitchen and Zaneveld, 1992; Dall'Olmo et al., 2009). The backscattering-

based approaches offer an alternative approach to assess PFTs from EO. 

While many approaches have been developed to detect phytoplankton communi

ties from EO, in order to confidently use these satellite products, validation exercises 

need to be conducted to ascertain accuracy. This is particularly important consid

ering the detection of PFTs from EO is in its early stages of development. 

2.5 Contemporary trends in phytoplankton from a 

decade of satellite observations 

2.5.1 Decadal and interannual changes in phytoplankton pro

duction and biomass 

Armed with over lO-years of SeaWiFS satellite observations, researchers have ob

served trends in phytoplankton production and biomass on decadal and interannual 

scales. McClain et al. (2004) examined 8 months (November 1996 to June 1997) of 

OCTS ocean colour data and 6-years (September 1997 to October 2003) of SeaWiFS 

ocean colour data. They found that the oligotrophic waters of the North Pacific and 

North Atlantic gyres had expanded over this period, while those of the South Pacific, 

South Atlantic, and South Indian Ocean showed much weaker and less consistent 

tendencies. Gregg et al. (2005) used a 6-year time-series of remotely-sensed global 

ocean chlorophyll-a measurements to evaluate trends for the 1998 to 2003 period. 

Using linear regression, Gregg et al. (2005) found that global ocean chlorophyll-a 

had increased significantly by 4.1 %. Most of this increase was found in coastal areas 

(<200 m depth) which saw an increase of 10.4 %. However, decreases in chlorophyll-a 

in 4 out of the 5 mid-ocean gyres were observed and linked to increases in SST. 

Behrenfeld et al. (2006) describe changes in global ocean primary production 

for the 1997 to 2006 period using SeaWiFS data. They found an initial increase 

in net primary production between 1997 to 1999, associated with the El Nino (La 

Nina) Southern Oscillation (ENSO), followed by a prolonged decrease between 1999 

to 2006. These changes were found to occur mainly in the stratified low-latitude 

oceans and were tightly coupled to coincident climate variability (changes in strat

ification and SST). Polovina et al. (2008) analysed 9-years of SeaWiFS data to 

examine temporal trends in the ocean's most oligotrophic waters. They concluded 

that globally, the low surface chlorophyll areas have expanded by 6.6 million km^ or 
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by about 15.0 % from 1998 through to 2006, and that this expansion exceeds global 
warming scenarios based on increased vertical stratification in the mid-latitudes 

Recently work has also looked at decadal changes m phytoplankton biomass by 
comparing ocean colour observations from the CZCS and the SeaWiFS sensor, with 
contrasting results Gregg and Conkright (2002) revised the CZCS chlorophyll-a 
archive using compatible algorithms with SeaWiFS which were blended with tn situ 

data to reduce residual errors This permitted them to compare decadal changes 
in global ocean chlorophyll from the CZCS (1979 to 1986) and SeaWiFS (1997 
to 2000) records. They found that mean global chlorophyll-a had decreased over 
the two observational segments by 6%. In contrast to this study, Antome et al 
(2005) developed a consistent, reanalyzed, ocean colour time-series from 5-years 
of CZCS data (1979 to 1983) and 5-years of SeaWiFS data (1998 to 2002), and 
found an overall increase in the global average chlorophyll-a concentration of ^̂ 22 %, 
associated with large increases m the intertropical areas. 

Using the reanalyzed CZCS and SeaWiFS data, developed by Antoine et al 
(2005), Martinez et al. (2009) linked the decadal changes in chlorophyll-a concen
trations with basin-scale oscillations of the physical ocean, specifically the Pacific 
Decadal Oscillation and the Atlantic Multidecadal Oscillation This coupling be
tween the physical and biological environment is also supported by the recent study 
of Boyce et al (2010), who combined available ocean transparency measurements 
and in situ chlorophyll-a observations to estimate changes m phytoplankton biomass 
at local, regional and global scales since 1899 They observed a global rate of decline 
of ' ^ 1 % per year in phytoplankton biomass Like Martinez et al (2009), fluctua
tions were strongly correlated with basm-scale climate indices However, long-term 
declining trends were related to increasing SST 

Henson et al. (2010) compared recent trends m satellite ocean colour data to 
longer-term time-series from three biogeo chemical models They found detection of 
climate change-driven trends m the satellite data is confounded by its short time-
series and by large interannual and decadal variability m productivity This implies 
that the recently observed changes m chlorophyll, production and the size of the 
oligotrophic gyres cannot be unequivocally attributed to the impact of global climate 
change Henson et al. (2010) suggested a time-series of -^40 years in length is 
needed to distinguish a global warming trend from natural variability. This is further 
supported by Yoder et al (2010) who looked at trends m the SeaWiFS chlorophyll 
time-series (1997-2004) and compared them with an ocean coupled circulation and 
biogeo chemical model covering the period 1958-2004 Results indicated that the 
trends observed from satellite were not unusual and fell well withm the range in 
magnitude of linear trends observed m other 8-year periods of model output This 
also suggested that a time-series of 10-years is not long enough to directly observe 
any long-term changes m surface chlorophyll-a concentrations Caution should be 
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made when linking changes in ocean colour, over a 10-year period, to long-term 

changes in ocean biogeochemistry. 

2.5.2 Interannual changes in phytoplankton community 

structure 

While a number of approaches have been developed to detect phytoplankton commu

nity structure from EO, only a few studies have looked for trends in phytoplankton 

community structure on interannual scales. 

Alvain et al. (2008) applied the PHYSAT algorithm to 9-years of SeaWiFS ob

servations (1998 to 2006). They found large interannual variability in the North 

Atlantic diatom bloom, and observed large blooms of both diatoms and Phaeocystis 

during the winter in the Southern Ocean. The geographical distribution of diatoms 

and Phaeocystis were shown to be tightly related with the mixed-layer depth, with 

diatoms dominating in stratified waters. Blooms of diatoms were also observed in 

the equatorial Pacific during the La Nina phase of the ENSO cycle. Using the ecolog

ical provinces classification of Devred et al. (2007), Devred et al. (2009) produced a 

time-series of ecosystem delineation for the northwest Atlantic Ocean over a 10-year 

period (1998 to 2007). For each province, data was compiled on SST, chlorophyll-a 

and occurrence of diatoms (using the model of Sathyendranath et al. (2004)). They 

found a strong correlation between chlorophyll-a and diatoms. However, the correla

tions varied depending on province. Furthermore, changes in occurrences of diatom 

during the 10-year period also varied depending on region. 

Uitz et al. (2010) applied a size-specific primary production model to 10-years 

of global satellite observations. They revealed large interannual variations in size-

specific primary production in both the North Atlantic ocean and in the equatorial 

Pacific. In the equatorial Pacific, microplankton showed the largest range of vari

ability of the three phytoplankton classes which was related to the ENSO cycle. 

Both Brewin et al. (2010c) and Kostadinov et al. (2010) have also applied their phy

toplankton size class models to 10-years of SeaWiFS observations and both found 

a significant positive correlation between picoplankton and the multivariate ENSO 

index (MEI), which is used to evaluate the strength of the El Nino to La Nina 

Southern Oscillation cycle (Wolter, 1987), and a significant negative correlation be

tween nanoplankton and MEI and microplankton and MEI, on global scales. This 

suggests a strong coupling between the phytoplankton size structure and physical 

forcing. Nonetheless, all this studies are preliminary and there is clearly potential 

to further investigate the relationship between phytoplankton size structure and 

coincident climate variability. 
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2.5.3 Climatic indices 

Climate indices are a useful tool for hnkmg changes m the physical environment with 

changes in the biological environment on decadal and interannual scales (Behrenfeld 

et al, 2006, Martmez et al, 2009, Boyce et al, 2010) Over a decade of ocean colour 

observations are available from the SeaWiFS database that are utilised in this thesis. 

Martinez et al. (2009) linked changes m phytoplankton biomass with the Pacific 

Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) Both 

these atmosphere-ocean phenomena vary on decadal scales. A decade of SeaWiFS 

observations alone is inadequate for comparison, ideally 20-30 years of observations 

would be required (as in the Martinez et al. (2009) study). The North Atlantic 

oscillation (NAO) describes fluctuations in the difference of atmospheric pressure at 

sea level between the Arctic and the subtropical Atlantic (Hurrell, 1995). Unlike 

the PDO, AMO and ENSO, the NAO is a largely atmospheric mode. Two climatic 

indices that have been used for interannual analysis, and that specifically relate to 

atmosphere-ocean climatic variability, are the ENSO and the Indian Ocean Dipole 

(lOD) 

2,5.3,1 El Niiio (La Niiia) Southern Oscillation (ENSO) 

The ENSO is a coupled atmosphere-ocean phenomenon It constitutes the largest 
smgle source of interannual climatic variability on Earth (Diaz and Markgraf, 1992) 
and generally occurs at intervals of 2-7 years (Colling, 2001) The ENSO causes 
large-scale fluctuations m atmospheric mass between the south-eastern tropical Pa
cific and the Australian-Indonesian region (Garcia-Herrera et al, 2008). El Nino is 
usually characterised by abnormally warm sea temperatures m the eastern half of 
the equatorial Pacific, whereas the occurrence of the opposite ENSO phase, La Nina, 
IS usually characterised by abnormally cold SST m the eastern half of the equatorial 
Pacific (Wolter and Timlm, 1993, 1998) 

The MEI is a multivariate measure of the ENSO signal MEI is derived from 
the COADS dataset (Comprehensive Ocean-Atmosphere Data Set) and is expressed 
m the first principle component of six variables over the tropical Pacific, sea-level 
pressure, surface zonal and meridional wind components, sea surface temperature, 
surface air temperature and cloudiness (Wolter and Timlin, 1993, 1998). Such an 
index has previously been found to explain major impacts on phytoplankton and 
fisheries (Barber and Chavez, 1983, Chavez et al, 1999, Behrenfeld et al, 2001) and 
there is recent evidence it also relates to the phytoplankton size structure (Brewm 
et al., 2010c, Kostadmov et al., 2010), although further analysis is needed to fully 
understand this connection. 

40 



A Review of the Current State of Knowledge 

2.5.3.2 Indian Ocean Dipole (lOD) 

The lOD is recognised as a major atmosphere-ocean phenomenon in the Indian 

Ocean (Saji et al., 1999; Webster et al., 1999). Saji et al. (1999) developed an index 

to quantify the lOD, which is calculated as the SST gradient between the tropical 

western Indian Ocean and the tropical south-eastern Indian Ocean (Saji et al., 1999) 

and referred to as the Dipole Mode Index (DMI). When DMI is positive it can lead to 

heavy rainfall and flooding over East Africa and droughts in the Indonesian region, 

when DMI is negative the inverse of this pattern can occur (Ashok et al., 2001). 

There is evidence that the lOD can evolve during certain years independent of 

ENSO forcing (Saji et al., 1999; Webster et al., 1999). However, some researchers 

argue that, on some occasions, ENSO can force the lOD and it has been shown 

that positive phases of the lOD tend to co-occur with El Nino, and negative phases 

with La Nina (Annamalai et al., 2005; Behera et al., 2006; Luo et al., 2010; Izumo 

et al., 2010). There is recent evidence that the lOD can significantly influence the 

phytoplankton chlorophyll-a biomass (Vinayachandran et al., 2007), yet it remains 

to be revealed whether the size structure of the phytoplankton is influenced by the 

lOD in the Indian Ocean. 

2.6 Summary 

By analysing literature in the context of the aims and objectives of the thesis, this 

chapter has indicated that: 

• Phytoplankton size class seems a suitable classification of phytoplankton func

tional types in the context of primary production and the carbon cycle. 

• Methods for detecting phytoplankton communities from EO can be partitioned 

into: spectral response approaches which utilise distinct optical signatures of 

different phytoplankton communities to distinguish between them; approaches 

which differentiate between phytoplankton groups based on the trophic sta

tus of the waters, approaches which use other ecological data in addition to 

bio-optical information to distinguish between different phytoplankton com

munities, and approaches that estimate the particle size spectrum from the 

satellite derived backscattering signal and associate it with the phytoplankton 

community. All these methods display advantages and disadvantages. 

• A variety of in situ data has been gathered over the past few decades on 

phytoplankton community structure and there axe a variety of methods to 

determine phytoplankton size class in situ. By combining satellite and in 

situ data, methods for detecting phytoplankton size structure from EO can 

be validated and scrutinised, which may raise questions that can guide future 

efforts in the field. 
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• The absorption coefficient of phytoplankton (a(A)) can be estimated as a func

tion of the dominant pigment chlorophyll-a There is evidence to suggest that 

estimates of a(A) could be improved by accounting for the size structure of the 

phytoplankton at low chlorophyll-a concentrations. 

• Recent research indicates that mterannual changes in phytoplankton biomass 

and primary production is linked with climate variabihty. However, research 

into the influence of climate variability on phytoplankton size structure is 

limited 
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Chapter 3 

An intercomparison of bio-optical 

techniques for detecting dominant 

phytoplankton size class from Earth 

Observation* 

3.1 Introduction 

In the previous chapter, a thorough review of existing work was undertaken. An 

outcome of this review indicated that approaches for detecting phytoplankton size 

class (PSC) from satellite data can be partitioned into spectral-response approaches, 

abundance-based approaches, ecological-based approaches and backscattering-based 

approaches, and that a variety of in situ and satellite data is available that could 

be used to scrutinise and validate these approaches. This chapter aims to take 

the first step towards the validation and comparison of different PFT and PSC 

satellite algorithms by comparing current approaches to six different sources of in 

situ data, spanning from 1997-2007, in order to assess their ability at detecting 

PSCs. By applying these satellite techniques to the 10-year SeaWiFS ocean colour 

data series and by comparing the results with in situ data, a better understanding 

of the performance of these algorithms can be gained and issues can be raised which 

may influence future model development. 

*Aspects of this chapter are included in the following paper 
Brewin, R.J.W., Hardman-Mountford, N.J., Lavender, S.J., Raitsos, D.E., Hirata, T., Uitz, J., 
Devred, E., Bricaud, A., Ciotti, A. and Gentili, B. (2011). An intercomparison of bio-optical 
techniques for detecting dominant phytoplankton size class from sateUite remote sensing. Remote 
Sensing of Environment. 115, 325-339, doi:10.1016/j.rse.2010.09.004. 
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3.2 Data 

3.2.1 In situ data 

When identifying phytoplankton groups from tn situ data, HPLC analysis has the 

advantage to be comprehensive m terms of phytoplankton size range (Claustre, 

1994), it IS the only method for which a sufficient amount of globally representative 

data is available, and despite having limitations (see section 3 4), in recent years it 

has been extensively used as a proxy for size class (e g Vidussi et a l , 2001, Bricaud 

et a l , 2004, 2007, Claustre et a l , 2005, Devred et al., 2006, Uitz et a l , 2006, 2008, 

2009, Hirata et ai , 2008a, Ras et a l , 2008, Aiken et a l , 2008, 2009) Analysis 

from Chapter 2, also noted by Nair et al (2008), highhghts that the use of any m 

situ method m isolation could imply identifications of phytoplankton groups that 

may not be entirely dependable, hence incorporating different m situ methodologies 

would lead to a more accurate diagnosis. Therefore, m addition to four HPLC 

datasets, two m situ cell count datasets were used m this chapter 

• AMT HPLC pigment data from 1997 to 2004 (AMT 5-15) were obtained and 

quality assured by statistical methods according to Aiken et al (2009) 

• NASA SeaBASS HPLC pigment data were obtained from the NASA website 

from 1997 to 2007 (http://seabass.gsfc nasa gov/, Werdell et a l , 2003) The 

data were accessed on the 5th September 2008 after the removal of the CHORS 

HPLC pigment data ^ 

• HOTS HPLC pigment data acquired from between 1997 and 2006 

(http;//hahana soest.hawaii.edu/hot/, Karl and Lukas, 1996). 

• BATS HPLC pigment data acquired from 2002 to 2004 (http //bats.bios edu, 

Michaels and Knap, 1996) 

• Phytoplankton cell count data from the CPR were obtained for the North 

Atlantic from 1997 to 2003 (Richardson et al., 2006). 

• Phytoplankton cell count data were obtained from the Western Chan

nel Observatory for the L4 site during the period of 1997 to 2007 

(http://www.westernchannelobservatoryorg.uk/, Southward et al., 2005) 

3.2.1.1 HPLC d a t a 

All HPLC data were classified using DPA according to two different methods, the 

method of Vidussi et al. (2001) extended by Uitz et al. (2006), and the method of 

Hirata et al (2008a) (see section 2.2.2 3) The dominant size class was established 

^The CHORS HPLC pigment data were recently fomid to have average uncertainties exceeding 
allowed maximums for calibration and validation activities 
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based on whether a size class (pico-, nano- or microplankton) had a diagnostic 

pigment to chlorophyll-a ratio {Fp, F„ and Fm) of greater than 0.45, i.e. representing 

>45% of the total population in terms of pigment concentration (Hirata et al., 

2008a). 

Originally 2176 HPLC AMT, 2131 SeaBASS HPLC, 305 HOTS HPLC and 34 

BATS HPLC measurements were utilised. This was reduced to 1093 AMT HPLC 

measurements, 761 HPLC SeaBASS measurements, 96 HPLC HOTS measurements, 

and 34 HPLC BATS measurements by only including data taken in the top 10 m 

of the water column. Where there were two or more measurements within the 

10 m surface layer, either the dominant size class closest to the surface was selected, 

or if there were more than two measurements within the surface layer, the most 

frequent dominant size class was selected. Any HPLC data used to develop and 

train any of the satellite algorithms used in this intercomparison (see section 3.3.1) 

were eUminated from the database. 

3.2.1.2 CPR data 

Despite the CPR approach not samphng small cells (see section 2.2.3.1), samples 

dominated by large (microplankton) and small (nano- and picoplankton) cells can 

still be estimated. This method has uncertainty (see section 3.4), but another source 

of data, other than HPLC, would add value to the intercomparison. For the pur

poses of this chapter, the CPR dataset was used to infer the dominant microplankton 

group, and samples were categorised as dominated by microplankton or not. The 

total number of species per sample for four PFTs (diatoms, dinoflagellates, silicoflag-

ellates and coccolithophores) were determined, and a final category of no-dominance 

was allocated to samples with no cell counts (see Raitsos et al., 2008, for details). 

The dominant groups were then determined using the Z-factor standardised method 

(Raitsos et al., 2008), 

Zi = '^^^^, (3.1) 
Ui 

where, Wi is the cell count for phytoplankton type i in a sample, 'xi is the overall mean 

of all cell counts for each type i, and ui is the standard deviation of all samples for 

type i. The largest Zi for each sample was used as the dominant phytoplankton type. 

The dominant phjrtoplankton type can be derived from this standardised method 

because the number of cells between each of the four groups was substantially differ

ent (Raitsos et al., 2008). Where either diatoms or dinoflagellates were dominant, 

samples were allocated as dominated by microplankton, and the rest of the samples 

(including no-dominance samples) were allocated as not dominated by microplank

ton. Therefore, it was assumed that the pixels not dominated by microplankton 

were dominated by either pico- or nanoplankton that constitute the remaining au

totrophic pool. Originally 17,061 measurements were used in this chapter spanning 

1997-2003. 

45 



Chapter 3 

3.2.1.3 L4 d a t a 

The taxonomic groups identified in the quantitative sample analysis conducted 

at the L4 site include diatoms, dmoflagellates, coccohthophores, flagellates and 

picoplankton Diatoms and dinofiagellates were classified as microplankton and 

coccohthophores and flagellates as nanoplankton Paired samples were coUected 

from a depth of 10 m and preserved with 2% LugoPs iodine solution (Thrond-

sen, 1978) and 4% buffered formaldehyde. Between 10 and 100 ml of the sam

ple was settled for about 48 hours, and ceUs identified by inverted microscopy to 

the species level (Southward et a l , 2005). For picoplanktoUj however, samples 

were settled for >6 days and picoplankton enumerated using high magnification 

(e g X 900 mag) in appropriate numbers of fields-of-view, such as 20 or 50 Data 

from 1997 to 2007 were downloaded from the Western Channel Observatory web

site (http / /www westernchannelobservatory org uk) The dominant phytoplankton 

type for each sample was estimated using the Z-factor standardised method as for 

the CPR data Table 3 1 shows the number of dominant PSC samples in each tn 

situ dataset. 

Table 3 1- Intercomparison results showing the percentage accuracy of each 
model when compared with m situ datasets using method 1 

P F T 
Tech
nique 

Model A 

Model B 

Model C 

Model D 

Model B 

Model F 

Model G 

Model H 

Model I 

Model J 

Model B2 

N-umber 
of aam-
ples 

HPLC da t a 
VidusBi e t al 
(2001) DPA 

_ , . , Nano Pico Nano _ 

78 6 
±9 0 

52 0 
±9 8 

70 3 
±5 7 

93 1 
±3 2 

95 0 
±2 7 

87 4 
±4 1 

-

-

87 4 
±4 1 

64 7 
±7 1 

77 2 
±8 3 

239 
84-* 
101^ 
173^ 

55 5 
±10 9 

87 7 
±6 4 

61 0 
±6 5 

22 1 
± 5 4 

65 5 
±6 4 

37 1 
±6 4 

-

-

34 7 
±6 2 

45 5 
±9 2 

76 5 
±8 3 

213 
82-* 
102^ 
112^ 

98 2 
±2 0 

98 8 
± 1 5 

95 0 
± 1 9 

96 0 
± 1 8 

99 2 
±0 8 

95 1 
± 1 9 

98 2 
± 1 1 

94 0 
±2 1 

95 1 
± 1 9 

88 4 
±3 7 

98 3 
± 1 7 

452 

203® 
285^ 

' Micro 
% 

27 8 
±33 9 

52 2 
±15 0 

91 0 
±4 5 

36 5 
±7 6 

75 6 
±6 8 

90 1 
±4 7 

92 9 
±4 1 

910 
±4 5 

90 7 
±4 6 

79 3 
±8 4 

84 4 
±11 0 

156 
9-^ 
45« 
92^ 

HPLC da ta 
Hira ta e t al 
(2D0S) DPA 

PICO Nano _ Micro 

73 5 
±7 0 

38 0 
±7 0 

69 7 
±4 5 

90 7 
±2 8 

95 9 
± 1 9 

88 7 
±3 1 

-

-

89 0 
± 1 9 

61 8 
±5 9 

68 4 
±6 7 

404 

187^ 
263^ 

71 4 98 2 
±27 1 ±2 0 

S7 5 98 5 
±15 4 ± 1 5 

88 2 95 0 
±7 8 ± 1 9 

37 3 96 3 
±13 1 ± 1 7 

73 6 99 2 
±11 3 ±0 8 

84 5 95 2 
±9 3 ± 1 9 

98 0 
± 1 2 

93 8 
±2 1 

82 7 95 2 
±9 8 ± 3 0 

66 7 88 5 
±18 3 ±3 6 

81 3 98 0 
±19 2 ±1 8 

55 459 
14-* 169-* 
16® 203® 
24^ 287^ 

33 3 
±54 2 

52 2 
±15 0 

919 
±4 4 

37 6 
±7 9 

75 8 
±7 0 

91 9 
±4 4 

93 3 
±4 1 

92 6 
±4 2 

92 6 
±4 2 

78 9 
±8 6 

84 4 
±110 

149 
6̂ ^ 
45® 
90^ 

L4 da ta 

Pico Nano 
% % 

-

14 
±2 8 

1 3 
± 1 8 

73 4 
±10 0 

73 4 
±10 0 

4 5 
±4 6 

-

-

45 
±4 6 

_ 

42 
±6 2 

77 
36® 

-

77 4 
±15 6 

54 7 
±115 

39 9 
± 1 1 3 

68 9 
±10 8 

57 4 
±115 

-

-

52 0 
±11 6 

-

37 1 
±17 7 

74 
31® 

Nano 
Pico 
% 

-

68 7 
±114 

58 6 
±7 9 

818 
±6 2 

98 7 
± 1 8 

63 9 
±7 7 

42 1 
±7 9 

44 0 
±8 0 

56 6 
±8 0 

-

41 0 
±12 0 

151 
67® 

/ Micro 
% 

-

613 
±18 2 

74 3 
±8 4 

54 8 
±9 6 

53 8 
±9 6 

66 7 
±9 1 

80 5 
±7 6 

80 5 
±7 6 

714 
±8 7 

-

77 4 
±15 6 

105 
31® 

C P R 
da ta 

Nano 
Pico 
% 
94 2 
± 1 3 

85 5 
± 1 7 

80 8 
± 1 2 

95 7 
±0 6 

99 5 
±0 2 

85 5 
± 1 1 

72 6 
± 1 4 

77 8 
± 1 3 

82 3 
±1 2 

-

74 1 
± 1 8 

3863 
1233'* 
2223® 

' Micro 

12 8 
±2 9 

517 
±3 0 

58 5 
±2 3 

23 3 
±2 0 

87 4 
± 1 5 

49 8 
±2 3 

60 8 
±2 3 

60 4 
±2 3 

54 6 
±2 3 

-

67 0 
±2 8 

1801 
489-* 
1061® 

^ denotes the number of samples used to test Model A 
^ denotes the number of samples used to test Models B and B2 
•^ denotes the number of samples used to test Model J 
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3.2.2 Satellite data 

The HPLC and CPR data were matched to Level 3 SeaWiFS daily products acquired 

from the NASA Oeeancolor website (http:/'oceancolor.gsfc.nasa.gov/), at 9km res

olution, and plus or minus one pixel ( 3 x 3 window). This criterion, although 

less restricting than NASA's 3-hour window for data and algorithm validation, was 

adopted to maximise the number of match-ups. Mean data for Lu.,,{A) (mW cm~^ 

//m~' sr~^), chlorophyll-a {C, mg m~^), PAR (E m"^ d~'), and optical aerosol 

thickness (T865 dimensionless). as well as the associated standard deviations, were 

calculated across the 9 pixels. The lOP models of Lee et al. (2002) (Quasi-Analytical 

Algorithm (QAA) v5) and Smyth et al. (2006) were used to calculate the a{X) at 

these data points. For the Hirata et aL (2008a) approach, we used two lOP models 

in this chapter to highlight sensitivity of the algorithm to lOP input. The match

ups resulted in 250 HPLC AMT. 305 HPLC SeaBASS, 39 HPLC HOTS, 14 HPLC 

BATS and 5664 CPR measurements spanning from 1997 to 2007. and shown in 

Figure 3.1. 

+ CPR doto 
A AMT data 
O ScaBASS dain 
TT L4 time series 
* HOTS time series 
ii BATS time series 

Figure 3.1: Geographic distribution of tn situ data used in Chapter 3. 

AVHRR Pathfinder 5 daily mean SST data at 4 km resolution were ob

tained from the NASA PO.DAAC website (http;/,'poet.jpI.nasa.gov/) and matched 

to all the HPLC data points. Night time SST products were used to avoid 

the solar radiation bias from daily surface heating. Weekly composites of 

mean wind stress data from ERS-2, and daily mean wind stress data from 

QS (0.5° by 0.5= spatial resolution) were obtained from CERSAT, IFREMER 

(http://www.ifremcr.fr/cersat/en, index.htm). All SST and wind stress data were 

interpolated to 9 km resolution and matched to all HPLC data points. 

At the L4 station, SeaWiFS daily 1km mapped data (L .̂n A, C", and T865) 

were acquired from NEODAAS in order to reduce potential interference from the 

adjacent land. This data was processed over the L4 station. The a{X) coefficients 
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were calculated as previously described, and the satellite data were matched to the 

phjtoplankton cell counts which resulted in 256 matching data points between 1997 

and 2004 (Figure 3.1). Samples between 2002-2004 were matched to daily satellite 

data. Because samples collected before 2002 were logged with only the start day 

of the week as opposed to the sample day, satellite data were extracted on the 

Monday of every sampling week (usual sampling day), whether the in situ were 

actually sampled on that day or not (see section 3.5.1 regarding the validity of this 

approach). 

3.3 Methods 

3.3.1 PFT and PSC techniques 

All published spectral-response, abundance-based and ecological-based PFT satel

lite approaches, designed for global application using the SeaWiFS sensor (Table 

3.2), were incorporated into the intercomparison. This section describes liow the 

following PFT and PSC algorithms were refommlated or directly implemented to 

detect dominant phytoplankton size class (micro-, nano-, and picoplankton) and 

applied to the satellite in situ match-up data: 

• Model A: Al\-ain et al. (2008) spectral-response approach (PHYSAT). 

• Model B: Ciotti and Bricaud (2006) spectral-response approach. 

• Mode! C: Uitz et al. (2006) abundance-based approach. 

• Model D: Hirata et al. (2008a) abundance-based approach (a(443); Lee et al., 

2002). 

• Model E: Hirata ct al. (2008a) abundance-based approach (a(443): Smyth 

et al., 2006). 

• Model F: Hirata et al. (2008a) abundance-based approach using C . 

• Model G; Devred et al. (2006) abundance-based approach using regional pa

rameters. 

• Model H; Devred et al. (2006) abundance-based approach using global param

eters. 

• Model I: Brewin et al. (2010c) abundance-based model. 

• Model J: Raitsos et al. (2008) ecological-based approach. 
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Modol 

A 

B 

C 

D 

E 

P 

G 

H 

I 

J 

Table 3.2: Description of models used 

Type 

SR 

SR 

AB 

AB 

AB 

AB 

AB 

AB 

AB 

EB 

in the intercomparison. 

Satellite Input variables 

C 

X 

X 

X 

X 

X 

X 

X 

X 

•'-'tojxC^) 

X 

X 

Hr.(A) 

X 

al (A) 

X 

a=(A) 

X 

TS6S 

X 

P A R 

X 

W S 

X 

S S T 

X 

Hjeferenco 

Alvain et al. (2005, 2008) 

Ciotti and Bricaud (2006) 

Uitz et al. (2006) 

Hirata et al. (2008a) 

Hirata et al. (2008a) 

Hirata et al. (2008a) 

Devred et al. (2006) 

Devred et al. (2006) 

Brewin et al. (2010c) 

Raitsos et al. (2008) 

SR = a spectral-response model, AB = an abundance-based model, EB = an ecological-based 
model, WS = wind stress, a^(A) refers to a(A) calculated according to Lee et al. (2002) and 
o^(A) refers to a(A) calculated according to Smyth et al. (2006). 

3.3.1.1 Model A (Alvain et al., 2008) 

The PHYSAT method determines six dominant PFTs: diatoms, nanoeukaryotes 

(separately Phaeocystis and coccolithophores), Prochlorococcus and Synechococcus. 

In this intercomparison, it was assumed that these major PFTs can be divided into 

the three phytoplankton size classes: microplankton = diatoms; nanoplankton = 

nanoeukaryotes (and separately detected Phaeocystis and coccolithophores); and 

picoplankton = Prochlorococcus and Synechococcus. It is acknowledged that the 

approach does not identify all the phytoplankton groups within each size class. 

The PHYSAT algorithm (Alvain et al., 2008) was applied to SeaWiFS data with 

chlorophyll-a (C*) ranges between 0.04 and 4mg m~^ and aerosol thickness lower 

than 0.15. The SeaWiFS L^„(A, C) LUT was then implemented (see Table 1 of 

Alvain et al., 2005, for details) to determine the dominant group. 

3.3.1.2 Model B (Ciotti and Bricaud, 2006) 

The Ciotti and Bricaud (2006) approach involved initially running the updated 

Loisel and Stramski (2000) lOP model (Loisel and Poteau, 2006, Loisel et al. in 

prep) to derive total absorption a(A) from the remotely sensed reflectance (i?rs(A)). 

Once a(A) had been retrieved, a nonlinear optimization technique was used to split 

a(A) into the contributions from coloured detrital matter {acDM{^)) and phyto

plankton (a(A)) (see equations 3 and 8; Ciotti and Bricaud, 2006). Using the model 

of Ciotti et al. (2002), and following the procedure described in Ciotti and Bricaud 

(2006) (see 'Method 2: nonlinear optimization technique'; Ciotti and Bricaud, 2006), 

a generalised reduced-gradient nonhnear optimization code was set up to retrieve 

ac£>M (443), the spectral slope of CDM absorption {SCDM) and a size parameter of 

phytoplankton {Sf). 
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When running this technique, samples with chlorophyll-a (C^) < 0 or remote 
sensing reflectance (Rrs) < 0 at 412, 443, 490 or 510 nm were removed When run
ning the reflectance inversion any samples which gave out-of-range values for the 
diffuse attenuation coefficient {K) (hence invalid a{X) values) or where the optimi
sation method did not converge, were removed Samples for which the retrieved Sf 

was dependent on the initial value (several minima in the function to solve) were 
also removed. This was determined by comparing three sets of results, with initial 
values of Sf equal to 0, 0.5 and 1, and discarding the samples for which the standard 
deviation divided by the mean exceeded 10 %. 

The size parameter of phytoplankton (Sf) is fixed to vary continuously between 
two extremes of 0 and 1, that represent the extremes m size (i.e the largest mi-
croplankton and smallest picoplankton) For this mtercomparison, it became nec
essary to establish interval values for Sf that could represent the micro-, nano- and 
picoplankton To do that, a size value for the two extremes of Sf were first as
signed, representative of the smallest picoplankton (referred to as a picovector) and 
the largest microplankton (referred to as a microvector) An equation was then 
chosen to interpolate between these two extremes in order to estimate 5"/ values at 
2 and 20 ̂ m which could then be used to determine a dominant micro-, nano- or pi
coplankton pixel Note that these assumptions ignore that part of the Sf variability 
was due to pigment packaging independent of cell size (i e variations m intracellular 
pigment concentrations resulting from photoacchmation) 

The selection of a general shape for the curve of the expected decay of Sf with 
cell size IS not a simple choice, as a large amount of noise around any curve will 
be expected, due to the distinct degrees of packaging possible m a given cell size 
(Bricaud et al, 2004) that m the field may vary m time and space Based on the 
theory of Van de Hulst (1957), it is expected that there would be an exponential 
decay in pigment packaging as the product of the diameter and the internal concen
tration of the pigments increases Therefore, this would suggest either a log-linear 
or exponential relationship between packaging and cell size 

Table 3 3 shows a range of possible values of Sf at 2 and 20 fj,xn using both log-
linear and exponential interpolations. In producing Table 3, a variety of diameter 
values for the fixed pico- and microvectors were used, ranging from 0 2 to 1 fmi for 
the picovector and 30 to 120//m for the microvector Each picovector was set to 
an Sf value of 0.999 and each microvector set to an Sf value of 0 001 when inter
polating Depending on the representative sizes for the vectors and mathematical 
interpolation, the 2/^m Sf value varies between 0 540 and 0.943 and the 20/j,m Sf 

value varies between 0 010 and 0 376. This large variability highlights the impor
tance of assigning extreme cell sizes, and interpolation methods, that are appropriate 
for a particular region or alternatively, for large scale apphcation, developed using 
globally representative data 
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Table 3.3: Sf boundaries at 2 and 20 //m using logarithmic (log) and exponential 
(exp) interpolations and for a variety of assumed microvectors and picovectors set 
to the extremes of Sf (0.999 and 0.001 respectively). 

Picovector 
( , im) 

0.2 

0.4 

0.6 

0.8 

1.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Size 

2 

2 

2 

2 

2 

20 

20 

20 

20 

20 

Sf (microvector 
30;xm) 

log oxp 

0.540 0.658 

0.627 0.688 

0.692 0.719 

0.747 0.751 

0.796 0.788 

0.082 0.010 

0.095 0.010 

0.105 0.010 

0.114 0.011 

0.121 0.011 

Sf (microvector 
60;im) 

log exp 

0.596 0.812 

0.679 0.830 

0.738 0.849 

0.787 0.868 

0.830 0.889 

0.193 0.102 

0.220 0.103 

0.238 0.105 

0.255 0.106 

0.268 0.108 

Sf (m 
90li.m) 

l o g 

0.623 

0.703 

0.759 

0.806 

0.845 

0.248 

0.279 

0.301 

0.320 

0.334 

crovcctor 

e x p 

0.870 

0.883 

0.897 

0.897 

0.924 

0.217 

0.221 

0.228 

0.224 

0.227 

Sf (microvector 
120 Mm) 

log cxp 

0.640 0.900 

0.717 0.910 

0.772 0.921 

0.817 0.932 

0.855 0.943 

0.281 0.317 

0.314 0.320 

0.340 0.324 

0.358 0.328 

0.376 0.332 

For this intercomparison, a picovector of 0.6 ŷ m and a microvector of 60/fm was 

used (each assigned to Sf values of 0.999 and 0.001 respectively). The picovector 

was chosen based on Prochlorococcxis data (see Ciotti and Bricaud, 2006) and the 

microvector was chosen based on samples taken during a bloom of Gonyaulax digitale 

(Ciotti et al., 2002). A logarithmic interpolation was chosen to calculate Sf values at 

2 and 20/.im (0.74 and 0.24 respectively) which were then used to determine a pixel 

dominated by pico- (<2jrim), nano- (2-20/Ltm) and microplankton (>20/im) after 

retrieving 5/ from the inversion. Note that these Sf boundaries must be interpreted 

with caution and their limitations must be considered when discussing the results 

from model B. 

3.3.1.3 Model C (Uitz et al., 2006) 

The Uitz et al. (2006) approach involved dividing global oceanic waters into stratified 

and mixed environments based on the ratio of the euphotic depth (2p) (Morel and 

Maritorena, 2001) to the mixed-layer depth {Zm) (de Boyer Montegut et al., 2004). 

As the satellite signal only penetrates the surface layer of the ocean, for the stratified 

environment, surface PSC percentages (Figure 6c in Uitz et al., 2006) were used. 

For the mixed environment, mixed water PSC percentages (Table 6 in Uitz et al., 

2006) representing the euphotic layer were used, as according to Uitz et- al. (2006) 

these percentages were found to be uniform with depth. 

The Uitz et al. (2006) approach involves partitioning stratified and mixed envi

ronments into a small number of trophic classes according to intervals of chlorophyll-

a values, and associating each interval with a size structure (PSC%). For the in

tercomparison, interpolation was conducted between the mean chlorophyll-a values 

of each trophic class to avoid discontinuities. These percentages were then applied 

to the satellite chlorophyll-a (C^) values in order to calculate the percentage contri-
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bution of the three size classes for each pDcel The percentage of the size class at a 

given pixel was then converted into a dominant size class if the relative chlorophyll 

contribution of a particular size class was greater than 45 %, as in the DPA analysis 

3.3.1.4 Models D, E and F (Hirata et al., 2008a) 

The two approaches of Hirata et al (2008a) use ranges of variation m chlorophyll-a 

(C*) (pico < 0 25, nano 0 25 to 1 3, and micro > 1 3mg m~ ,̂ as implemented m 

Aiken et al, 2008) or m a(443) (pico < 0 024, nano 0 024 to 0.060, and micro > 

0 060 m~^, Aiken et al, 2008) to distinguish dominant size class Both methods were 

apphed to satellite-derived C^ and a(443) m order to determine the dominant size 

class Model D uses ci(443) calculated according to Lee et al (2002), Model E uses 

a(443) calculated according to Smyth et al (2006) and Model F uses C^ 

3.3.1.5 Models G and H (Devred et al., 2006) 

The absorption model of Devred et al (2006), based on the work of Sathyendranath 
et al. (2001), yields information about the two main optically significant phytoplank-
ton populations in a dataset The information derived from fitting the model to the 
data consists of the specific absorption of both populations (ai(A) and a2{X)), the 
rate of increase of chlorophyll in the small-celled population as a function of total 
chlorophyll (^i) and the maximum chlorophyll concentration of the small-cell popu
lation (CJ") If the dataset used to fit the model covers a wide range of chlorophyll, 
the two populations of phytoplankton are assumed to be (1) a combination of pico-
and nanoplankton and (2) microplankton (Devred et al, 2006) 

For a given sample (pixel m our case), the proportion of each population to the 
total biomass can be derived either by linear combination of the derived specific 
absorption coefiicients of the two populations; which will yield the concentration 
of both populations (spectral-response-based approach), or by applying Equation 
2 in Devred et al. (2006), using the chlorophyll concentration, the derived rate of 
increase (^i) and the maximum concentration of the small-cell population (Cp) 
(abundance-based approach). Ideally, the fitted parameters should be computed 
for any given dataset {m situ or remotely sensed) In this chapter, the second 
method (abundance-based approach) was used with the regional (Model G) and 
global (Model H) parameters firom Devred et al (2006) which were both derived 
from data that included pico-, nano- and microplankton, such that the proportion 
of the large-cell population can be seen as exclusively microplankton The Devred 
et al (2006) method focused on two size classes, the microplankton size class and the 
combined nano-picoplankton size class Following the Uitz et al. (2006) technique, 
when the percentage of microplankton was greater than 45 %, the prxel was allocated 
as dominated by microplankton, and the rest of the prxels allocated as dominated 
by combined nano-picoplankton 

52 



An intercomparison of bio-optical PSC techniques 

3.3.1.6 Model I (Brewin et al., 2010c) 

The model of Brewin et al. (2010c) uses the spectral shape of the absorption co

efficient of phytoplankton to determine satellite pixels dominated by pico-, nano-

or microplankton. The model may be implemented into an lOP model that can 

determine the spectral shape of a(A) (without making any assumptions in its deter

mination, e.g. Lee et al., 2002) or alternatively the spectral shape of a(A) may be 

determined from an abundance-based parameter (e.g. chlorophyll-a (C*)). There

fore, like the model of Devred et al. (2006), the Brewin et al. (2010c) model may be 

used as a spectral-response or abundance-based approach. Using a satellite and in 

situ match-up dataset, Brewin et al. (2010c) found that using (7* to determine the 

spectral shape of a(A) was considerably more accurate than using the lOP model of 

Lee et al. (2002), which failed to accurately reproduce the spectral shape of a(A) (see 

Table 2 and Figure 5 of Brewin et al., 2010c). When implementing the Brewin et al. 

(2010c) model, the spectral-shape of the absorption coefficient of phjd;oplankton 

(a(A)) was determined from C* and it is therefore considered an abundance-based 

model in this intercomparison. 

Using parameters given in Table 3 of Brewin et al. (2010c), the absorption coeffi

cient of phytoplankton (a(A)) was calculated at six wavelengths (443, 510, 520, 530, 

550 and 555 nm) using C*. The spectral shape of the absorption coefficient of each 

sample was then calculated by normalising each wavelength to its value at 443 nm. 

Then by comparing the spectral shape at 510, 520, 530, 550 and 555 nm, estimated 

from the satellite data, with derived in situ PSC spectral shapes from HPLC data 

(using NOMAD and data from the Benguela, see Table 1 of Brewin et al., 2010c), and 

using equations 9-14 in Brewin et al. (2010c), a pixel was assigned to be dominated 

by pico- nano- or microplankton. Of all the models used in this intercomparison, 

the Hirata et al. (2008a) and Brewin et al. (2010c) models (Models D, E, F and I) 

were the only approaches that did not need to be reformulated to detect dominant 

PSC. 

3.3.1.7 Model J (Raitsos et al., 2008) 

The Neural Network approach of Raitsos et al. (2008) was run using the spatial 

(latitude and longitude), temporal (month), bio-optical (C*, Lu,„555), and physical 

(PAR, SST, and wind stress) match-up data. The approach is designed to determine 

the probability of four PFTs (diatoms, dinoflagellates, silicoflagellates, and coccol-

ithophores) occurring in a satellite pixel (probability ranged from 0 to 1, 0 being 

not present 1 being present) in addition to the probability of none of these PFTs 

occurring (referred to as 'non-dominance', see Raitsos et al., 2008). 

The Raitsos et al. (2008) approach was developed using CPR data. Here an ar

bitrary assumption is made that the 'non-dominance' category can be referred to as 

the probability of picoplankton occurring in a satellite pixel. It can be assumed that 
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the dominant phytoplankton size was smaller than 10 yum when a 'non-dommance' 

response occurred m the CPR filter (Richardson et al.j 2006; Raitsos et al, 2008). 

While it is acknowledged that nanoplankton can range from 2 to 10 ̂ m, this assump

tion is based on the fact that sihcoflagellate and coccolithophore cells can range from 

2 to lOfim, and that these groups may also be identified using this satellite approach 

and classified as nanoplankton Nonetheless, it is acknowledged that this assumption 

has to be used cautiously when analysing the results. 

A dominant microplankton satellite pixel was allocated where either the di

atom or dinoflagellate group had the highest probability of occurring, a dominant 

nanoplankton pixel was allocated where either the sihcoflagellate or coccolithophore 

group had the highest probability of occurring, and a dominant picoplankton pixel 

was allocated where the 'non-dominance' category had the highest probability of 

occurring. 

3.3.2 Comparison with in situ data 

All methods were applied to the satellite data and compared to the tn situ HPLC 
data As a sub-set of the CPR data was used to develop model J, this model was 
not tested on the CPR data to avoid potential biases m the intercoraparison As 
model A and model J were developed using 9 km as opposed to 1km resolution 
SeaWiFS data, they were not applied to the L4 dataset Only pixels that met the 
selection criteria for models A, B and J were used when testing these approaches 
m the mtercomparison. Furthermore, model A was only tested using pixels where 
the model detected a dominant phytoplankton group as opposed to including pixels 
where an unidentified group was determined. This reduced the number of HPLC 
comparison data points from 608 to 377 for model J, 248 for model B and 180 for 
model A For the L4 dataset the number of comparison data points was reduced 
from 256 to 98 for model B, and for the CPR dataset from 5561 to 1724 for model 
A and 3284 for model B 

Two methods were used to compare the satellite approaches with the m situ 

data The first method, referred to as method 1, was designed to provide a robust 
calculation of the probability of detection of each size for each model This method 
was designed to account for potential uncertainty m both the satellite and m situ 

measurements The second method, referred to as method 2, was used to test inter-
class errors and misclassifications m the satellite approaches 

3.3.2.1 Method 1: Probability of detection 

A method similar to Hirata et al. (2008a) was used to analyse the performance of 
the satellite-derived PSCs when compared with m situ match-ups This method 
is based on a scoring technique, with a correct classification indicating 2 points, a 
near-correct classification 1 point, and an incorrect classification indicating 0 points. 
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For each match-up, the satellite approaches were run on the mean, the mean plus 

the standard deviation and the mean minus the standard deviation of the 9 pixels 

using their respective satellite input, yielding three results for each model. If any of 

the three results matched the dominant in situ size class a correct classification (2 

points) was assigned. In the few cases where the three results span more than one 

size class, providing one of these results matched the dominant in situ size class, 

a correct classification (2 points) was still assigned. This was deemed appropriate 

given uncertainty due to the contrasting observational scales (temporal and spatial) 

between in situ and satellite data, and considering the variability around the in situ 

sample as indexed by the satellite measurements. 

For the near-correct classification criteria, if no correct classification was recorded 

the in situ data were re-analysed to assess a more mixed environment where there 

could be co-dominance of two size classes. For the HPLC DPA data, where the 

dominant size had a DPA ratio greater than 0.45 the data was also assessed to find 

if another size class had a DPA ratio of greater than 0.4 (based on an uncertainty 

estimate of 9.3 % for the ratio of accessory pigment to total chlorophyll, Claustre 

et al., 2004, i.e. +/— 0.05) at the same point, if so, a second dominant size class was 

recorded. For CPR and L4 cell counts, if a second size class had a Z-factor within 

0.025 of the dominant size class (based on calculated 95 % confidence levels when 

pooling CPR and L4 data), it was recorded as a second dominant size class. If any 

of the three satellite results matched the second dominant size class, a near-correct 

classification (1 point) was recorded. Otherwise, where there were no matches in 

any of the three satellite results, an incorrect classification (0 points) was recorded. 

The results were then converted into a percentage for each size class by dividing the 

number of points calculated for each technique by the maximum possible number 

of points and multiplying by one hundred. This methodology was applied to all the 

datasets. A flow chart of the validation procedure is shown in Figure 3.2. 

For each model and each size class, 95 % confidence intervals were derived from 

the standard error of the mean percentage and the i-distribution of the sample size.' 

Confidence levels provide a very powerful way of showing differences and similarities 

between many groups (Dythan, 2003). If the 95% confidence intervals of two or 

more models overlapped then it was interpreted that the models performance was 

statistically similar in the comparison. If the 95 % confidence intervals of two or 

more models did not overlap, then it was interpreted that the models performance 

was statistically different in the comparison. 

3.3.2.2 Method 2: Misclassification matrices 

In order to test inter-class errors in the satellite approaches, misclassification ma

trices were adopted (Guptil, 1989; Nathanail and Rosenbaum, 1995). Figure 3.3 

shows an example of a misclassification matrix. In the matrix (Figure 3.3 a), points 

55 



Chapter 3 

Satellite technique 
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Figure 3.2 Flow chart describing the validation procedure used m method 1 to test 
the probability of detection by the different satellite approaches 

on the leading diagonal have been correctly classified (Nathanail and Rosenbaum, 

1995) An error of omissions occurs when a satellite prediction fails to recognize a 

size class that should have been identified according to the tn situ sample This is 

calculated according to the sum of the column less the leading diagonal cell value, 

divided by the sum of the column and multiplied by one hundred (see Figure 3 3 

a) An error of commission occurs when a satellite prediction incorrectly identifies 

a pixel as a different size class This is calculated according to the sum of the row 

less the leading diagonal cell value, divided by the sum of the row and multiplied 

by one hundred (see Figure 3 3 a) 

A scatter plot of the errors of omission and commission in the dataset (Figure 

3 3 b) allows the size classes that have been poorly defined by the satellite approach 

to be readily identified (Nathanail and Rosenbaum, 1995) Each size class in the 

matrix is represented by a single point on the plot with the error of omission as 

the ordinate and the error of commission as the abscissa Points lymg above the 

45 ° line represent classes whose definition is too narrow leading to false exclusion 

of members of that size class, whereas points lying below the 45 ° line represent 

classes whose definition is too broad leading to false inclusion of members of other 

size classes. Points lying far from the origin reflect higher error, and points lying 

closer to the origin reflect lower error. 

For method 2, only the m situ data for which a single dominant size class occurred 

were used (samples from the near-correct criteria in Method 1 were eliminated from 

the datasets); this reduced the number of samples to 547 HPLC samples using the 
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Figure 3.3: Example of a misclassification matrix used in method 2 (a) and a scatter 
plot of omission against commission for each class in the misclassification matrix (b). 

Vidussi et al. (2001) DPA, 571 HPLC samples using the DPA of Hirata et al. (2008a), 

5575 CPR samples and 246 L4 samples. For each match-up, a single dominant size 

class was determined for each model by calculating the most frequent size class firom 

the three match-up results. The satellite approaches were then compared with the 

in situ data using the misclassification matrix. 

3.4 Methodological Uncertainties 

There are four main areas of methodological uncertainty within the analysis. Firstly, 

there are measurement errors. In this chapter, the in situ data is essentially deemed 

to be the truth, whereas, in reality in situ measurements also have associated errors. 

Measurement outliers were minimised for the HPLC analysis through robust quality 

control procedures (see Aiken et al., 2009), however, an intercomparison of HPLC 

pigment methods indicates instrument error of 7 % for chlorophyll-a (C) and on av

erage 21.5% for other pigments (ranging from 11.5% for fucoxanthin to 32.5% for 

peridinin; Claustre et al., 2004). When comparing satellite data with in situ data, 

errors can occur due to the observational scales of the two types of measurements. 

The L4 cell count data was typically analysed using 10 to 100 ml samples, which are 

then compared with 3 km x 3 km satellite data, assuming the satellite penetrates 

to 10 m depth; this equates to a volume of water of 0.09 km^. The HPLC data was 

typically taken in volumes of sea water in the order of 51, whereas satellite measure

ments used for this chapter were typically representative of 27 km x 27 km, equating 

to an approximate volume of water of 7.29 km^. This is quite a contrast in volume 

when compared with the in situ measurements. Furthermore, there are additional 

errors with the satellite approaches associated with atmospheric correction and the 

performance of the satellite sensor itself. 

Secondly, there are errors associated with the use of pigment concentration to 
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determine size class The HPLC DPA, as highlighted in section 2 2.2 3, does not 

strictly reflect the true size of phytoplankton. PPT or PSC techniques that have 

been developed using a specific tn situ method, such as HPLC, are expected to 

perform better when compared to in situ data measured m the same way This 

is the case of all models except B, G, H and J and will need to be taken into 

account when analysing the results from the HPLC data Due to the size of the 

CPR mesh silk, and the fact that the CPR samples cannot quantitatively calculate 

the contribution of each size class, the CPR dataset is essentially a semi-qualitative 

estimate of dominant microplankton samples, which will also have to be considered 

when analysing the results Furthermore, with regard to the L4 data, there is 

expected to be higher uncertainty m the picoplankton cell counts in comparison 

with nano- and microplankton cell counts, due to the difficulty m counting smaller 

size classes when using an inverted microscope 

Thirdly, with regard to the satellite algorithms, each method is very different m 

its approach and it is thus very difficult to make a quantitative comparison with the 

m situ data This mtercomparison focuses primarily on size class, whereas models 

A and J look at specific taxonomic groups They do not attempt to account for 

all the taxonomic groups withm a size class that this study is assuming, although 

model A is based on the same specific diagnostic pigments as in the other HPLC 

based approaches. 

Finally, this mtercomparison is assessing dominance of phytoplankton size 

classes, and some of the approaches have been adapted to fit this criterion in order 

to make the satellite techniques inter-comparable Therefore, methods 1 and 2 are 

specifically designed to test dominance based approaches Approaches that derive 

fractional contributions (e g models C, G and H) may fare differently m an mter-

comparison based on fractional contributions. It is important to bear m mind these 

methodological uncertainties when discussing the performance of the algorithms 

3.5 Results 

3.5.1 Method 1 results 

Table 3.1 and Figures 3 4 to 3.7 show the results from method 1 The error bars 
m these figures represent the 95 % confidence levels In the case of the HPLC 
results (Figure 3 4), using the Vidussi et al. (2001) DPA procedure and concerning 
microplankton alone, models C, F, G, H and I were found to perform with higher 
accuracy (90 1-92 9%) than models A, B, D and E (27 8-75.6%). Model J however, 
was not significantly different from models C, E, F, G, H and I. Furthermore, models 
E and J performed with higher accuracy (75 6-79 3 %) than models A, B and D 
(36 5-52.2%), and models A, B and D were not statistically different. Results using 
the Hirata et al (2008a) DPA procedure (Figure 3.5) and concerning microplankton 
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alone, indicated that models C, E, F. G, H, I and J were found to perform with higher 

accuracy (75.8-93.3%) than models A. B and D (33.3-52.2%) although they were 

not signihcantly different from model A. Concerning combined nano-picoplankton, 

in both DPA procedures (Figures 3.4 and 3.5), all models were found to perform 

with similar accuracy (>88.4%). 
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Figure 3.4: Histograms showing the score (%) of satellite-derived versus in situ 
dominant PSCs for several algorithms using method 1 for HPLC data using the 
Vidussi et al. (2001) DPA procedure. The error bars represent the 95 %• confidence 
intervals and the dotted line represents the mean of all models. 

Concerning nanoplankton, in the Vidussi et al. (2001) DPA procedure (Figure 

3.4). model B performed with the highest accuracy (87.7%), followed by models C 

and E (61.0-65.5 %). However, model A was not significantly different from models C 

and E, and model J was not significantly different from models A and C. Models A, 

F, I and J performed with higher accuracy than model D. Concerning nanoplankton, 

u-sing the Hirata et al. (2008a) DPA procedure (Figure 3.5), models B, C, E, F and 

1 performed with higher accuracy (73.6-88.2%) than model D. Models A, B, C. E, 

F, I and J were not statistically different from each other, and models A, D and J 

were not statistically different from each other. Concerning picoplankton, in both 

the Vidussi et al, (2001) and Hirata et al. (2008a) DPA procedures (Figures 3.4 

and 3.5), models D, E, F and I performed with higher accuracy (87.4-95.9%;) than 

models A, B, C and J, However, in Vidussi et al. (2001) DPA procedure, models 

F and I were not significantly different from model A and models C and J were 

not statistically different. In the Hirata et al. (2008a) DPA procedure (Figure 3.5), 
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HPLC Hifata et al (2008) 
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dominant PSCs for several algorithms using method 1 for HPLC data using the 
Hirata et al. {2nOSa) DPA procedure. The error bars represent the 96% coniidence 
intervals and the dotted line represents the mean of all models. 

model .1 performed with higher accuracy than model B. The mean percentage of all 

the models combined, using the HPLC datasct and the Vidussi et al. (2001) DPA 

procedure, was 72.7%, 95.8%, 51.1 % and 78.1 % for microplankton, combined nano-

picoplankton, nanopiankton and picoplankton respectively. The mean percentage 

of all the models combined, using the HPLC dataset and the Hirata et al. (2008a) 

DPA procedure, was 74.0%, 95.8%, 74.0% and 75.9% for mieroplankton, combined 

nano-pieopiankton. naiioplankton and picoplankton respectively. 

Regarding the L4 comparison (Figure 3.6), and concerning microplankton, mod

els C. G, and H performed with slightly higher accuracy than models D and E 

(74.3-80.5 %). Concerning combined nano-picoplankton, model E was found to per

form with higher accuracy than all other models (98.7 ±1.8%), model D also was 

found to perform with higher accuracy than models C, F, G, H and I, but was not 

statistically different from model B. Concerning nanopiankton all models were simi

lar (39.9-77.4 % accuracy) with models B and E performing signihcantJy higher than 

model D. Regarding picoplankton, models D and E were found to perform with the 

highest accuracy (73.4 ±10.0 %). The mean percentage of all the models combined, 

using the L4 dataset, was 67.9%. 64.3%, 58.4% and 26.4% for microplankton, 

combined nano-picopiankton, nanopiankton and picoplankton respectively. PSC 

percentages retrieved pre-2002 were compared with post-2002 percentages and a 
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significant statistical correlation was found (p-value <0.05) supporting the pre-2002 

L4 niatch-up procedure described in section 3.2.2. 

Regarding the CPR comparison (Figure 3.7), and cx)nccrning microplankton. 

model E performed with the highest accuracy (87.4ibl.5%), followed by models 

G, H, C, I, B, and F which performed with higher accuracy than models A and D. 
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Model D performed with higher accuracy than model A. Concerning combined nano-

picoplankton. model E performed with the highest accuracy (99.5 ±0.2%) followed 

by models D and A. then models B and F. Models C, H and I performed with 

higher accuracy than model G. The mean percentage of all the models combined, 

using the CPR dataset, was 51.0% and 86.0% for raicroplankton and combined 

nano-picoplankton respectively. 

3.5.2 Method 2 results 

Figure 3.8 shows the scatter plots of omission against commission for each size class 

for (a) HPLC derived using Vidussi et al. (2001), (b) HPLC derived using Hirata 

et al. (2008a), (c) L4 data and (d) CPR data. Consistent with method 1 the models 

are generally found to detect combined nano-pieoplankton with the highest accuracy 

as indicated by their representative points lying closer to the origin when compared 

with other size ela-sses. 

When comparing the two DPA procedures (Figure 3.8 a and b), while the results 

for the micro- and combined nano-picopiankton are similar, the results from the pico-

and nanoplankton were different. Figure 3.8a indicates that when using the Vidussi 

et al. (2001) DPA technique, all the picopiankton data points (with the exception of 

models B and J) lie below the 45 ° line, implying that the satellite models" detection 

of this size class is too broad and that they are incorrectly trapping members of 

other size classes. Alternatively, the nanoplankton data points appear to lie above 

the 45" line, implying that the satellite models" are poorly identifying nanoplankton 

and that their detection of this size class is too narrow. When using the Hirata el al. 

(2008a) DPA (Figure 3.8 b) all the nanoplankton data points appear to lie below the 

45° line implying that all the models" detection of this size class is too broad. Both 

DPA procedures indicate that the models appear to detect picopiankton with higher 

accuracy than nanoplankton. as the picoplaiikton points lie closer to the origin, 

consistent with the mean percentages of all models shown in method 1 (HPLC data, 

using Vidussi et al. (2001) DPA). 

Regarding the L4 dataset and taking all the results from the models into ac

count, there appears to be no obvious bias with all points lying evenly around the 

45° line (Figure 5 c). However, individually, models D and E appear to be de

tecting combined nano-pieoplankton too broadly and mieroplankton too narrowly, 

conversely, models B, C, F, G, H and I appear to be detecting microplankton too 

broadly and combined nano-]jicoplankton too narrowly. Models F and i appears to 

also classify picopiankton too narrowly. Regarding the CPR. dataset (Figure 3.8 d). 

models A, D, and E appear to classify combined nano-picopiankton too broadly and 

microplankton too narrowly, and models B, C, F, G, H and I lie evenly around the 

45 ° line implying no obvious bias. 

With regard to model B, by placing limits on the 5 / values the model appeared 
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Figure 3.8: Scatter plots of omission against rommission for each size class in method 
2 for (a) HPLC derived in situ using Vidussi et al- (2001). (b) HPLC derived in situ 
using Hirata et al. (2008a), (c) L4 in situ data and (d) CPR in situ data. 

to be detecting pico- and microplanktou too narrowly and nano- and combined 

nano-picoplankton too broadly, when compared with the HPLC data (see FigiKe 

3.8 a and b). Note that this result is reflected in the HPLC data in method 1 

(Figures 3.4 and 3.5) as model B performs accurately at detecting nanoplankton 

(87.5-87.7%) and combined nano-piroplankton (^98.5%), and less accurately at 

detecting picoplankton (38.0-52.0%) and microplankton (~52.2%). By detecting 

nanoplankton too broadly, model B appears to misclassify pico- and inicroplankton 

pixels as nanoplankton. 5 / values derived from model B were proposed as a con

tinuum for co-varying pigment packaging and cell size, not for detecting dominant 

PSC. and placing limits was not intended. 

Results from Figure 3.8 (a and b) indicate that the Sf value of 0.74 was too 

large to accurately split the pico- and nanoplankton population {at 2^m) and the 

Sf value of 0.24 was too small to accurately split the combined nano-picoplankton 
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and microplankton population (at 20/im). Therefore, using the Vidussi et al. (2001) 

DPA procedure on the HPLC data, the Sj value was consecutively reduced from 0.74 

(at 2/im) by 0.01 in each iteration until the nano- and picoplankton data points con

verged on the 45° line in Figure 3.8 (a) and the Sj value was consecutively increased 

from 0.24 (at 2/im) by 0.01 in each iteration until the combined nano-picoplankton 

and microplankton population data points converged on the 45° line in Figure 3.8 

(a). This indicated that Sf values of 0.64 at 2/im and 0.32 at 20/im were more 

adequate and prevented model B detecting pico- and microplankton too narrowly 

and nano- and combined nano-picoplankton too broadly. Furtliermore, these ralues 

compliment comparisons of 5 / to the proportion of micro- and picoplankton >0.45 

(using the DPA procedure of Vidussi et al.. 2001: Uitz et al., 200G) using a variety 

of data gathered by the Laboratoire d'Oceanographie de Villefranche (see Bricaud 

et al., 2006). 

Model B was re-run in method 1 (referred to as model B2) using the new Sj 

values at 2 and 20/im. Results for model B2 are shown in Table 3.1. Regarding the 

HPLC data, results for picoplankton are shown to improve significantly, increasing 

from 52.0±9.8 % to 77.2±8.3 % for the Vidussi ct al. (2001) DPA procedure and from 

38.0±7.0% to 68.4±6.7% for the Hirata et al. (2008a) DPA procedure. For both 

DPA procedures, results for microplankton are also shown to improve significantly 

from 52.2±15.0% to 84.4±11.0% and results for the combined nano-picoplankton 

and nanoplankton did not change significantly. Such results clearly emphasise how 

misclassification matrices may be used to improve model designs. 

Wlien comparing the results from methods 1 and 2 certain discrepancies arise. 

Ill iiietliod 1 (Figures 3.4 to 3.7), .\fodel E generally performs above the average of 

all models and consistently performs better than ^fodel D at detecting nano- and 

microplankton in the HPLC and CPR datascts. However, according to method 2, 

Model E performs similarly to Xfodel D across the three size classes and appears to 

perform less accurately than one would expect after examining results from method 

1 (points do not lie very close to the origin in Figure 3.8). Closer analysis revealed 

that the variability in a(443) around each sample site (9 satellite pixels), when 

using the Smyth et al. (2006) model, was consistently higher than when using the 

Lee et al. (2002) model, particularly at higher a(443) values. According to method 

1, a correct classification (2 points) was assigned when any of the mean, the mean 

plus the standard deviation and the mean minus the standard deviation of the 9 

pixels matched the in situ sample. In method 1, Model E may have benefited 

from higher variability in (j(443) around each sample site, which would explain the 

discrepancies between the performance of model E in method 1 when compared with 

the performance of model E in method 2, particularly considering method 2 did not 

account for model input variability around each sample site. 
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3.6 Analysis of inter comparison results 

The HPLC data used in this chapter was taken firom a wide geographical area, 

incorporating the North and South Atlantic Oceans, the North Pacific gyre and 

the Mediterranean Sea, and thereby covering a number of trophic regimes. When 

analysing the HPLC results in methods 1 and 2 from an integrative perspective, 

it becomes apparent that dominant pico-, combined nano-picoplankton and mi-

croplankton pixels are, in general, more easily detected than nanoplankton pixels 

from satellite, as indexed by the mean percentages of all models using the Vidussi 

et al. (2001) DPA (95.8% for combined nano-picoplankton, 72.7% for microplank-

ton, 78.1% for picoplankton and 51.1% for nanoplankton) and considering that 

nanoplankton data points lie further from the origin in Figure 3.8 (a) and (b) than 

other size classes. Irigoien et al. (2004) investigated global biodiversity patterns 

in marine phytoplankton and found their diversity to be a unimodal function of 

phytoplankton biomass, with maximum diversity at intermediate levels of biomass 

and minimum diversity at high and low levels of biomass. Assuming nanoplankton 

prevail at intermediate biomass (Irigoien et al., 2004; Aiken et al., 2008) one may 

expect higher diversity in nanoplankton than pico- or microplankton, which may 

result in greater variability in their optical characteristics making them harder to 

detect, as a community, from satellite. 

Conversely, however, at the L4 site micro- and nanoplankton had a higher 

mean percentage when combining all models (67.9 % and 58.4 %) than picoplankton 

(26.4%). This result, to a certain extent, can be attributed to the location of the L4 

site which is essentially in a case 2 region (depending on seasonal physical forcing, see 

Groom et al., 2009). The chlorophyll-based models (C, F and I) performed partic

ularly poorly at detecting picoplankton, lowering the integrative mean percentage. 

Furthermore, model B, which uses a non-hnear relationship between chlorophyll-a 

and a(505) to normalise the derived absorption spectrum (see equation 10; Ciotti 

and Bricaud, 2006), also performed poorly at detecting picoplankton. This may 

be linked to the fact that the satellite estimate of chlorophyll-a, acquired using the 

0C4 SeaWiFS algorithm, is known to be frequently overestimated in case 2 regions. 

Considering that the chlorophyll-based models rely on low chlorophyll-a values to 

detect picoplankton, and that the derived absorption spectrum used in model B is 

normalised using an a(505) to chlorophyll-a relationship, this would be expected 

to influence the models' results significantly. Improvements in the two lOP-based 

models (D and E) at detecting picoplankton could be due to the advantage of using 

an lOP model in optically complex case 2 regions where it is important to partition 

and quantify the influence various organic and inorganic water constituents have on 

the reflectance spectrum. All the models used are designed for open ocean waters 

(case 1), so their appHcation to case 2 waters has to be handled cautiously. 

When comparing spectral-response, ecological and abundance-based models, it 
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firstly becomes apparent that, m general, models A, B and J (two spectral-response-

based models and an ecoiogical-based model) perform with similar accuracy to the 

abundance-based models (models C through to I) Model J was shown to perform 

moderately well when compared with the HPLC data This result is encouraging 

for ecological methods m general, as the Raitsos et al (2008) technique is not a 

size-class-based approach and it is different from the other models m that it relies 

on additional information to that of bio-optics Considering that model J is specifi

cally trained for the North Atlantic, it was shown to perform with fair accuracy m 

areas outside the North Atlantic (Note the Artificial Neural Network failed on lati

tudes south of the equator). This is particularly interesting considering that Raitsos 

et al (2008) found spatial and temporal information to be two of the three most 

important variables for PFT discrimination. When constraining the tn situ pigment 

data to the North Atlantic, percentage accuracy did not substantially increase. The 

accuracy of the neural network algorithm may improve if it was trained on globally 

representative HPLC and cell count data Results support the conclusions in Raitsos 

et al. (2008) that by introducing additional information besides bio-optical informa

tion, improved satellite PSC detection may be achieved However, further analysis 

needs to be conducted to verify this assumption Use of advanced statistics such as 

neural network, self-organising maps and multilayered perceptrons, to identify addi

tional biological information to that of chlorophyll-a from optical measurements, is 

a developing area of research (see Chazottes et al, 2006, 2007, Bricaud et al., 2007) 

Model A performed with moderate accuracy at detecting pico- and nanoplank-

ton, however, with lower accuracy at detecting dominant microplankton pixels It 

should be noted that the algorithm is designed to detect specific PFTb rather than 

all the PFTs within a specific size class (e g model A does not detect dinoflag-

ellates m the microplankton size class), the diagnostic pigment fucoxanthm is the 

primary pigment that was used to identify diatoms m the development of model 

A, as with the other HPLC abundance-based satellite approaches for detecting mi

croplankton. Model B was also seen to perform moderately well throughout the 

mtercomparison, particularly at detecting nanoplankton, and improved at detecting 

pico- and microplankton when adjusting the Sf boundaries (model B2) This result 

is encouraging for model B considering that the model was validated on relatively 

limited data (see Ciotti and Bricaud, 2006) and that the Sf value was proposed as 

a continuum for co-varying pigment packaging and cell size, not to detect dominant 

size class. 

When comparing the number of samples used to test the algorithms m Table 1 

it becomes apparent that the abundance-based models (C to I) were tested against 

approximately twice the amount of samples tested on models J and B and approxi

mately thrice the amount of samples tested usmg model A This was a consequence of 

the two spectral-response algorithms (models A and B) functioning on a specific cri-
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terion and the ecological-based approach (model J) limited to its geographical region 

(Northern hemisphere). The results from method 1 indicated that the abundance-

based models performed with high accuracy across the three size classes; models C, 

E, F, G, H and I all performed with high accuracy at detecting microplankton in the 

HPLC dataset (75.6-93.3%) and in the L4 and CPR datasets (49.8-87.4%). Mod

els C and E also performed with high accuracy at detecting nanoplankton in both 

the HPLC and L4 datasets (54.7-88.2 %) and models C, D, E, F and I performed 

with high accuracy at detecting picoplankton in the HPLC dataset (69.7-95.9%). 

Therefore, it can be concluded from this chapter that abundance-based algorithms 

generally provide good accuracy in detecting PSC from satellite remote sensing, 

suitable for wide scale application. 

Surrounding the general relationship between size and chlorophyll-a there is bio

logical variability (Bricaud et al., 2004; Uitz et al., 2006), which very hkely contains 

information on the phytoplankton. If abundance-based models are to improve, re

search needs to focus on understanding the source of this biological variability and 

accounting for it in PSC predictions. This may include understanding diversity in 

the phytoplankton within each size class, or alternatively may focus on how these 

abundance-based relationships vary with photoacclimation to various light condi

tions (various incident irradiances) or with a decrease in irradiance with depth. 

3.7 Summary 

Ten models, designed to detect multi-phytoplankton communities from satellite 

data, were implemented in a phytoplankton community intercomparison exercise. 

The models were reformulated to detect dominant phytoplankton size class in order 

to make the approaches comparable and a co-located satellite and in situ match

up dataset was developed. Model performance was tested by: firstly, developing a 

robust procedure to assess the models probability of detecting a dominant phyto

plankton size class pixel and, secondly, using misclassification matrices in order to 

test inter-class errors in the satellite models. Results from the chapter indicate: 

• Spectral-response, ecological and abundance-based approaches can all perform 

with similar accuracy. 

• Individual model performance varied according to the size of the phytoplank

ton, the input satellite data sources and in situ validation data types. 

• Detection of microplankton and picoplankton were generally better than de

tection of nanoplankton. 

Abundance-based approaches were shown to provide better spatial retrieval of 

PSCs. 
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• The potential use of misclassification matrices as a design aid to modify models 

for detecting dominant PSC was highlighted 

• Uncertainties in the comparison procedure and data sources were considered 
and indicate that improved availability of zn situ observations is required to 
advance research in this field 

68 



Chapter 4 

A three-component model of 

phytoplankton size class with 

applications to Earth Observation* 

4.1 Introduction 

In the intercomparison of different satellite approaches for detecting phytoplank

ton size class presented in the previous chapter, spectral-response, ecological and 

abundance-based approaches were found to all perform with similar accuracy in 

general. However, abundance-based approaches were shown to provide better spa

tial retrieval of PSCs. The abundance-based PSC models implemented into the 

intercomparison in Chapter 3 were designed to detect either the dominant PSC (e.g. 

Hirata et al., 2008a; Brewin et al., 2010c) or the fractional contribution of each PSC 

(e.g. Devred et al., 2006; Uitz et al., 2006) at a satellite pixel. Both techniques offer 

valuable information that can be used to validate multi-phjdioplankton ecosystem 

models or can be used in data assimilation (Anderson, 2005; Hemmings et al., 2008). 

Models designed to estimate fractional contributions of various size classes, however, 

can offer the distinct advantage of providing more information than those that treat 

only the dominant class. 

Based on knowledge of the abundance-based approaches implemented in Chapter 

3, this chapter aims to develop a new, improved abundance-based model that calcu

lates the fractional contributions of three PSCs for a continuum of chlorophyll-a con

centrations. The model is fitted to a large pigment dataset from the Atlantic Ocean 

using a previously-established diagnostic pigment approach (Vidussi et al., 2001; 

Uitz et al., 2006) extended to account for small pico-eukaryotes in ultra-oligotrophic 

environments. The performance of the algorithm is tested against both a global in 

*Aspects of this chapter are included in the following paper 
Brewin, R.J.W., Sathyendranath, S., Hirata, T., Lavender, S.J., Barciela, R. and Hardman-
Mountford, N.J. (2010). A three-component model of phytoplankton size class for the Atlantic 
Ocean. Ecological Modelling 221, 1472-1483, doi:10.1016/j.ecolmodel.2010.02.014. 
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situ pigment dataset and also a concurrent co-located satellite match-up dataset 

The model is then adapted to incorporate the effect of optical depth on the model 

parameters 

4.2 Data and Data analysis 

4.2.1 Data 

To develop the model, a large HPLC pigment dataset from the AMT cruises 5-15 
was quality controlled according to Aiken et al. (2009), yielding 2176 measurements 
The dataset was then split into two: a test dataset and a training dataset (database 
A and B respectively) 

For database A, only data taken in the top 10 m of the water column were 
selected, which reduced the database to 1085 measurements Samples were then 
matched to Level 3 SeaWiFS daily products (24 hour wmdow), for a 3 by 3 pixel win
dow, foUowmg the procedure adopted m Ciotti and Bricaud (2006) but using 9 km 
SeaWiFS pixels (as conducted m Chapter 3) Mean satellite-derived chlorophyll-a 
values (C^) (NASA 0C4 algorithm O'Reilly et al, 1998, 2000) as well as the as
sociated standard deviations were calculated for the nine pixels, as conducted in 
Chapter 3, yielding 250 samples Any samples for which the standard deviation 
exceeded three standard deviations with respect to the mean were excluded This 
was done m order to minimise the effect of nusmatch m spatial scales of m situ and 
satellite observations The match-up yielded 241 samples spanning the period 1997-
2004 The in situ chlorophyll-a concentrations (C) from AMT database A and the 
corresponding satellite chlorophyll-a concentrations (C^) values are well correlated 
(r = 0 71, Figure 4 1) 

Database B contained the original 2176 pigment measurements, from which 
the 241 match-up data were removed, leaving 1935 measurements. A third 
database (database C) was used for comparison and model development. This 
database consisted of simultaneous measurements of phj^oplankton absorption 
coefficients and HPLC data Global pigment data from the NOMAD HPLC 
dataset (Werdell and Bailey, 2005) were downloaded from the NASA website 
(http.//seabass gsfc nasa.gov) and quality controlled as for the AMT pigment data 
This dataset provided surface (0-lOm) pigment and absorption measurements In 
addition to encompassing samples from the Atlantic Ocean, the dataset included 
samples from the North Pacific, the California Current, the Scotia Sea, the East 
China Sea and the Japan Sea Coupled pigment and absorption measurements from 
AMT 6 were also used m database C. 

For model validation purposes, m addition to the NOMAD dataset and database 
A, a separate HPLC pigment dataset from AMT cruises 2-4 was set aside. This 
dataset was quality controlled as for database A, B and C, yielding 1158 measure-
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Figure 4.1: Relationship between the HPLC chloropliyll-a concentrations (C) and 
the Katelhte derived chlorophyll-a concentrations (C% SeaWiFS 0C4) from AMT 
database A. black line represents 1:1 relationship. 

ments and is hereafter referred to as database D. Equations 2.1 to 2.9 (section 

2.2.2.3) were applied to all data to derive the size-specific fractions and chiorophyll-

a concentrations needed to develop and validate the model, using the Vidussi et al. 

(2001) and Uitz et al. (2006) DPA. A flow chart of the analysis is shown in Figure 

4.2 and the sampling locations of the obser\'ations are plotted in Figure 4.3. Finally, 

the model is applied to satellite data and compared with the HPLC dataset used in 

the intereomparison in Chapter 3. 

4.2.2 Empirical adjustment to the use of diagnostic pigments 

in ultra-oligotrophic environments 

Figure 4.4 (a-d) shows F^ , Fp^„, F„ and Fp as a function of the chlorophyll-a con

centration (C) from database B, In addition to the raw data (light grey crosses), a 

5 point nmning-mean (dark grey line) is also plotted to highlight the major trends 

in the data. 

In Figure 4.4 (a) and (b) the microplankton and the combined nano- and pi

coplankton fractions remain relatively stable between 0,01-0.3 rag m""* chlorophyll-

a, before the microplankton fraction increases with increasing chlorophyll-a and the 

combined nano- and picoplankton fraction decreases. In Figure 4.4 (c) and (d), in 

ultra-oligotrophic environments (<0.04mgni~^ C; Alvain et al., 2005), a distinct 
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Figure 4.2: A flow chart of the data used and the processing techniques conducted 
to partition the data into the four databases (A-D). 
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Figure 4.3: Locations of databases A-D, with the Hardman-Mountford et al. (2008) 
biomes classification superimposed: light orange - very high, light yellow = high, 
light green - intermediate, light cyan = low-intermediate, light blue - low, light 
magenta — very low. 

and unusual trend is seen in both the nanoplankton and picoplankton fractions. 

The majority (~70%) of the measurements below 0.04 mgm"^ chlorophyll-a were 

collected at depths less than 50 m suggesting this unusual trend is predominantly in 
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surface waters. Here the picoplankton fraction increases with increasing chlorophyll-

a (between 0.01-0.04 nig in~'* C) and the nanoplankton fraction decreases. This con

tradicts the common observation that low chlorophyll-a environments in the surface 

la>'er of the ocean are essentially dominated by picoplankton (Zubkov et al.. 2000: 

Barlow et al., 2002; Aiken et al.. 2008; Hirata et al.. 2008a: Aiken et al.. 2009). 

Chishohn (1992) suggested that picoplankton contribute as much as 90% of the to

tal biomass in extremely oligotrophic waters. Furthermore, recent work on retrieval 

of particle size distribution from satellite-derived backscattering signal indicates that 

picoplankton-sized particles dominate in the subtropical g\Tes where they contribute 

60 to nearly 100% of the total particle volume (Kostadinov et al., 2009). 

The data with higher computed nanoplankton fractions for concentrations 

less than 0.04 mgm"^ chlorophyll-a were analysed to see which pigment was re

sponsible for this pattern. It was found that, on average, the ratios of 19'-

butanoyloxyfucoxanthin to chlorophyll-a was 0.06. alloxantliin ratio was 0.002. 

and that of 19'hexanoyIoxyfucoxanthin 0.43, clearly indicating that the higher 

nanoplankton fractions below 0.04 mgm"^ chiorophyll-a in Figure 4.4 (c) result from 

the pigment 19'hexanoyloxyfucoxanthin. Various recent studies have highlighted 

that at low chlorophyll-a •values picoplankton dominate the eukaryotic population 

(e.g. Not et al., 2004: Fuller et al.. 2006: Tarran et al., 2006). so the 19"hexanpy-

loxyfucoxaiitliin signal is most probabh' attributable to pico-eukaryotes rather than 

nanoplankton (Hirata et al.. 2008a). Furthermore, in a recent study into the ultra-

oligotrophic centre of the South Pacific Subtropical Gyre, Ras et al. (2008) specu

lated that 19'hexanoyloxyfucoxanthin could belong to smaller cells of the picoplank

ton pool, and pointed out that further information was nt^ded to re-assess the def

inition of size classes relative to the pigment composition in such ultra-oligotrophic 

waters. 

With this in mind and to test the assertion of Hirata et al. (2008a), coupled ab

sorption and pigment data from database C were used to e\'aluate if the anomalously 

high 19'hexanoyloxyfucoxanthin signal below 0.04 m g m " ' of chlorophyll-a could be 

from picoplankton rather than nanoplankton. It is well known that picoplankton 

have a higher spiecific absorption coefficient (absorption per unit C) at the blue wave

length of 443nm (a'(443)) than nanoplankton (Sathyendranath et al., 1987; Ciotti 

et al.. 2002; Ciotti and Bricaud, 2006} due to changes in cellular pigment compo

sition and pigment packaging (Kirk, 1975; Morel and Bricaud, 1981). Database C 

was divided into dominant size classes using pigment data (Equation 2.1-2.4) and 

assigned a dominant size class based on a size class fraction {Fp. F„ or F,„) >0.45, 

as in Hirata et al. (2008a). Data points below 0.04mgm~^ chlorophyll-a are iden

tified as ultra-oligotrophic and though only two points were identified both these 

data points exhibited very high fl'(443) values (0.22-0,31 |m^ (mgC)"')), indicating 

that they are not nanoplaiikton, as suggested by the pigment analysis (Figure 4.5). 
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Figure 4.4: Fractions of the microplankton (a), combined nano- and picoplank-
ton (b), nanoplankton (c) and pic'Opiankton (d) as a function of chlorophyll-a from 
database B (1935 measurments). The nanoplankton (e) and picoplankton (f) frac
tions are re-plotted using the empirical adjustment (equations 4.1 and 4.2). Light 
grey creases represent raw data and the thin dark grey line represents the 5 point 
running mean. 

Evidence from database C, coupled to the unusual anci unexplainablc patterns in 

the nanoplankton and picoplankton fractions (database B) and supporting evidence 

from the literature previously cited, suggest that the use of diagnostic pigments 

for identifying phytoplankton size classes requires refinement in ultra-oligotrophic 

waters. 
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Figure 4.5: The specific absorption coefficients at 443nm (a*(443)) from database C 
plotted as a function of chlorophyll-a. The size class classification is from the HPLC 
DPA of Vidussi et ai. (2001) and Uitz et al. (2006). 

A linear adjustment is therefore proposed, according to which, the 19'hexanoy-

loxyfucoxanthin signal is attributed lialf to nanoplaiikton and half to picoplankton 

when the concentration of chlorophyll is 0.04 mgm'^, with the picoplankton frac

tion increasing to one at 0.001 nig m"''' (value used as a model cndpoint) and the 

nanoplankton fraction increasing to one at 0.08nigra"', such that equations 2.3 and 

2.4 are adjusted as follows: 

- 3 _ 12Jigk^ + E i ^ i l l ^ i fC^.0.08mgm 

a. if C > 0 . 0 8 m g n i - ^ 
(4.1) 

K = (4.2) 
<0,08mgm-^ 

if C > 0 . 0 8 m g m - \ 

Figure 4.4 (c) and (d) are re-plotted in Figure 4.4 (e) and (f) using equations 4.1 

and 4.2. When compared with the original pigment analysis (Figure 4.4 c-d) the ad

justed results show higher pico- and lower nanoplankton fractions below 0.04 nig m~^ 

chlorophyll-a. which appear more realistic when compared with the previously cited 

literature. However, it is acknowledged that the proposed ad hoc adjustment merits 

re-cvaluation and refinement as more data from the ultra-oligotrophic waters become 

available. 
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4.3 Methodology 

4.3.1 Model development 

It has been unequivocally established that the fractional contribution of small cells to 

the total standing crop decreases as the total chlorophyll-a concentration increases 

(Chisholm, 1992). Furthermore, Raimbault et al. (1988) showed that chlorophyll 

is added to a system by the addition of larger size classes of ph>'toplaiik;ton. An 

example of a model that accounts for these two ecological theories was pubhshed for 

two populations of phytoplankton by Sathyendranath et al. (2001). Dcvred et al. 

(2006) showed that the Sathyendranath ot al. (2001) model may be used to estimate 

two phytoplankton size classes (micro- and combined nano-picoplankton). 

In this section, we extend the two-component model of Sathyendranath et al. 

(2001) to a three-component model of phytoplankton size class. Here the total 

chlorophyll-a concentration (C) is assumed to be the sum of the pico- (p), nano- (n) 

and microplankton (m) concentrations such that 

3 

C = 5^a , (4.3) 

where, i — {p,n and ni}. Here, a.s in Devred et al. (2006), we assume that the large-

celled population belongs to microplankton {€„,), and the small-celled population 

(Cp^Tt) is the sum of the nano- and picoplankton population, such that the model of 

Sathyendranath et al. (2001) may be written as 

C p . " - C - „ [ l - e x p ( - 5 „ , „ C ) ] , (4.4) 

where, C^„ is the asymptotic maximum value for Cp„ and Sp,„ is the initial slope. 

Therefore, it follows that C,„ can be calculated according to 

C^ = C-C„.„. (4.5) 

Furthermore. Figure 4.4 (b) and Figure 4.4 (f) indicate that both the picoplank

ton and the combined nano- and picoptankton fractions decrease with increasing 

chlorophylt-a. The fractions have a similar form so can be expressed by the same 

mathematical formulation, such that the change in Cp as C increases can also be 

represented as 

Cp = CJ[l-exp(-SpC)l (4.6) 

where, Cp' is tiic asymptotic maximum value for Cp and Sp is the initial slope. Once 

Cp^„ and Cp arc known, C„ can be calculated as: 

C„ - Cp,„ - Cp. (4.7) 
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The fractions of each phytoplankton size class (Fp, F„ and F,„) can then be calculated 

by dividing the size-specific chlorophyll-a concentrations (Cp, €„ arid Cm) by the 

total chloroph\-ll-a concentration (C). 

To derive the unknown parameters, equations 4.4 and 4.6 were fitted to C. Cp,,, 

and C,, from database B. The fitting procedure used a standard, nonlinear least 

squares method (Levenberg-Marquardt (Press et al., 1992). IDL Routine MPFIT-

FUN). To avoid the undue influence of large chlorophyll-a values on the paramcteri-

sation of the model, the fitting procedure was applied to log-transformed data. The 

performance of the model was quantified using the Mean absolute Error (ME) be

tween the modelled and measured values (size-specific chlorophyll-a concentrations 

and fractions). The ME was computed according to 

ME=-Y,\X^-XM\, (4.8) 

1 = 1 

where, X is the variable (either the size-specific chlorophyll-a concentration or the 

size-specific fraction) and N is the number of samples. The subscript E denotes the 

estimated variable and the subscript M denotes the measured variable. Values of 

parameters C^, C^„, Sp and Sp_„ are given in Table 4.1, together with ME calculated 

by comparing sample values of Cp,, and Cp in database B with the corresponding 

values estimated using the model. 

Table 4.1: Parameter values obtained for the three-component model from database 
B. ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Population Maximum C Initial Slope Mean error 

Combined iiauo-picoplatiklou 1.057 mg m"^ (C^„} 0.851 {Sf,_„) 0.063 mg m"^ 

Picoplankton 0.107 mg m"''' (C"') 6.801 (Sp) 0.039 mg m"^ 

4.3.2 Comparison with independent data 

To test the accuracy of the three-component model described in section 4.3.1, two 

independent datasets were used: database A and the NOMAD dataset. For the in 

situ comparison, the three-component model was applied to total chlorophyll-a (C) 

values from the NOMAD dataset to estimate Cp, C„ and Cm. These values were 

compared with Cp, C„ and C„^ values estimated from diagnostic pigments. 

For the satclhte comparison, the three-component model was applied to C* from 

database A to derive C^, C,' and C^ .̂ For further comparison, the approach of Uitz 

et al. (2006) was also applied to C to derive C;, C^ and C^. The Uitz et al. (2006) 

approach was implemented as in Chapter 3, The results were then compared with 

the concurrent in situ size-specific chlorophyll-a concentrations {Cp, C„ and Cm) 

from database A. 
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In addition, coupled satellite chlorophyll-a and in situ pigment data (HPLC) 

from Chapter 3 (see Figure 3.1} were partitioned into biogeochcmical biomes fol

lowing the classification of Hardman-Mountford et al. (2008) (see Figure 4.3). The 

three-component model was applied to C* from database A (to derive Cp, C^, C^, 

Fp, F^ and F^) and results were then compared with the concurrent in situ values. 

4.4 Results 

4.4.1 Model results 

Figure 4.6 (a) shows the change in percentage contribution of the three size 

classes of phytoplankton with increasing chlorophyll-a calculated according to the 

model presented in section 4.3.1. It can be seen that picoplankton dominates 

the total population when chlorophyll is small; as the chlorophyll increases be

yond 0.20mgm"'^ nanoplankton begin to dominate: as chlorophyll increases be

yond l,3mgm"^ microplankton begin to dominate. These boundaries are consistent 

(within 0.05mgm"^) with boundaries calculated by Hirata et al. (2008a). Figure 

4.6 (b) illustrates the change in Cp, C„ and C^ as a function of total chlorophyll-a. 

To examine how well the three-component model fits database B with which it 

was parameterised, the model is plotted in Figure 4.7 (a-d) against Cp. C„, Cj,.„ and 

Cm from database B and Figure 4.7 (e-h) shows the model plotted against the frac

tional contributions (Fp, F„, Fp.„ and F™) smoothed with a 5-point running-mean. 

It can be seen that the model fits the observations well, indicated by low mean errors 

for both the chlorophyll concentrations (Figure 4.7 a-d) and the fractional contribu

tions (Figure 4.7 e-h). AMT database B suggests a continuum from picoplankton 

dominated waters to nanoplankton and then to microplankton domination with in

creasing chlorophyll. 

4.4.2 In situ comparison 

Figure 4.8 (a-c) shows the results from the comparison with the independent NO

MAD dataset. Considering that the three-component model is parameterised with 

pigment data taken at a variety of different optical depths, it compares well with 

NOMAD surface pigment measurements. This is highhghted by reasonable ME dif

ferences between tiie model and the NOMAD data for the three size classes (Figure 

4.8 a-c). Furthermore, when comparing the modelled size-specific fractions with the 

NOMAD m situ size-specific fractions, mean errors ranged from 11.7-13.3%, which 

are comparable to fractional mean errors between the model and database B (Fig

ure 4.7 e-h). As the NOMAD dataset includes observations from a variety of global 

locations, this also supports the application of the three-component model to areas 

outside the Atlantic Ocean. 

78 



A three-component model of PSC 

100 C 

0.01 

10.00 

1.00 

E 
t j 0.10 r 

0.01 
0.01 

(o) 

Micro 

0.10 1.00 10.00 
C [mg m ' ' ] 

(.b) 
- Micro 
- Nano 
- Pico 
- Pico + Nano 

Total C 

100.00 

0.10 1.00 10.00 
C [mg m ' ] 

100.00 

Figure 4.6: (a) The change in percentage of the three size classes of phytoplankton 
with increasing chlorophyll-a on a log x-axis (b) illustration of clmngcs in chlorophyll-
a of the three size classes in the model (log y-axis) as a function of the total 
chlorophyll-a concentration (log x-axis). 

4.4.3 Satellite comparison 

Results from the sateUite comparison are shown in Figure 4.8 (d-f). When com

pared with the statistical approach of Uitz et al. (2006), the three-component model 

is shown to perform similarly in deriving C*, C* and C^, with mean errors of 

0.039mgm~^ compared with 0.042ragm"^ (Figure 6 f). 0-076mgm"^ compared 

with 0.074mgm"^ (Figure 4.8 ej and 0.149mgm^^ compared with 0.154nigm"'* 

(Figure 4.8 d). Furthermore, the model can be applied to a continumn of chloro

phyll concentrations without having to deal with discrete trophic classes and the 

parameters of the three-component model offer direct biological interpretation. 

The three-component model developed in section 4.3.1 is based on exponential 

equations that were chosen as they provide a good description of the shape of the 

experimental data {e.g. Figure 4.7). Therefore, it could be referred to as an "em

pirical" model, considering that the function is not derived directly from arguments 

based on the 1*' principles of population ecology. However, based on the theory that 
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Figure 4.7: (a-d) shows the three-component model plotted against the raw size-
specific chlorophyll-a values from database B. (e-h) shows the size-spei::ific fractional 
contributions calculated according to the model plotted against the size-specific frac
tional contributions from database B as a function of total chlorophyll-a (smoothed 
with a 5 point running mean). 
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Figure 4,8: (a-c) shows the three-component model plotted against the size-specific 
chlorophyll-a concentrations from the NOMAD pigment datasct. (d-f) shows the 
relationship between the AMT in situ size-specific chloropliyll-a concentrations from 
dataset A (grey triangles), and those calculated according to Uitz et al. (2006) (dark 
grey crosses) and the three-component model (black line) from C. 

small cells are incapable of growing beyond a certain concentration, and that chloro

phyll is added to a s>'stem by the addition of larger size classes of phytoplankton. as 

suggested by Raimbauh et al. (1988). Chishohn (1992) and Satliyendranath et al. 

(2001). the parameters of the three-component model have simple biological interpre

tation. The parameter C " corresponds to the maximum chlorophyll-a concentration 

a given size class can grow to (picoplankton or combined nano-picoplankton) and 

S describes the rate of increase in the chlorophyll-a concentration of a particular 

size class (picoplankton or combined nano-picoplankton) as a fimction of the total 

chlorophyll-a concentration. So for this reason the three-component model could be 

referred to as a "semi-empirical" model, in comparison with the purely "empirical" 

approach of Uitz et al. (2006). 
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Table 4.2: Mean Error (ME) values from applying the three-component model 
to satellite chlorophyll-a data and validating against in situ data from the 
HPLC dataset used in Chapter 3 (608 measurements). Errors are given for 
each Hardman-Mount ford et al. (2008) biome. In addition, typical values for 
each biome are provided in square brackets which were derived from applying 
the three-component model to 10-years of satellite data (see Chapter 6) and 
extracting the average value_s for each biomc from a 10-year chmatology. 

Biome 

Very low 

Law 

Low intermediate 

High intermediate 

High 

Very High 

C 
m 

[0-003] 

0.005 
|0.007| 

0.007 
|0.015| 

0,011 
|0.030| 

0.243 
|t},(ro6[ 

6.137 
|0.242| 

'Units ill mgi i i " ' 
n refers to number of sampies 

CA 

|0.007| 

0.012 
|(l.fll4| 

0,020 
10.030] 

0.027 
|U.067] 

0.102 
|0,132| 

0.G50 
|0-114| 

^; 

|0.019| 

0.017 
|0.031i 

0.025 
iO-051] 

0.028 
|0.065| 

0.047 
10.071) 

0.511 
|0.027| 

^̂ w 
lii.ol 

8.0 
[11.91 

e.7 
Il3,7[ 

7.1 
[l6-.3[ 

13.6 
[21.7[ 

19,7 
[38.5] 

F^ (%} 

[20.9[ 

22.3 
124.7[ 

13.7 
[31.6] 

14.6 
[38..5I 

20.8 
[44.81 

10.6 
[44,6[ 

F; (%) 

[68.11 

19.3 
[63.41 

14.5 
154.71 

14.6 
[45.2[ 

17,4 
[33.5[ 

16.1 
[16.9[ 

n 

-

20 

153 

69 

192 

174 

Results from the comparison with coupled satellite chlorophyll-a and in situ 

pigment data (HPLC) from Chapter 3 are shown in Table 4.2 and Figure 4.9. On 

average over the global ocean, mean errors (ME) were estimated to be 0.2611 mgm"'' 

for C^, 0.062mgm-'^ for Q , 0.046mgm'^ for C;, 9.2% for F^. 17.1% for F^ and 

16.1 % for Fp. These errors were shown to vary among biogeochcmical regions of the 

ocean (see Table 4.2 and Figure 4.9) and are vulnerable to uncertauity as highlighted 

in Chapter 3 (see section 3.4). 

4.4.4 Application of the model to satellite derived 

chlorophyll-a fields 

Results from the in situ and satellite comparison shown in Figure 4.8 and 4.9 sup

port the model's global application to satellite-derived chlorophyll fields ( C ) . Figure 

4.10 shows the phytoplankton size class percentages (fractions multiplied by 100) and 

chlorophyll-a concentrations calculated according to the three-component model for 

a SeaWiFS composite of May 2005. Theoretically, as the three-component model 

is based on non-hncar equations, the model needs to be applied directly to daily 

satellite chloro])iiyll-a images and then averaged to produce a monthly composite. 

Results from Appendix A however, indicate that the three-component model can 

be applied directly to monthly SeaWiFS chlorophyll-a composites as the mean error 

(ME) difFerenc€!s between procedures are below 1 % and 0.015 mgm~^ for the per-
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10.00 

Figure 4.9: Estimated errors (ME) for the three-eompoueiit model mapped on an 
entire ScaWiFS chlorophyll-a romposite (1997-2007). Size-specific fractions {%) are 
shown on the left and chlorophyll-a concentrations (nigm~^) on the right. White 
pixels represent coastal and inland waters (<200 m depth) in order to eliminate areas 
where the C" OC-I algorithm has been found to overestimate chlorophyll due to the 
presence of SPM and . or CDOM. 

centage total chlorophyll-a and the absolute chlorophyO-a of the three size classes 

respectively. 

The general geographic pattern in the surface layer shown in Figure 4.10 is 

consistent with current knowledge about the distributions of species (e.g. Malone, 

1980; Chisholm. 1992) and biogeochcmical provinces (e.g. Longhurst et al., 1995; 

Hardnian-Mountford et al.. 2008). For the month of May 2005 microplankton are 

shown to dominate the subarctic and the major upwelling zones. Percentage of 

microplankton reduces to around 20% along the equator, and down to as low as 

10 % in the subtropical gyres. Nanoplankton seem to be more stable globally, ranging 

from about 17% in the subtropical gyres to 55% in the more eutrophic zones such 

as upwelling areas. Picoplankton are the dominant group within the subtropical 

gyres with their abundance reaching over 70%. in oligotrophic zones. This reduces 

to approximately 40% along the equator and at the subantarctic con\'ergGnce, and 

decreases to as low as 1 % in the subarctic and upwelling zones. Regarding the size-

specific chlorophyll-a concentrations, picoplankton appear to act as a background 
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population with nano- and microplankton displaying larger spatial variability and 

higher concentrations in mid to high latitudes, coastal areas and areas of upwelling 

(e.g. Bcnguela upwelling). 

Micro (%C^ 

Nano (%€") 

Pico (%C*) 

% Totol chlorophyll-g 

10 20 30 40 H 60 >70 

Chlorophy)l-a [mg m"^ 

m 0.01 O.IO t.OQ 10.00 

Figure 4.10: Phytoplankton size class percentages and chlorophyll-a concentrations 
calculated according to the three-component model for the monthly SeaWiFS com
posite of May 2005. Light grey pixels refer to unidentified pixels either due to cloud 
coverage or high sun zenith angles. White pixels represent coastal and inland waters 
(<200m depth) in order to ehminate areas where the C* 0C4 algorithm has been 
found to overestimate cliloropliyll due to the presence of SPM and , or CDOM. 

4.4.5 Comparison with previous satellite PSC models 

Figure 4.11 shows the differences between the technique of Uitz et al. (2006) and 

the three-component model for the same SeaWiFS composite of May 2005. The 

mean percentage difference for the global ocean between the two techniques regard

ing the fractions (three-component model minus the Uitz ct al. (2006) mode!) is 

-0.3% for microplankton, -4.5% for nanoplankton, and 4.8% for picoplankton. The 

corresponding chlorophyll-a concentrations are 0,0002 rngni"^ for niieroplankton. -

0.001 mg m"'' for nanoplankton, and 0.001 mg m"'' for picoplankton. Considering the 

satelhte error estimates of the three-component model (Figure 4.9), these differences 

appear insignificant. However, in the oligotrophic gyres the three-population model 
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predicts over 20% more picopiankton and 20% less nanoplankton (Figure 4.11), 

which is higher than the error estimates of the three-component model, implying 

significant differences. This can be attributed to the contrasting pigment criteria 

used in the three-component model that accounts for picoeukaryotes. in comparison 

with the Uitz et al. (2006) pigment criteria. Regarding the size-specific chlorophyll-

a concentrations, larger differences are seen in more eiitrophic environments, with 

the Uitz et al. (2006) model predicting relatively higher picopiankton chlorophyll-a 

concentrations. 

Micro C%0 

Nono (%C"| 

Pico (%0 

<-20 

X Total chlorophyll—a 

-10 0 10 

Chlorophyll-o [mg m"^] 

>20 <-0.1 -0.05 D.OS >0.l 

Figure 4.11: Comparison between the phytoplankton size class percentages and 
chlorophyll-a concentrations calculated according to the three-component model and 
the model of Uitz et al. (2006) for the monthly SeaWiFS composite of .May 2005 
(throe-component model minus Uitzct al. (2006)). Dark grey pixels represent coastal 
and inland waters (<200m depth) in order to eliminate areas where the C 0C4 
algorithm has been found to overestimate chlorophyll due to the presence of SPM 
and / or CDOM. 

To compare the three-component model and the model of Ilirata et at. (2008a), 

the Hirata et al. (2008a) chlorophyll-a model was adopted with the adjusted bound

aries from Aiken et al. (2008) (pico •;. 0.25: nano 0.25 to 1.3; and micro > 1.3 mg 

m~^). The three-component model was then converted into a dominant size class 

model by allocating dominance according to the highest percentage contribution of 

the three size classes. Both these techniques were then applied to the SeaWiFS May 
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2005 monthly chlorophyll-a (0C4) composite for comparison, shown in Figure 4.12. 

Hirata et al. (2008) 

Three-component 
model 

Microplankton 
Nonoplankton 
Picoplankton 

^jm 

Figure 4.12: The Hirata et al. (2008a) chlorophyll-a-based model (top image) applied 
to a SeaWiFS May 2005 monthly composite and three-component model adapted 
to show dominant size class and applied to the same ScaWiFS May 2005 monthly 
composite. White pixels represent inland and coastal waters (<200m). dark grey 
represents land, and light grey represents unidentified pixels due to either cloud or 
low sun zenith angles. 

Figure 4.12 indicates strong similarity between the three-component model and 

the model of Hirata et al. (2008a). In both cases picoplankton are shown to dominate 

the majority of the oceans, followed by nanoplankton and microplankton. The geo

graphic distribution of the three size classes between the two models is also very sim

ilar. The dominant microplankton pixels are almost identical between approaches, 

both allocating microplankton pixels as >1.3mgm"''' chlorophyll-a. The Hirata 

et al. (2008a) model partitions dominant nanoplankton pixels at 0.25-1.3mgro~^, 

and the throe-component shows the nanoplankton to be dominant between 0.2-

1.3mgm"^. Therefore, when compared with the Hirata et al. (2008a) model, the 
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three-component model seenis to predict slightly more dominant nanoplankton pix

els at lower ehlorophyll-a concentrations at the expense of dominant picoplankton 

pixels. This is seen in Figure 4.12 as equatorial and southern oceanic waters show a 

larger dominance of nanoplankton when using the three-component model. At such 

boundaries, the three-componeut model is still predicting very similar percentages 

of nano- and picoplankton. highlighting that these areas are essentially very mixed 

waters. This supports the use of models that estimate the fractional contribution of 

each size class as opposed to using dominance based models which partition groups 

at distinct boundaries. 

4.4.6 Effect of optical depth on model parameters 

As the AMT data were taken at a range of depths within the euphotic zone, depth-

dependent variations could be investigated. Database B wa-s organised according to 

depth. Using the approach of Morel et al. (2007c), the diffuse attenuation coeffi

cient (K) was calculated from the surface chlorophyll-a value for each profile. The 

optical depth (T) for each sample was then computed according to r — ;A', where 

z represents the geometrical depth. We restricted database B to r ranging from 0 

to 9.2 {dimensionless}, similar to Uitz et al. (2006). This whole procedure reduced 

the number of samples to 1335. The data were split into arbitrary ranges of r, and 

Equation 4.4 and 4.6 were fitted to data from the different layers to derive model 

parameters for each layer, shown in Table 4.3. 

Table 4.3: Parameter values obtained for the three-component model 
for a \'ariety of optical layers (n refers to number of samples.) 

Ranee Mean C " „ _ _ . ^ ^ 
_ _ . P " Sp,„ C"* • S„ C range n T T P,n "^p ^ P 

(1 (132-
0.0 -0.6 0.388 1.001 0.931 0.09S 8.271 . " . . , 522 

0.6-1.2 0.860 1.108 0.777 0.089 8.302 O'OQQ" 268 

1.2-2.0 1.507 1.320 0.651 0.142 3-741 ^ ' ^ 119 

0 044-
2.0-3.5 2.754 1.279 0.685 0.129 4-313 „' „^ 174 

6.564 

3-5-6.0 4.547 1.450 0.630 0.237 1.744 ^^'^ll' 188 
C.537 
0 022-

6-0-9.2 7.059 2.521 0.345 0.223 1.795 .:"t:. f>4 

- 3 'Units in mg m 

Figure 4.13 shows the four parameters (C^. Cp"„. Sp and S,,,„) plotted as a 

function of the mean r. Ail the parameters are .significantly correlated with r, with 

p-values less than 0.05 and high r values (>0.89) for the fitted curves. To account 
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for the relationship between the model parameters and optical depths, equations 4.4 

and 4.6 were reformulated such that. 

Cp.n = [C;"„eM0arm - exp{-[5p,„exp(^bT)]C)l, 

Cp - [C ; exp(;3,r)][l - cxp{-[5pexp(/?dr)]C)], 

(4.9) 

(4.10) 

where, /?„, pb, 0c and dd represent the change in C^„, Sp^„. C^ and Sp respectively 

with increasing r. Parameters of equations 4.9 and 4.10 are given in Table 4.4. 
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Figure 4.13: Variations in the three-component model parameters as a function of 
the optical depth (r). 

Ek]uations 4.9 and 4.10 (in addition to equations 4.5 and 4.7) were applied to total 

chlorophyll-a values and derived optical depths (Morel et al.. 2007c) from database 

D to estimate Cp, Cn and C^. These values were then compared with Cp^ C^ and C,„ 

values derived from diagnostic pigments from the same dataset (Figure 4.14) and low 

ME differences between the model and all the observations were calculated for each 
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Table 4.4: Model parameters for the three-
component model accounting for optical depth 
(Equations 4.9 and 4.10). Parameters arc given 
with and without the empirical adjustment de
scribed in section 4.2.2. 

Parameter 

^p.n 

c^' 
Sp 

0. 
A 
0c 

3d 

W i t h empi r i ca l 

a d j u s t m e n t 

0.977 

U.910 

0.095 

7.822 

0,121 

-0.122 

0.142 

-0.245 

W i t h o u t empi r i ca l 

a d j u s t m e n t 

0.977 

0.910 

0.075 

9,268 

0.121 

-0.122 

0.322 

-0.438 

'Uuits in m s m ^ 

size clas.s (^^0.05 mg m"^). Additionally, database D was divided according to the 

Hardman-Mountford et al. (2008} biome classification (see Figure 4.3). The relative 

mean error of each size class fraction was calculated per biome (Table 4.5). This was 

seen to remain relatively stable for each size class from the low to the high biome, 

indicating the three-component model is performing with similar accuracy across 

the trophic range. However, for the very high biomc the relative error increases for 

Fn and F^ indicating a reduction in model performance for these size classes, A 

smaller amount of samples in the very high biome, in comparison with the other 

biomes, could be influencing these results, or alternatively, it could be due to the 

very high biome being located in case 2 regions. 

When applying the three-component model to a continuum of chlorophy!l-a con

centrations and optical depths (Figure 4.15), at low chloropbyll-a concentrations 

(0.01-0,3nigni"'') the picoplankton chlorophyll-a fractions decrease with increas

ing r . whereas the nanopiankton chlorophyll-a fraction increases. At chlorophyll-a 

concentrations >0.3mgm"^ the nano- and picoplankton fractions increase with in

creasing r , whereas the microplankton fractions decrease. 

Uitz et al, (2006) highlighted possible deviations in the pico- and nanopiankton 

size fractions when comparing the surface layer with the integrated enphotic zone. 

At less than 0.1 mgm"^ (sec Figure 6 of Uitz et al,, 2006) an enhanced picoplankton 

contribution near the surface was noted at the expense of the nanopiankton. This 

feature is also evident, in our model and suggests that at low chlorophyll-a concen

trations in low-light environments, nanopiankton prevail as the dominant size class, 

whereas in high-light environments picoplankton dominate. However, it is acknowl

edged that as the majority of measurements below 0.04 mgm~^ of chlorophyll were 
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Figure 4.14: Independent validation of the three-component mode! (equations 4.9 
and 4.10) using database D. The modelled and in situ size-specific chlorophyll-a 
concent rat iona are shown for (a) microplankton, (b) combined nano-picoplankton. 
(c) nanoplankton and (d) picoplankton. 

obtained within the first optical depth (-^70%), where T<\. such relationships could 

be an artifact of the uneven sample distribution. 

4.4.7 Estimation of the vertical phytoplankton size structure 

from EO 

The three-component model may be used in conjunction with procedures designed 

to estimate the vertical chlorophyll profile from the surface concentration (Morel and 

Berthon, 1989; Sathyendranath et al,, 1995; Uitz et al., 2006). In order to achieve 

this, researchers have partitioned the ocean into mixed and stratified waters, typi

cally by using the ratio of the euphotic depth (Zp) to the mixed-layer depth (Z,n) 

(e.g. Uitz et al., 2006). When the mixed-layer depth is shallower than the euphotic 
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Table 4.5: Mean error (ME) values in 
percentages for the size-specific fractions 
(F,,, F„ and F,„) calculated from validat
ing the three-component model (Equa
tions 4.9 and 4,10) using database D for 
each Hardnian-Mountford et al. (2008) 
biome. 

Biome Fp F „ Fm n 

Very low _ _ _ _ 

Low 25-3 14.3 11,8 98 

Low intermediate 19.1 12.6 9.5 329 

High intermediate 22-9 15.0 9.4 211 

High 16.6 15.1 11.8 468 

Very liish 15.4 2G.3 29.9 52 

n refers To number of samples 

depth one may assume the waters are stratified and when the euphotic depth is 

shallower than the mixed-layer depth one may assume the waters are mixed. In 

mixed waters, it is generally assumed that the vertical chlorophyll profile is homoge

neous (Morel and Berthon, 1989: Uitz et al., 200G). For stratified waters, a shifted 

Gaussian curve has t>'pically been used for which the parameters vary widely with 

region (Piatt and Sathyendranath, 1988; Sathyendranath and Piatt. 1989; Morel 

and Berthon. 1989). 

For stratified conditions, Morel and Berthon (1989) and Uitz et al. (2006) quan

tify the change in the shape of the vertical chtorophyll-a profile as a function of 

the surface ch!orophyll-a concentration (Csur)- In the Morel and Berthon (1989) 

study, the average dimensionless profile of each trophic category was modelled using 

a generalized Gaussian profile (Lewis et al.. 1983). Uitz et al. (2006) extended this 

theory and developed a slightly modified version which accounted for the fact that 

surface chlorophyll-a concentrations generally exceed the deepest values beyond the 

euphotic depth, which is incompatible with a constant background. In the Uitz et al. 

(2006) model, the constant background is replaced by a linear decrease in slope, s, 

starting from the surface value (Db). 

To illustrate how the three-component model may be integrated into a model 

that estimates the vertical chlorophyll profile from the surface concentration, the 

Uitz et al. (2006) model has been adapted slightly. Firstly, instead of using the 

dimensionless depth (C = z/Zp) as in Uitz et al. (2006). the optical depth (r) 

was used for consistency with the three-component model. Note that these two 

are entirely compatible as Z^ — 4,6/A', T = zK and hence r = zA.Q/Zp (Kirk, 

1994). The Uitz et al. (2006) model can therefore be reformulated such that the 
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Figure 4.15: (a-c) shows the size-specific chlorophyll-a values and (d-c) the size-
specific fractions all plotted as a function of the total chlorophyll-a concentration 
according to the three-component model for a •variety of optical depths (r) {equations 
4.5, 4.7, 4.9 and 4.10). 

dimensionless chlorophyll-a concentration (CDIM) can be calculated according to 

CDIM = C(^jCzp, (4.11) 

where, C — ^/4.6, Q is the chlorophyll-a concentration at a specific C and Cz,. is 

the average concentration within the euphotic layer. According to Uitz et al. (2006), 
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and assuming C — T x 4.6, CDIM can be inferred according to 

Con, = D,~ .< + C™„rexp {- [(C - Cm«̂ ) /AC]^} , (4.12) 

where, Cmaj- represents the maximum chlorophyll-a concentration, Cmar is the depth 

at which Cmar occurs, and AC depicts the width of the peak. 

Uitz et al. (2006) parameterised the above equation for nine different stratified 

classes, with each class varying based on their Csu^ value and thus their trophic 

status. Values for these parameters, for the nine separate trophic classes, are given 

in Table 5 of Uitz et al. (2006). These parameters were interpolated using the average 

Cg„r values for the nine trophic classes (Table 6 of Uitz et al,. 2006) which resulted 

in a continuously changing \'ertical profile for a continuum of surface chlorophyll-a 

concentrations. These dimensionless profiles have been plotted in Figure 4.16 (a). 

The dimensionless profiles can easily be restored to their physical values by rescaling 

in concentration and depth (Figure 4.16 b). To rescale in concentration and depth. 

Zp was calculated according to Morel et al. (2007c) as a function of C',ur; and Czp 

was calculated by interpolating the average Czp values for the nine trophic classes 

(Table 3 of Uitz et al., 2006) which resulted in an estimate of C^j, for a continuum 

of Cfur values. 
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Figure 4.16: (a) dimensionless vertical profiles from Uitz et al. (2006) interpolated 
between each of the nine trophic classes, (b) show the rescaled profiles in (a). 

Using a SeaWiFS monthly climatological mean (1997-2010) of chlorophyll-a. for 

October, the euphotic depth {Zp) was calculated a<xording to Morel et ai. (2007c) 

and the mixed-layer depth {Zm) was derived from the de Boyer Mont6gut et al. 

(2004) mixed layer climatology (Figure 4.17). Then using the Zp/Z„i ratio, pixels 

were classified into mixed and stratified waters (Figure 4.17). 

For comparison with this approach, ftuorometric chlorophyll-a data from Con

ductivity Temperature and Depth casts (CTD) were accessed from the BODC for 
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Figure 4.17: Estimates of the euphotic depth, mixed-layer depth, stratified and 
mixed waters for a SeaWiFS monthly climatological mean (1997-2010) of October 
focusing on the Atlantic Ocean. 

October 2008 (AMT 18). The stations arc shown in Figure 4.17 and consisted of 

96 casts. These data were interpolated in order to view the vertical chloroph.vll-

a concentrations along the AMT transect. For comparison with the satellite ap

proach, pixels were extracted from the October SeaWiFS climatology along the 

AMT 18 transect and the vertical profiles were predicted using the adapted Uitz 

et al. (2006) model and assuming C^ r̂ ^ C^ (Note that the October SeaWiFS cli-

matologj' was used rather than the October 2008 SeaWiFS monthly composite, as 

extensive cloud coverage rendered many satellite pixels unusable in the October 2008 

ScaWiFS monthly composite along the AMT 18 transect). 

Figure 4.18 shows a comparison between the AMT 18 transect and the satellite 

model. There are significant differences between the two plots. In general the satel

lite model overestimates chlorophyll-a when compared with the AMT 18 transect. 

Furthermore, the deep chlorophyll-a maximum is quite broad in comparison with 

the AMT 18 estimate. At the surface of the gyres the AMT 18 transect predicts 

lower chlorophyll-a concentrations and the deep chlorophyll-a maximum is lower 

in the Southern Hemisphere gjres when compared with the satellite model. This 

suggests that the Uitz et al. (2006) model may need refinement for the Atlantic 

Ocean. However, the Uitz et al. (2006) mode! is based on HPLC pigment data that 

incorporated AMT cruises I-U. 

Considering that each cast was taken at a different time, that the data has been 

interpolated along the AMT transect using only 96 casts, and that Figure 4.18 is a 

comparison between AMT data taken during October 2008 and an October SeaWiFS 

chniatology, the two plots do show similarities. Both show elevnted chlorophyll-a 

concentrations near the surface at -40°, 45° and around the equator. Furthermore, 

the structure of the chlorophyll-a maximum follows a similar pattern with a deeper 

chlorophyll-a maximum in the gyres. Based on these similarities, it appears that 

the adapted Uitz et al. (2006) model is suitable for the purpose of illustrating how 
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the three-component model may be applied to EO data, in order to view changes in 

phytoplankton community structure with depth. 

AMT 18 
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I 
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Figure 4.18: A comparison of AMT 18 fiuorometric ch!orophyll-a data along a verti
cal Atlantic Ocean transect, with the estimated vertical chlorophyll-a concentrations 
along the same transect using the adapted model of Uitz et al. (2006) and a SeaWiFS 
climatology of October. 

To investigate phytoplankton size structure with depth, the adapted Uitz et al. 

(2006) model was applied to the SeaWiFS climatology image of October and then 

the three-component model was applied to the vertical dilorophyll-a concentrations 

to estimate the size-specific chlorophyll-a concentrations and the fractional contribu

tions. Figure 4.19 shows the vertical structure in phytoplankton size class estimated 

using the three-component model along a meridional-time transect (30° W) in the 

Atlantic Ocean, and Figure 4.20 shows depth slices though the Atlantic Ocean of 

the total chlorophyll-a concentration and fractional contributions {shown in %C^) 

of the three size-classes, both for the SeaWiFS climatology of October. 

In eutrophic areas {e.g. -40°, 45° and around the equator), where the water is 

generally well mixed, higher chlorophyll-a concentrations and fractional contribu

tions (shown in %C^) of microplankton are seen. The microplankton %€" generally 

declines with depth in the subtropical g>Tes. Brown et al. (1991) showed that at 

the equator some patches may be dominated by larger cells if upwelling currents 

reach the surface, but if they do not then the structure from the gyres will be 

maintained, but compressed at shallower depths. This is again replicated in Figure 

4.19 as above 100m, in certain equatorial areas, higher micro- and nanoplankton 

chlorophyil-a concentrations occur. Furthermore, in areas where this is not apparent 
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Figure 4.19: Estimates of the size-specific chlorophyll-a concentrations and fractional 
contributions along a meridional-time transect {30° W) in the Atlantic Ocean, ex
tracted from the SeaWiFS cliniatology of October. 

the structure from the gyTes seems to be maintained but compressed at a shallower 

depth (Figure 4.19). In and around the subtropical gyres, there appears to be a 

significant change in the composition of pico- and nanopiankton with depth (Figure 

4,19 and 4.20). At the surface (Dm) picoplankton arc highly dominant (>65%), 

whereas at 200m nanopiankton appear to be the dominant size class (•^605^). 

4.5 Summary 

In this chapter, a new abundance-based model has been developed that calculates 

the fractional contribution of three phytoplankton size classes (micro-, nano- and 

picoplankton) to the overall chlorophyll-a concentration. The model has the ad\'an-

tage in that it can be applied to a continuum of chlorophyll concentrations so avoids 

discontinuities introduced by partitioning chlorophyll values into discrete trophic 

classes. Based on the theory that small cells are incapable of growing beyond a 

certain concentration, and that chlorophyll is added to a system by the addition 

of larger size classes of phytoplankton, as suggested by Raimbault et al. (1988), 

Chishoim (1992) and Sathyendranath et al. (2001), the model parameters provide 

direct biological interpretation. Therefore, the model reconciles the Uitz et al. (2006) 

and Sathyendranath et al. (2001) approaches. 

The model was fitted to a large pigment dataset from the Atlantic Ocean us

ing a previously-established diagnostic pigment approach (Vidussi et ah, 2001; Uitz 
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Figure 4.20: Depth slices though the Atlantic Ocean of the chlorophyll-a concentra
tion and fractional contributions (shown in %C^) of the three size-classes, extracted 
from the SeaWiFS cliinatologj' of October. Black pixels represent depths below 
twice the euphotic depth. 

et al., 2006) extended to account for small picoeukaryotes in ultra-oligotrophic en

vironments. The performance of the algorithm was tested against a global in situ 

pigment dataset, a concurrent co-located satellite match-up dataset and compared 

with previously published algorithms. The model was then adapted to incorpo

rate the effect of optical depth on the model parameters. Results from the chapter 

indicate: 
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The proposed empirical adjustment to account for the picoeukaryote signa

ture in ultra-ohgotrophic waters provides an improvement on the diagnostic 

pigment procedure developed in Vidussi et al. (2001) and Uitz et al. (2006). 

Using the three-mmponcnt model, size-specific chbrophyll-a concentrations 

in the surface layer of the global ocean can be retrieved from EO to 

within 0.260 mgm~^ for microplankton, 0.062 mgm"'' for nanoplankton and 

0.046 mgm~^ for picoplankton. 

Using the three-component model, size-specific chlorophyll-a fractions in the 

surface layer of the global ocean can be retrieved from EO to within 9.2 ^ for 

microplankton, 17.1 % for nanoplankton and 16.1% for picoplankton. 

These errors were shown to vary among biogcochemical regions of the ocean. 

The three-component model may be used as a tool for understanding subsur

face phytoplankton size structure in the Atlantic Ocean. Results indicate a 

change in the composition of pico- and nanoplankton with optical depth at 

chlorophyll-a concentrations below 0.3mgm"^. Picoplankton appear to dom-

mate at the surface of the subtropical gj'res and nanoplaiikton at the base of 

the euphotic layer. 
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Improving estimates of the 

phytoplankton absorption coefficient 

by introducing size structure* 

5.1 Introduction 

In the previous chapter, a three-component model was developed which calculates 

the fractional eontribution of three FSCs to the overall chlorophyll-a concentra

tion. The phytoplankton absorption coefBcicnt is a fundamental quantity in marine 

primary production models (see section 2.3.6). Furthermore, deriving size-specific 

pliytoplankton absorption coefficients from EO can ultimately be used to help im

prove our understanding of primary production in the global ocean (Ctaustre et al.. 

2005; Mouw and Yoder. 2005; Uitz et al.. 2008. 2009. 2010: Silio-Calzada ct al., 

2008: Hirata et al.. 2009b). It is well known that the phj-toplankton absorption 

coefficient can be described as a function of the dominant phytoplankton pigment, 

chlorophyll-a, and that this relationship can be ascribed to changes in both pigment 

composition and size structure (Morel and Bricaud, 1981; Sathyendranath et al., 

1987: Lohrenz et al., 2003: Bricaud et al., 2004). This chapter explores the use of the 

three-component model to improve estimates of the phytoplankton absorption coef

ficient, as a function of the chlorophyll-a concentration. Using the three-component 

model developed in Chapter 4, the two-component absorption model of Sathyen

dranath et al. (2001) and Devred et al. (2006) is extended to three size classes 

of phytoplankton. The new three-component absorption model yields the specific 

absorption coefhcients of three size-classes (micro-, nano- and picoplankton) and, 

furthermore, it ran be applied to a continuum of chlorophyll-a concentrations. The 

performance of the model, when used to retrieve total phjtoplankton absorption 

'Aspects of this chapter art' included in the following paper 
Brewin. R..1.W., Devred, E.. .Satliyeiidranath, S., Hard man-Mount ford, N'.J. and Lavender. S..I. 
(Ill revision) A model of phytopiankton absorption liased on three size classes. Applied Optica. 
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for a given chlorophyU-a concentration, is compared with a power-law model and 

the Devred et al. (2006} mode! fitted to the same dataset. The specific absorption 

coefficients of the three size classes derived using the new model are also compared 

with the results of Ciotti ct al. (2002) and Uitz et al. (2008). Finally, absorption 

coefficients obtained by applying the model to remotely-sensed chlorophyll-a are 

compared with corresponding in situ data. 

5.2 Methodology 

5.2.1 In situ absorption and pigment data 

The NOMAD dataset (Wcrdell and Bailey. 2005) was used for model development 

and inter-comparison. A subset of NOMAD made of contemporary, co-located a{\) 

(20 wavelengths between 405 and 683nm) and pigment concentration derived from 

HPLC. was downloaded from the NASA website (Version 1.3.h. 22 02/2007 HPLC 

evaluation data set). This consisted of 269 measurements collected in various oceans. 

The pigment and a(A) dataset was quality controlled according to Aiken ct al. (2009), 

reducing the number of measurements to 260. and is hereafter referred to as database 

E. 

The model was used to calculate phjloplankton absorption as a function of 

chlorophyll-a concentration estimated from remote-sensing reflectances (O'Reilly 

et al., 1998), and the results compared with in situ data from the NASA NO

MAD datasct {Version 2.0w APLHA, 18/07/2008. OOXIX lOP Algorithm Work

shop evaluation dataset, Werdell and Bailey, 2005; Werdell, 2009) from which data 

points that were common to Database A were eliminated, such that the compari

son might be regarded as an independent test of the performance of the model in 

a remote-sensing context. The resulting dataset consisted of 648 niatclied remote-

sensing reflectances at SeaWiFS visible wavelengths, in situ absorption coefficient 

of phytoplankton, a(X), and chlorophyll-a concentration. This validation dataset is 

hereafter referred to as database F. Diagnostic pigments were used to compute the 

size-specific chiorophyll-a concentrations and the fractions of a given size-class in 

the total ddorophyll-a biomass for each sample in database E following equations 

2.1,2.2,4.1, 4.2, and 2.5 to 2.9. 

5.2.2 Phytoplaiikton absorption model development 

In this section, using the three-component model, the two-component absorption 

model of Sathyendranath et al. (2001) is extended to a three-component absorption 

model of phytoplankton size class. The phytoplankton absorption coefficient can be 

expressed as: 

a(A) = a*(A)C. (5.1) 
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According to the three-component model, the fractions of each size class (Fp, F„ 

and Fm) can be derived according to 

C ; [ l - e x p ( - 5 p C ) | 

C 
Fp^""^^ T ' V (5-2) 

P C,"„[l - exp(-5, .„C)| - C - | l - exp(-5pC)] 

C;-Jl-eM-Sp.nC)] 
c 

F , . = - . . > • ' - - - j ; ^ - - ^ - - ^ (5.4) 

and 

The unknown parameters C™, C''''„, Sp and 5p,n were obtained by performing a 

non-linear least square regression (Levenberg-Marquardt (Press et al., 1992), IDL 

Routine MPFITFUN) of F,, and F,,,„ on C from database E using equations 5.2 

and 5.4. The retrieved parameters are given in Table 5.1. Here the phytoplankton 

absorption coefficient (a(A)) is assumed to be the sum uf the pico- (aj,(A)), nano-

(an(A)) and microplankton (aml-^)) contributions such that 

3 

where i = {p, n and m}. Expanding Equation 5.6 by inserting Equations 4,4 to 4.7 

yields the expression: 

«(A) - a;(A)Cp"'[ l-cxp(-5^C)]+ (5.7) 

<(A){Cp"'Jl - exp(-5p,„C)] - C ; [ l - exp(-5pC)]} + 

«;.(A){c-c;;;[i-exp(-5p,„c)]}. 

Having retrieved C™, C^„. Sp and Sp,n, Equation 5.7 was then fitted to C and Q(A) 

from database E to derive a*{\), o*(A) and a^,(A) at each of the 20 wavelengths 

shown in Table 5.2. 

The performance of the three-component absorption model (as well as of other 

models tested later) was quantified using the Mean absolute Error (ME) between 

the retrieved and measured absorption coefficients. Following analysis of absorption 

data by Ciotti and Bricaud (2006). the ME was computed in relative values so as 

to give equal weight to all measurements and expressed in percentages according to 

ME% - if 
1 = 1 

(O. .E(A) -a,,Af(A)) 
X 100, (5-8} 

«*..W(A) 

where, a{\) is the variable (phytoplankton absorption coefficient) and N is the num-
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her of samples. The subscript E denotes the estimated variable and the subscript M 

denotes the measured variable. The ME% values as well as the Pearson correlation 

coefficients (r) between the model and database E are given in Table 5.2. 

Table 5.1; Parameter vahies derived from fitting equations 5.2, 5.4 and 5.10 to 
databaseE. 

t ' ^n Img m ' S^ C;' Img m-

Three-component model (Equation 5.7) 0.771 1.162 0.146 5.154 

Two-ctHnpurieiit model {Equation 5.10) 0.768 1.302 

Table 5.2: Size-specific absorption coefficients (m^ |mg C|""^) retrieved from database 
E using the three-component model (Equation 5.7), the Devred et al. (2006) model 
(Equation 5.10) as well as parameters for the power-law model (Equation 5.9). Mean 
Error percentages (ME%) and Pearson correlation coefficients (r) are provided for 
each modpl. 
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5.2.3 Comparison with other phytoplankton absorption mod

els 

5.2.3.1 Models that relate phytoplankton absorption coefficients to the 

chlorophyll-a concentration 

The absorption model developed in the previous section was compared with a \-aricty 

of existing phytoplankton absorption models. Power-law expressions have proven 

useful descriptors of the phytoplaukton absorption coefficient as a function of the 

chlorophyll-a concentration (e.g. Prieur and Sathyendranath. 1981; Morel, 1991; 

Yentsch and Phinney, 1989; Bricaud ct al., 1995, 1998, 2004). The power-law model 
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can be expressed as: 

a(X) = ^ ( A ) C " - ^ W , {5.9) 

where. A{X) and B{\) are positive, wavelength-dependent parameters (of the same 

formulation as in Table 2 of Bricaud et al., 1995). Equation 5.9 was fitted to a(A) 

as a function of C from database E to derive the parameters of A and B (shown in 

Table 2 together with correlation coefficients (r) and ME%). 

The Sathyendranath et al. (2001) model is expressed as: 

a{X) = <^„K.„(A) - a*JX)][l - exp(-5p,„C)] + a-JX)C. (5.10) 

Tlieir model was not based on pigment composition. Instead, it was designed to 

classify the phytoplankton component into two optically-distinct, classes. Neverthe

less, Devred et al. (2006) showed, using data from a variety of ecosystems, that 

when a^(440) < 0.05 (m^ [mg C|~') . the corresponding component was well corre

lated with the microplankton fraction estimated independently by HPLC pigment 

analysis. Conversely, the component with the higher specific absorption coefficient 

corresponded to the combined nano- and picoplankton. Therefore, when dealing 

with the Sathyendranath et al. (2001) model, the model parameters C^^ and Sp^n 

in Equations 5.7 and 5.10 are treated analogous to each other, despite differences in 

the method by which they are determined. Whereas in the model presented here, 

HPLC data are used to determine the parameters, in the Sathyendranath et al. 

(2001) model. Equation 5.10 is fitted directly to absorption and chlorophyll data to 

retrieve model parameters. 

Equation 5.10 was fitted to a{X) as a function of C to samples in database 

E following the procedure described in section 2.4 of Devred et al. (2006). First, 

the Sathyendranath et al. (2001) model was fitted to the wavelengths from 411 to 

489nm to derive (7(A), 5p_,i and a^{X), where U{X) refers to the composite parame

ter C^„[a'(X) — a^(A)]. The computed Sp_„ values were then averaged and used to 

compute U{X) and a^(X) over tlie entire spectral range. The parameters C5'„ and 

ap„(A) were then computed using equations 5 and 10 in Devred et al. (2006). This 

procedure assumes that as C tends to zero. Cm (the chlorophyll concentration asso

ciated with microplankton) tends to zero and as a consequence Sp,nC^„ tends to 1. 

The computed parameters are given in Tables 5.1 and 5.2 together with r and ME% 

values. Note that the retrieved 0.^,(443) value is less than 0.05 (m^ [mg C)~^), there

fore, according to Devred et al. (2006), the small-celled component can be assumed 

to be combined nano-picoplankton and the large-celled component microplankton. 
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5.2.3.2 Models t h a t derive size-class-dependent specific phytoplankton 

absorpt ion 

The Ciotti et al. (2002} model is expressed in terms of a*(A}: 

where, ap{X) and a^(A) represent the specific absorption coefficients of picoplankton 

and microplankton respectively (Table 3 Ciotti et al., 2002), and Sf represents 

the fractional contribution of picoplankton to the specific absorption coefficient, 

accounting for both pigment composition and cell size. In deriving S/. Ciotti et al. 

(2002) physically separated phytoplankton samples into size classes using filtration 

and determined the absorption spectra associated with each size class. The specific 

absorption coefficients derived by Ciotti et al. (2002, see their Table 3) were used 

for comparison with the specific absorption coefficients derived using the three-

component model (Equation 5.7). 

The Uitz et al. (2008) model is expressed as: 

«'(A) - ^X^a<(A)exp (--ft. f ) . (5.12) 

where I = {p, n and m] and R^ represent the slopes describing the variations in 

a'{X) along the vertical z/Zp axis {z = depth and Zp = euphotic depth). Note that 

Ri has the notation Smicro, Snano and 5pi™ in Uitz et al. (2008) for the different 

size classes and their notation has been changed here to avoid confusion with the 

parameters 5,,,,, and S^ used in the three-component model. Because the study is 

limited to the surface layer of the ocean, s/Zp was set to zero and therefore Equation 

5.12 reduces to: 

The parameters of Equation 5.13 are given in Uitz et al. (2008) Web Appendix 1 

and were used for comparison with the specific absorption coefficients derived using 

the three-component model (Equation 5.7). 

5.3 Absorption model results 

5.3.1 Three-component absorption model 

To examine how well the three-component model fits the pigment obserrations from 

database E, the model is plotted against the observations in Figure 5.1. It can be 

seen that the model captures the general trend in both the size-specific chlorophyll-

a concentrations (Figures 5.1 a-d) and the fractional contributions (Figures 5.1 e-
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h). The retrieved coefficients a*(A), a^{\) and a^{A), derived by fitting the three-

component model to database E, are plotted in Figure 5.2 (a) and the same spectra 

are shown in Figure 5.2 (b) after normalisation at 443 nm to highlight differences in 

their spectral form. The specific absorption coefficients of all three size classes have 

typical peaks around •I'lSnm and 670 nm associated with chlorophyll-a absorption. 

Microplankton exhibit the lowest a*{\) at all wavelengths (Table 5,2), and the 

fiatttst spectral shape (Figure 5.2 b) which is consistent with previous studies (Stu

art et al.. 1998, 2000; Sathyendranath et aJ., 2004; Devred ct al., 2006; Uitz et al., 

2008) and can be linked to the strong package effect occurring in large-celled phy-

toplankton (Morel and Bricaud. 1981: Sathyendranath et al., 1987: Bricaud et al., 

2004). 

The nanoplankton absorption spectrum (a*(A)) is higher than a^(A) but lower 

than ap(A) at all wavelengths (Table 5.2). In agreement with previous stud

ies (e.g. Uitz et al., 2008), the nanoplankton spectrum exhibits a distinct peak 

at 465 nm characteristic of the pigments 19'-hexanoyloxyfucoxanthin and 19'-

butanoyloxyfucoxanthin (Jeffrey and Mantoura, 1997). Picoplankton display the 

highest specific absorption, consistent with their small size. This is enhanced in the 

blue wavelengths, probably due to the presence of non-photosynthetic cartenoids 

such as zeaxanthin or ^J-carotene that absorb in this region of the spectrum. The 

picoplankton spectrum also exhibits a small shoulder at 490 nm which may be at

tributed to the photoprotective pigment zeaxanthin (Barlow ct al., 2002). 

Figure 5.3 (a) shows the absorption spectrum of phytoplankton for chlorophyll-a 

concentration (C) ranging from 0.01 to 5mgm"^, and Figures 5.3 (fi-d) show the 

fractional contributions to the absorption coefficient from the three size classes at the 

different wavelengths. The picoplankton contribution is the highest when the total 

phytoplankton absorption coefficient is low (i.e. 0.00 to 0.06m"' at 443nm). As the 

total phytoplankton absorption coefficient increases (0.06 to O.lOm"^ at 443 nm) the 

nanoplankton contribution becomes higfier, and as the total phytoplankton ab.sorp-

tion coefficient increases beyond 0.10m"' at 443 nm, the microplankton contribution 

becomes the highest. Superimposed on this first-order relationship associated with 

concentrations are the spectral characteristics of each size class shown in Figure 5.2. 

When the nano- and picoplankton fractions are high, their effects on the shape of 

the total absorption spectra become pronounced (Figure 5.3 b and c). When to

tal absorption is high, the microplankton contribution is more pronounced in the 

green and red portions of the absorption spectrum as a consequence of the relatively 

flat shape of its absorption spectrum (Figure 5.3 d). By decomposing tfie total 

phvtoplankton absorption spectra one can begin to appreciate how the spectrum is 

influenced by varying phytoplankton composition. 
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Figure 5,1: The three-component model fitted to pigment data from database E, 
(a-d) showK the model plotted against the size-specific chlorophyl!-a concentrations 
and (e-h) shows the model plotted against the size-specific fractional contributions 
to the total chlorophyll-a concentration. 
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Figure 5.2: Specific absorption curves retrieved from database E using the three-
component absorption model: (a) magnitude and (b) shape normalised at 443 um. 

5.3.2 Comparison with other approaches 

5.3.2.1 Phytopiankton absorption coefficients as a function of the 

chlorophyll-a concentration 

The power-law model 

Figure 5.4 (a-c) shows in situ absorption of phytopiankton from database E versus 

chlorophyll-a at 443 nm, 555 nm, and 670 nm, on which the three-component model 

and the power-law model fitted to the same database (Table 5.2), are superimposed. 

Figure 5.4 (d) shows the ME% (given in Table 5.2) as a function of wavelength for 

the two models, hi comparison with the power-law model, the three-component 

absorption mode! yielded statistically similar ME% over the 20 wavelengths (f-tcst 

p—0.66), The r values in Table 5.2 arc generally comparable between the two ap-
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Figure 5.3: (a) The phytopiankton absorption coefficient reconstructed from the 
chlorophyll-a concentration according to the tlirec-component absorption model, 
(b-d) shows the fractional contribution from the pico-, nano- and microplankton 
size classes respectively (Cubic spline used to interpolate between wavelengths in 
Table 5.2). 

proachcs (>0.84). 

At low chlorophyll-a concentrations in the blue region (Figure 5.4 a) the power-

law model predicts higher a(X) values than the three-component model. To in

vestigate this further the specific absorption coefficients (a*(A)) were plotted as a 

function of the chlorophylt-a concentration according to both the three-component 

absorption model (Figure 5.5 a) and the power-law model (Figure 5.5 b) using pa

rameters in Tables 1 and 2. The mean dominant specific absorption coefficients for 

micro-, nano- and picopiankton in database E were also computed using only those 

samples in database E for which Fp, F„ or F^ were >0.65. The specific absorption 

coefficients for each size class were then averaged and are superimposed in Figure 

5.5 together with their confidence levels. 

Whereas the three-component model represents the variability in the specific 

absorption coefficient between the three size classes, the power-law model overes

timates the specific absorption coefficient in the blue-green region (4[)0-55() nm) at 

low chlorophyll-a concentrations. The three-component model, following the theory 

of Sathyendranath et al. (2001) and Devred et al. (2006). constrains the specific 

absorption coefficients to realistic values based on phytopiankton size structure. 

Furthermore, the parameters of the three-component model not only offer biological 

interpretation (see Chapter 4), but also direct optical interpretation, as the specific: 
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Figure 5.4: The three-component model, the two-component model (Devred et al., 
2006) and the power-law model plotted against database E. with which they were 
parameterised, for the wavelengths (a) 443 nni, (b) 555 nm and (c) 670 nm. Figure 
4 (d) shows the mean error percentages from Table 5.2 as a function of wavelength 
for the three models. 

absorption coefficients of each size class are expressed within the model. 

The model of Devred et al. (2006) 

The specific absorption coefficients calculated using the three-component model and 

the two-component model (Devred et al., 2006. with the model parameters fitted to 

the database E), given in Table 5.2, and the specific absorption coefficients calculated 

in the Devred et ai. (2006) study for global applications arc plotted in Figure 5.6 

(a). At all wavelengths, a* (A) calculated using the two-component model is shown 

to lie between the a'AX) and o.'J^X) spectra calculated using the three-component 

model, as expected. 

Both the ap„(A) and a'J^X) derived from database E using the two-component 

model arc slightly higher at all wavelengths when compared with the spectra derived 

from the global datasct used in the Devred et al. (2006) study. The microplankton 
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Figure 5.5: (a) a*{X) calculated from the three-component model for a range of 
chlorophyll-a concentrations, (b) a'{\) calculated from the power-law model for 
a range of clilorophyll-a concentrations and (c) a'(A) calculated from the two-
component model (Devred et al., 2006) for a range of chlorophyll-a concentrations. 
All models were fitted to database E, with parameters given in Tables 5.1 and 5.2 
and a cubic spline used to interpolate between wavelengths in Table 5.2. Superim
posed are the mean dominant size-specific fl*(A) spectra from database E and their 
95% confidence levels. 

Specific absorption coefficients, aJi,{A), calculated using the three-component model 

are slightly higlier than for the two-component model using database E in the blue 

part of the speetnun. 

Figure 5.4 (d) compares the ME% of the two models. Over all the 20 wavelengths 

the three-component model produced statistically lower ME% indicating a better 

fit to the data when compared with the two-component model (Most p<0.05}. The 

values of r (Table 5.2) arc generally similar (>0.84) between models. 

In Figure 5.4 (a) and (b), for chlorophyll-a concentrations less than 0.6mgm~^, 
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Figure 5.6: Size-specific a*(A) coefficients calculated from the throe-component 
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model of Uitz et al, (2008) and (c) the model of Ciotti et al. (2002) (Cubic spline 
used to interpolate between ftiivelengths in Table 2 for three-component mode! and 
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the two-component mode! yields lower a(X) values than both the power-law model 

and the three-component model. Figure 5.5 (c) shows a'{X) calculated according to 

the two-component model, using parameters in Table 5.2, for a range of chlorophyll-

a concentrations. The two-component model constrains its a*{X) between its ap„(X) 

and a'^(X) values (Figure 5.6 a). As a consequence, it fails to reproduce the high 

magnitude of a'{X) in a picoplankton-dominated environment {i.e. at very low 

chlorophy!l-a concentration), seen when superimposing the dominant mean size class 

spectra onto Figure 5.5 (c). 

5.3.2.2 Specific absorpt ion coefficients of the th ree size classes of phy-

toplaiikton 

T h e model of Uitz et al. (2008) 

Figure 5.6 (b) compares the specific absorption coefficients calculated using the 

three-component model with those of Uitz et al. (2008). The picoplankton coef

ficients from this study are consistently higher than those of Uitz et al. (2008) 

and the inverse holds for nanoplankton. The two approaches yield similar spectral 

shapes, with peaks at 490 nm in the picoplankton spectra attributable to zeaxanthin 

and peaks in the nanoplankton spectra at around 465 nm, thought to be linked to 

the presence of 19'-hcxanoyloxyfucoxanthin and 19'-butanoyloxyfucoxanthiu (Jef

frey and Mantoura, 1997). The microplankton spectra also differ between the two 

approaches (Figure 5.6 b). 

The a^{X) values are higher in the three-component model in the blue region of 

the spectrum and lower in the green region compared with Uitz et al. (2008) and 

they are similar elsewhere. When applying the Uitz et al. (2008) model to globally-

derived chlorophyll-a fields, it is necessary to partition the values into a number 

of trophic classes before estimating fractions of chlorophyll-a associated with each 

size class (Uitz et al.. 2006). In contrast, the mathematical formulation of the three-

component absorption model presented here is a continuous function of chiorophyll-a 

concentration. 

T h e model of Ciot t i et al. (2002) 

Figure 5.6 (c) shows the specific absorption coefficients calculated using the three-

component model and those calculated by Ciotti ct al. (2002). There are large 

differences between the two ap(A), with the three-component model giving consis

tently higher a^{X) values at all wavelengths. For the microplankton, ci',^{X} from 

the three-component model is slightly higher at all wavelengths compared with that 

of Ciotti et al. (2002). The Ciotti et al. (2002) model is not designed to predict how 

the specific absorption coefficient would change as the pigment concentration varies 

(Figure 5.5), unlike the two-component or three-component models or the power-law 

function. 
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5.3.3 Remote-sensing validation 

Remote-sensing reflectances (Rrs(A)) from database F were used to derive the near 

surface chlorophyll-a concentration (C) using the 0C4 algorithm (OReilly et al., 

1998). Figure 5.7 (g) shows a comparison between the in situ HPLC chlorophyll-a 

concentrations (C) and the derived C* concentrations in database F. The two are 

well correlated (r—0.69) with a ME% of 62.6%. Larger difi"ercnces are associated 

with samples in more optically-complex waters where simple band-ratio algorithms 

are known to break down (O'Reilly et a l , 1998). 
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Figure 5.7: The (i*(A) values using the three-component absorption model com
pared with the in sttu a{\) values in database F at the wavelengths of (a) 411 nm, 
(b) 443 nm, (c) 489 nm, (d) 510 nm, (e) 555 nm and (f) 670 nm respectively. The rela
tionship between the in situ chlorophyll-a concentrations (C) and C (0C4 O'Reilly 
et al., 1998) from database F is shown in (g), (h) shows in situ n(443) plotted against 
in situ C in database F with a" (443) calculated using the three-component model 
superimposed, and (i) shows the absolute ME between a''(443) and a(443) plotted 
as a fmiction of a*(443). 

The three-component model (Equation 5.7) was applied to C* using the param

eters in Tables 5,1 and 5,2 to derive a*(A) (total phytoplankton ab.sorption from 

Rra(X)). Comparisons between remotely-sensed and in situ phytoplankton absorp-
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tion values at the six SeaWiFS wavelengtlis are shown in Figures 5.7 (a-f) and indi

cate good agreement at blue and green wavelengths. The ME^ is 32.6 to 34.8% in 

the blue region of the absorption spectrum {411-489 mn), 37.3 to 46.6% in the green 

region (510-555nm) and 72.7% in the red region {670nm). Furthermore, all wave

lengths are well correlated (r>0.70). Between 411-555nm, the three-component 

model underestimates a* at high values (e.g. >0.2m~' see Figure 5.7 a, b, c, d, e 

and h). 

The lowest ME% and the highest r coefficient in the validation was for 443 nm 

{Figure 5.7 b), which may be a result of this wavelength corresponding to the highest 

value of absorption for a given spectra and therefore the lowest .signal to noise ratio. 

The ME between in situ a{443) and a'(443) were computed for each sample in 

database F according to: 

ME,- [m-'l - |(ai,t-{443) - a,,A/(443)|, (5.14) 

where, a(443) is the variable (phytoplankton absorption coefficient at 443nm). i 

denotes the sample, subscript E denotes the estimated variable (a''(443)) and the 

subscript M denotes the measured variable (a(443)). Figure 5.7 (i) shows the abso

lute ME at 443nni plotted as a function of a''(443). Using a log-linear fit, a strong 

correlation was found between the absolute ME at 443nm and a^(443) (r - 0.81, p 

< 0.001). 

5.3.4 Global application 

The three-component absorption model was applied to daily, Level 3. SeaWiFS 

chlorophyll-a composites for May 2005 to produce a monthly composite of total 

phytoplankton absorption and the absolute and relative estimated error (Figure 

5.8). Any values greater than 12.2ragni"^ chlorophyli-a were masked (as the three-

component model was fitted to database E which ranged from 0.04 to 12.2 rngm""*). 

The wavelength of 443 nm was chosen for the example as it was found to have 

the highest correlation with the in situ data (Figure 5.7 b). The absolute error 

was estimated according to the log-linear fit described in Figure 5.7 (i), and the 

relative error percentage was estimated by dividing the absolute error by a*(443) 

and multiplying by 100. 

For May 2005. high levels of a* (443) are seen in the sub-Arctic associated with the 

boreal Spring blooms, and in coastal upwelling zones such as the Bengucla, southern 

North Sea and the around the Amazon outflow (Figure 5.8). Lower a'(443) values 

are found in the sub-tropical oligotrophic gyres. Assuming accurate atmospheric 

correction, the estimated absolute error is seen to increase with increasing a*(443) 

according to the log-linear fit (Figure 5.7 i). The estimated relative error is shown 

to be less than 20 % in the majority of the global ocean increasing to > 40 % in the 
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Figure 5,8: The total a"{44'A) values for May 2005, using SeaWiFS daily compos
ites, with the estimated absolute and relative errors, aud the micro-, nano- and 
picoplankton Q' '(443) values calculated according to the three-component absori>-. 
tion model. Dark grey pixels represent land, and light grey pixels represent missing 
data due to cloud co\'erage. high sun zenith angles or chlorophyll-a concentrations 
> 12.2 mgm~^. White pixels represent inland and coastal waters <200ni (medium 
grey for a'{443) |ME%]). 

highly eiitrophic regions. On average over the global ocean, the estimated absolute 

error is 0.002[m"'| and the estimated relative error is 9.5%. 

Figure 5.8 also shows the estimated absorption coefficient of the three size classes 

for May 2005. Absorption by micToplankton (a^(443)) is high in the sub-Arctic and 

upwelling zones associated with blooms of diatoms and dinoflagellates; elsewhere 

a;'^(443) is low. Similar to microplanktnn, nanoplankton absorption (fl^(443}} con

tributes mainly to the eutrophic and mesotrophic regions. However, when compared 

with a^(443), their contribution extends offshore of the coastal upwelling zones and 

higher o* (443) values are found in the South and North Atlantic convergence and in 

equatorial regions. Pieoplankton are seen to act as a background component with 

small variability in Op{443) globally. In comparison with micro- and nanoplankton. 

ap(443) is higher in the sub-tropical oligotrophic gyres. 

A thorough discussion of the results in this chapter axe provided in Chapter 7 

(section 7.2.3.2) and the potential applications of the three-component absorption 
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model are also described in Chapter 7 (section 7.3.1). 

5.4 Summary 

A model has been developed that calculates the phytoplankton absorption coeffi

cient at various wavelengths based on three-component populations of phytoplank

ton which can be linked to three size classes of phytoplankton (pico-, nano- and 

microplankton). The model was fitted to a database containing HPLC pigment 

and a{\) measurements and compared with a power-law model and the two compo

nent model, which were also fitted to the same database. Results from this chapter 

indicate: 

• The new three-component absorption model provided a better fit to absorp

tion and chlorophyll-a data than the two component model, as indicated by 

retrieving lower mean errors when fitting the three models to the same dataset. 

• The new three-component model is an improvement on traditional power-law 

models in that the parameters of the model offer direct biological and bio-

optical interpretation, and that the specific absorption coefficients are con

strained between limits set by the values of those of pieopiankton and mi

croplankton. 

• The new three-component absorption model extends the model of Sathyen-

dranath et al. (2001) and Devred et al. (2006) by introducing a third compo

nent and this implementation yields a better representation of both a*(A) and 

a(X) at low chlorophyll-a concentrations. 

• The computed size-specific a*(A) values were compared with those derived 

by Ciotti et al. (2002) and Uitz et al. (2008). Unlike the model of Ciotti 

et al. (2002), the three-component model can be used to predict how ci*(A) 

would change with varying pigment concentrations. Unlike the model of Uitz 

et al. (2008), when applying the three-component model to globally-derived 

chlorophyll-a fields, the model can be applied to a continuum of chlorophyll-

a concentrations without having to rely on a small number of class intervals 

indicative of trophic regimes. 

• The three-component model was applied to remotely-sensed chlorophyll-a 

fields and validated using independent in situ data which indicated good agree

ment (ME% is 32,6 to 34.8% from 411-489nm). 

• Assuming accurate atmospheric correction, the new three-component absorp

tion model can estimate the absorption coefficient of phytoplankton from satel

lite with an average mean error of 0.002 |m~"̂ ] (ME% of 9.5 %) over the global 

ocean at 443 nm. 
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Seasonal and interannual variability 

in phytoplankton size class from 

10-years of satellite observations: 

The intrinsic link between physics 

and biology 

6.1 Introduction 

The SeaWiFS sensor has provided satelUte ocean colour observations for over a 

decade (McClain, 2009). This has led to a variety of studies assessing both temporal 

and spatial changes in phytoplankton distributions and biological production (Gregg 

and Conkright, 2002; Antoine et al., 2005; Behrenfeld et al., 2006; Polovina et al., 

2008; Martinez et al., 2009). Whereas there are a number of satellite-based PFT 

algorithms available, there are a limited number of studies that have attempted to 

determine seasonal and interannual variability in phytoplankton communities over a 

10-year period (Alvain et al., 2008; Devred et al., 2009; Uitz et al., 2010). Yet such 

information is of paramount importance if we are to improve our understanding of 

the ocean's role in the carbon cycle needed to help predict future changes in our 

climate. 

In this chapter, the three-component model (developed in Chapter 4) is applied 

to ocean colour observations from a 10-year period (1997-2007) to estimate the 

chlorophyll-a concentration and fractional contribution to total chlorophyll-a from 

three phytoplankton size classes (micro-, nano- and picoplankton) within the global 

ocean. Seasonal and interannual variations in phytoplankton size class are investi

gated, with the aim of revealing a greater understanding of the evolved community 

composition, its spatial and temporal pattern and its relation to the underlying 

physics. 
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6.2 Methodology 

6.2.1 Interannual variability in the NASA sateUite 

chlorophyll-a algorithm 

As the three-component model uses the total chlorophyll-a concentration as an input 

to calculate the fractional contributions of three phji^oplankton size classes, when 

applying the three-component model to satellite-derived total chlorophyll-a data 

over a 10-year period, it is essential to test the satellite chlorophyU-a algorithm 

for any systematic interannual variability. Any small systematic deviations m the 

input may propagate through the calculations, particularly considering the three-

component model is non-hnear 

In Appendix B, the NASA 0C4 algorithm (O'Reilly et al, 1998, 2000) was 

tested for systematic interannual variability using 822 co-located remote-sensing 

reflectances, at SeaWiFS visible wavelengths, and m situ chlorophyll-a measure

ments from the NOMAD dataset, over the period of 1995-2007 Results indicate 

that given the regional and seasonal variability m the NOMAD dataset, one can

not discern any systematic interannual variability in the performance of the NASA 

algorithm, and that in the years where there were plenty of measurements, that 

were evenly distributed over the chlorophyll-a range, the 004 algorithm appears to 

perform without any systematic bias Considering the three-component model has 

been fitted to, and verified against, data from 1997 to 2007, results suggest that 

the three-component model can be applied to the 10-year dataset, and interannual 

variability m the results can be analysed without concern of systematic bias m the 

input 

6.2.2 Comparison of the three-component model output 

when using the OC4 chlorophyll-a algorithm and the 

GSM chlorophyll-a algorithm as input 

Various algorithms have been proposed to detect the total chlorophyll-a concen
tration from satellite data, hence choosmg an appropriate satellite algorithm for 
input to the three-component model is of paramount importance Two of the most 
common algorithms currently used for global application are the 0C4 algorithm 
(O'Reilly et al, 1998, 2000), currently m operational use by NASA, and the semi-
analytical Garver-Siegel-Maritorena (GSM) algorithm (Maritorena et al, 2002) In 
Appendix C, the three-component model is applied to monthly chlorophyll-a images 
m 2003, derived from SeaWiFS reflectance data, using both the GSM and the 0C4 
algorithm 

Over the 12 months of 2003, results from Appendix C indicate that using the 
004 algorithm as input to the three-component model, microplankton chlorophyll-
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a is 0.020 mgm~^ higher (microplankton percentage 1.5% higher), nanoplankton 

chlorophyll-a is 0.022 mgm~^ higher (nanoplankton percentage is 1.9% higher) 

and picoplankton chlorophyll-a is 0.005 mgm~^ higher (picoplankton percentage 

is -3.4% lower) globally, in comparison with using the GSM algorithm as input 

to the three-component model. These differences are primarily pronounced in the 

meso-eutrophic regions as opposed to the oligotrophic areas, which exhibit smaller 

differences. Additional spatial differences were observed depending on season and 

trophic level. Despite these differences, the two algorithms yield temporal patterns 

that are highly correlated for pico- nano- and microplankton (r ~0.87). Therefore, 

conclusions drawn by either input algorithm, regarding phjdioplankton seasonal and 

interannual cycles, are generally insensitive to this choice of satellite chlorophyll-a 

product. 

As the 0C4 chlorophyll-a algorithm is in operational use by NASA, and has been 

extensively studied and validated to within ±35 % accuracy in case 1 waters (Gregg 

and Casey, 2004; Bailey and Werdell, 2006; McClain, 2009), it was chosen as input 

to the three-component model to investigate seasonal and interannual variability in 

phjrtoplankton size class. 

6.2.3 Sensitivity analysis of the three-component model 

Chlorophyll-a retrievals from ocean colour sensors are thought to be representative 

of the first optical depth. Within the first optical depth, parameters of the three-

component model have been shown to vary between datasets (see Chapters 4 and 

5). When applying the three-component model to satellite chlorophyll-a retrievals, 

it is essential to grasp how sensitive the model is to changes in its parameterisa-

tion. In Appendix D, a sensitivity analysis was conducted on the three-component 

model in order to quantify how sensitive the model is to realistic variations in its 

parameterisation, within the first optical depth. 

The results fi:om the sensitivity analysis indicate that nanoplankton are the most 

sensitive size class to variations in model parameters, as four parameters are needed 

to predict the chlorophyll-a concentration (mgm~^) and the percentage contribu

tion to the chlorophyll-a concentration of nanoplankton (C^, C ^ , Sp and Sp^n), 

in comparison with only two for pico- (C^ and Sp) and microplankton ( C ^ and 

Sp,n)- Percentage differences indicate pico- and nanoplankton are most sensitive 

in oligotrophic and mesotrophic areas. Absolute chlorophyll-a differences for the 

three size classes increase with total chlorophyll-a up to a saturation point. On 

average, over the global ocean, microplankton percentage difference (+ or - around 

the mean) was found to be 4.3 % (0.016 mgm~^ absolute chlorophyll-a), nanoplank

ton 10.9% (0.029 mgm-2 absolute chlorophyll-a) and picoplankton 6.6% (0.013 

mgm"^ absolute chlorophyll-a). These percentages differences lie within, and may 

partly correspond with, the errors in the three-component model when applied to 
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satellite data and compared with in situ measurements (see section 4 4.3). 

6.2.4 Application of the three-component model to the 

Global Ocean 

In Chapter 4 the three-component model was developed using an extensive dataset 

from the Atlantic Ocean (AMT cruises 5 to 15) The model was also validated 

against in situ data from the Atlantic Ocean (AMT cruises 2 to 4) and the NO

MAD dataset, which incorporated, m addition to samples from the Atlantic Ocean, 

samples from the North Pacific, the California Current, the Scotia Sea, the East 

China Sea and the Japan Sea Furthermore, using a co-located satellite and in 

situ dataset developed m Chapter 3, the model was validated against samples in

corporating the North and South Atlantic Oceans, the North Pacific g5T:e and the 

Mediterranean Sea 

Using a separate in situ dataset from the equatorial Pacific, Brewm et al. (2010a) 

found the three-component model to perform with a 4 4 to 9.4 % error m phytoplank-

ton size class percentage chlorophyll-a estimates (9 4% for picoplankton, 4 4% for 

nanoplankton and 7.2% for microplankton), which is comparable to the validation 

results m Chapter 4. Furthermore, using a large global pigment database, incorpo

rating samples from the Pacific and Indian Oceans, Hirata et al (2011) also found 

the total chlorophyll-a concentration and ph5rtoplankton size classes to be highly 

correlated Its also worth noting that, when applied to satellite data and validated 

with m situ data, the three-component model compares well with the model of Uitz 

et al (2006) (sections 4 4 3 and 4 4 5), which was developed using a case 1 database 

with a larger geographic coverage than used m this thesis Therefore, based on this 

evidence the three-component model appears suitable for global application m case 

1 waters 

6.2.5 Satellite data and computational processing 

6.2.5.1 Seetsonal analysis 

A total of 3633 daily Level 3 mapped chlorophyll-a SeaWiFS global images, encom
passing the time period from the 1®' October 1997 to the 30*̂  September 2007, were 
used for analysis. The spatial resolution of each image was 1/12° by 1/12° at the 
equator The three-component model (Equations 4 4 to 4 7) was run on each daily 
image, on a pixel by pixel basis, to derive the chlorophyll-a concentration (mgm~^) 
and the percentage contribution to the chlorophyll-a concentration of the three size 
classes (pico-, nano- and microplankton) resulting in six images for every single Sea
WiFS image Parameter values from Table 4.1 were used, as these were found to 
compare well with in situ measurements when applied to satellite data (see section 
4 4 3). All the daily images were then pooled into their respective month and 120 

120 



Seasonal and interannual variability in PSC 

monthly average composites, from October 1997 to September 2007, were produced 

for each of the six products and total chlorophyll-a. 

Global climatological seasonal maps of size-specific chlorophyll-a and the percent

age contribution of each size class to total chlorophyll-a were produced, by averaging 

the same month of each year for the 10 year period, on a pixel by pixel basis (12 

monthly cUmatological images for each product). To discern phytoplankton class-

specific spatial variability, the 120 monthly average composites for the six products, 

from October 1997 to September 2007, were rescaled to 1/3° by 1/3° resolution 

in order to keep computing time at a reasonable level. Then for each pixel, the 

coefiicient of variation, defined as the ratio of the standard deviation to the mean 

value, was calculated over the entire time-series. Two latitudinal-times transects 

along 30° W in the Atlantic Ocean (approximately following the AMT cruises) and 

140° W in the Pacific Ocean were also used for analysis. 

6.2.5.2 Interannual analysis 

For interannual analysis, monthly anomalies of total chlorophyll-a, size-specific 

chlorophyll-a and the percentage contribution of each size class to total chlorophyll-

a were produced, by subtracting each monthly climatology from the corresponding 

month of the time-series, on a pixel by pixel basis (120 anomaly images for each prod

uct). For comparison with physics, for the same time period (1997-2007), AVHRR 

Pathfinder 5 monthly mean SST data at 4 km resolution were obtained from the 

NASA PO.DAAC website (http://poet.jpl.nasa.gov/). In addition, monthly mean 

values of the Sea Surface Height Anomaly (SSHA) were downloaded from the Archiv

ing, Validation and Interpretation of Satellite Oceanographic Data website (AVISO, 

http://www.aviso.oceanobs.com/). The gridded SSHA data are calculated by com

bining Topex/Poseidon altimetry data. 

Monthly stratification estimates were calculated using monthly global den

sity data, from the Simple Ocean Data Assimilation (SODA) database 

(http://www.atmos.umd.edu/~ocean). This database assimilates available field ob

servations. Following the method of Behrenfeld et al. (2006), the density difference 

between the surface and a depth of 200 m was used as a measure of stratification. 

In comparison with the other products, monthly stratification estimates were only 

available from 1997 to 2004. 

Global cUmatological seasonal maps of SST, SSHA and stratification were pro

duced, by averaging the same month of each year for the 10 year period (7 years for 

stratification), on a pixel by pixel basis (12 monthly climatological images for each 

product). Monthly anomahes of SST, SSHA and stratification were calculated by 

subtracting each monthly climatology from the corresponding month of the time-

series, on a pixel by pixel basis (120 anomaly images for each product). All SST, 

SSHA and stratification anomalies were rescaled to 1/3° by 1/3° resolution. 
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Two climate indices were used to compare mterannual variations in size class 

The multivariate ENSO index (MEI) was downloaded from the National Oceanic 

and Atmospheric Administration (NOAA) website (http //www esrl noaa gov/) 

to be used to compare with the size class anomalies Furthermore, the 

Indian Ocean Dipole Mode Index (DMI) was also downloaded from the 

Japanese Agency for Marine-Earth Science and Technology (JAMSTEC) website 

(http //-ww^v.jamstec go jp/frsgc/research/dl/iod/) This DMI is based on output 

from the HadlSST model The HadlSST model is a set of SST data m monthly 1° 

area grids, from 1870 to present 

6.3 Results 

6.3.1 Seasonal climatoligies 

Figures 6 1 though to 6 6 show chmatological maps of microplankton chlorophyll-a, 
microplankton % total chlorophyll-a, nanoplankton chlorophyll-a, nanoplankton % 

total chlorophyll-a, picoplankton chlorophyll-a and picoplankton % total chlorophyll-
a, respectively Microplankton chlorophyll-a is the highest m coastal upwelling sys
tems all year round and exhibits high values m the temperate and subpolar latitudes 
during spring and summer (Figure 6.1), elsewhere microplankton chlorophyll-a is 
generally quite low The distribution is reflected m their percentage contribution 
to total chlorophyll-a (Figure 6.2) where microplankton contribute highly in coastal 
upwelling systems, and temperate and subpolar latitudes during spring and summer 
(^40-70 %) Percentage of microplankton declines to '^20 % along the equatorial 
Pacific and as low as '^10 % m the subtropical gyres Microplankton appear to be 
highly influenced by season m the Northern and Southern latitudes 

Nanoplankton chlorophyll-a (Figure 6 3) exhibit similar patterns to microplank
ton, except their contribution appears to extend further offshore and nanoplankton 
chlorophyll-a is higher m the South and North Atlantic convergence and m equa
torial regions (~0.3mgm~^) Furthermore, nanoplankton appear less influenced 
by season in comparison with microplankton The percentage contribution to to
tal chlorophyll-a of nanoplankton (Figure 6 4) does not reflect the nanoplankton 
chlorophyll-a distribution Instead, nanoplankton are shown to maintain a back
ground population of between 20-50 % of the total chlorophyll-a concentration, with 
relatively lower contributions (~20 %) m the subtropical gyres and relatively higher 
contributions m the coastal upwelling systems, and temperate and subpolar lati
tudes (^50%). Where the microplankton % chlorophyll-a is very high (eg the 
Congo River Plume and the Arabian Sea m August and September, see Figure 6 2), 
the nanoplankton % chlorophyll-a is relatively low (-̂ 20 %) Note that regions such 
as the Congo River Plume are considered case 2 environments which may influence 
the results considering the 0C4 chlorophyll-a algorithm was used as input 
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Picopiankton chlorophyll-a (Figure 6.5) exliibit a relatively homogeneous pattern 

ranging from ('^0.01-0.lOmgm"^) and appear less influenced by season in com

parison with micro- and nanoplankton. Lower picopiankton chlorophyll-a ('^0.01-

0.04 mgm~^) is observed in the subtropical g>Tes and relatively higher values in 

mesotrophic and eutrophic regions ('^O.lOmgrn"^). However, the percentage con

tribution to total chlorophyiJ-a of picopiankton (Figure 6.6) displays large spatial 

variability with very high values in the subtropical gj'res (^^70 %), reducing to ~40 % 

in equatorial regions and decreases to as low as ~ 1 % in the coastal upwelling sys

tems, and temperate and subpolar latitudes during spring and summer. Further

more, the picoplajikton % total chlorophyll-a appears highly influenced by seasonal

ity, reflecting the inverse pattern to microplankton % total chlorophyll-a in Figure 

6.2. 

On average over the 10-year period in the global ocean (case 1 waters) picopiank

ton were found to contribute ~48.9?^' (average C* \'alue -^O.OSmgm"^}, nanoplank

ton '^34.9% (average C* value ~0.06mgm"-*) and microplankton '^16.2% (average 

C^ value '-^0.05 mgm"'') of the total chlorophyll-a concentration. 
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6.3.2 Phytoplankton size class-specific spatial variability 

Figure 6.7 shows the geographic distribution of the coefficient of variation of the 

three size classes for size-specific chlorophyll-a and % total chlorophyl!-a. Figure 

6.7 illustrates the temporal variability of the three size classes. The coefficient of 

variation is strongly influenced by the seasonal cycles of the three size class of phy

toplankton. Regarding the size-specific chlorophyll-a concentrations, microplankton 

show maximum coefficients of variation in subpolar regions, coastal npwclling areas 

and around the Amazon outflow. Also noted is some degree of variability along the 

equatorial Pacific at 0° latitude. Microplankton are generally stable in the subtrop

ical gyres, Nanoplankton size-specific chlorophyll-a show lower levels of variation, 

with higher levels around the Amazon outflow and in convergence zones between 

oligotrophic and mesotrophic regions. Picoplankton size-specific chlorophyll-a shows 

little variation globally. 

Regarding the % contributions of the three size classes to total chlorophyll-a, 

both microplankton and picoplankton display large variations in comparison with 

nanoplankron. Maximum coefficients of variation, for pico- and microplankton, are 

found in the subpolar regions, coastal upwclling areas and in Arabian Sea. This 

is consistent with the seasonal cycles in such regions, associated with nutrient and 

light regimes, monsoonal cycles and river seasonality. Such cycles control the ac

cumulation of large phytoptankton blooms, associated with the microplankton size 

class, and as a result influence not only the % total chlorophyll-a of microplanktoii, 

but also the % total chlorophyll-a of picoplankton which, due to the formulation of 

the three-component model, maintain a maximum level of chlorophyll-a in eutrophic 

environments. 

Results from Figure 6,7 are consistent with the analysis of the climatological 

maps. Regarding size-specific chlorophyll-a, picoplankton display a relatively homo

geneous pattern (background level), however, in terms of % total chlorophyll-a it is 

the nanoplankton that are relatively homogeneous. Microplankton clearly exhibit 

large temporal dynamics in both size-specific chlorophyll-a and % total chlorophyil-

a. 

6.3.3 Latitudinal transects 

Atlantic latitudinal transect 

Figure 6,8 shows Hovmoller diagrams of a latitudinal-time transects along 30° W in 

the Atlantic Ocean for piro-, nano- and microplankton % chlorophyil-a, in addition 

to their associated anomalies. The oligotrophic gyres are clearly evident as indexed 

by high % contribution of picoplankton to the total chlorophyll-a concentration. 

The more productive areas are found around latitudes higher than 40° N, lower 

than 40° S and in equatorial regions ^0°. Strong seasonality is observed poleward 
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Figure 6.7: Geographic distribution of the coefficient of variation of the three size 
classes (the standard deviation divided by the mean) for size-specific chlorophyli-a 
and % total chlorophyll-a. White pixels refer to bathymetry <200m, dark grey refer 
to land and light grey refer to pixels not sampled due to high sun zenith angles or 
cloud co\'erage. 

of 40° latitude and the progressively later timing of the North Atlantic blooms, with 

increasing latitude, can be observed between 35-45° N. However, the Intertropical 

Convergence Zone (ITCZ) and high latitude cloud cover mask large areas. 

The anomaly maps (Figure 6.8) indicate higher interannua! variability at the 

boundaries between the oligotrophic and mesotrophic regions (i.e. ^^40° latitude (N 

and S)). At 40° N, higher picoplankton anomalies are observed between 1998-2001 

and again from 2006-2007. Lower picoplankton anomalies are observed between 

2001-2005. The inverse of this is shown for the nano- and microplankton in this 

region. At ~40° S, a large positive picoplankton anomaly is observed in 2002 (nega

tive for nanoplankton) where the South Atlantic oligotrophic gyre appeared to have 

migrated further south than nsnal. 

Pacific la t i tudinal t ransec t 

Figure 6.9 shows Hovnioller diagrams of a latitudinal-time transects along 140° W 

in the Pacific Ocean for pico-, nano- and microplankton % chlorophyl!-a, in addition 

to their associated anomalies. Similar patterns are observed to that of the Atlantic 
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Figure 6.8: Hovnioller diagrams showing latitudinal transects along 30° W of pico-
nano- and microplankton (top three images) and their associated anomalies (bottom 
three images) over the 10-year period (October 1997 to September 2007) 

latitudinal transect, with the north and south Pacific gyres dominating at between 

15-40° latitude (as indexed by high picoplankton % chlorophyll-a) and the more 

productive areas found around latitudes higher than 40° and in equatorial regions 

^0" . However, certain differences do rise. In both of the gyres, slightly higher 

picoplankton % chlorophyll-a values are observed in the Pacific gyres when compared 

with the Atlantic gyres. Regarding the Pacific latitudinal transect, the productive 

zone at the equator is larger in latitudinal extent than the corresponding Atlantic 

region (Figure 6.8). The equatorial Pacific shows minimal seasonal variability in 

comparison to the Atlantic and there is also an enhanced level of microplankton % 

chlorophyll-a found at the equator and at ~10° S. To a lesser extent, when compared 

to the Atlantic transect (Figure 6.8), the ITCZ and high latitude cloud cover still 

mask large areas of the transect. 

The major feature of the corresponding anomaly maps (Figure 6.9) is in the 

equatorial region of the Pacific transect. In this region (-20 to 10° latitude) large in-

terannual variations are observed. Between 1997-1999, large positive picoplankton 

132 



Seasonal and interannual variabilitv in PSC 

I I I « f I I I T ' T T I * r I f • 1 I 

i';?!*?!?^ 
N Q n o ( K O 

1 TrrSfV*!^ 
I 1 -" 1 ; -I J , 
. -. • I - ^ • • " 1 

I l , . . . . J U . J . i 

I 0 

i«ge 2000 900* ID04 l o w noB 
• - ' • • > - ! 

I M C 1000 » 0 : 2001 200* 20Ca 

Mem [»e*l 
' l l . | l " l ' ^ l ' ^ ' | H ' l 

xr 

1l^|[?!^MIf'' 

tOM 2000 2002 2001 2001 200* 

70.0 

U.O 

58.0 

•1.0 

41.0 

J5.0 

3B.0 

31.0 

M.O 

7.D 

0 0 

I 

u 

40 

20 

0 

-20 

-*0 

-n 

fSeo onomotf (HC^ Nono 

'.-.'* 
t > 

1 >̂  

• k • 1 i 

anomolv \%(f] 

i 
1 1 *-' 

Micro onomaly {HC*) 
- . T T " - ' - T " ' f ' > ' l * " 

f '^* " ? t * ' ^ ' * 
e.ool 

6.001 

4.001 

J 00 h i 

law 1000 2002 2004 moo 2001 IBM tan >em ioot M M iao« 
t»or 

ISM 2000 2001 1001 SXM X M 

0.00 

-s.oo 

- 4 . 0 0 

-6 .00 

- 8 , 0 0 

- 1 0 . 0 0 I 
Figure 6.9: Hovinoller diagrams showing latitudinal transects along 140° W of pico-
nano- and microplankton (top three images) and their associated anomalies (bottom 
three images) over the 10-year period (October 1997 to September 2007) 

anomalies are seen (negative for nano- and microplankton), then from 1999-2004 

negative picoplankton anomalies are seen (positive for nano- and microplankton) 

and then between 2005-2006 large positive picoplanktoii anomalies are again seen 

(negative for nano- and microplankton). This signatnre is clearly linked to ^Tiria-

tions in the ENSO cycle, with large picoplankton anomalies (negative for nano- and 

picoplankton) occurring during El Nino events of 1997-1998 and 2005-2006 at this 

longitnde. This implies a strong correlation between the ENSO cycle and phyto-

plankton community in this equatorial region of the Pacific. 

6.3.4 Interannual influences on phytoplankton size class 

Figure 6.10 show a comparison between the DMI and MET for the time period of 

October 1997 to September 2007. Between October 1997 and December 1998 the 

two are well correlated (r—0.82) between January 1999 and September 2007 this 

correlation is weaker (r=0.24). 
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Figure 6.10: Comparison between the DMI and MEI for the time period of October 
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Figure 6.11: Pixel by pixel correlation between the DMI and the total chlorophyll-
a anomaly as well as the DMI and phytoplankton size percentage chlorophyll-a 
anomaly in the Indian Ocean 

Figure 6.11 shows a pixel by pixel correlation between the DMI and the to

tal chlorophyil-a anomaly as well as the DMI and phytoplankton size percentage 

rhlorophyll-a anomaly (%C*) in the Indian Ocean. Over the 10-year period, strong 

positive correlations are observed between DMI and total chlorophyll-a, DMI and 

microplankton %C' and DMI and nanoplankton %C"' just off the Java Trench near 

the coast of Indonesia in the Indian Ocean. An inverse correlation is obsen'ed be-
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tween DMI and picoplankton %C^ in the same region. In contrast, in the Arabian 

Basin, strong negative correlations are observed between DMI and total chlorophyll-

a, DMI and microplankton %C'' and DMI and nanoplankton %C' . In the same area, 

strong positive correlations are observed between DMI and picoplankton % C . 

Figure 6.12 shows a pixel by pixel correlation between MEI and total chlorophyll-

a anomaly as well as MEI and the phytoplankton size class %C'* anomaly in the 

Global Ocean. Over the 10-year period, weaker correlations are observed in the At

lantic Ocean in comparison with the Pacific and Indian Ocean.s. Along the equatorial 

region of the Pacific and Indian Oceans, strong correlations are obserwd between 

MEi and total chlorophyi!-a anomaly as well as MEI and the ph>1:oplankton size 

percentage chlorophyll-a anomaly (as highlighted in Figure 6.9). Similar patterns 

observed in the Indian Ocean (Figure 6.11) are reflected in Figure 6.12 which may 

be linked to the positive correction between MEI and DMI observed in Figure 6.10. 

The bottom of Figure 6.12 shows a global image of the number of data point used 

in each pixel's correlation between the two variables. In general, below 60° latitude 

the majority of pixels have over 50 data points (out of a possible 120), above 60° the 

number of data points drop below 50. Howe^'er. there is a small area off the west 

coast of Africa (Gulf of Guinea region) where a number of the pixels have below 

50 data points. This is likely to be linked with the ITCZ rendering many pixels 

unusable due to cloud cover. 

In order to partition pixels that are strongly correlated with MEI from those 

that are not, a classification scheme was setup. Any pixels that did not meet the 

following criteria were removed. 

• A correlation coefficient greater than or equal to 0.4 and less then or equal to 

-0.4 (a modest to very strong correlation, see Fowler et al., 1998). 

• A statistically significant correlation (p<0.05). 

• More than 50 data points (out of a possible 120). 

Figure 6.13 shows the results from the classification scheme. Stage 1 (Figure 6.13 

a) shows the results from the initial classification scheme. It can be seen that the 

vast majority of pixels are in the equatorial region of the Pacific and Indian Ocean.s. 

Pixels outside this region are sparse and scattered geographically. Therefore, an 

additional step was introduced which only retained pixels greater than -30° latitude, 

less than 40° latitude, and between 50 to 180° longitude and -180 to -70° longitude. 

Results from this additional step are shown in Figure 6.13 (b). 

In order to test the robustness of the correlation between MEI and phytoplank

ton size percentage chlorophyll-a anomaly, for the allocated pixels (Figure 6.13 b), 

a sensitivity analysis was conducted. Using the sensitivity procedure developed in 

Appendix D. Appendix E tests this correlation by varying the parameters of the 

three-component model and running a model ensemble on a tast case scenario. The 
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Figure 6.12: Pixel by pixel correlation between the MEI and the total chlorophyll-
a anomaly as well as the MEI and phv-toplankton size percentage chlorophyll-a 
aiiunialy in the Global Ocean 

results from the sensitivity analysis indicate that, even when varying the parameters 

of the three-component model beyond the measured parameter variations shown in 

Chapters 4 and 5 (see Appendix D), the very strong correlation between phytoplank

ton size class %C' anomaly and the MEI in the equatorial region of the Pacific and 

Indian Oceans (Figure 6.13 b) was maintained, regardless of parameter variations 

(see Appendix E}. 

In order to investigate further which physical parameters are influencing the 

strong correlation between MEI and phytoplankton size class %C', using only the 

pixels fi-om the classification (Figure 6.13 b), mean anomalies were calculated for 

phytoplankton size class %C*, SST, SSHA and stratification over the area of inter

est for the period October 1997 to September 2007. These anomalies are plotted 

in Figure 6.14. The biology and the physics are highly correlated in these regions. 

Table 6.1 shows a correlation table between %C* phytoplankton size class anoma

lies and the physical parameters shown in Figure 6.14. Microplankton %C'' and 

nanoplankton %C* anomaly are negatively correlated with SST, SSHA and strati

fication. Picoplankton ^ C ' ' anomaly is positively correlated with SST, SSHA and 

stratification. These correlations are high throughout the decade but extremely high 

between October 1997 and December 1998. 

Figure 6.12 indicates that the correlation between MEI and the phytoplankton 
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(b) Stage 2 

Figure 6.13: Classification scheme to partition pixels that were strongly correlated 
with MEI and those that were not. Pixels that were retained are shown in red. 

Table 6.1: Pearson rnrrelation roeffirienta (r values) showing the eorrelation 
between phytoplankton size class anomalies and physical anomalies for the 
pixels correlated with MEI (Stage 2 Figure 6.13) 

Anomalies 

Micro %C' vrs SST 

Nano %C^ vrs SST 

Picx) %C» vrs SST 

Micro %C* vre SSHA 

Nano VrC vrs SSHA 

Pico %C' vrs SSHA 

Micro %C" vrs stratification 

Nano %C^ vrs stratification 

Pico %€" VTS stratification 

1997 to 2007^ 

-0.88 

-0.87 

0.89 

-0,65 

-0.56 

0.59 

-0.92* 

-0.94* 

0.94* 

1997 to 1998' 

-0.93 

-0.98 

0-98 

-0.94 

-0.94 

0.95 

-0.96 

-0.99 

0-99 

1999 to 2007^ 

-0.82 

-0.81 

0-82 

-0.69 

-0.69 

0.70 

-0.83'^' 

-0.82^ 

0.84"' 

"T ime series from Oct 1997 to Sep 2007 
'Time series from Oct 1997 to Dec 1998 
^Tinie series from ,Iaii 1999 to Sep 2007 
'T ime series from Oct 1997 to Sep 2004 
' 'Time series from Jan 1999 to Sep 2(K)4 
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Figure 6.14: Plots of phytoplankton size class anomaly and the anomalies of SST, 
SSHA and stratification for the pixels classified as well correlated with MEI (Stage 
2). Note that for the picoplankton anomaly (c) the y-axis is reversed in comparison 
with the nano- and microplankton y-axis (a and b) 
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size % C anomaly varies depending on geograpiiical region. Further analysis indi

cates that the majority of pixels in the classifiration (Figure 6.13 b) can be split into 

two separate regions according to the relationship between MEI and phytoplankton 

size class %C* anomalies, eaeh of which can be divided further according to geo

graphical region. F'̂ igurc (3-15 highlights tliese four regions. In two particular regions 

(orange pixels), in the equatorial Pacific (between -15° to 15° latitude and between 

160° to 180° longitude and -180° to 80° longitude) and the Arabian Basin (between 

-15° to 20' latitude and between 52° to 88° longitude), as MEI increases there is an 

observed decrease in microplankton 9(0" and nanoplankton %€'' and an increase in 

picoplankton %C^. SST. SSHA and stratification. In the two regions shown in blue 

pixels, around Indonesia and Papua New Guinea (on both the Indian Ocean side 

and the Pacific, between -15° to 15° latitude and between 90° to 158° longitude) 

and in the central North Pacific (between 17° to 40° latitude and between 170° to 

180° longitude and -180° to -130° longitude), the inverse is seen and with increasing 

MEI there is an observed increase in microplankton % C and nanoplankton %C' 

and a decrease in picoplankton % C , SST, SSHA and stratification. On large scales, 

ME! reflects both changes in chlorophyll-a (and hence phytoplankton size structure) 

and the underlying physics, consistent with known processes of equatorial upwelling 

(Chavez et al.. 1999). 

V .^mKU^*^*. 

T MEI = t Micro T Nano i Pico I Stratification i SST i SSHA 
T MEI = i Micro l Nano T Pico T Stratification T SST T SSHA 

Figure 6.15: Two separate regions of the equatorial Pacific and Indian Oceans that 
respond differently during ENSO transitions. These regions can be further split 
according to geographical region. 

Results from Table 6.1 highlight that the phytoplankton size structure is well 

correlated with the physical parameters (SST. SSHA and stratification) but that 

this correlation is particularly strong during October 1997 and December 1998. 

In order to investigate whether the same applies to the relationship between MEI 

and size class, separate correlation maps for the October 1997 to December 1998 

period and the January 1999 to September 2007 period were produced (Figure 6.16). 

Similar to Table 6.1, very high correlations between MEI and size class were observed 

between the October 1997 to December 1998 period in comparison with moderate 
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correlations during the Januarv^ 1999 to September 2007 period (Figure 6.16). This 

suggest that large ENSO events (e.g. 1997-1998 period, see Figure 6.10) have a 

prominent influence on the phytoplankton size class composition. 

Pico i%C) 1 9 9 7 - 1 9 9 8 Pico (%C) 1 9 9 9 - 2 0 0 7 

60 130 180 -130 -80 

Nono (%C) 1 9 9 7 - 1 9 9 8 

80 130 180 -130 -80 

Nono (%C) 1 9 9 9 - 2 0 0 7 

Lot 

40 
20 

-20 

wm 
5SF 

mm 
^ ^ . - « 

_ — _ j 

so 130 180 -130 -80 

Micro {%C) 1 9 9 7 - 1 9 9 8 

A 

80 130 180 -130 -80 

Micro (%C*) 1 9 9 9 - 2 0 0 7 

-1 .0 -0,8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 6.16: Pixel by pixel correlation between ihe MEI and phytoplankton size 
percentage chlorophyll-a anomaly in the classified pixels (Stage 2 Figure 6.13) for 
both the October 1997 to December 1998 period and the January 1999 to September 
2007 period. 

Figure 6.17 shows the slope and intercepts for the linear correlations between 

MEI and size class for the October 1997 to December 1998 period. These slope and 

intercepts have geographical variations depending on pixel location. In addition, 

mean errors (ME) are provided (Figure 6,17) on a pixel by pixel basis between 

the satellite estimate (three-component model) and the MEI model estimate. The 

majority of the pixels have a ME of less than 8% for ail size classes, with the 

exception of a few small regions in the central equatorial Pacific, off the Java Trench 

and around the coast of North and South America where pico- and inicroplankton 

have a ME as high as 10%. By using the slope and intercepts, on a pixel by pixel 

basis, phytoplankton size %C" anomalies can be modelled as a function of MEI 

during large ENSO events .similar to the 1997-1998 event (Figure 6.10) 

Figure 6.18 shows phytoplankton size %C* anomaly maps for January 1998 from 

the three-component model for the classified pixels (Figure 6.13 b) in addition to 

the modelled anomaly map estimates using the linear relationship between MEI and 

phytoplankton size %C* (Figure 6.17). In general the two estimates are very similar. 
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Pico (SC) slope 
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Figurp 6.17; The slope and intercept of the pixel by pixel linear correlations between 
MEI and phytuplankton size percentage chlorophyll-a anomaly for the classified 
pixels (Stage 2 Figure 6.13). The mean absolute errors (ME) are also provided on a 
pixel by pixel basis between the satellite estimate (three-component model) and the 
MEI model estimate of the phytoplankton size percentage chlorophyll-a anomaly. 

The patterns in the anomalies derived from the MEI model reproduce those derived 

from satellite by the three-component model. The MEI model estimates cover a 

larger spatial area than the satellite estimates, as the MEI model is not constrained 

by cloud or atmospheric conditions that may render pixels unusable in the satellite 

estimates. 

A further advantage of tlie MEI model estimates, in comparison with the 

satellite-based three-component model estimates, is that MEI is available for the 

past 50 years whereas the SeaWiFS sensor is only available from 1997 to the present 

day. Therefore, by searching back through the MEI time-series (Figure 6.19} and 

looking for similar events to that of the El Nino to La Nifia 1997-1998 transition, past 

events can be inferred when there was no available satellite measurements. Figure 

6.19 shows MEI model estimates of phytoplankton size class %C^ anomalies from 

two months July 1972 and December 1973, when a similar ENSO transition to that 

of the 1997-1998 event occurred. Over this 15 month period, according to the MEI 

model estimates, large changes in the community structure of the phytoplankton 

occurred, due to large changes in physical forcing driven by the ENSO transition. 

6.3.5 Summary 

In this chapter, the three-component model developed in Chapter 4 has been applied 

to ocean colour observations from a 10-year period (1997-2007) using the SeaWiFS 

databa-se. Seasonal and interannual variations in phytopiankton size class were 

investigated with the aim of understanding of the evolved community c:ompasition, 
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Figure 6.18: Phytoplankton size percentage chlorophyll-a anomaly maps for Jan
uary 1998 from the satellite-based three-component model for the classified pixels 
(Figure 6.13 b) in addition to the modelled anomaly map €>Htnnates using the linear 
relationship between MEI and phytoplankton size percentage ch!orophyll-a (Figure 
6.18). 

its spatial and temporal pattern and its relation to the underlining physics. Results 

from this chapter indicate: 

• On average over the 10-year period in the global ocean (1997-2001), picoplank-

ton were found to contribute '^48.9% (average C* value ~0.05mgm"^). 

nanoplankton ~34.9% (average C* value '^O.OGmgm"^) and microplankton 

'"16.2% (average Cf„ value ^0.05mgm~*^) of the total chlorophyll-a concen

tration in surface waters. 

• Microplankton exhibit large temporal and spatial differences in both size-

specific chlorophyll-a and % total chloropliyll-a. 

• Nanoplankton absolute chlorophyll-a is more variable than picoplankton but 

less than microplankton. Regarding their frac'tiona! contribution to total 

chlorophyll-a {% range), nanoplankton display a relatively stable pattern. 

• Regardhig the absolute chlorophyll-a concentrations, picoplankton act as a 

background population, although higher concentrations are observed in eu-
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Figure 6.19: Phytoplankton size percentage chlorophyll-a anomaly maps for July 
1972 and December 1973 for the classified pixels (Stage 2 Figure G.13) dcrivetl using 
the Huear relationship between MEI and phyloplankton size percentage chlorophjil-
a (Figure 6.17). Top graph show the 50 year MEI time-series and the locations of 
the two large ENSO transitions (1972-1973 and 1997-1998). 

trophic waters when compared with oligotrophic waters. Their fractional con

tribution to total chlorophyll-a is, however, highly variable. 

• In the equatorial regions of the Pacific and Indian Oceans, pliytoplankton size 

class anomalies arc highly correlated with the ENSO. 

• In the equatorial regions of the Pacific and Indian Oceans, intcrannual changes 

ill phytoplankton size class are highly correlated with changes in SST. SSHA 

and stratification. Microplankton %C* and iianoplankton %C^ are negatively 

correlated with SST, SSHA and stratification and picoplankton %C^ is posi

tively correlated with SST, SSHA and stratification. 

• The MEI appears a useful tool for inferring changes in phytoplankton size 

structure during past El Nino to La Nina events, that pre-date ocean coloiu" 

sensors. 
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Discussion and future research 

7.1 Introduction 

In this thesis, different PFT satellite algorithms, reformulated to detect dominant 

phytoplanktoii size class, were compared and validated using satellite and in situ 

data (Chapter 3). Based on the results, a new algorithm was developed designed 

to detect the fractional contribution of three phjtoplaukton size classes to the total 

chlorophyll-a concentration (Chapter 4). The new algorithm was then implemented 

into a phytoplanktoii absorption model in order to estimate size-fractionated phyto-

plankton absorption as a function of the total chlorophyll-a concentration (Chapter 

5). The new algorithm wa.s applied to 10-years of satellite observations to investi

gate the evolved community composition, its spatial and temporal pattern and its 

relation to the underlying physics (Chapter 6). This chapter discusses the results in 

Chapters 3 to 6 in the context of the general body of knowledge in phytoplankton 

community satellite detection and in marine ecosystem modelling, focusing on the 

Hmitations of the work and its current capabilities. This chapter also addresses the 

impact of the work in other research fields and future projects are outlined. Finally 

tlie conclusions of the thesis are stated in context of its aims and objectives. 

7.2 General Discussion 

7.2.1 Discussion of the satellite phytoplankton size class jn-

terconiparison 

Rtsults from the intercomparison in Chapter 3 (Figures 3.4 to 3.8) show that 

abundance-based models performed well across dataset.'i and trophic levels, indi

cating that information on the size structure of the phytoplankton may in fact be 

latent in the satellite-derived biomass fields. This result supports a variety of in 

situ evidence also suggesting that the trophic status of a pelagic ecosystem may be 

indicative of the phytoplankton community (Ycntsch and Phinney, 1989; Chisholm. 
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1992; Bouman et al., 2005; Piatt et al., 2005). Aiken et al. (2008) postulated that 

the bioenergetic status (BE), i.e. the transformation of light energy (photosynthesis) 

through intermediate stages to the sjoithesis of cells, is the definitive phytoplank-

ton functional process that determines the composition of phj^oplankton taxa, size 

classes and ecosystem trophic status. According to Aiken et al. (2008), this bioener

getic status is quantitatively linked to phytoplankton bio-optical traits (BOTs) that 

are specific properties of phytoplankton size and taxa (BE-BOT hypothesis). Aiken 

et al. (2008) go on to suggest that chlorophyll-a and the slope of the phytoplank

ton absorption spectrum between 443 and 510 nm (directly linked to chlorophyll-a) 

are two principle phytoplankton bio-optical traits that are indicative of phytoplank

ton size, and from a remote sensing perspective, in the open ocean, represent the 

dominant organic influence on the visible light spectrum. The results from the 

abundance-based algorithms in the intercomparison support such a theory. 

Whereas it is difficult to compare the ecological model (model J) with abundance-

based and spectral-response models, as it is based on a complex interaction of eco

logical as well as bio-optical input, commonahties in the other approaches can be 

investigated. The abundance-based models (model C, E, F, G and H) generally 

performed well at detecting dominant microplankton. All these models assume that 

high levels of chlorophyll-a or a(443) (which are well correlated; Bricaud et al., 2004) 

are indicative of microplankton. Models I and B2 also detect microplankton well. 

These two models rely on the assumption that microplankton have a flatter spec

tral shape (i.e. normailised spectrum) to nano- or picoplankton. It is well known 

that, with increasing chlorophyll-a, the spectral shape of a(A) becomes flatter due 

to changes in pigment packaging (Morel and Bricaud, 1981) and from a decrease in 

the relative concentration of accessory pigments (Bricaud et al., 1995). This feature 

is at the basis of the development of Model I and B, therefore, similarities between 

these approaches were expected. 

Abundance-based approaches attribute lower magnitudes of chlorophyll-a to the 

determination of nano- and picoplankton, whereas models B and I attribute a steep

ening in the spectral shape of a(A) in this regard. Again these two features can be 

hnked, as with decreasing chlorophyll-a the spectral shape of a(A) is expected to 

become steeper due to an increase in the relative concentration of accessory pig

ments, again a feature at the basis of the development of Model I. This is also 

consistent with a number of studies suggesting that the absorption efficiency of pig

ments increases in the blue wavelengths with decreasing chlorophyll-a (Duysens, 

1956; Kirk, 1975; Morel and Bricaud, 1981; Sathyendranath et al., 1987; Hoepffner 

and Sathyendranath, 1991), which would ultimately steepen the spectral shape of 

a(A). Regarding model A, a study by Brown et al. (2008) into the origin and global 

distribution of second order variability in satellite ocean color, suggests that model 

A is indirectly attributing lower backscattering anomalies to the determination of 
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smaller sizes (i e nanoeukaryotes) m comparison to higher backscattermg anomalies 
for larger size classes (diatoms) Similar arguments may apply to models B to I con
sidering that nano-picoplankton generally prevail m stratified, stable environments 
which exhibit low heterogeneity, where one may expect lower backscattering anoma
lies, lower levels of chlorophyll-a and a steeper spectral shape of a{X). Alternatively, 
higher backscattering anomalies may be expected m more dynamic heterogeneous 
regions, characteristic of eutrophic environments, of higher levels of chlorophyll-a 
and a flatter spectral shape of a(A). 

The robustness of abundance-based approaches appears to be a result of their 
utilisation of the first order variability in the satellite ocean colour signal, whereas 
spectral-response-based algorithms use the second order variability which is weaker, 
in some respects harder to infer (Garver et al, 1994) and more vulnerable to errors 
in atmospheric processing, despite arguably containing additional information on 
phytoplankton accessory pigments (Alvain et al, 2005) However, with improved 
sensors and atmospheric correction algorithms, spectral-response-based algorithms 
may become more robust 

Comparing and vahdatmg different PFT and PSC satellite algorithms m both 
case 1 and case 2 regions using m situ data is a critical issue with regard to improving 
synoptic estimates of these groups. Chapter 3 attempted to validate different PFT 
and PSC satellite algorithms on a global scale, a procedure which is of particular 
importance for a novel field of study such as the detection of PFl^ from satellite 
data This is especially relevant when other researchers seek to use such synoptic 
information in different areas of biogeo chemical research, including validating other 
models. 

Throughout Chapter 3 the assumption was made that the in situ data is the 
truth, when in fact (as stated m section 3 4) there is uncertainty m the m situ ob
servations, which are not direct measurements of phytoplankton size class In order 
to produce a more robust intercomparison, future efforts need to focus on gathering 
more m situ data over larger spatial scales and clarify uncertainty m using in situ 

proxies to infer phytoplankton size. With extensive field measurements that combine 
both biological and optical measurements, more quantitative development, testing 
and validation of the satellite PFT algorithms can be achieved. Future comparisons 
may benefit from focusing on specific functional groups, m addition to size class, and 
by comparing the satellite results with the output from a variety of biogeo chemical 
models, which may give an indication into how well PFT biogeochemical models 
are performing m comparison with the satellite approaches Furthermore, m this 
rapidly expanding field, novel methods are constantly being developed to identify 
PFTs from remote sensing (e g Bracher et al, 2009, Kostadmov et al , 2009, Mouw 
and Yoder, 2010) which should also be incorporated into future comparisons The 
intercomparison m Chapter 3 neglected backscattering-baaed approaches as they 
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were not publicly available (published or known about) when running the intercom-

parison. Such approaches should be included in the future. This will ultimately 

result in improved approaches and a better understanding of the role of different 

phytoplankton groups in the global carbon cycle. 

7.2.2 Discussion of the three-component model 

7.2.2.1 Using diagnostic pigments to infer size class 

The use of diagnostic pigments to infer size-specific chlorophyll-a values relies heavily 

on two points: 1) the multiple regression analysis from which Equation 2.1-2.4 

originate; 2) the validity of using diagnostic pigments to infer phytoplankton cell 

size. With regard to the multiple regression analysis, confidence can be gained from 

the extensive in situ dataset used in Uitz et al. (2006) to derive the coefficients used 

in equations 1-4 and also a comparison with an independent statistical approach 

which found the two approaches to coincide almost exactly (see section 6.1 Uitz 

et al., 2006). 

Regarding the validity of using diagnostic pigments to infer phytoplankton cell 

size. Chapter 3 highlighted that different diagnostic pigment models can provide 

contrasting results when determining size class. In Chapter 4, the diagnostic pigment 

procedure was improved by accounting for the distinctive picoeukaryote signature 

seen in ultra-ohgotrophic waters. There are still certain discrepancies, and as stated 

by Vidussi et al. (2001), some diagnostic pigments such as fucoxanthin (the main 

indicator of diatoms) may also be found in some flagellates. Therefore, the pigment 

grouping does not strictly reflect the true size of phytoplankton communities', and 

phytoplankton size class derived fi-om pigments are indicative and not definitive. 

However, pigment composition and cell size are two.strong phytoplankton descriptors 

that co-vary with each other. 

Recently, efforts have been made to apply a fucoxanthin adjustment for low 

chlorophyll-a waters, to improve the diagnostic pigment to size class procedure 

(e.g. Hirata et al., 2011; Devred et al., In revision). Such adjustments could eas

ily be applied to the three-component model. However, a quantitative validation 

of such methods is still warranted before doing so. By conducting coupled cell 

count, size-fractionated chlorophyll measurements, phytoplankton absorption mea

surements and HPLC pigment measurements, consensus could be reached regarding 

the limitations of using diagnostic pigments to infer cell size. 

Laboratory studies have shown phytoplankton pigment ratios to vary with en

vironmental stimuli (such as nutrient forcing and light). For in situ studies, a 

much clearer relationship between phytoplankton comniunity structure and pigment 

composition exists. Specifically that the strong relationship between the ratio of 

chlorophyll-a to accessory pigments (Trees et al., 2000) co-varies with the abun-
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dance of different phytoplankton size classes (Fishwick et al, 2006, Aiken et al, 

2007, 2008, Hirata et al, 2008a) Nonetheless, future work should focus on under

standing the effect photoacchmation may have on pigment ratios m the field, m 

order to improve the diagnostic pigment to size class procedure 

7.2.2.2 Three-component model applicability 

The three-component model presented m Chapter 4 is designed for basm-scale ap

plication m the open ocean The model is based on an extensive dataset collected in 

case 1 waters in the Atlantic Ocean Analyses in Chapters 4, 5 and 6 clearly indicate 

that the model is also applicable to case 1 environments outside the Atlantic Ocean 

Prom a satellite perspective, it would seem unwise to use such an approach in case 2 

coastal areas, as the accuracy of chlorophyll-a algorithms are known to break down 

in such environments The poor performance of the chlorophyll-based models at 

the L4 site in Chapter 3 also emphasises this point Furthermore, it remains to 

be revealed whether the relationship between size and chlorophyll-a concentration, 

demonstrated for case 1 waters, also holds in various case 2 waters. 

It IS also recognised that, whereas the model is designed for large-scale applica

tion, model parameters may vary between biogeochemical provinces (Devred et al, 

2006, 2009) The three-component model presented m Chapter 4 is expected to 

break down m cases where there is no clear correlation between the size structure 

of the phytoplankton and the chlorophyll-a biomass, this may include cyanobacte-

nal blooms m the North Atlantic and Baltic, and mrxed PhaeocysUs-diatom blooms 

which are known to co-occur in the Labrador Sea (Sathyendranath et al, 2001) 

7.2.2.3 Size class depth variations 

The vertical structure m phj^oplankton size, estimated using the three-component 
model (Figure 4 19 and 4 20), coincides with previous AMT studies The higher 
chlorophyll-a concentrations and fractional contributions of microplankton in eu-
trophic areas (Figure 4 19 and 4 20) are consistent with AMT observations that 
such waters are dominated by large-celled dmofiagellates and diatoms (Aiken et al, 
2004, Gibb et al, 2000) Barlow et al (2002) found that m communities dominated 
by diatoms or nanofiagellates, pigment absorption was generally uniform with depth 
and attenuating irradiance, supported by uniform microplankton and nanoplankton 
percentages with depth m these eutrophic waters 

Withm the oligotrophic gyres, Prochlorococcus are likely to dominate m the 
surface mixed layer along with some Synecococcus (Barlow et al., 2002), indicated 
by high percentages of picoplankton (Figure 4 19 and 4 20) m these regions at the 
surface According to field studies m the oligotrophic gyres, below the surface layer 
at the nutrient pycnocline (i e the region of nutrient and density change between the 
ohgotrophic surface mixed layer and nutrient replete deeper water), a community 
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dominated by nanoflagellates can be expected (Gibb et al., 2000; Zubkov et al., 

2000; Barlow et al., 2002). This change in community composition is seen in Figure 

4.19 and 4.20, as the percentage of picoplankton is shown to decrease with depth 

down to the chlorophyll-a maximum, and the nanoplankton percentage contribution 

is shown to increase down beyond the chlorophyll-a maximum. Ras et al. (2008) 

found a similar pattern in the oligotrophic gyre of the South Pacific, with proportions 

of nanoplankton greater than 60 % below 200 m. Furthermore, this feature has also 

been observed in other subtropical gyre systems. A deep nanoflagellate population 

has been observed previously in the North Altantic gyre (Claustre and Marty, 1995) 

and North Pacific gyre (Monger et al., 1999). 

The reason for the existence of nanoplankton deep below the chlorophyll-a max

imum are still unclear (Ras et al., 2008). Beaufort et al. (2008) found the deep-layer 

of the oligotrophic gyre in the South Pacific to be rich in coccoliths and, during the 

same cruise, Twardowski et al. (2007) observed a high backscattering ratio suggesting 

that this population may correspond to the coccolithophorid Florispharea profunda. 

It has been suggested that chrysophytes (which contain 19'-butanoyloxyfucoxanthin) 

are better adapted to existence at the base of the deep chlorophyll maximum layer 

(Letelier et al., 1993). 

Claustre and Marty (1995) have suggested that a deep nanoflagellate population 

can develop close to the nutricline and that their presence at very low light levels 

may be governed by nitrate availability as opposed to photoadaption. Claustre 

and Marty (1995) suggest reasons for flagellates at this deep layer may include 

a decoupling between NO3 assimilation and CO2 fixation, possibly from vertical 

migration (although doubtful due to their small size), or alternatively, heterotrophic 

growth may also account for the flagellate maintenance at very low light intensities. 

Other causes could be related to light utiHsation, with conditions in surface waters 

more favourable for phytoplankton which utilise the blue region of the visible EM for 

photosynthesis (e.g. picoplankton) and conditions in deep waters more favourable 

for phytoplankton which utilise longer wavelengths. Further research is needed to 

ascertain the causes of this deep nanoplankton population, particularly whether or 

not it is controlled by photoadaption. 

7.2.2.4 Comparison with previous abundance-based models 

The three-component model relies on the assumptions that the phytoplankton size 

structiure covaries with the total phytoplankton chlorophyll-a biomass, and that 

chlorophyll is added to a system by the addition of larger size classes of phytoplank

ton (Raimbault et al., 1988; Chisholm, 1992; Gin et al., 2000). This supports the 

common consensus regarding the distributions of marine phytoplankton communi

ties, in that there is a background population of smaller cells on which, when certain 

environmental conditions pertain, larger cells are superimposed (Yentsch and Phin-
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ney, 1989, Ciotti et al, 2002; Uitz et al., 2006; Kostadinov et al, 2009) The model 

provides distinct advantages over existing abundance-based models, extending the 

Sathyendranath et al. (2001) and Devred et al (2006) models to three size classes 

and to a wider geographical area It also improves on the model of Hirata et al 

(2008a) by computing the fractional contribution of each size class Furthermore, 

the three-component model is an improvement on the model of Uitz et al. (2006) as 

its parameters have simple biological interpretation. 

Abundance-based models build on existing remote-sensing algorithms for retriev

ing total phj^oplankton abundance (as indexed by its chlorophyll biomass) (e g. 

O'Reilly et al, 1998). However, abundance-based models may fail on occasions 

where there is no clear correlation between size structure and total chlorophyll-a 

biomass The relationship between size structure and total chlorophyll-a biomass, 

seen in database B, generally remained stable over the 7-year period (1997-2004). 

However, as with all abundance-based approaches, such relationships could change 

over time For instance, physiological changes m the phytoplankton due to envi

ronmental changes may necessitate a regular recahbration of the three-component 

model over time An advantage of the three-component model over a purely statisti

cal approach (such as Uitz et al., 2006) in this regard, is that it is strongly supported 

by theory so may be considered more robust 

7.2,2.5 The biological interpretation of the three-component model 

The three-component model is based on the theory that small cells (<20 ̂ m) are 
incapable of growing beyond a certain concentration (represented by the parameters 
C^n and C^ in the three-component model, where m refers to the maximum concen
tration, for cells less than <20 /xm and <2 ̂ m respectively) As noted m Chapters 4 
and 5, C^„ is consistently larger than C^, suggesting that the maximum chlorophyll-
a concentration for a specific size-fractionation (eg <2^m, <5/im, KlOfim and 
<20 ̂ m) may become larger with increasing size Similar results were observed in 
the Mediterranean (Raimbault et al, 1988) and m the coastal waters of Singapore 
(Gm et al, 2000) for other size fractions (e g <1 ̂ m, <5 fim and <10 fim). 

Gm et al. (2000) postulated that an upper limit to the different size classes lies 
m the metabolic constraints of size This was linked to the work of Thingstad and 
Sakshaug (1990), who found that as nutrient concentrations increase, under constant 
light intensity, the growth rate of a particular size class of ph5^oplankton increases 
until eventually some maximum is reached according to Michaelis-Menten kinetics 
(or alternatively a Hollmg type 2 functional response). Gin et al (2000) suggest 
that, as maximum growth rates are known to be inversely related to size (Eppley 
and Sloan, 1966, Peters, 1983; Schlesmger et al, 1981; Geider et al, 1986), once 
the growth rates of small cells are saturated, ambient nutrient concentrations can 
increase enough to allow larger phytoplankton, which generally have larger half-
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saturation constants (e.g. Aksnes and Egge, 1991), to grow. This provides a simple 

explanation why oligotrophic environments are dominated by small cells, whereas 

eutrophic environments are dominated by large cells. 

7.2.3 Discussion of the three-component absorption model 

7.2.3.1 Comparison with laboratory studies 

The size-specific a* (443) values retrieved from the three-component absorption 

model (Figure 5.2) are consistent with previous laboratory studies on microplank-

ton (e.g. diatoms ~0.015-0.048 m^ [mgC]"-^; Sathyendranath et al., 1987; Sakshaug 

et al., 1989; Finkel, 2001) and nanoplankton (e.g. ~0.032-0.092 m^ [mgC]"^; Morel 

and Bricaud, 1981). For picoplankton, the specific absorption coefficient at 443 nm 

(a*(443)) obtained (0.19 m^ [mgC]"-^) is comparable to that derived from laboratory 

monospecific cultures of Prochlorococcus (e.g. 0.19m^ [mgC]~^, Partensky et al., 

1993), although slightly higher than other laboratory studies on picoplankton (e.g. 

0.14-0.16m^ [mgC]-\ Morel et al., 1993; Moore et al., 1995). Turning to field stud

ies, a* (443) obtained for picoplankton in this study is again slightly higher than that 

observed in situ by Babin et al. (1996) at the surface in a picoplankton-dominated 

site in the North Atlantic (0.16 m^ [mgC]"-"̂ ). However, at very low chlorophyll-a 

concentrations (characteristic of picoplankton-dominated sites) the contribution to 

the specific absorption coefficient is not solely attributed to picoplankton in the 

three-component absorption model (as may also be the case in the Babin et al. 

(1996) dataset). There is still some marginal influence from nano- and microplank-

ton (Figure 5.1), such that the estimation of a*(443) when chlorophyll-a concentra

tion is 0.01 mgm~^ is closer to 0.15 m^ [mgC]~^ using the three-component absorp

tion model (Figure 5.5 a), which coincides with the Babin et al. (1996) estimate of 

0.16m2[mga]-^ 

7.2.3.2 Discussion of the comparison with other absorption models 

The power-law model 

Lutz et al. (1996) and Devred et al. (2006) have highlighted that a model based on 

the power-law can fail at extremely low chlorophyll-a concentrations as the specific 

absorption coefficient tends to infinity. However, it is acknowledged that the use 

of a power-law model when constrained to the range of measurements to which it 

is fitted may still be reasonable. When fitted to the same dataset, the errors in 

the power-law model and the three-component model were found to be statistically 

similar (Figure 5.4). The power-law model only requires two parameters in its 

calculation of a(A), whereas the three-component model requires seven. Nonetheless, 

the parameters of the three-component absorption model provide biological and bio-

optical interpretation and, unUke a power-law model, the three-component model 
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can be used to estimate size-specific a(A) 

The model of Devred at al. (2006) 

The higher ap^„(A) and a^(A) values derived from the database E using the two-

component model, when compared with the global dataset used in the Devred et al 

(2006) study (Figure 5 6 a), are hkely to be due to differences m the composi

tion of the two datasets. The global dataset used m Devred et al. (2006) ranged 

m chlorophyll-a concentrations between 0 05 to 28 0mgm~^, whereas the values 

in database E ranged between 0.04 and 12 2mgm~^. It might be expected that 

the higher chlorophyll-a concentrations m the Devred et al. (2006) study would 

yield lower a^{X) values, and that the slightly lower chlorophyll-a concentrations 

in database E could yield higher a*^^{X) values, as smaller or larger phytoplank

ton cells are sampled at these very low or very high chlorophyll-a concentrations. 

The differences could also be indicative of regional or temporal variations in the 

phytoplankton composition 

The higher microplankton specific absorption coefficients in the blue part of the 

spectrum calculated using the three-component model, when compared with the 

two-component model, can be related to the contrasting model formulation Table 

5 1 compares the parameters Sp^n and C^„ derived from the two models Whereas 

C^n JS practically identical in the two approaches, Sp^n is slightly higher in the 

two-component model When fitting the two-component model to database E, the 

assumption is made that as C tends to zero, Cm tends to zero and as a consequence 

Sp^nC^n tends to 1 This assumption is not required for the three-component model 

as implemented in Chapter 5. As highlighted earlier, certain discrepancies can arise 

when using diagnostic pigments as indicators of phytoplankton size class The higher 

percentages of microplankton at low chlorophyll-a concentrations (shown m Figure 

5.1 e) may be an artifact of using diagnostic pigments to infer size class 

Extending the absorption model from two to three-populations (representative 

of three size classes) improved accuracy and representation of the variability m the 

specific absorption coefficient at low chlorophyll-a concentration An advantage of 

the two-component model is that it can be fitted to any chlorophyll-a and absorption 

dataset, whereas the three-component model was fitted m Chapter 5 using additional 

information on the size structure of the phytoplankton m the dataset (HPLC data) 

The model of Uitz et al. (2008) 

When comparing the specific absorption coefficients derived using the three-

component absorption model with those derived by Uitz et al (2008), the picoplank-

ton specific absorption coefficients using the three-component model are consistently 

higher and for nanoplankton consistently lower (Figure 5 6 b) This might be ex

plained to a certain extent by the refinement to the diagnostic pigment procedure 

of Uitz et al (2006) that was used m the three-component model to account for 
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small picoeukaryotes in ultra-oligotrophic environments (see Equations 4.1 and 4.2). 

Discrepancies in the microplankton specific absorption coefficients, between the two 

models are likely to be related to contrasting in situ datasets. A majority of data 

in the Uitz et al. (2008) study were from the Pacific and Mediterranean Oceans, 

whereas, the majority of samples in database E were from the Atlantic Ocean. 

Therefore, diversity in microplankton species would be expected between the two 

datasets which could cause variations in aJ^(A). Furthermore, the data used in Uitz 

et al. (2008) varied from 0.02 to 28.7 mg m'^ chlorophyll-a (see Table 1 of Uitz 

et al., 2008) whereas, the data used in this study varied from 0.04 to 12.2 mg m~^ 

chlorophyll-a which could also have contributed to the differences. 

The model of Ciotti et al. (2002) 

Discrepancies between derived specific absorption coefficients of the three-

component model and Ciotti et al. (2002) model (Figure 5.6 c) are also likely to 

be related to contrasting in situ datasets. In comparison with the data used by 

Ciotti et al. (2002), the database E incorporates very oligotrophic, tropical waters 

such as the North and South Atlantic gyres. This could explain the higher ap(A) 

values obtained using the three-component model (see also a similar discussion on 

the eff'ects of regional representation in Uitz et al., 2008). 

The Ciotti et al. (2002) database incorporated data with chlorophyll-a concen

trations as high as 135mgm"^ (see Table 2 Ciotti et al., 2002). It is possible that, 

at such large chlorophyll-a concentrations (particularly during an intense bloorn of 

Gonyaulax digitate in the Bedford Basin), the sampled microplankton component 

may well have been different from those encountered at lower concentrations in the 

open ocean, which could account for the differences in the magnitude of aJ^(A), 

also highlighted by Devred et al. (2006). Another point to note is that the Ciotti 

et al. (2002) model was parameterised using filtration, whereas the three-component 

model (as well as the Uitz et al. (2008) model) was parameterised using HPLC data. 

Differences in size-specific absorption coefficients between the two models may have 

been caused by discrepancies between the size class classification using HPLC and 

that using filtration (see section 2.2.2). 

The use of the three-component absorption model in biogeochemical 

modelling 

With regard to biogeochemical modelling studies, and based on suggestions made 

repeatedly for over a decade (e.g. Perry, 1994), Cullen and Fennel (2010) recently 

proposed a modelling framework that is directly based on fundamental bio-optical 

processes that influence phytoplankton physiology and the rate of photosynthe

sis in the sea. Cullen and Fennel (2010) suggest using the absorption coefficient 

for photosynthetic pigments as a state variable and modelling photosynthesis with 

absorption-based functions. A movement towards using direct bio-optical properties, 
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such as a(A), in modelling studies, coupled with introducing additional phyiioplank-

ton groups (such as size classes), requires phytoplankton group-specific bio-optical 

observations, in order to help constrain, improve and verify model estimates The 

three-component absorption model can provide synoptic scales observations of the 

bulk absorption coefficient of three size classes and would therefore be useful for 

such purposes. It is an advance on previous models (e g Bricaud et al, 1995, 2004, 

Ciotti et al, 2002, Devred et al, 2006; Uitz et al., 2008) as it is based on ecological 

theory and can estimate absorption properties of three size classes for a continuum 

of chlorophyll-a concentrations 

7.2.3.3 Discussion of the validation of the three-component absorption 

model 

When validating the three-component absorption model using database F, between 
411-555 nm the three-component model appears to underestimates a^ at high values. 
This is likely to be linked to differences m the composition of database E compared 
with database F Database E, with which the three-component model was parame-
terised, has chlorophyll-a concentrations ranging from 0.04 to 12.2 mgm~^ with only 
10% of the database having chlorophyll-a concentrations greater than 2.0mgm~^. 
The corresponding values in database F are from 0 02 to 77 8mgm~^, with 38% 
of the database greater than 2.0mgm~^ Therefore, the parameters in Tables 
5 1 and 5.2 are not strictly applicable to chlorophyll-a concentrations greater than 
12 2mgm~^ and the three-component model appears to underestimate a*(443) at 
chlorophyll-a concentrations greater than 2 0mgm~^ when compared with database 
F (Figure 5.7 h) Additional HPLC and a(A) data may be required to improve the 
parameterisation of the three-component absorption model at high chlorophyll-a 
concentrations. 

In Figure 5.7 (f), there appears to be a systematic over-estimation of a^(670) 
when verifying the three-component absorption model using database F When as
sessing the specific absorption coefficients of the three-size classes (Figure 5 6) re
trieved from database E, the magnitude at 670 nm is quite high for all three size 
classes (0.038, 0 029, 0 024 for pico-, nano- and microplankton respectively, see Table 
5 2), and notably higher for picoplankton when compared with Ciotti and Bricaud 
(2006) and Uitz et al (2008) Discrepancies between a^(670) and a(670) m Figure 
5.7 (f) are likely to be related to high specific absorption coefficients retrieved at 
670 nm using database F. 

Considering that database F includes data from a diversity of locations not 
present m database E (e g Beaufort Sea, Indian Ocean and Australia-Antarctic 
Basin) and considering the ME% between G^ and the m situ chlorophyll-a concen
trations m Figure 5 7 (g) (-̂  62 6 %), the ME% shown in Figures 5.7 (a-f) are quite 
encouraging and support the application of the three-component absorption model 
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to satellite i?rs(A) fields. It is envisaged that, with improvements in remotely-sensed 

chlorophyll-a retrievals, this error would reduce. 

7.2.3.4 Discussion of the application of the three-component absorption 

model to EO 

Results from applying the three-component model to global satellite data indicate 

picoplankton act as a background component with small variability in 0^(443) glob

ally. This supports the theory first proposed in Yentsch and Phinney (1989) that a 

constant background component of small optically active cells is always present, on 

which larger-celled phytoplankton may be sporadically superimposed. 

When comparing a*(443) to a*(443) in Figure 5.8, it can be seen that pi

coplankton contribute highly to total a* (443), in comparison to nano- and mi-

croplankton. In fact, when calculating the global mean fractional contribution of 

picoplankton to the total phytoplankton absorption in the surface layer for May 

2005 (Op(443)/a*(443) x 100), the three-component absorption model (parameters 

from Tables 5.1 and 5.2) estimates picoplankton contribute ~74.7% to the total 

phytoplankton absorption coefficient, whereas it is estimated that picoplankton con

tribute ~38.0% to the chlorophyll-a concentration (global average for May 2005). 

As picoplankton have a higher specific absorption coefficient than nano- and mi-

croplankton (Figure 5.2), they are more efficient in absorbing light and hence have 

a larger influence on o*(443) globally than on the chlorophyll-a concentration. It 

remains to be revealed whether this relationship, found in surface waters, is also ap

plicable to deeper depths in the euphotic zone, and it is also likely to be wavelength 

dependent. 

Figure 5.8 shows estimates of total and size-specific phytoplankton absorption 

based on the three-component model fitted to globally representative data (database 

E). However, it is acknowledge that a global parameterisation may not fully capture 

the wide scale variability in phytoplankton physiology. Devred et al. (2006) high

lighted regional and seasonal variability in the parameters of their two-component 

model. Future work may need to focus on such temporal and spatial differences, pos

sibly partitioning data into biogeochemical provinces and dealing with each province 

independently (Hardman-Mountford et al., 2008; Devred et al., 2009). 

7.2.4 Discussion of the seasonal and interannual variations in 

phytoplankton size class 

7.2.4.1 Seasonal analysis of phytoplankton size clciss 

In Chapter 6, using the three-component model, seasonal distributions of phyto

plankton size class were presented. The patterns highlighted in Figures 6.1 to 6.7 

are consistent with the current state of knowledge of pelagic ecosystems (Chisholm, 
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1992, Aiken et al, 2008) In terms of their contribution to total biomass, the ohg-
otrophic gyres are dominated by small size classes that thrive due to their high 
surface-to-volume ratio (Raven, 1998) absorbing nutrients with high efficiency un
der nutrient limited conditions Such communities support regenerated production 
and have small sinking rates, so are recycled within the euphotic layer (Marahon, 
2009) The seasonal cycle of picoplankton fractional biomass (%C )̂ is relatively dy
namic from month to month (Figure 6 6 and 6 7) However, considering the seasonal 
cycle of picoplankton chlorophyll-a (Cp) is relatively stable throughout the world's 
oceans (Figure 6 5 and 6 7), supporting the idea that small picoplankton are ubiq
uitous and form a stable background (Yentsch and Phmney, 1989; Uitz et al, 2006, 
Kostadmov et ah, 2009), this is likely attributed to the effect on the picoplankton 
fractional biomass through changes m larger size classes 

The contribution to total chlorophyll-a biomass from nanoplankton throughout 
the world's ocean displays a homogeneous pattern, with low seasonal variability 
(Figure 6.4 and 6 7) Even the nanoplankton chlorophyll-a distributions, while 
displaying larger spatial variability than picoplankton, are relatively similar from 
month to month (Figure 6.5 and 6 7). Prymnesiophytes, which form a major part 
of the nanoplankton pool, have been associated with transition zones between dif
ferent environmental conditions (Ondrusek et al, 1991, Claustre, 1994, Jordan and 
Chamberlain, 1997, Uitz et al, 2010) They appear to persist in a large variety 
of environments, from stratified stable environments such as the ohgotrophic gyres 
to dynamic environments such as the North Atlantic m winter (Figure 6.4) Liu 
et al. (2009) hnked the persistent presence and biomass of prymnesiophytes to their 
extreme, but unsuspected, biodiversity. Furthermore, Uitz et al. (2010) suggest 
that the taxonomic and ecological diversity of prymnesiophytes, m particular their 
mixotrophic character, is likely to explain the success of this group m the world's 
open oceans. 

Microplankton, in comparison with the nano- and picoplankton size classes, dis
play high spatial and seasonal variability both m terms of their contribution to 
total chlorophyll-a biomass and their individual chlorophyll-a concentration (Figure 
6 1, 6.2 and 6.7). Again these emerging patterns are consistent with current knowl
edge that microplankton, primarily diatoms, prevail in dynamic environments where 
plenty of nutrients and light are available For instance, spring m the austral and bo
real hemispheres (Figure 6 1 and 6.2), where deep winter mixing replenishes nutrient 
to the surface and irradiance increases with the onset of summer, or alternatively 
coastal upwellmg systems where nutrients are constantly supplied through the up-
wellmg of cool nutrient rich waters (Malone, 1980, Goldman, 1993, Longhurst, 1998). 
Low microplankon %G^ values and microplankton chlorophyll-a concentrations {C^ 

are observed m the ohgotrophic gyres, consistent with the assumption that their 
lower surface-to-volume ratio results in them being out-competed by smaller size 
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classes in nutrient Hmited conditions (Haven, 1998; Maranon, 2009). 

7.2.4.2 Latitudinal-time transects 

The latitudinal-time transects (Figure 6.8 and 6.9) demonstrate the utility of apply

ing the three-component model to EO data. Information on the timing of the blooms 

can be observed, in addition to the seasonal cycles of the size classes and interannual 

variations. This can compliment available in situ data, for instance complementing 

AMT data by providing information on the whole seasonal cycle (note that the AMT 

transects have only taken place in March-April and September-October-November). 

The distributions in Figure 6.8 are consistent with Aiken et al. (2009), with 

more productive areas at latitudes higher than 40° N, lower than 40° S and in 

equatorial regions. Seasonality in the equatorial regions are likely linked to seasonal 

influences from the Amazon outflow on productivity (DelVecchio and Subramaniam, 

2004; Subramaniam et al., 2008) and the influence of the North Equatorial Counter 

current (Kostadinov et al., 2010). 

In Figure 6.8, at 40° N, the larger anomalies in micro- and nanoplankton from 

2001-2005 (lower 1998-2001 and 2006-2007) were found not to be related to the 

NAO. Hypothetically, the larger anomalies in micro- and nanoplankton would be 

expected to be Hnked with increasing mixing of the water column (note the strong 

inverse correlation between stratification and micro- and nanoplankton in Table 6.1). 

Physical forcing by cyclones has been found to contribute to changes in taxonomic 

composition of phj^toplankton, with an increase in larger size classes of phytoplank-

ton (e.g. diatoms) due to the re-suspension of nutrients (Piatt et al., 2005; Son et al., 

2007). NOAA use the Accumulated Cyclone Energy (ACE) as an index of the in

tensity of tropical cyclone seasons. Considering that in the North Atlantic the years 

of 2001, 2003, 2004 and 2005 were above-normal hurricane seasons with 2003, 2004 

and 2005 being in the top 10 most active seasons in the past 50 years, all regarded as 

hyperactive seasons (Trenberth, 2005; Webster et al., 2005; Sun et al., 2008), there 

may be a link between PSC anomalies and interannual changes in cyclone activity 

in the North Atlantic. Further investigation would need to be conducted to verify 

this link. 

The higher picoplankton % chlorophyli-a values observed in the Pacific gyres, 

when compared with the Atlantic g3rres (Figure 6.8 and 6.9), are consistent with 

previous work suggesting the Pacific gyres constitute the most oligotrophic regions of 

the ocean (Morel et al., 2007a,b, 2010). The low seasonal variability in the equatorial 

region can be linked to the constant and stable equatorial solar irradiance pattern 

and, unUke the Atlantic, is not as influenced by riverine output. The enhanced level 

of microplankton %C* at the equator in the Pacific Ocean, when compared with the 

Atlantic transect, can be linked to the equatorial undercurrent which provides cooler 

nutrient rich waters (Chavez et al., 1999; Feely et al., 1999). At 10° S (140° W) the 
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Pacific transect interacts with the Marquesas Islands and the higher microplankton 

%C* may be hnked to the island mass effect (Signormi et a l , 1999, Kostadmov et a l , 

2010) The major feature of the anomaly maps in Figure 6 9 is the strong influence 

of the ENSO cycle 

7.2.4.3 E N S O dynamics in relat ion to satelli te observations in t h e equa

torial Pacific 

The equatorial Pacific is a unique region of our oceans It can act as a large source of 

CO2 to the atmosphere through the upwellmg of COs-rich waters along the equator 

and advection of C02-rich waters from the South American coast (Etcheto et a l , 

1999, Feely et a l , 1999), and also a sink though primary production and export 

(Takahashi et a l , 2002) It is one of only three open-ocean areas that, despite 

having high nitrate and phosphate nutrient concentrations, display moderately low 

phytoplankton chlorophyll-a biomass (Martm, 1991, Behrenfeld et a l , 1996) and 

has been referred to as exhibiting High Nutrients-Low Chlorophyll characteristics 

(HNLC, Thomas, 1979) This enigma has been linked to either the lack of iron that 

limits the growth of the phytoplankton (Martin and Fitzwater, 1988, Behrenfeld 

et a l , 1996, Coale et a l , 1996) or to a large amount of grazing firom higher trophic 

levels that hmits phytoplankton growth (Walsh, 1976, CuUen, 1991) Results from 

Chapter 6 highlight a strong mterannual influence from the ENSO on this region 

Under non-El Nino conditions, easterly trade winds create a channel of cold 

surface water along the equator, referred to as the Eastern Equatorial Undercurrent 

(EUC) The EUC flows eastward across the equator at a depth of 20 to 200 m 

(Toggweiler and Carson, 1995) Studies m the equatorial Pacific have suggested that 

diatoms do not contribute more than 20 % of phytoplankton biomass during non-El 

Nmo conditions (Blanchot et a l , 2001, Kobayashi and Takahashi, 2002, Dandonneau 

et a l , 2004), with the majority of the phytoplankton biomass comprising of small 

size classes (Chavez et a l , 1999) The results using the three-component model are 

consistent with such observations under non-El Nmo conditions (for instance see 

Figure 4 10) 

During an El Niiio event (Figure 7 1), a weakening or reversal of the trade winds 

occurs, which weakens the EUC and hence subdues the upwelling of cold nutrient 

rich waters and deepens the thermoclme in the eastern part of the equatorial Pa

cific. Surface waters become warmer and nutrient poor and picoplankton thrive 

due to their competitive advantage In the west equatorial Pacific, the thermochne 

rises, resulting m cooler waters with higher nutrient concentrations reaching the 

surface This results m an increase m larger size classes of phytoplankton (nano-

and microplankton) m comparison with non-El Nmo conditions 

During a La Nma event (Figure 7 1), there is a strengthening of the trade winds, 

which strengthens the EUC, enhancing the upwelling of cold nutrient rich waters 
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Figure 7.1: The influence of ENSC) dynamics on the equatorial Pacific (adapted 
from KOAA (2010)) 

and a rising of the thermoclinc in the eastern part of the equatorial Pacific occurs 

(deepening in the western Pacific), The higher nutrient waters promote an increase 

in larger size classes of phytoplankton (nano- and microplankton) in the eastern 

equatorial Pacific (also noted by Chavez et al., 1999; Strutton and Chavez, 2000; 

Ryan et al., 2002: Alvain et al.. 2008). In the western equatorial Pacific, the thermo-

cline deepens promoting stratification in the surface waters. Such warm low nutrient 

waters promote an increase in picoplankton. 

7.2.4.4 T h e link be tween physics and biology in t h e equator ia l Pacific 

and Indian Oceans 

The DMI index for the Indian Ocean Dipole was found to be significantly correlated 

to the ENSO index MEI (Figure 6.10) during 1997-2007, with a stronger correlation 

betw^een 1997-1998 than 1999-2007. It has been well established that positive phases 

of the Indian Ocean Dipole tend to co-occur with EI Niiio. and negative phases with 

La Niiia (Annamalai et al.. 2005; Behera et al.. 2006: Luo et al., 2010; Izumo et al., 
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2010), supporting this finding as well as the similarities between Figure 6.11 and 

6 12 m the Indian Ocean The high correlations between phytoplankton size class 

anomalies and the physics m the Pacific and Indian Ocean (Figure 6 14) have two 

implications. 

Firstly, considering that microplankton %C^ and nanoplankton %C^ are nega

tively correlated with SST, SSHA and stratification, and that picoplankton %C^ 

is positively correlated with SST, SSHA and stratification, provides an indirect 

validation of the three-component model. As early as the 1960's, Ramon Mar-

galef showed results of community changes of phytoplankton based on physical-

chemical-ecological interactions using his proposed Mandala (Margalef, 1967,1978) 

Smaller size classes dominate m stratified nutrient limited conditions, due to their 

high surface-to-volume ratio (Raven, 1998) absorbing nutrients with high efficiency 

Such conditions are associated with higher SST and SSH (indicative of stratifica

tion) Larger size classes (nano- and microplankton) prevail m dynamic environ

ments where plenty of nutrients are available, associated with lower SST, lower 

stratification and lower SSH, all characteristic of well mixed waters. The strong 

correlations between size class and physics, using the three-component model, com

pliments Margalef's Mandala 

Secondly, the tight coupling between the biology and physics m the equatorial 

Pacific supports the idea that all the components of a system, physical, biological 

and chemical, are intertwined, and that each component of the system is intrinsically 

linked with another (Lovelock, 1992) Under a global warming scenario, where one 

may expect increases m SST, SSH and stratification (Behrenfeld et al., 2006, Doney, 

2006), in the equatorial Pacific and Indian Oceans one may expect increases in 

smaller size classes of phytoplankton at the expense of larger phytoplankton size 

classes Considering that phytoplankton are at the base of the food web, and that 

zooplankton and fish can have selective feeding preferences for phytoplankton of 

different sizes and types (Hansen et al, 1994, Scharf et al, 2000; Jennings et al, 

2002), under a global warming scenario, this may have a huge impact on higher 

trophic levels m the future, potentially restructuring the food web m these areas 

7.2.4.5 Using MEI to hindceist phytoplankton size class 

On large scales, the positive correlations between MEI and picoplankton, and neg
ative between MEI nano- and microplankton, support similar conclusions made by 
Brewin et al (2010c) and Kostadmov et al. (2010) using contrasting models (a 
spectral-response model and a backscattering-based model) Furthermore, the sen
sitivity analysis conducted m Appendix E emphasises the degree to which these 
correlations are robust 

Wara et al (2005) suggest that m a warmer climate state there may be a potential 
transition to permanent El Nirio conditions and, under such circumstances, consid-
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ering the large scale correlations between MEI and phytoplankton size class, this 

may lead to an increase in piroplankton at the expense of nano- and microplankton 

under a global warming scenario. Furthermore, there is striking evidence to suggest 

this has already been occurring. During the late 1970's there was an abrupt change 

of the climate state in the trophical Pacific and in mid-latitude areas (Trenberth 

and Hurrcll. 1994: An et ah, 2006}. When assessing MEI values from 1950 to the 

present, before 1979 (1950-1979) the average MEI value is below the entire average 

of the time-series (i.e. in a negative phase) and post 1979 the average MEI value 

is above the entire average of the time-series (i.e. in a positive phase). Considering 

picoplankton are positively correlated with MEI on large scales, there may have al

ready been a shift from large to smaller size classes of phytoplankton over the past 

50-years. As smaller size classes are associated with lower chlorophyll-a concentra

tions, this result would also compliment a recent study by Boyce et al. (2010) which 

found global phytoplankton concentrations to be declining over the past centur>'. 

On regional scales, the correlation between MEI and phytoplankton size class 

can, however, be very different. In Figure 6.15 the correlations between MEI and 

phytoplankton size class are vastly different for different regions. In the North Pacific 

gyre and around Indonesia and Papua New Guinea, MEI is positively correlated with 

nano- and microplankton and negatively correlated with picopiankton, in contrast 

to the large scale relationships. By conducting regressions on a pixel by pixel basis, 

regional variations in the relationship between MEI and phytoplankton size class 

can be investigated (Figure 6.16 and Figure 6.17). and while, under a transition to 

permanent El Nino conditions, some areas may see an increase in picoplankton at the 

expense of nano- and mirroplankton. it may be expected that other areas would see 

the inverse. Further investigation into the relationship between ENSO mechanisms 

and teleconnections would need to be conducted in order improve understanding of 

regional variations. 

Figure 6.18 emphasises how MEI alone can be used to generate very similar 

phytoplankton size class anomaly maps to those derived from satellite, reproducing 

the regional scale variations. Over seasonal timescales this appears robust. However, 

its limitation is that such regressions cannot reproduce small temporal scale anomaly 

blooms. For instance, Brewin et al. (2010a) used the three-component model to 

detect a large microplankton bloom in July/August 1998, which resulted from short 

term changes in the EUC as a consequence of the La Nina transition. This short 

event cannot be fully reproduced using the MEI model estimate (see Figure 7.2. also 

note higher ME in Figure 6.17 for pico- and microplankton around the equatorial 

regions). More complex non-linear regre-ssions may be more appropriate for such 

circumstances, possibly using additional input variables (e.g. SST, SSHA). 

MEI appears a useful tool for sinmlating changes in phytoplankton size class 

structure during past El Nino to La Niiia events, that pre-date ocean colour sensors 
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Figure 7.2: Phvloplankton size percentage chlorophyll-a anomaly maps for July 1998 
from the satelhte-based three-component model for the classified pixels (Figure G.13 
b) in addition to the modelled anomaly map estimates using the linear relationship 
between MEI and ph\toplankton size percentage chlorophyll-a (Figure 6.18). 

(Figure 6.19). When using such a model to hindcast it is important to be aware of its 

assumptions. The results in Figure 6.19 assume that the relationship between MEI 

and phytopiankton size class would be the same during similar ENSO events, when 

in fact the correlations may be different. To investigate this further one may need 

to compare the results to the output from multi-plankton biogeochemical models 

or alternatively perliaps make use of the CZCS archives (e.g. possibly during the 

1982-1983 ENSO event). 

Such drastic changes in the size structure of the phytopiankton during the 1972-

1973 period, as highlighted in Figure 6.19, are likely to have a huge influence on the 

food web. Tsukayama (1983) linked the strong ENSO event of 1972-1973 to a crash 

in the population of anchovy at the Peruvian coast (in addition to high exploita

tion), which in the 1960s reached biomass levels of 15-20 million tons, providing 

annual landings that exceeded 10 million tons in 1970 (Niqucn and Bouchon. 2004). 

Together with political change in the country, the anchovy collapse in 1973 led to a 

temporary nationalisation of fisheries, resulting in massive layoffs and a restructur

ing of the fishing industry (Broad et al., 2002). This had worldwide effects on food 

prices (Idyll, 1973). it was not until early 1990s that the anchovy catch recuperated 

to near pre-1973 levels (Broad et al., 2002). Anchovy are planktonic feeders and 
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form the diet of large fish, guano birds, marine mammals and humans. 

While it is established that larval survival is especially dependant on availability 

of phytoplankton, and that the reproductive success of the species will be impaired if 

a\'ailability of phj-toplankton declines (Barber and Chavez, 1983; Piatt et al., 2003), 

it may be that selective community-based preferences may also have a significant 

influence. The community size-structure shifts in phytoplankton during the 1972-

1973 period highlighted in Figure 6.19. driven by the ENSO cycle, may have played a 

role in the population crash of anchovy at the Peruvian coast. Further investigation 

would need to be conducted to verify this link. The use of climate indices such 

as MEI or DMI may also become useful for improving the spatial availability of 

satellite data (note that the MEI model estimates cover a larger spatial area than 

the satellite estimate in Figure 6.18) and may even have potential use in the merging 

of satellite data from different platforms, considering such indices are available over 

multiple decades (for instance encompassing the CZCS and SeaWiFS period). 

7.3 Future work and the impact of the work in other 

research fields 

Future work will focus on improvements in the three-component model. Further

more, the findings of this research have a variety of applications in the greater 

context of oceanography which will also form the basis of future work, 

7.3.1 Improvements in the three-component model 

7.3.1.1 Fu tu re improvements in t h e calibration of the three-component 

model 

The applicability of the three-component model was outlined in section 7.2.2.2. A 

current weakness of the three-component is that it is fitted to pigment measurements 

and as highlighted previously, there are certain assumptions about the pigment to 

size-class relationship. By conducting coupled cell count, size-fractionated chloro

phyll measurements, phytoplankton absorption measurements and HPLC pigment 

measurements, improvements in the parameterisation of the model could be made. 

Through gathering measurements in case 2 waters, further investigation could 

be made into whether the relationship between size and chlorophyll-a concentration 

demonstrated for case 1 waters holds in various case 2 waters. With improvements in 

ca,se 2 satellite retrievals, possibly through the further development of lOP models, 

this may result in the application of the model to a wider geographic region. 

If a larger database became available, whereby data could be partitioned into 

biogeoc:hemical provinces, and in each province the data was representative of the 

entire chlorophyll-a range, the performance of the three-component model may ini-
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prove over larger spatial scales. Furthermore, in environments that deviate from the 

major phytoplankton composition trends, by improving our understanding of the 

physical and chemical regime, additional environmental knowledge could be intro

duced which may improve model performance. 

7.3.1,2 Extending the th ree-component model to more P F T s 

While from the perspective of primary production, cell size, is thought to be sufficient 

for defining the major functional groups, a size-based approach to functionality in 

phytoplankton is not fully satisfactory from a biogeochemicai perspective (Nair ct al., 

2008). For instance, if phytoplankton characterised by different functions fell under 

the same size class, a size-based approach would fail to separate the two groups (e.g. 

an increase in Si is likely to influence diatoms but not dinoflagellates. both of the 

microplankton size class). Therefore, from a biogeochemicai perspective, extending 

the three-component model to distinguish further taxonomic phjtoplankton groups 

would be beneficial. 

Hirata et al. (2011) quantified relationships between surface chlorophyll-a and 

the diagnostic pigmentH specific to phytoplankton functional types. In addition 

to determining the three size classes from satellite, as with the three-component 

model, the approach of Hirata et al. (2011) detects diatoms, dinoHagellates, green 

algae. picocukarv'Otes, prokaryotes and Prochlorococcus. Whereas such an approach 

appears the logical step on from size class detection, caution needs to be made when 

deriving six PFTfe from a single \-ariable (i.e. chlorophyll-a). Nair et al. (2008) 

highlight that the limited wavelength resolution of satellite data currently available, 

may set an upper limit on the number of functional types that can be retrieved from 

space. There is, however, certainly scope for further improvements as hyperspectral 

remote sensing from space becomes a reality. 

The three-component model highlights that size-fractionated chlorophyll-a can 

be estimated from total chlorophyll-a using a simple exponential equation, with two 

parameters, the maximum chlorophyll-a concentration of the size class (C™) and 

the initial slope (S). dictating the increase in the size-fractionated chlorophyll-a as 

a function of total chlorophyll-a. Comparing model parameters when fitting the 

same equation to two different size fractions (<2/nn and <20/im) indicates that C" 

increases with increasing size and S decreases. By using further size-fractionated 

measurements (e.g. <2^m, <5/(m, <10/im <20/(m and <100/im), it could be pos

sible to derive quantifiable relations between phytoplankton size and these two pa

rameters, which could present an avenue to determining the phytoplankton size 

distribution more fully from total chlorophyll-a. 
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7.3.1.3 Using t h e three-component model to improve satellite es t imates 

of chlorophyll-a 

Recent efforts have been made to improve rcmotcly-scused rctrie\'als of the 

clilorophy!l-a concentration by introducing pliytoplankton community composi

tion, Alvain et al. (2006) applied the PHYSAT approach to the NOMAD m situ 

dataset to derive species-dependent polynomial relationships between L^„{\) and 

the chlorophyll-a concentration (similar polynomial relationships to the 0C4 algo

rithm of O'Reilly et al. (1998)). The resulting (0C4-SD) bio-optical model starts 

from a classification of the dominant ph>-toplankton group (using PHYSAT), fol

lowed by a species-dependent estimate of chlorophyll-a using the species-dependent 

polynomial relationships. It was found that new algorithm (OC4-SD) led to lower 

chlorophyll-a concentrations in regions where the 0C4 model retrievals arc known 

to be too high, and higher concentrations in regions dominated by diatom blooms 

where previous studies had demonstrated a low bias in the standard 0C4 algorithm. 

Through discriminating diatoms from other pliytoplankton using ocean colour 

data. Sathyendranath et al. (2004) developed a diatom-specifir and non-diatom al

gorithm for estimating the chlorophyll-a concentration from satellite data in the 

North West Atlantic. Similar to Alvain et al. (2006), when diatoms were identified, 

the diatom-specific algorithm was used and when diatoms were not identified the 

non-diatom algorithm was used. The results show that the branching bio-optical 

algorithms often performed better than the 0C4 algorithm used in standard pro

cessing of SeaWiFS data. As the three-component absorption model developed in 

Chapter 5 is an extension of the two-component model of Sathyendranath et al. 

(2001), used in the Sathyendranath et al. (2004) study, the three-component ab

sorption mode! may have the potential to further improve chloroph>-ll-a retrievals 

from i?rs(A). 

7.3.2 Improving our understanding of the carbon cycle 

7.3.2,1 In t roducing s ize-s t ructure into satell i te es t imates of p r imary 

produc t ion 

As highlighted in Chapter 4, the three-component model may be used in conjunction 

with procedures designed to estimate the vertical chlorophyll profile from the surface 

concentration (Morel and Berthon, 1989; Sathyendranath et al., 1995; Uitz et al., 

2006). Furthermore, as shown in Chapter -5, speeific absorption coefficients were 

retrieved for the three size classes by extending the Sathyendranath et al. (2001) and 

Devred et al. (2006) absorption models into a three-component absorption model 

based on phytoplankton size class. Such detailed knowledge regarding the spatial 

distributions of the phytoplankton size classes, and their optical properties, could 

be used together with other size-specific photophysiological parameters to improve 
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EO primary-production estimates (e.g. Silio-Calzada et al., 2008; Uitz et al., 2008, 

2009. 2010; Hirata et al., 2009b). 

Using the two-component model of Sathyendranath et al. (2001). Brewin et al. 

(2010b) developed a size-specific primary production model which was used to esti

mate global distributions of production by small (<20/im) and large cells (>20/im), 

using satellite data. It was found that smaller cells contribute highly to global pro

duction (•^ 95%) in comparison with larger cells (~ 5%). This result was contra

dictory to that of Uitz et al. (2010). Interestingly, Uitz et al. (2010) estimated that 

amaller phytoplankton (<20pm) contribute a much smaller fraction of the global 

estimate (-^ 68%)). Brewin et al. (2010b) found that discrepancies between the two 

models lie in their allocation of size-specific photophysiologicai parameters. The 

model of Uitz et al. (2010) assumes larger phytoplankton (>20/im) are more efficient 

in photosynthesis than smaller phytoplankton {<20/im) (consistent with Claustre, 

1994; Claustre et al., 2005; Cermeno et al., 2005), alternatively, the model of Brewin 

et al. (2010b) assumes smaller phytoplankton (<20/jm) are more efficient in pho

tosynthesis than larger phytoplankton (>20^m) (consistent with Laws et al., 1987; 

Bouman et al.. 2005; Kameda and Ishizaha. 2005). 

The assignment of size-specific photopliysiological parameters is an emerging 

area of research with little current consensus. Furthermore, assigning size-specific 

photophysiological parameters directly from globally representative data (as con

ducted by Brcwin et al. (2010b) and Uitz et al. (2010)) may not fully capture the 

widescale variability in phytoplankton physiology. Future work may need to focus on 

seasonal and geographical differences, possibly partitioning data into biogeochemi-

cal provinces and dealing with each province independently (Sathyendranath et al., 

1995; Longhurst et al., 1995). 

7.3.2.2 Improving expor t product ion es t imates by introducing size-

s t ruc tu re 

It is well established that the size-structure of the phytoplaukton has a significant 

influence on the sinking rate and export of carbon (Michaels and Silver, 1988: Boyd 

and Newton, 1999; Laws et al., 2000). In particular, Uitz et al. (2010) found the ratio 

of niicroplankton production to total production to be a good estimate of the /-ratio 

(the ratio of new to total primary production) which is subsequently available for 

carbon export to the deep ocean. 

Using a globally-representative dataset, Guidi et al. (2009) found that 68% of 

the variance of the mass fiux of carbon at 400 m was explained by the size struc

ture of the phytoplankton community and integrated chlorophyll-a in the euphotic 

zone. Guidi ct al. (2009) estimated the coefficient /r, in the Martin power rela

tionship (which describes the decrease in the vertical mass fiux with depth and 
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generally varies between 0.2-1.0), using an empirical relationship derived from the 

size structure of phytoplankton biomass in the euphotic zone. Satellite retrievals of 

the size-structure of ph>-toplankton biomass in the euphotic zone, calculated nsing 

the three-component model, could be used to improve export production estimates. 

As suggested by Guidi et al. (2009), information such as the coefficient k. derived 

from satellite models of phytoplankton size class, could be used by biogeochemists 

and modellers to obtain a realistic description of the downward particle flux instead 

of using a constant k value as frequently conducted. 

7.3.2.3 Size-specific CO2 fluxes 

A further step toward improving our understanding of the carbon cycle would be to 

investigate the role of phytoplankton size class in C02 flux variability. This could be 

conducted by comparing size-fractionated chloropliyll-a (or primary production, e.g. 

Brewin et al, (2010b)) derived from satellite to CO2 flux hindcasts from biogeochem-

ical models, in order to see how changes in phytoplankton structure have contributed 

to seasonal and interannual variability in air-sea CO2 fluxes. By undertaking a mul

tivariate evaluation, a process understanding of the functional relationships between 

the size structure of the phytoplankton, their environment and their influence on 

CO2 fluxes may be achieved. 

7.3.2.4 Metabolic-scaling 

Recently, several attempts have been made to use EO data and food web models to 

predict consumer biomass in the global oceans. Jennings et al. (2008) used primary 

production estimates from processed ocean colour data as input to a food web model 

that predicted the abundance, distribution and role of marine animals on global 

scales. However, it is well established that such predicted values are dependant on 

the consumer size, predator-prey size relationships and the size composition of the 

primary producers (Borgmann, 1987). Therefore, in order to improve estimates of 

higher trophic levels, it may seem sensible to introduce phytoplankton size-structure, 

as derived from EO, into metabolic-scaling models. 

Using the three-component model, Jennings et al. (2010) predicted consumer 

bioma,ss and production, trophic levels and ratios between consumer production 

and primary production hi the global oceans using simple food web model that 

took account of the size structure of phytoplankton communities using the three-

component model. Initial results suggest further work is needed to address the link 

between primary production and the slopes of size spectra, and that the results may 

benefit from introducing size-specific primary production rates possibly derived from 

EO. 
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7.3.2.5 Mul t i -p lankton biogeochemical models: validation and assimila

t ion 

Biogeochemical models have the potential to predict how the ocean biology will 

change (or not) in the face of our changing climate. However, in order to confidently 

use such models, observ'ations are required for validation. Sampling limitations of 

ships and buoys which involve comparing measurements widely separated in space 

and time, limit the use of in situ data in validating such models. EO, however, 

can be used to synoptically monitor wide areas not possible by conventional in situ 

methods. 

Recently much effort has been put into using ocean colour observations for both 

validation of. and assimilation into, biogeochemical models (Harmon and Challenor, 

1997: Gregg et al.. 2003: Lacroix et al.. 2007; Hemmings et al.. 2008; Gregg. 2008). 

With the development of multi-phytoplankton biogcochcmical models (e.g. Taylor 

et al.. 1993; Vanden Berg et at.. 1996: Kuroda and Kishi. 2004; Bla<:kford et al., 

2004; Le Qncrc ct al.. 2005: Kishi et al.. 2007), there is increasing demand for 

synoptic data of the different phytoplanktou communities. This thesis has shown 

that phytoplankton size class can be retrieved from EO with accuracy sufficient to 

be useful in such model comparisons. The three-component model offers an avenue 

to assimilate size structure into such biogeochemical models, or alternatively, verify 

them. Furthermore, in addition to providing information on size-structure, using 

the proposed three-component model, error estimates can also be provided, which 

are essential for validation and assimilation purposes. By doing this, such models 

can be improved, ultimately advancing our understanding of the ocean carbon cycle 

needed to improve predictions of its future influence on climate. 

7.3.3 Monitoring change 

7.3.3.1 Phy top lank ton phenology 

Remote sensing data is a useful tool in monitoring changes in phytoplankton bloom 

phenology (Piatt et al., 2009) which can significantly influence larval fish survival 

(Piatt ct al.. 2003}. Information on the phenology of the different phytoplankton 

size classes may offer further insight into such trophic interactions. For instance, 

changes in phytoptankton succession associated with seasonal events such as the 

Spring Bloom. 

7.3.3.2 Mult i -decadal changes 

By using a consistent, reanalyzed, ocean colour time series built from 5 years of 

observations of the CZCS (1979-1983) and 5 years from SeaWiFS (1998-2002) (An-

toine et al., 2005), Martinez et al. (2009) finked multi-decadaJ changes in global 
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phytoplaiiktoii abundances to basin-scale oscillations of the physical ocean, specifi

cally the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation, By 

applying the three-component model to such a dataset, further investigation could 

be made into links between multi-decadal basin-scale oscillations and ph>toplankton 

size structure. 

7.4 Conclusion 

The aim of this thesis was to compare a variety of existing approaches that have been 

designed to detect phytoplankton size class from EG and develop a new modified 

approach that can be applied to 10-years of satellite ocean colour obscr\'ations to 

investigate relationships between phytoplankton size structure and physical forcing 

on interdecadal scales. This aim was achieved by conducting an intercomparison 

of bio-optical techniques for detecting dominant phytoplankton size class from EG 

using a co-located in situ and satellite dataset (Chapter 3). The results of this 

intercomparison indicated that abundance-based models are the most robust ap

proach for detecting dominant size class from EG. A new abundance-based model 

was developed based on insight into abundanc'e-based models used in the intercom

parison (Devred et al.. 2006; Uitz et al., 2006), designed to calculate the fractional 

contributions of three phytoplankton size classes for a continuum of chlorophyll-a 

concentrations (Chapter 4 and 5). The model was applied to 10-years of satel

lite ocean colour observations and phytoplankton size structure was correlated with 

indices of the El Niiio (La Nina) Southern Oscillation and the Indian Ocean Dipole. 

The major findings of the thesis can be stated in the context of the research 

questions posed in Chapter 1. 

How accumtely can we detect phytoplankton size class from Earth Ob

servation in the global ocean? 

Based on the results from the intercomparison in Chapter 3, mean percentage accu

racy combining all models, according to method 1. calculated from averaging both 

HPLC and cell count data, was 63.4% (77.2% not including the L4 data} for pi-

coplankton, 86.6% for combined nano-picoplankton, 61.4% for nanoplankton and 

66.8% for microplankton. When only considering the abundance-based models of 

Devred et al. (2006), Uitz et al. (2006), and Hirata et al. (2008a), this percentage 

accuracy changes to 65.7% (82.7%. not including the L4 data) for picoplankton, 

84.3% for combined nano-picoplankton. 65.7% for nanoplankton and 77,9% for 

microplankton. 

Validation of the three-component model developed in Chapter 4 with concur

rent and co-located in situ and satellite data, indicated the fractional contribution 

169 



Chapter 7 

of each size class to the overall biomass can be retrieved to an accuracy of within 

9.2% for microplankton, 17.1% for nanoplankton and 16.1% for picoplankton, in 

the global ocean. Based on these results it can be concluded that phytoplankton 

size class can be derived from EO with reasonable accuracy. 

What is the most robust method for detecting phytoplankton size class 

from Earth Observation in the global ocean? 

Results from the intercomparison in Chapter 3 indicate that spectral-response, eco

logical and abundance-based approaches can all perform with similar accuracy. How

ever, abundance-based approaches were shown to provide better spatial retrieval of 

phytoplaiikton size class, supporting the theory- that information on the size struc

ture of phytoplankton is latent in the satellite derived biomaas fields. The robustness 

of abundance-based approaches appears to be a result of their utilisation of the first 

order variability in the satellite ocean colour signal, whereas spectral-response-based 

algorithms use the second order variability which is weaker, in some respects harder 

to infer and more vulnerable to errors in atmospheric processing. 

When applying the three-component model to absorption data (Chapter 5), the 

retrieved size-specific absorption coefficients were consistent with both laboratory 

and field studies, again supporting the assumption that there is information on the 

phytoplankton size structure in the chlorophyll-a concentrations. This was further 

supported in Chapter 6, where interannual variations using the three-component 

model in the Pacific and Indian Oceans were strongly correlated with physical pa

rameters, consistent with theories on coupling between physical-chemical processes 

and ecosystem structure, such as that of Margalef (1978). 

The proposed three-component model is an advance on previous approaches (e.g. 

Devred et al., 2006; Uitz et al., 2006; Hirata et al., 2008a) as the model calculates 

the fractional contribution of three phytoplankton size classes for a continuum of 

chlorophyll-a concentrations and retrieves these fractions with similar (if not better, 

see Figure 4.8) accuracy to the model of Uitz et al. (200G), from Earth Obser\'ation. 

Furthermore, unlike the statistical model of Uitz et al. (2006), the three-component 

model is based on ecological theory and its parameters provide biological interpre

tation. 

Can Earth Observation estimates of phytoplankton size class be used to 

improve estimates of phytoplankton light absorption needed for input to 

satellite-based primary production models'^ 

In Chapter 5, a new three-component absorption model was developed, extending 

the two-coniponent absorption models of Sathyendranath et al. (2001) and Devred 
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et al, (2006). The new three-component absorption model pro\ided a better fit to 

absorption and chlorophyll-a data than the two component mode! as indicated by 

retrieving lower mean errors when fitting the three models to the same datasct. The 

improvement over the two-component absorption models of Sathyendranath et al. 

(2001) and Devred et al. (2006) is a result of introducing a third component which 

yielded a better representation of both a'{X) and a(A) at low chlorophyll-a concen

trations. 

How is phytoplankton size structure influenced by climate variability? 

The three-component model developed in Chapter 4 was applied to a decade of ocean 

colour observations in Chapter 6. In the equatorial region of the Pacific and Indian 

Oceans, ph>toplankton size class anomalies were highly correlated with indices of 

both the EI Nino (La Nina) Southern Oscillation and the Indian Ocean Dipole. 

Furthermore, in these regions, changes in the phytoplankton size structure were 

highly correlated with changes in SST. SSHA and stratification, derived from both 

satellite and in situ observations. The fraction of microplankton and nanoplankton 

to the total chlorophyll-a biomass were negatively correlated with SST, SSHA and 

stratification, and the fraction of picoplankton to the total chlorophyll-a biomass 

positively correlated with SST, SSHA and stratification. 

Under a global warming scenario, it has been projected that there will be an 

increase in sea surface temperature and stratification in low latitude areas of the 

open ocean (Doney, 2006). Under such circumstances, in the surface layer of the 

ocean, it may be expected to see an increase in picoplankton at the expense of nano-

and inicroplankton in low latitude areas, which may have huge impact on the carbon 

cycle and on marine ecosystems. 

7.4.1 Summary, recommendations and a final note 

By comparing a variety of existing phytoplankton functional type satellite models 

using a concurrent and co-located in situ and satellite database of phytoplank

ton size measurements, it became evident that abundance-based approaches are 

the most robust method for detecting ph>toplankton size class from EG. A new 

abundante-based model was developed which was then adapted to improve esti

mates of phytoplankton light absorption from EO and to quantify relationships 

between phytoplankton size structure and physical forcing on interdecadal scales. 

If this research was to be repeated, future efforts need to focus on gathering 

more in situ data over larger spatial scales and clarifying uncertainty in using in 

situ proxies to infer phytoplankton size. By developing a database of concurrent and 

co-located in situ measurements of cell counts, size-frsictionated chlorophyll, phyto

plankton absorption measurements, HPLC pigment measurements, fiow cytometry, 
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PSD measurements and possibly DNA measurements, the diagnostic pigment to 

size class procedure may be improved. A more robust intercomparison of the dif

ferent approaches could then be conducted and the parameterisation of the three 

component model could be further impro\ed. 

The true capabilities of EO can only come to fruition when it is used in conjunc

tion with in situ based measurements, for validation and calibration purposes. The 

synergistic benefits of using these observational techniques in conjunction allow for 

well-constrained, accurate biological and geoph>'sical parameters that can then be 

assimilated into mathematical models to improve their parameterisation and our un

derstanding needed to predict future change. The results of this thesis recommend 

that EO measurements of phytoplankton size class should be used for validation 

of, or assimilation into multi-plankton biogcochemical models. This will ultimately 

result in advancing our understanding of the ocean carbon cycle needed to improve 

predictions of its future influence on climate. 

This thesis has for the first time quantified links between the phytoplankton 

community composition and physical forcing on sjTioptic interannual scales, using 

EO in conjunction with in situ data. Results support theories first proposed by 

Ramon Margalef as early as the 1960's, showing comnmnity changes of phytoplank

ton based on physical-chemical-ecological interactions, and cement the idea that all 

the components of a system (physical, biological and chemical) are intertwined and 

intrinsically linked (Lovelock, 1992). By facing an uncertain climate we are in fact 

facing uncertain clianges in our marine ecosystem. 
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Appendix A 

Application of the three-component 

model to daily, 8-day and monthly 

satellite chlorophyll-a fields to derive 

monthly composites of 

phytoplankton size class 

A.l Introduction 

Theoretically, as the three-component model is based on non-linear equations, the 

model needs to be applied directly to daily satellite chlorophyll-a images and then 

averaged tu produce a monthly composite. In this appendix the three-component 

model is applied to 32 daily SeaWiFS chlorophyll-a images from 1st May 2005 to 

the 1st June 2005 to produce a 32-day (monthly) composite. In addition, the three-

component model is also applied to four 8-day SeaWiFS chlorophyll-a images from 

the same time period and then averaged to produce a 32-day (monthly) composite. 

Furthermore, the throe-component model is also applied to a 32-day rolling SeaWiFS 

composite of chlorophyll-a for the same time period. Results from the tlnee 32-day 

composites are then compared to quantify dilferences between the three approaches, 

A.2 Methodology 

Thirty-two daily, global, SeaWiFS chlorophyll-a images from 1st May 2005 to the 

1st June 2005 were used for analysis. In addition, four 8-day, global, SeaWiFS 

chlorophyll-a images were also downloaded encompassing the following time periods: 

lst-8th May 9th-16t.li May, 17th-24th May, and 25th May-lst June 2005. Finally 

a 32-day rolling, global, SeaWiFS chlorophyll-a composite, encompassing the same 

time period, was also used for analysis. 
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Application of the three-component model to daily, S-day and monthly data 

The three-component model (using parameters from Table 4.1) was applied to 

each daily image from 1st May 2005 to the 1st June 2005 to derive the chiorophyll-a 

concentration (mgm"^) and fractional contribution (% chlorophyll-a) of the three 

size classes of phytoplankton (pico-, nano- and microplankton). These 32 daily im

ages v.'ere then averaged to produce a 32-day composite for each size class, and 

for each product (referred to as Ml composites). Using the same model param-

eterisation, the three-component model was applied to the four 8-day SeaWiFS 

chlorophyll-a images, to derive for each size class the chlorophyll-a concentration 

and fractional contribution. Products from these four 8-day images were then av

eraged to produce a second 32-day composite for each size class (referred to as M2 

composites). Finally, the three-component mode! was applied directly to the 32-day 

rolling, global, SeaWiFS chlorophyll-a image to produce a third 32-day composite 

for each size class, and for each product (referred to as M3 composites). 

Mean Error (ME) differences were calculated between each composite (weighting 

each pixel's value by its area (a function of latitude)). In addition, differences were 

also calculated on a pixel by pixel basis by subtracting M2 from Ml. M3 from Ml, 

and M3 from M2. 

A. 3 Results 

Figure A.l and A.2 show the results from the three monthly images for size-specific 

chlorophyll-a and the percentage of each size class to the total chlurophyll-a con

centration respectively. In all cases the results are shown to be very similar. Table 

A.l show the global average ME between images. ME differences between images, 

regarding percentage contribution to total chlorophyll-a. are less than 1 % for all size 

classes. Regarding size-specific chlorophyll-a concentrations, differences are below 

0.015 mgm~^ for all size classes. These differences are well below estimated errors 

on the three-component model (Chapter 4) and also realistic sensitivity estimations 

(Appendix D). 

Figure A.3 and A.4 show the differences between the monthly images for size-

specific chlorophyll-a and the percentage of each size class to the total chlorophyll-a 

concentration respectively, on a pixel by pixel basis. In general, higher differences 

are observed in coastal and highly eutrophic areas for all size classes (see Figure A.3 

and A.4). In such areas, the percentage of each size class to the total chlorophyll-a 

concentration typically varies between ±3% and the size-specific tiilorophyll-a con

centrations between ±0.01 mgm"''. Again these differences are well below estimated 

errors on the three-component model (Chapter 4) and also realistic sensitivity esti

mations (Appendix D). 

The small differences between approaches are clearly due to the temporal sam

pling of satellite data. Maritorena and Siege! (2005) highligtit that SeaVViFS daily 
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images cover typically 12-15 % of tlie ocean surface. When averaging over a monthly 

period, monthly SeaWiFS images typically cover the majority of the world ocean. 

Maritorena and Siegel (2005) found that by merging three ocean colour sensors, 

30-35 % of the ocean surface can be covered daily, allowing almost complete cov

erage of the world ocean within a 4-5 day period. Larger differences in the three 

approaches, siiown here, may be expected with satellite products that have higher 

temporal resolution, such as merged products (e.g. the GlobColour Project). 

Table A.l: Mean Error (ME) differences between monthly processing methods. 

Product 

Pico %C' 

Nano %C* 

Micro %C' 

PicoC; (mgni-^) 

Nano C* (mgm"^) 

Micro C^ (mgm~^) 

M1-M2 

0.45 

0.35 

0.24 

0.0008 

0.003G 

0.0138 

M1-M3 

0.53 

0.45 

0.29 

0.0009 

0.0050 

0.0097 

M2-M3 

0.62 

0.51 

0.34 

0,0011 

0.0055 

0,0149 
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Figure A.l: The size-specific chlorophyll-a concentrations (C) of pico-, iiano- and microplankton for the three monthly processing methods 
(Ml, M2 and M3) for May 2005. 
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Figure A.2: The percentage contribution of the three size class to total chlorophyll-a (C), for the three monthly processing methods (Ml, M2 
and M3) for May 2005. 
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Figure A.3: Differences in the size-specific chlorophyll-a concentrations (C) of pico-, nano- and microplaiikton for the three monthly processing 
methods (Ml, M2 and M3) for May 2005. 
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Figure A.4: Differences in the percentage contribution of the three size class to total chlorophyll-a {€)., for the three monthly processing methods 
(Ml, M2 and M3) for May 2005. 
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Application of the thrcc-componcnt model to daily, 8-day and monthly data 

A. 4 Summary 

Whereas the three-component model is based on non-linear equations, results from 

this appendix indicate that such a model can be applied directly to either 8-day 

ScaWiFS chlorophyll-a composites before producing a monthly composite, or alter

natively directly to monthly SeaWiFS chlorophyll-a composites. When comparing 

the three methods, global average ME differences between images were below 1 % and 

0.015 mgm"^ for the percentage total chlorophyll-a and the absolute chlorophyll-a of 

the three size classes, respectively. Such a result could help to reduce computational 

time when running the model on SeaWiFS satellite images. 
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Testing the NASA chlorophyll-a 

algorithm for systematic interannual 

variability 

B.l Introduction 

The three-component model developed in Chapter 4 uses the total chloropiiyll-a c-on-

centration as an input to calculate the fractional contributions of three phytoplank-

ton size classes. When applying the model to satellite derived total chlorophyll-a 

data over a 10-year SeaWiFS period, it is essential to test the satellite algorithm 

for systematic interannual variability before applying the three-component model 

and using the results to analyse (changes over the 10-year period. Any small system

atic deviations in the input may propagate through the calculations, particularly 

considering the three-component model is non-linear. In this appendix, the NASA 

clilorophyll-a algorithm is tested for systematic interannual variability using the 

NASA NOMAD data-set. 

B.2 Methodology 

B.2.1 In situ data 

Using the NASA NOMAD in situ dataset (Version 2.0w APLHA, 18/07/2008, 

OOXIX lOP Algorithm Workshop evaluation data-set, Wcrdeil and Bailey. 2005: 

Werdell. 2009), 822 contemporary, co-located remote-sensing reflectances, at SeaW

iFS visible wavelengths, and in situ chlorophyll-a measurements, were used to test 

the NASA 0C4 algorithm {O'Reilly et al,, 1998, 2000). The dataset incorporated 

measurements from 1995-2007 from various oceans insuring high variability in the 

datasct. It is acknowledged that some of the data in the XOMAD dataset was used 

to fit the 0C4 algorithm. However, the purpose of tliis exercise is not to validate the 
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Testing the NASA chlorophyll-a algorithm for interanmial variability 

algorithm but to test for any systematic interannual biases and the NASA NOMAD 

dataset is the only freely available dataset of sufficient size to do so. 

B.2.2 NASA OC4 algorithm 

The remote-sensing reflectances {Rj-s{^)) were used to derive the near surface 

chlorophyll-a concentration using the 0C4 algorithm (O'Reilly et al., 1998, 2000) 

following Equation 2.19. The in situ clilorophyll-a measurements were then com

pared with the 0C4 measurements for different years to see if there is any systematic 

interannual variability in the 0C4 estimates. 

B.3 Results 

The results from the test are shown in Figures B.l and B.2. Figure B.l shows the 

band ratio plotted as a function of the in situ chlorophyll-a concentrations with the 

0C4 algorithm superimposed on the data, for all the data and for eacli separate 

year. The majority of the data was sampled between 1997-2003, and for these years 

the model appears to tit the observations well with no systematic biases observed. 

Data post 2004 appears to be sparse in comparison. 

Figure B,2 shows the 0C4 derived chlorophyll-a concentrations plotted against 

the in situ chlorophyll-a concentrations, for all the data and for each separate year. 

A Hnear model was fitted to the data to highlight biases and the ME% are shown 

between the two measurements (Figure B.2). With the exception of 1995 (not 

a SeaWiFS year). 2004. 2005 and 2007. the 0C4 algorithm appears to compare 

well to the in situ chlorophyll-a concentrations with no systematic bias, as indexed 

by a slope close to one, and an intercept close to zero in the linear regression. 

The years where the 0C4 algorithm does not seem to fit the in situ chlorophyll-

a concentrations so well, as indexed by a slope far from one and an intercept far 

from zero in the linear regression (1995, 2004. 2005 and 2007), there are very few 

measurements. Furthermore, in these years the in situ chlorophyll-a values appear 

unevenly distributed over the chlorophyll-a range (e.g. for 2005 chlorophyll-a values 

are nearly all over 1 mgm~^). 

B.4 Summary 

In conclusion, given the regional and seasonal \'ariability in the NOMAD dataset, 

one cannot discern any systematic interannual variability in the performance of the 

NASA algorithm when using the NOMAD dataset. In years where there are plenty 

of measurements that are evenly distributed over the chlorophyll-a range, the 0C4 

algorithm appears to perform without any systematic bias. 
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Figure B.l: The band ratio {Rrs^iS > RrA^O > fl.,510/i?r.,555) plotted as a 
function of the in aitu chlorophyll-a concentrations with the 0C4 algorithm .super
imposed on the data, for all the data and for each separate year using the NOMAD 
dataset. 
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Figure B.2: The 0C4 derived chlorophyll-a concentrations plotted against the in 
situ chiorophyll-a concentrations, for all the data and for each separate year using 
the NOMAD dataset 
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Comparing output from the 

three-component model when using 

two different satelhte chlorophyll-a 

input algorithms 

C.l Introduction 

Various algorithms have been proposed to detect the total chlorophyll-a concentra

tion from satclhte data. These include global and regional algorithms, and both 

empirical and semi-analytical approaches. Two common algorithms currently used 

for global application are the 0C4 algorithm (O'Reilly et al.. 1998, 2000), currently 

in operational use by NASA, and the semi-analytical GSM algorithm (Maritorena 

et al.. 2002}. Both these algorithms were developed using a large set of biological 

(chlorophyll-a concentrations) and optical (water-leaving radiance spectra) measure

ments. 

The 0C4 algorithm is based on a polynomial relationship between a band ra

tio (blue to green wavelengths) and the chlorophyll-a concentration, assuming the 

majority of optically-active components in the surface ocean covary with chlorophyll-

a. The GSM algorithm treats chlorophyll-a. CDOM and SPM independently, and 

these properties are retrieved simultaneously from the radiance spectrum (Mari-

torcna et al., 2002). Both approa(:hes have been found to be good predictors of 

chlorophyll-a from satellite (Siegel et al., 2005). 

However, a comparison of the two global chlorophyll-a climatologies have indi

cated large qualitative and quantitative differences. Siegel et al. (2005) found that 

normalised percentage differences exceed 50 % over large areas of the ocean where 

the 0C4 chlorophyll-a values are greater than the GSM values, particularly in pole

ward regions. Alternatively, in subtropical gyres, the GSM chlorophyll-a retrievals 

were found to be greater than the 0C4 chlorophyll-a retrievals by as much as 50%. 
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On average over the global ocean, 0C4 chlorophyll-a retrievals are 29 % higher than 

the GSM algorithm (Behrenfeld, 2010). 

In this appendix, the three-component model is applied to input from both the 

0C4 algorithm and the semi-analytical GSM algorithm. Outputs from the two 

approaches were compared in order to quantify differences in using the two satellite 

chlorophyll-a inputs. 

C.2 Methodology 

To test the algorithms, twelve global, monthly Le\'el 3 mapped SeaW-

iFS images of OC4 derived chlorophyll-a and iirs(A) in 2003 were used for 

analysis. To run the GSM model IDL code was utalised (available at 

http://www.ioccg.org/groups/software.html) with a standard set of parameters op

timised for applications to offshore oceanic waters (see Table 2 in Maritorena et al., 

2002). The GSM model was run on the RraW data in order to derive rhloropliyll-a 

according to the GSM for the 12 months of 2003. The three-component model was 

then run on the two separate chlorophytl-a inputs and differences between output 

were compared. 

Hardman-Mountford et al, (2008) developed a classification system by adopting 

a combination of nmltivariate statistics and classification techniques and applying 

them to a time-series of satelhte chloropliyll-a data. The classification scheme ob

jectively defined six top-level biomes that each exhibited persistence. These biomes 

are shown in Figure C.l (top image). Areas in white represent bathymetry <200m 

and latitudes greater than 66.6°. These areas were masked from our classification 

as to avoid coastal (case 2) and inland waters and avoid areas that are inhibited 

by high sun zenith angles (Artie and Antarctic circle) in the winter months and 

so suffer from low sample rate of satellite observations. The Red and Black seas 

were also masked out of our time-series as they to suffer from non-biological optical 

complexity. 

Oligotrophic and mcso-eutrophic waters were partitioned using the Hardman-

Mountford et al. (2008) system by separating meso-eutrophic waters according to 

very high chlorophyll-a, high chlorophyll-a and high intermediate chlorophyll-a and 

oligotrophic according to very low chlorophyll-a. low chlorophyll-a and low inter

mediate chlorophyll-a (Figure C.l, bottom image). Eutrophic waters [very high 

chlorophyll-a) were merged with mesotrophic waters as there was only a small 

amount of very high chlorophyll-a waters in Figure C.l (top image) having removed 

coastal (case 2) and inland waters. When comparing models, data were partitioning 

into oligotrophic and meso-eutrophic areas in addition to deriving global monthly 

statistics (weighting each pixel's value by its area (a function of latitude)). 
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Figure C.l: Classification of oligotrophic and meso-eutrophic provinces used when 
comparing the GSM and 0C4 inputs to the three-component model. Top image 
shows the classification of Ilardman-Mountford et al. (2008), bottom image shows 
the partition of oceanic waters into oligotrophic and meso-eutrophic areas based 
on Hardman-Mountford et al. (2008). White areas represent bathymetry <200ni. 
latitudes greater than 66.6° and coastal and inland waters. 

C.3 Results 

Figure C.2 shows a comparison between output from the three-component model 

when using two different satelUte chlorophyll-a algorithms for global, oligotrophic 

and meso-eutrophic areas over the 12 months of 2003. As highlighted by Siegel et al. 

(2005) and Behrenfeld (2010). the 0C4 algorithm estimates higher total chlorophyll-

a than the GSM globally. When applying the three-component model to the two 

inputs, higher micro-, nano- and picoplankton chlorophyll-a were also found when 

using the 0C4 algorithm as input, in comparison with the GSM algorithm. This 

is less pronounced in the oligotrophic regions than the meso-eutrophic regions and 

exhibits slight seasonal variability. Note in the oligotrophic regions, from February 

to May the three-component model with the GSM input estimates higher levels of 

pieoplankton chlorophyll-a when compared with the 0C4 input. 

On average, over the 12 months of 2003, total chlorophyll-a is 0.047 mgm"^ 
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Figure C.2: A comparison between output from the three-component model when 
using two different satellite chlorophyll-a algorithms for global, oligotrophic and 
meso-eutrophic areas over the 12 months of 2003. The top row shows the total, pico-
, nano- and microplankton chlorophyll-a concentration derived from the two inputs, 
the second row <lowii show the difference in these concentrations when subtracting 
the GSM output from the 0C4 output, the third row down shows the percentage of 
the pico-, nano- and microplankton to the total chlorophyll-a concentration derived 
from the two inpiits and the bottom row shows the difference in the percentages when 
subtracting the GSM output from the 0C4 output. The left column represents all 
case 1 global areas, the middle column the oligotrophic areas and the right column 
meso-eutrophic areas (see Figure C.2 for classification). 

higher when using the 0C4 algorithm in comparison with the GSM algorithm. When 

using both satellite chlorophyll-a models as input to the three-component model, 

pieoplankton chlorophyll-a is 0.005 nigm"^ higher, nanoplankton chlorophyll-a is 

0.022 mgm"'* higher and microplankton 0.020 mgm"'' higher when using the 0C4 

algorithm in comparison with the GSM algorithm. 

Regarding the percentages to the total chlorophyll-a of the three size classes, 

when using the 0C4 algorithm as input to the three-component model, higher micro-

and nanoplaiikton percentages arc found globally over the 12 months in comparison 

with applying the three-component model to the GSM algorithm. However, higher 

percentages of picoplankton are observed globally using the GSM algorithm as input 

in comparison with the 0C4 algorithm. These differences are primarily pronounced 
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in the meso-eutrophic regions as opposed to the oUgotrophic areas which exhibit 

Uttle difference. Again these differences are seen to vary shghtly seasonally. Note in 

the ohgotrophic regions, from .May to October, the three-component model with the 

GSM input estimates higher picoplankton and lower nanoplankton percentages when 

compared to the 0C4 input, contradictory to March and April. Over the 12 months 

of 2003, on average using the 0C4 algorithm as input, picoplankton chlorophyll-a 

percentage is -3.4% lower, nanoplankton is 1.9% higher and microplankton 1.5% 

higher when using the OC4 algorithm in comparison with the GSM algorithm. 

Table C.l shows the Pearson correlation coefficients (r) in the seasonal time-

series of 2003 from the two different satellite input chlorophyll-a algorithms (Figure 

C.2). With the exception of microplankton chlorophyll-a in meso-eutrophic and 

global waters, all r values arc greater than 0.83 for micro-, nano- and picoplankton 

(both C" and %C") and on average all output products have a r value of -^0.87. 

This implies that conclusions drawn by use of either algorithm as input, regaiding 

phytoplankton seasonal cycles, are generally insensitive to this choice of satclhte 

dilorophyll-a product despite slight seasonal differences noted in Figure C.2. 

Table C.l: Pearson correlation coefficients from the comparison between different 
satellite chlorophyl!-a algorithms as input to the three-component model for global, 
oligotrophic and mcso-eutrophic areas over the 12 months of 2003. 

Product 

Total r-' 

Micro C^ 

NanoC* 

Pico C; 

Micro %C" 

Nano % C ' 

Pico %C' 

Global 

0,59 

0.24 

0.91 

0.99 

0.83 

0.89 

0.93 

Oligotrophic 

0.97 

0.96 

0.98 

0.95 

0.99 

0.99 

0.99 

Meso-entrophic 

0.62 

0.29 

0.90 

0.98 

0.88 

0.97 

0.95 

Figure C,3 and C.4 show a pixel by pixel comparison between output from the 

three-component model wlien using two different satellite chtorophyll-a algorithms 

for January and July respectively. The results reflect those shown in Figure C,2, 

particularly large differences in the meso-eutrophic regions in comparison with the 

oligotrophic areas, ffowever, these figures highlight additional regional variability 

between output when using the two different algorithms. For instance, microplank

ton chlorophyll-a is actually lower in mesotrophic areas (e,g. Equatorial Pacific} 

when iising the 0C4 algorithm in comparison to the GSM algorithm. In the meso-

eutrophic regions shown in Figure C,2 this is masked by the very high microplankton 

chlorophyll-a values, when using the 0C4 algorithm, in the very productive areas 

(e.g. Benguela upwelling, see Figure C.3 and C.4). 
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Figure C.3: A comparison between output from the three-component model when 
using two different satellite chlorophyll-a algorithms for January 2003. Differences 
were calculated by subtracting results from the three-component model when using 
the GSM input from the three-component model when using the 0C4 input. 

C.4 Summary 

Over the 12 months of 2003, using the 0C4 algorithm as input to the three-

component model, microplankton chlorophyll-a is 0.020 mg ni~^ liigher (microplank-

ton percentage 1.5% higher), nanoplankton chlorophyll-a is 0.022 mgm"^ higher 

(nanoplankton percentage is 1.9%; higher) and picoplankton chlorophyll-a is 0.005 

mgm"^ higher (picoplankton percentage is -3.4 %i lower) globally, in comparison 

with using the with the GSM algorithm as input to the three-component model. 

These differences are primarily pronounced in the raeso-eutrophic regions as op

posed to the oligotrophic areas which exhibit smaller differences. Additional spatial 

differences were observed depending on seasonal and trophic level. Average r val

ues, when analysing temporal trends over 2003 for all output products, are ^0.87. 

This implies that conclusions drawn by use of either algorithm as input, regard-

hig phytoplankton seasonal cycles, are generally insensitive to the choice of satellite 

chlorophyll-a product. 
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Figure C.4: A comparison between output from the three-component model when 
using two different satellite chlorophyll-a algorithm.^ for July 2003. Differences were 
calculated by subtracting results from the three-component model when using the 
GSM input from the three-component model when using the 0C4 input. 
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Sensitivity analysis of the 

three-component model for 

application to satellite chlorophyll-a 

fields 

D.l Introduction 

Satelhtc ocean colour sensors generally penetrate the first optical depth {or pene

tration depth) of the water column {Morel et al., 2007c). Therefore, chlorophyll-a 

retrievals via ocean colour sensors are thought to be representative of the first op

tica! depth. In Chapters 4 and 5, within the first optical depth, the parameters of 

the three-component model were seen to vary among datasets. When applying the 

three-component model to satellite chlorophyll-a retrievals it is essential to grasp 

how sensitive the model is to changes in its parameterisation. In this appendix, a 

sensitivity analysis is conducted on the three-component model in order to quantify 

how sensitive the model i.s to realistic variations in its paramcterisation within the 

first optical depth. 

D.2 Methodology 

The three-component model is based essentially upon two equations (see Equations 

4.4 and 4.6} that are reproduced below for convenience: 

Cp.„^C;r„[ l -exp(-5p ,„C)] , (D.l) 

and 

Cp = C ; ' [ l - e x p ( - 5 , C ) ] . {D.2) 
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Having derived the combined nano-picoplankton chlorophyll-a concentration (Cp,n) 

and the picoplankton chlorophyll-a concentration (Cp), the nano- and microplankton 

chlorophyll-a concentrations {C„ and C^ respectively) can be calculated according 

to Equations 4.5 and 4.7 that are reproduced below for convenience: 

C„ = C\n - C'p, (D.3) 

and 

C„ = C - C p , „ . (D.4) 

The percentages of each pMtoplankton size class to total chlorophyll-a can then be 

calculated by dividing the size-specific chlorophyll-a concentrations [Cp^ C„, Cp,„ 

and Cm- in mgm~^) by the total chlorophyll-a concentration ( C in mgm~^) and 

multiplying by 100. Assuming C is know-n (as derived from satellite), the parameters 

of the three-component model are C^ (mgm"^), C^„ (nigm~^), Sp and 5p,„. Figure 

D.l shows the retrieved model parameters for the AMT and NOMAD pigment 

datasets (Chapters 4 and 5), in addition to the modelled relationship between optical 

depth and model parameters using the AMT data (Chapter 4). Model parameters 

are seen to vary within the first optical depth: C^ from 0.09 to 1.15, C^^ from 

0.77 to 1.11. Sp from 5.15 to 8.29, and Sp,„ from 0.78 to 1.16, as represented by the 

measured minimnni and maxinmm fines shown in Figure D.l. 

Near the origin where C is extremely low, the derivative of Equations D.l and 

D.2 can be expressed according to 

***-- c-o 

and 

respectively. Tlierefore. when C is extremely low. the fractional contribution of 

Cp,„ to C can be expressed by Sp^„C^„, and the fractional contribution of Q, to 

C can be expressed by SpC^. Note that according to Equations D.3 and D,4, at 

extremely low C the fractional contribution of Cm, F,,, = C - Sp_„C^„ and C„, 

n — 'Jp,n'--p,n ~ '^P^p • 

Figure D.2 shows the products of Sp,„Cp'„ and SpCp', for the retrieved model 

parameters from the AMT and NOMAD pigment datasets, in addition to the mod

elled relationship between optical depth and model parameters using the AMT data. 

Using the model parameters for the different datasets, within the first optical depth, 

the product Sp,nC^„ is shown to range from 0.86 to 0.93 and SpC^ from to 0.67 to 

0.81, as represented by the measured minimum and maximum lines (Figure D.2). 

Two sensitivity procedures were set up to test the model. Test 1 was designed 

to test the sensitivity of the model based on measured parameter variations within 
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Figure D.l: Variations in the three-component model parameters in Chapters 4 and 
5 with optical depth (T) . Note that the parameters derived from NOMAD and AMT 
ernises 5-15 are plotted at 0.5 r, AMT r model refers to the optical depth-dependent 
function described in Chapter 4. 

the first optical depth, and test 2 was designed to test the sensitivity of the model 

beyond the measured parameter variations. Maxinunii and minimum values for C™ 

and C?'„ were assigned for eacli test (Table D.l). In the first test (teat 1), maximum 

and minimum values of C™ and C^„ were varied between measured values {see 

Figure D.l and Table D.l). In the second test (test 2). the maximum and minimum 

values were varied beyond realistic parameter variations (see Figure D.l and Table 

D.l). 

The parameters Sp and Sj,_„ were calculated based on a maximum and minimum 

relationships between Sp,„C^„ and SpCp\ For test 1, maximum and minimum values 

of 5p,„CI"„ and SpC^ were varied to realistic maximum and minimum values shown 

in Figure D.2 (see Table D.l), based on derived parameters. For test 2, the maximum 

and mininmm values of 5p„CJ^„ and SpC™ were varied beyond realistic values (0.1 
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Figure D.2: Variation.s in (a) 5p,„C^„ and (b) SpC^ derived from the three-
component model parameters in Chapters 4 and 5 with optical depth (r). Note 
that the parameters derived from NOMAD and AMT cruises 5-15 are plotted at 
0.45 T and 0.55 T respectively. AMT r model refers to the optical depth-dependent 
function described in Chapter 4. 

around the mean measured value of Sp_„C"'„ and SpC^) shown in Figure D.2 {see 

Table D.l}. 

The model wa.s nm on 21 iterations between the minimum and maximum values 

of C^ and C^„ (Table D.l). and for each of these iterations, the parameters of Sp 

and Sp,„ were calculated and varied a further 21 iterations between the minimum and 

maximum values of SpC"" and 5p,„C^„ (Table D.l). This resulted in 441 iterations 

for a range of chlorophyll-a concentrations from 0.01-100 mgm~'^. For nanoplank-

ton, the population is calculated according to a combination of both Equations D.l 

and D.2, and hence requires all four parameters for each iteration. Therefore, for 

nanoptankton, the four parameters of the three-component model need to be run in 

every possible permutation. Therefore, each Cp run needs to be subtracted from each 

Cp.n run to derive Cn- This resulted in 194,481 (441 x 441) runs for nanoplankton 

in comparison with 441 for the other size classes, for both test 1 and 2. 

D.3 Results 

The results from the sensitivity analysis are shown in Figure D.3 (a-h) with dark 

grey shading representing results from test 1 and light grey from test 2. Figure D.3 

(i) and (j) show the percentage difference and chlorophyll-a difference from test 1 

(realistic test) for the three size classes across a continuum of chlorophyll-a values 

(note these have been divided by two to show the + or - value around the mean). 

The nanoplankton are the most sensitive of the three size classes, for both the per

centage and absolute chlorophyll-a concentrations (Figure D.3 (i) and (j)). This was 
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Figure D.3: Results from the sensitivity analysis. Dark grey shading represents 
results from test 1 and light grey from test 2 in (a) through to (k), and (i) and 
(j) show the percentage difference and ehlorophyll-a difference from test 1 (realistic 
test) for the three size classes across a continuum of chlorophyll-a values. 
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Table D.l: Minimum and maximum parameter values for C™„ and C^, in addition 
to minimum and maximum relationships between Sp.„ and C™„, and Sp and C^", 
used in the sensitivity analysis for test 1 and 2. 

Test 

1 

1 

2 

2 

1 

1 

2 

2 

Parameter 

c; 

^ P 

5pC-

•^p'-p 

Minimum 

0.711 

0.089 

0.500 

0.070 

0.861 

0.671 

0.800 

0.650 

Maximum 

1.108 

0.146 

1.500 

0.170 

0.932 

0.811 

1.000 

0.850 

expected considering that four parameters are required for nanoplankton. whereas 

only two are needed for the other size classes, Pico- and nanoplankton percentage 

differences are higher at low chlorophyll-a (<0.7 mgm-3) and microplankton per

centage differences are highest between 0.7 to 3.0 mgm~^. The absolute chlorophyll-

a differences increase for all size classes up to a given point where they appear to 

saturate (i.e. at '--'l.O mgm~'^ for picoplankton and '~-'9.0 mgm~^ for nano- and 

microplankton). 

The percentage difference and chloropbyll-a difference from teat 1. shown in 

Figure D.3 (i) and (j), were plotted on the entire mission ScaWiFS chlorophyll-

a composite using a look-up table approach (Figure D.4). On average, over the 

global ocean (weighting each pixel's value by its area), microplankton percentage 

difference (-t- or -) was found to be 4.3%, nanoplankton 10.9% and picoplankton 

6.6 %. The corresponding chlorophyll-a differences from the three size classes were 

0.016 mgm~' for microplankton, 0.029 mgm"^ for nanoplankton and 0.013 mgm"^ 

for picoplankton. 

D.4 Summary 

The results from the sensitivity analysis indicate that nanoplankton are the most 

sensitive to variations in model parameters. Percentage differences from test 1 (see 

Figures D-3 and D.4) indicate pico- and nanoplankton are most sensitive in ohg-

otrophic and mesotrophic areas. Absolute chlorophyll-a differences for the three 

size classes increase with chloropliyll-a up to a saturation point. On average, over 

the global ocean, microplankton percentage difference (+ or-) was found to be 4.3% 

(0.016 mg m"^ absolute chlorophyll-a), nanoplankton 10.9 % (0.029 uig m"^ absolute 
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Micro (XCT) 

Figure D.4: Results from the sensitivity analysis applied to the entire mission Sea-
WiFS clilorophyll-a conipceite. 

chlorophyll-a) and picoplankton 6.6% (0.013 mgm~'' absolute chlorophyll-a). 
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Sensitivity analysis to test the 

correlation between MEI and 

phytoplankton size class percentage 

chlorophyll-a anomaly in the 

equatorial region of the Pacific and 

Indian Oceans 

E.l Introduction 

In Chapter 6, a very strong eorrelatton was shown between phytoplankton size class 

% chlorophyll-a anomaly (negative for micro- and nanoplankton, positive for pi-

coplankton) and the MEI, in the equatorial region of the Pacific and Indian Oceans. 

Using the sensitivity procedure developed in Appendix E, this Appendix tests this 

correlation by varying the parameters of the three-component model and running a 

model ensemble. 

E.2 Methodology 

For the test case scenario, 120 monthly, Level 3 mapped, chlorophyll-a SeaWiFS 

images were used for analysis, encompassing the time period from October 1997 to 

September 2007. Each image was rescaled to 1, 3° by 1 / 3° resolution. Then using the 

mask developed in Chapter 6 (Figure 6.13 b), the allocated regions of the equatorial 

Pat:i{ic and Indian Oceans were pooled and then averaged for each month (weighting 

each pixel's value by its area). Figure E.l shows the mean monthly chlorophyll-a 

values for the area of interest (Figure 6.13 b, red pixels) that were used to test the 

correlation between MEI and phytoplankton size class % chlorophyll-a anomaly. 
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Figure E.l: The mean ch!orop!iyll-a concentrations (C) in the equatorial region of 
the Pacific ami Indian Oceans used to test the correlation between size class % 
chlorophyll-a anomaly and MEI. 
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Figure E.2: Three-component model runs for the sensitivity analysis (test 2 Ap
pendix D) for (a) miero])lankton, (b) nanopiankton and (c) picoplarikton. For 
iiaiiuplaukton only the 80th of everv' 80 model runs are plotted, and for piro- and 
microplankton only the 2nd of every 2 model runs are plotted. The area between 
the vertical dotted tines indicate the region between the minimum and maximum 
chlorophyll-a values from the 10-year chlorophyll-a means show in Figure E.l. 

Designed to test the sensitivity of the model beyond the measured parameter 

variations shown in Chapters 4 and 5, test 2 was adopted from Appendix D and 

used to test the correlation between MEI and phytoplankton size class % chlorophyll-

a anomaly. The enHcmble of model runs used for the sensitivity test are shown 

in Figure E.2. The model was applied to each monthly mean chlorophyll-a value 

over the 10-year period. Then for each model run, the anomaly was calculated by 

first calculating a seasonal climatology over the 10-year period, then subtracting 
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the corresponding monthly climatologv' from the same month in the time series {as 

conducted in Chapter 6). Each anomaly from each model run was then correlated 

with MEI. Overall, 441 model runs were conducted for pico- and microplankton and 

194,481 for nanoplankton. and hence a total of 195,363 correlation coefficients. 

E.3 Results 

The results from the sensitivity analysis are shown in Figure E.3 for (a) microplank

ton, (b) nanoplankton and (c) picoplankton. Over the 10-year period, all mi

croplankton anomalies (441 model runs) were significantly negatively correlated with 

MEI (r < —0.85,p < O.OOOI) and all picoplankton anomalies (441 model runs) were 

significantly positively correlated with MEI (r > 0.85,p < 0.0001). Furthermore, 

all nanoplankton anomalies (194,481 model runs) were significantly negatively cor

related with MEI (r < -0.68.p < 0.0001). Results from this sensitivity analysis 

clearly emphasis a very strong correlation between p}i>'toplanktoii size class and 

MEI in the equatorial region of (he Pacific and Indian Oceans, even when vary

ing the parameters of the three-component model beyond the measured parameter 

variations shown in Chapters 4 and 5. 

Whereas the results from this sensitivity test clearly support evidence of the 

strong correlation between phytoplankton size class and MEI in the equatorial region 

of the Pacific and Indian Oceans, the sensitivity test is not concrete. The use of 

monthly SeaWiFS chlorophyll-a composites to derive monthly phytoplankton size 

class products has been shown to be valid in Appendix A. However, ideally (as 

conducted in Chapter 6), the three-component model should be run on daily images, 

then produce monthly composites, climatologies and anomaly composites, before 

averaging over all the pixels of the region then regressing with MEI. As opposed 

to applying the model to each monthly mean chlorophytl-a value of the region, as 

conducted in this test. Particularly considering the model is non-hncar. Figure 

E.4 shows the differences between these two approaches when running the throe-

component model on a single set of parameters (parameters values set from Table 

4.1. method 1 refers to anomalies as calculated in Chapter G, and method 2 refers to 

anomalies as calculated in the sensitivity test). Discrepancies are noticed between 

the two approaches. For instance, at the beginning of 1998 the method used in this 

sensitivity analysis (method 2, Figure E.4) predicts higher picoplankton anomalies 

and lower nano- and microplankton anomalies when compared with the anomalies 

calculated in Chapter 6 (method 1. Figure E.4). However, all anomalies are well 

correlated (r > 0.87) clearly supporting the basis for the sensitivity test and its 

results. 

Whereas it would seem more sensible to run the sensitivity test as in method 

1, on daily images between 1997-2007 {^ 3633 images), to then develop monthly 
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Figure E.3: Three-component model runs for the sensitivity analysis to test the 
correlation between MEI and phytoplankton size class % chlorophyl!-a anomaly 
in the Equatorial region of the Pacific and Indian Oceans; (a) microplankton, (b) 
nanoplankton and (c) picoplankton. 
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Figure E.4: Comparison between the anomalies of the three size class calculated 
in Chapters 6 (Method 1). and the anomalies of the three size class calculated 
according to the sensitivity test (Method 2), for the same set of three-component 
model parameters. Note the inverse Y-axis for picopkankton in (c). 
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composites (120 images), then climatologies (12 images) and anomalies (120 images), 

before averaging each anomaly in the equatorial Pacific and Indian Oceans (pixel 

by pixel) and then regressing with MEI, at 195,363 ensemble runs the computation 

time and power would be far greater than possible with a conventional desktop 

computer. Furthermore, the correlations between MEI and PSC from the two tests 

shown in Figure E.4 are -0.89, -0.89 and 0.90 for micro-, nano- and picoplankton, for 

method 1, and -0.85, -0.85 and 0.85 for micro-, nano- and picoplankton for method 

2. The methodology for the sensitivity test (method 2) displays lower correlation 

coefficients than method 1. Therefore, it may be expected that the correlations 

between the ensemble runs and MEI would improve if the sensitivity test was run 

using method 1. 

E.4 Summary 

The results from the sensitivity analysis indicate that, even when varying the pa

rameters of the three-component model beyond the measured parameter variations 

shown in Chapters 4 and 5, the very strong correlation between phytoplankton size 

class % chlorophyll-a anomaly (inverse for micro- and nanoplankton, positive for pi

coplankton) and the MEI in the equatorial region of the Pacific and Indian Oceans 

(Chapter 6), was still maintained, regardless of parameter variations. 
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