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Electron Dynamics in High-Intensity Laser Fields
Christopher Harvey

Abstract

We consider electron dynamics in strong electromagnetic fields, such as
those expected from the next generation of high-intensity laser facilities.
Beginning with a review of constant classical fields, we demonstrate that
the electron motion (as given by the Lorentz force equation) can be
divided into one of four Lorentz invariant cases. Parameterising the
field tensor in terms of a null tetrad, we calculate the radiative energy
spectrum for an electron in crossed fields. Progressing to an infinite
plane wave, we demonstrate how the electron orbit in the average rest
frame changes from figure-of-eight to circular as the polarisation changes
from linear to circular. To move beyond a plane wave one must resort to
numerics. We therefore present a novel numerical formulation for solving
the Lorentz equation. Our scheme is manifestly covariant and valid for
arbitrary electromagnetic field configurations. Finally, we reconsider the
case of an infinite plane wave from a strong field QED perspective. At
high intensities we predict a substantial redshift of the usual kinematic
Compton edge of the photon emission spectrum, caused by the large,
intensity dependent effective mass of the electrons inside the laser beam.
In addition, we find that the notion of a centre-of-mass frame for a given
harmonic becomes intensity dependent.
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Chapter 1

Introduction

1.1 Background and Motivation

This year (2010) marks the 50th anniversary of the invention of the laser [1]. When

such a device first appeared, it was cynically referred to as ‘a solution looking for

a problem’ [1]. Since then laser technology has become essential in a vast range

of areas, and there is no longer any doubt regarding its usefulness. In particular,

the unique properties of a laser beam – a coherent source of photons, all in phase

with each other and all of the same frequency and polarisation – make it a useful

tool in many disciplines of physics [2]. It is especially interesting from a theoretical

viewpoint, since the high photon density in a laser beam results in an electromagnetic

field which in some ways behaves classically, even though it is produced by an

inherently quantum process.

Since the first laser in 1960, various technological breakthroughs have ensured a

steady increase in powers and intensities. The most important of these is chirped

pulse amplification (CPA) [3, 4], which led to an acceleration of this upward trend.

CPA overcomes the problem of high energy pulses causing damage as they pass

through the laser optics, and therefore rendering the laser useless. It works by

passing the pulse through a specially designed dispersive grating, which temporally
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stretches it and thus reduces its peak power. The long duration stretched pulse then

safely passes through the laser optics where it is amplified by conventional means,

before being passed through a second set of gratings which temporally compress it

again. This is shown diagrammatically in Figure 1.1. The advent of CPA removed a

significant technological barrier, which has allowed the recent development of lasers

that have unprecedented powers and intensities; the current record being about

1 PetaWatt (PW) and 1022 W/cm2 respectively [5]. This trend is expected to

continue throughout the next few years, culminating with the European Extreme

Light Infrastructure (ELI), which may deliver powers and intensities as high as 1

ExaWatt and 1026 W/cm2 [6]. Such extremely high intensities will allow the probing

of fundamental physics in previously inaccessible regimes.

Figure 1.1: Diagram showing the process of chirped pulse amplification.

seed pulse

stretching

amplification

compression

The utilisation of high powered laser technology can be divided into four different

areas [7]; attosecond science, photonuclear science, laser acceleration, and vacuum

physics. Attosecond science, as its name suggests, concerns the use of extremely

short duration laser pulses. These may be used to track the motion of electrons

on atomic scales for example [8]; allowing the behaviour of electrons in complex
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biomolecules [12], and in semiconductor nanostructures to be studied. Photonuclear

science involves the probing of atomic nuclei with laser beams. Applications include

the probing of radioactive waste to test how well it has decayed [7], as well as (of

course) fundamental nuclear physics. Laser acceleration refers to the possibility of

using the laser’s electromagnetic field to accelerate charged particles. Such technol-

ogy would be extremely useful, since the current generation of conventional particle

accelerators (of which the Large Hadron Collider is a prime example [9]) are large,

expensive facilities, and so there is a need for a smaller and cheaper alternative.

Laser accelerators could provide a solution since they will be much more compact,

raising even the possibility of ‘table-top’ devices [10]. There may also be applications

in medicine [11], one example being the use of the technology to accelerate protons.

Protons can be used to destroy deep seated cancerous growths, without causing so

much damage to the overlying tissues as conventional radiation therapies [13]. Much

research has concerned the possibility of accelerating electrons from a plasma, such

as that created when a laser is fired at a target of thin foil (see e.g. [14]). However,

there is also a great deal of interest laser vacuum acceleration, where individual

electrons (such as those from a conventional accelerator) are inserted into the laser

field (e.g. [15]). From an experimental point of view, this would be much ‘cleaner’

than a laser-plasma interaction, and therefore easier to study. This brings us on to

the fourth area: vacuum physics. This is the study of laser fields ‘in vacuum’, either

on their own, or of their interaction with individual charged particles (i.e. without a

plasma background). The theory describing the interaction of photons with charged

particles – quantum electrodynamics (QED) – is widely accepted as one of the most,

if not the most, successful scientific theories ever developed [16]. The high electro-

magnetic field intensities found inside a laser beam provide a unique testing ground

for this theory, allowing us to study electromagnetic interactions under otherwise

(technologically) unobtainable conditions. Strong field QED is a theory that suc-
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cessfully combines relativity and quantum mechanics. The case of a charged particle

in a laser field allows us to test both at the same time, since (in a strong field) the

particle will be accelerated to relativistic velocities, while interacting on a quantum

level with the laser photons.

In terms of vacuum physics, one of the most readily accessible processes is the

electron-photon scattering that occurs when an electron is inserted into the laser

beam. One way to do this is to bring the laser into collision with a beam of elec-

trons from a conventional linear accelerator, although in many cases it may be more

convenient to source the electrons from a laser wake-field induced plasma. At low in-

tensities we have the well known Thomson/Compton scattering processes occurring,

as described in any electrodynamics textbook (see e.g. Jackson [19] and Landau and

Lifshitz [57]). It should be noted that Thomson scattering is the classical limit of

Compton scattering, occurring in the limit where the laser photon energy �ω, as

seen by the electron in its rest frame, is much less than the electron rest energy mc
2.

Formally, this amounts to taking � → 0

� → 0

COMPTON −→ THOMSON

�ω � mc
2

and will be considered in more detail in Chapter 5. As we move to higher intensities

the scattering process can involve more than one laser photon γL.

e
− + nγL → e

− + γ, n ∈ . (1.1)

Such a process is known as nonlinear Compton scattering, nonlinear because the

probability for such a process (with n > 1) scales nonlinearly with the photon density
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[20]. (We note that a considerable portion of this thesis will be devoted to the study

of nonlinear Compton scattering.) At higher intensities still (∼ 1025 W/cm2), it may

be possible to study vacuum birefringence effects caused by the vacuum laser field

being modified by virtual electron-positron pairs. It is predicted [21] that this will

result in the laser field having a non trivial refractive index, which will be different for

different polarisations of inserted probe photons. Therefore, by examining changes

in the polarisation of probe photons [22], such effects could in principle be studied.

However, even at ELI intensities such changes are predicted to be exceedingly small,

although there is some speculation that a measurement may nevertheless be possible

[23]. Looking further to the future, if a laser field could reach a critical field strength

of Ec ≡ m
2
c
3
/e�, corresponding to a critical intensity of ∼ 4×1029 W/cm2 (beyond

even the reach of ELI), then it would contain enough energy to degenerate into

electron-positron pairs (Schwinger pair production) [24, 25]. An electron inserted

into such a field would acquire an electromagnetic energy equal to its rest energymc
2

upon traversing a distance of a Compton wavelength λ̄c = �/mc. While Schwinger

pair production may not currently be accessible, a variant of the process (Breit-

Wheeler pair production [26, 27]) is. Here the energy threshold is overcome by

colliding extremely high energy photons with an (optical) laser beam. One source

of such photons is of course the nonlinear Compton scattering process we have

just discussed. Indeed, this method was successfully tested in the SLAC E-144

experiment [28], where pairs were produced upon colliding 30 GeV photons with an

optical laser beam.

In this study we will confine ourselves to an analysis of electron-photon interac-

tions, since it is these processes that will be most readily accessible with the facilities

that are due to come online in the near future. We will analyse the electron dynam-

ics in vacuum, rather than in a plasma, since this is a much cleaner environment in

which to work. In such a system there are no additional background effects (caused
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by a plasma) to take into account, and therefore the physics is more amenable to

analytics. We reason that this will give us a deeper insight into the physics in-

volved. We will be considering the situation from both a classical and a quantum

perspective, with an ongoing discussion of when each of the view-points are valid.

1.2 Description of the Laser Field

Before we proceed further, let us briefly consider what a suitable description is for a

laser field. We begin by enforcing the condition that any four-potential Aµ describing

an electromagnetic wave ‘in vacuo’ satisfies the vacuum wave equation [17]

∂ν∂
ν
Aµ = 0. (1.2)

We write the potential in the form

Aµ(x) = Re
�
aµ(x)e

−iωt
�
. (1.3)

Substituting (1.3) into (1.2) gives us the Helmholtz equation

�
∇2 + ω

2
�
a(x) = 0. (1.4)

If we now assume that the variation of the wave amplitude a(x) is slow within the

distance of a wavelength λ = 2πc/ω, then the wave approximately maintains a plane

wave character. This means that the wave front normals are paraxial rays, and so

for a beam propagating in the x3-direction

∂a

∂x3
�

ω

c
a ⇒

∂
2
a

∂x
2
3

�
ω

c

∂a

∂x3
�

ω
2

c2
a. (1.5)
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We can then approximate (1.4) with the paraxial approximation of the Helmholtz

equation

∇2
⊥a− 2i

ω

c

∂a

∂x3
= 0, (1.6)

where ∇2
⊥ = (∂2

1 + ∂
2
2). A solution to (1.6) is the Gaussian beam solution

a(x) =
w0

w(x3)
exp

�
−

|x⊥|

w2(x3)

�
exp

�
iarctan

�
x3

R

�
− i

ω|x⊥|
2

2C(x3)

�
, (1.7)

where w0 is the focal spot radius (beam ‘waist’ size), w(x3) = w0(1+x
2
3/R

2)1/2 is the

beam radius, and the curvature of the wave fronts is given by C(x3) = x3(1+R
2
/x

2
3),

where we have introduced a quantity called the Rayleigh length R = w
2
0ω/2c. If a

Gaussian beam, such as we have just described, is focussed down to a waist and then

expands again, then the rate of increase of the beam width can be considered small

over a distance R from the waist [18]. This is summarised in Figure 1.2, where we

also show how the electrical field intensity varies through the beam. The paraxial

approximation (1.6) is only valid if w0/R < O(1) [29, 30]. This is satisfied provided

the beam is not too strongly focussed – for most of the parameter ranges we will

consider, this is not expected to be a problem [44], although it may become an issue

when considering very high-intensity facilities such as ELI.

In this study we will be devoting our attention to the case of a head-on collision

between a beam of electrons and the laser. If we assume that the diameter of

the electron beam is narrow compared to the laser waist size, then the electrons

will only probe the central region of the laser focus. Under such conditions the

Gaussian beam (1.7) can be well approximated by a (temporally) pulsed plane wave

[31], which for a long duration pulse tends towards an infinite plane wave. Recent

numerical modelling [44] suggests that such assumptions are justified for parameter

values similar to the ones we will be considering here. An electromagnetic plane
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Figure 1.2: [Top] Diagram showing the dimensions of a typical paraxial Gaussian
laser beam. [Bottom] Magnitude of electrical field intensity of the beam. (Arbitrary
units.)

wave is described by a field tensor satisfying the homogeneous Maxwell equation

∂µF
µν = 0 and that is a function of k ·x, F µν = F

µν(k ·x), where k is the laser wave

vector. As a result of the vacuum Maxwell equation we have

kµ
∂F

µν

∂(k · x)
= 0, (1.8)

which implies (after integrating)

kµF
µν = 0, (1.9)

expressing the fact that the wave is transverse (up to a constant homogeneous term).

We note that as we move from an infinite plane wave to a pulsed plane wave, and
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from a pulsed plane wave to a Gaussian beam, the mathematical modelling increases

in complexity.

1.3 A Dimensionless Measure of Laser Intensity

In order to define precisely what we mean by a ‘high-intensity’ laser field and to set

the ground for later work, we need to define a measure of laser intensity. A suitable

(Lorentz and gauge invariant) definition is [32]

a
2
0 ≡

e
2

m2c4

��pµT
µν
pν��

(k · p)2
, (1.10)

where from now on we will take e andm to refer to the electron charge and mass. We

define k
µ ≡ ω(1,n)/c where ω is the laser frequency and n

µ the propagation four-

vector, and we have introduced the energy momentum tensor T
µν (see Appendix

A), and the electron four-momentum p = (Ep/c,p), where Ep is the electron energy.

The brackets ��. . .�� denote the proper time average. In the electron rest frame we

have p = (mc,0) and thus

pµT
µν
pν = m

2
c
2
T

00 =
m

2
c
2

2
(E2 +B

2). (1.11)

For a plane wave type field, k · p ∼ mω, and so a0 will recover the non-Lorentz

covariant form

a0 =
eErms

ωmc
=

eErmsλ̄L

mc2
, (1.12)

typically used in the literature. Here Erms ≡ �E2�1/2 the root mean squared (rms)

electric field and we have introduced the laser wavelength λ̄ ≡ c/ω. From this

definition it can be seen that a0 can be considered as the ratio of two energies – the
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ratio of the energy gain of the electron as it moves over a laser wavelength with the

electron’s rest energy. We point out that the absence of any factors of � in (1.10)

and (1.12) indicate that a0 is a purely classical quantity. At the same time, the

presence of the velocity of light c indicates the relativistic nature of a0. It is clear

that a0 > 1 describes the regime where the electrons become relativistic. Finally,

we note a convenient rule-of-thumb to express a0 in terms of the laser intensity I

[27]

a
2
0 ≈ 3.7× 10−19

Iλ
2
, (1.13)

for I in Watts/cm2 and λ in µm. We are now in a position to introduce some

examples of laser facilities.

1.4 A Brief Overview of Experimental Facilities

There is currently a growing interest in using high-powered lasers to test fundamental

physics (see e.g. [8]). This is leading to a proliferation of new facilities where such

experiments can be conducted. Some of the most relevant to us are the following:

Daresbury At the Daresbury laboratory in northern England there are currently

experiments taking place with an order 10 TW laser, a0 ≈ 1, and a linear accelerator

delivering electrons of energy 35 MeV (giving them a relativistic γ-factor of γ ≈ 70)

[33].

FZD The facility that will feature most extensively in our subsequent discussions

is the Forschungszentrum Dresden Rossendorf (FZD) in Germany [34]. This facility

has a 150 TW laser giving an a0 ≈ 20. There is also a linear accelerator (‘ELBE’)

that can deliver 40 MeV electrons (γ ≈ 102). Compton scattering experiments are
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due to begin here later this year (2010). We shall often use these parameters in

subsequent discussions, referring to them simply as ‘FZD values’.

Vulcan The UK’s Rutherford Appleton Laboratory’s Vulcan laser [35] is currently

1 PW (a0 ≈ 70). However, it has recently been announced [36] that it is to be

upgraded to 10 PW, increasing its a0 to 200.

ELI Looking to the future, the European Extreme Light Infrastructure (ELI)

project has been initiated [6]. When this is completed it potentially could deliver

an a0 ∼ 5000, giving us an increase of two orders of magnitude compared to current

facilities.

Figure 1.3: Chart showing the development of the laser as a function of time, to-
gether with examples of the physics that are accessible at given intensities.

In the table below we give a summary of some of these facilities.
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I [W/cm2] a0

FZD (150TW), Germany 1021 20

Vulcan (1PW), UK 1022 70

Vulcan Upgrade (10PW) 1023 200

ELI 1026 ∼ 5000

In Figure 1.4 we chart the development of the laser, showing how intensities

have increased over time. It shows clearly the impact of CPA, and also how laser

intensities are predicted to increase over the next few years.

In this thesis we will study the phenomenology of electron-laser interactions,

including the properties of the scattered radiation. In particular, we will be consid-

ering the angular and frequency dependence of the scattered radiation, looking for

possible experimental signatures of intensity dependence. Note that from here on,

except where stated otherwise, we will adopt ‘natural’ units where � = c = 1.
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Chapter 2

Electron Dynamics in Constant
Fields

We begin with the simplest possible case – that of an electron in a constant clas-

sical background field. The behaviour of particles in such fields can be obtained

analytically, and so will serve as a good starting point from which to consider more

complex field configurations.

2.1 Classical Particle Motion

The classical equation of motion for an electron in an arbitrary background field is

given by the differential equation (the Lorentz force equation) [37]

ṗ
µ = mẍ

µ =
e

m
F

µν(x)pν , (2.1)

where the dot denotes differentiation with respect to proper time τ , and we have

introduced the electromagnetic field tensor
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Fµν =





0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0





. (2.2)

Equation (2.1) is a covariant generalisation of Newton’s second law. We wish to solve

it to find the particle trajectory x
µ(τ). Note that equation (2.1) is only valid under

the assumption that any radiative back reaction effects have negligible impact on

the particle’s motion. We adopt this assumption for the moment, but it is something

that we will re-visit later.

In the case of constant fields the field tensor F µν will be constant, and so (2.1)

will be linear and therefore solvable directly by exponentiation. Writing F
µν in

matrix form as , the solution is

p = exp
�
e

m
τ

�
p0 ≡ p0, (2.3)

where p0 is the initial four-momentum of the electron and the matrix has one

index up and one down. Due to the antisymmetry of , we note that is a Lorentz

transformation matrix.

Now that we have the four-velocity u = p/m, the particle trajectory can be found

simply by integrating (2.3). However, we can gain more insight into the properties

of the particle orbits by first considering the eigenvalues of . In [38] Taub shows

how these can be expressed in terms of the scalar and pseudo-scalar invariants of
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the field strength tensor,

S = −
1

2
FµνF

µν = E
2
− B

2
, (2.4)

P = −
1

4
FµνF̃

µν = E ·B, (2.5)

where F̃
µν is the dual tensor.

We find that there are four cases and they can be classified in a Lorentz invariant

way, according to the values of S and P ,

S = P = 0, E
2 = B

2
, E ·B = 0 (2.6)

S < 0,P = 0, B
2
> E

2
, E ·B = 0 (2.7)

S > 0,P = 0, E
2
> B

2
, E ·B = 0 (2.8)

S �= 0,P �= 0, E
2
− B

2
�= 0, E ·B �= 0 (2.9)

We will find that case (2.6) results in particle orbits that are parabolic, case (2.7)

elliptic, case (2.8) hyperbolic and case (2.9) loxodromic.

It is possible to parameterise the field tensor F µν in terms of constant 4-vectors

chosen from a null tetrad [39]. (We will see in the next chapter that such a formalism

will also allow us to parameterise plane wave type fields in terms of a ‘light-cone

time’ n ·x.) Here we will adopt the null tetrad (nµ, n̄µ, �1, �2) where the propagation

vectors n, n̄ and polarisation vectors �1, �2 are defined as

n
µ = (1, 0, 0, 1) (2.10)

n̄
µ = (1, 0, 0,−1) (2.11)

�
µ
1 = (0, 1, 0, 0) (2.12)

�
µ
2 = (0, 0, 1, 0). (2.13)
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Clearly n and n̄ are light-like and �1 and �2 are space-like. The only non-vanishing

scalar products are

n · n̄ = 2 (2.14)

�
2
1 = �

2
2 = −1. (2.15)

We take this opportunity to introduce the notation

a
−

≡ n
µ
aµ = a

0
− a

3
, (2.16)

a
+

≡ n̄
µ
aµ = a

0 + a
3
, (2.17)

for an arbitrary four-vector a; this will be useful to us in later work.

Using the vectors from the tetrad, for each case we construct the ‘standard form’

of the field tensor

F
µν
1 = F1(n

µ
�
ν
2 − n

ν
�
µ
2) = F1





0 0 1 0

0 0 0 0

−1 0 0 −1

0 0 1 0





(2.18)

F
µν
2 = F2(�

µ
2�

ν
2 − �

ν
1�

µ
2) = F2





0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0





(2.19)

F
µν
3 = F3(n

µ
n̄
ν
− n

ν
n̄
µ) = F3





0 0 0 −2

0 0 0 0

0 0 0 0

2 0 0 0





(2.20)
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F
µν
4 = F

µν
2 + F

µν
3 , (2.21)

The tensors F
µν
1,...,4 defined above are representative of each of the four cases. Any

other tensor of the same case can be generated by a Lorentz transform.

By comparing directly with (2.2) we see that: the tensor F µν
1 describes the case

of crossed fields (i.e. perpendicular E and B fields of equal strength), the tensor F µν
2

describes a constant magnetic B field, the tensor F µν
3 describes a constant electric

E field, and the final case F
µν
4 is a linear sum of cases 1 and 2.

Exponentiating to find the corresponding Lorentz transformation matrices , we

find

(Λ1)
µ
ν =





1 + 1
2

�
e
mF1τ

�2
0 −

e
mF1τ

1
2

�
e
mF1τ

�2

0 1 0 0

−
e
mF1τ 0 1 −

e
mF1τ

−
1
2

�
e
mF1τ

�2
0 e

mF1τ 1− 1
2

�
e
mF1τ

�2





(2.22)

(Λ2)
µ
ν =





1 0 0 0

0 cos( e
mF2τ) − sin( e

mF2τ) 0

0 sin( e
mF2τ) cos( e

mF2τ) 0

0 0 0 1





(2.23)

(Λ3)
µ
ν =





cosh(2 e
mF3τ) 0 0 sinh(2 e

mF3τ)

0 1 0 0

0 0 1 0

sinh(2 e
mF3τ) 0 0 cosh(2 e

mF3τ)





(2.24)

(Λ4)
µ
ν =





cosh(2 e
mF3τ) 0 0 sinh(2 e

mF3τ)

0 cos( e
mF2τ) − sin( e

mF2τ) 0

0 sin( e
mF2τ) cos( e

mF2τ) 0

sinh(2 e
mF3τ) 0 0 cosh(2 e

mF3τ)





. (2.25)
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Examining these matrices in sequence, we firstly see that the crossed field tenor

F
µν
1 results in motion that is parabolic. (We note that in the crossed field case, the E

and B fields will remain perpendicular and equal in magnitude in any given frame.)

Next we see that the constant magnetic field tensor F µν
2 results in circular (elliptical)

motion. The case of the purely magnetic field is the only one with periodic orbits

(i.e. the motion is bound, meaning that there is no net acceleration). As an aside,

we note that for other tensors in this class, the resulting electron motion will be

in an ellipse with eccentricity � = E/B [41], moving perpendicularly to both the

electric and magnetic fields. Moving to the third case we find that the constant

electric field tensor F µν
3 results in motion that is hyperbolic. The final case, Λµν

4 , is a

linear sum of Λµν
2 and Λµν

3 . The particle motion is a superposition of cases (2) and

(3) and is loxodromic.

Note that our F
µν
1 field tensor is an example of a null field [39], since both its

scaler and pseudo-scalar invariants S and P are zero. Calculating the first few

powers of F µν
1 we find (using (2.14) and (2.15) and omitting the index 1 for ease of

notation)

F
2 = F

µ
αF

α
ν = n

µ
nν , (2.26)

F
3 = F

µ
αF

α
βF

β
ν = n

µ
nβF

β
ν = 0, (2.27)

where the second result is due to the transversality of the field. Hence F
µν
1 is

nilpotent of degree 3, which is why the exponential series in Λµν
2 is truncated to just

three terms. Thus the parabolic nature of the particle orbits.

Figure (2.1) shows the motion of a charged particle in each of the four cases.

The trajectories are as we would expect for the respective fields.
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Figure 2.1: Plots showing the motion of a charged particle in each of the four cases.
Plot a) shows parabolic motion in crossed fields. Plot b) shows elliptical motion in a
magnetic field. Plot c) shows hyperbolic motion in an electrical field. Plot d) shows
loxodromic motion in combined electric and magnetic fields. (Arbitrary units.)
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2.2 Particle Radiation

A particle undergoing acceleration will radiate and the properties of this radiation

are of interest to us in this study. The calculation of the classical radiation spectrum

of an accelerating particle is covered in most electrodynamics textbooks (e.g. [19],

[37]), although in most cases the problem is not treated covariantly. A fully covariant

discussion is however given by Mitter in [43], and further explored in [44]. The
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radiation four-momentum may be expressed

P
ν =

�
d
4
x ∂µT

µν
. (2.28)

Employing the energy-momentum balance equation ∂µT
µν = jµF

µν , we have

P
ν =

�
d
4
x jµF

µν
. (2.29)

Now

jµF
µν = jµ∂

µ
A

ν
− jµ∂

ν
A

µ
, (2.30)

= ∂
µ(jµA

ν)− A
ν
∂
µ
jµ − jµ∂

ν
A

µ
. (2.31)

The second term is zero due to the continuity equation ∂
µ
jµ = 0, and when inte-

grated the first term also disappears, leaving us with

P
ν = −

�
d
4
x jµ∂

ν
A

µ
. (2.32)

From the Maxwell equations (in the Lorentz gauge) we have, in integral form,

A
µ(x) = 4π

�
d
4
y Dret(x− y)jµ(y), (2.33)

where Dret(x−y) is the retarded Green’s function which, upon inserting into (2.32),

gives

P
µ = −4π

�
d
4
x jµ(x)

�
d
4
y j

µ(y)∂ν
Dret(x− y). (2.34)
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We can replace the integrand

∂
ν
Dret(x− y) →

1

2
(∂ν(x)Dret(x− y) + ∂

ν(y)Dret(y − x)) , (2.35)

which amounts to nothing more than renaming the variables of integration. Then

introducing the advanced potential via

∂
ν(y)Dret(y − x) = −∂

ν(x)Dav(x− y), (2.36)

and defining

D ≡ Dret −Dav, (2.37)

we have

P
ν = −2π

�
d
4
xd

4
y jµ(x)j

µ(y)∂ν
D(x− y). (2.38)

In a Fourier representation this becomes

P
ν = −

1

(2π)3

�
d
4
k
� sgn(k�0)δ(k�2)k�ν

j̃
µ(k�)j̃∗µ(k

�), (2.39)

where j̃µ is the four-dimensional Fourier integral of the current

j̃µ(k
�) =

�
d
4
x jµ(x)exp(ik

�
· x), (2.40)

and from here on we will drop the tilde in order to simplify the notation. We can

interpret k
� = ω

�(1,n�) as the scattered radiation wave vector, with frequency ω
�

in direction n�. It is the 0-component of P
µ that gives us the radiated energy.
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Performing the k0 integration in (2.39) and converting to polar coordinates, we find

P
0 = −

1

16π3

�
dω

�
dΩ (ω�)2j(k�) · j∗(k�), (2.41)

≡

�
dω

�
dΩ ρ(ω�

,n), (2.42)

where ρ(ω�
,n�) is the spectral density describing the amount of radiation per unit

frequency dω
�, per unit solid angle dΩ.

In the case of the constant fields we are considering, the Fourier integrals (2.40)

(and thus the radiated energy P
0) can be calculated exactly, although the calcu-

lations themselves are somewhat tedious. We choose here to focus our attention

on just one of the cases – that of crossed fields. There are two reasons for this.

Firstly, the other cases are more commonly explored in electrodynamics textbooks,

whereas the crossed field case is not (see e.g. Jackson [19], Landau and Lifshitz

[37]). Secondly and most importantly, the crossed field case is, out of the four cases,

the one that describes a laser beam most closely. Crossed fields describe either the

high-intensity or the long wavelength limit of a linearly polarised plane wave, which

we will consider in the next chapter.

Figure 2.2: Geometry of the scattered radiation.
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To begin the calculation we must first define the geometry, which is that given in

Figure 2.2. To simplify matters somewhat we will limit ourselves to a consideration

of the ‘head-on’ case only. Thus for a crossed field with electric component in the

x1 direction and magnetic in x2, the electron will have an initial four-velocity of

u0 = γ(1, 0, 0,−β). (2.43)

To evaluate the integral (2.41) we first need to find the electron’s velocity u
µ(τ) and

trajectory x
µ(τ). These we find by solving the Lorentz equation (2.1). From (2.22)

it is clear that uµ(τ) will be quadratic in τ and x
µ(τ) cubic. Before we calculate the

spectral density ρ, we can make use of some features of the light-cone formalism we

have adopted. One property of this formalism is that we can write the norm of the

four-current as [45]

j · j
∗ =

1

2
j
+
j
−∗ +

1

2
j
−
j
+∗

− |j⊥|
2
. (2.44)

Now, the current conservation equation k
� · j = 0 allows us to eliminate j

+ from

(2.44) giving

j · j
∗ = 2

k�
⊥

k�− Re(j⊥j
−∗)−

k
�+

k�− |j
−
|
2
− |j⊥|

2
. (2.45)

We begin our calculation of ρ(ω�
,n�) by finding j

−(k�). From the discussion above,

we know that the argument of the exponential in (2.40) is going to be a cubic

polynomial, and thus we expect to obtain an Airy function in our solution. The

prefactor is proportional to u
− = u

0 − u
3 =const and so we find

j
−(k�) = eγ(1 + β)exp(iB2)

� ∞

∞
dx

− exp
�
i(b3τ

3 +B1τ)
�

(2.46)

= 2eγ(1 + β)exp(iB2)

� ∞

0

dx
− cos(−b3τ

3
− B1τ), (2.47)
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where

B1 =
3b1b3 − b

2
2

3b3
, B2 =

2b22 − 9b1b2b3
27b23

, (2.48)

and

b1 = −
1

2
γ
�
(1 + β)k+ + (1− β)k−�

, (2.49)

b2 = γ(1 + β)
eE

2m
k1, (2.50)

b3 = −γ(1 + β)
e
2
E

2

6m2
k
−
. (2.51)

Employing standard identities (see e.g. [46]), we find we may indeed express j− in

terms of the Airy function Ai.

j
−(k�) = 2eγ(1 + β)exp(iB2)

�
(3b3)

− 1
3πAi(Z)

�
, (2.52)

where Z = (3b3)−1/3
B1. So now we are just left with finding j⊥ = (j1, j2). From

our expression for u2 we find immediately that j2 = 0. Thus all that remains is to

find j1. In the case of crossed fields we find that we can express j1 in terms of the

k
+ derivative of j−

j
1 = 2i

eE

m

1

γ(1 + β)

∂

∂k+

�
j
−(k�)

�
(2.53)

= 2π
e
2
E

m
γ(1 + β)(3b3)

−1/3exp(iB2)

�
i(3b3)

−1/3Ai(Z)� −
1

3

b2

b3
Ai(Z)

�
(2.54)

We now have everything we require to calculate (2.44) and hence the radiated

energy P
0. Doing so, we find that the radiation is almost exclusively confined to

the θ = π (back scattering) direction. In Figure 2.2 we show the radiation spectrum

for various initial electron γ-factors. We see that the signal strength of the radiated

energy decreases as the electron γ-factor increases, while at the same time the peak
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Figure 2.3: Radiated energy spectra for an electron in constant crossed fields. In-
teraction is considered ‘head-on’, with initial γ-factors as indicated. Evaluated at
θ = π.
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emitted frequency also decreases (is red-shifted).

Now that we have given detailed consideration to the behaviour of an electron in

the four cases of constant electromagnetic fields and, in particular, having calculated

the radiation spectra for an electron in crossed fields, we are ready to move on to

consider plane wave backgrounds. Plane wave fields are the next step up in realism

and complexity in our modelling of a laser beam.
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Chapter 3

Electron Dynamics in Classical
Plane Waves

3.1 Introduction

Having studied the dynamics of electrons in constant fields, we are now ready to

consider the case of a time dependent infinite plane wave. Specifically, we consider

the case where we have (time dependent) electric and magnetic components in the

transverse (x1, x2) directions, while the wave propagates in the longitudinal (x3)

direction. Such a field may be described by the field strength tensor

F
µν(x) = F1(k · x)fµν

1 + F2(k · x)fµν
2 , (3.1)

where the constant tensors fj are defined

f
µν
j ≡ n

µ
�
ν
j − n

ν
�
µ
j . (3.2)

We note that the tensors f
µν
j are examples of crossed field tensors, like F

µν
1 in

the previous chapter. Since the scalar and pseudo-scalar invariants vanish for such

fields, our plane wave tensor (3.1) is a null field. The field amplitudes Fj depend
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on the Lorentz invariant phase k · x where, as previously, k is the laser wave vector

k
µ = ωn

ν . Applying the Lorentz force equation

u̇
µ =

e

m
F

µν(k · x)uν , (3.3)

we find that k · u is conserved in proper time τ

d(kµuµ)

dτ
=

e

m
kµF

µν
uν (3.4)

= 0, (3.5)

where we have made use of (2.27) and the fact that plane waves are transverse.

Integrating (3.4) we find

k · x = τk · u (3.6)

τ =
k · x

k · u
, (3.7)

where we have assumed the electron is initially at the origin (x0 = 0). Hence we see

that the ‘light-cone time’ n · x is directly proportional to the proper time τ . This

means that we can trade the x dependence in (3.1) for proper time τ , and so the

equation of motion (3.3) becomes linear and thus solvable by exponentiation.

So, from equation (2.1) we have

d
2
x

dτ 2
=

e

m
(F1(τ)f1 + F2(τ)f2)

dx

dτ
, (3.8)

which has solution

dx

dτ
= exp

�
e

m
(G1(τ)f1 +G2(τ)f2)

�
u0, (3.9)
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where

Gj(τ) =

� τ

τ0

dτ
�
Fj(τ

�). (3.10)

and u0 is the initial 4-velocity at time τ = τ0. Using the fact that the Fj are linearly

independent together with result (2.27), we have

dx

dτ
=

�
1+

e

m
(G1(τ)f1 +G2(τ)f2) +

e
2

2m2

�
G

2
1(τ)f

2
1 +G

2
2(τ)f

2
2

��
u0. (3.11)

Integrating to find the particle trajectory, we have (explicitly)

x
0 = x

0
0 + u

0
0(τ − τ0)−

e

m

�
u
1
0H1(τ)− u

2
0H2(τ)

�
+

e
2

2m2
(n · u)

� τ

τ0

dτ
�
G

2
1 +G

2
2,

x
1 = x

1
0 + u

1
0(τ − τ0)−

e

m
(n · u)H1(τ),

x
2 = x

2
0 + u

2
0(τ − τ0)−

e

m
(n · u)H2(τ),

x
3 = x

3
0 + u

3
0(τ − τ0)−

e

m

�
u
1
0H1(τ)− u

2
0H2(τ)

�
+

e
2

2m2
(n · u)

� τ

τ0

dτ
�
G

2
1 +G

2
2,

where we have defined Hj(τ) such that

Hj(τ) ≡

� τ

τ0

dτ
�
Gj(τ

�) =

� τ

τ0

dτ
�
� τ �

τ0

dτ
��
Fj(τ

��). (3.12)

These equations describe the motion of a particle in a transverse field given by any

field tensor satisfying (3.1) and, for an infinite plane wave, agree with the expressions

found by Taub [38].

We will now use these results to study the behaviour of electrons in infinite plane

waves, considering various polarisations. For infinite plane waves, the integrals (3.12)

are solvable analytically, and so we can find the electron trajectory without having

to resort to numerics.
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3.2 Particle Motion

To be specific, we will focus our attention on the plane wave field defined as follows

F1 = δA sinωτ, (3.13)

F2 =
√
1− δ2A cosωτ. (3.14)

Here A is the wave amplitude and the wave polarisation is encoded in the parameter

δ. Linear polarisation corresponds to δ = 0,±1; circular polarisation to δ = ±2(−1/2).

Other values of δ correspond to varying degrees of elliptical polarisation. Regardless

of the choice of δ, the rms electric field averaged over one laser cycle is Erms = A/
√
2.

This means that we can write the laser intensity (1.12) as

a0 =
eA

√
2ωm

. (3.15)

Figure 3.1: Electron trajectory in a plane wave of linear polarisation [left plot] and
circular polarisation [right plot]. Laser intensity is a0 = 1 and the particle is initially
at rest.
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We once again consider the case of a head-on collision between the electron and
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the laser field

k = ω(1, 0, 0, 1) = ω(1, ẑ), (3.16)

u0 = γ(1, 0, 0,−β) = γ(1,−βẑ). (3.17)

Plots of typical trajectories for the linear and circular cases are shown in Figure 3.1.

It can be seen from these plots that the particle oscillates in the transverse (x1, x2)

plane and propagates forwards in the longitudinal (x3) direction. This forward drift

motion of the particle is worth considering in more detail. If we consider the 0−

and 3−components of the particle trajectory, we find that they can be decomposed

into a sum of their constant and oscillatory components

x
µ(τ) = �x

µ
�+X

µ(τ), (3.18)

where X
µ(τ) is the oscillatory component and the constant component �xµ� is the

Fourier zero mode

�x
µ
� ≡

ω

2π

� 2π/ω

0

dτ
�
x
µ(τ �). (3.19)

Using (3.19) we can calculate the longitudinal drift velocity

vdrift =
�x3�

�x0�
=

u
3
0 + a

2
0u

−�
δ
2 + 1

2

�

u
0
0 + a

2
0u

−
�
δ2 + 1

2

� . (3.20)

It is interesting to consider the effects of boosting to a frame where the drift velocity

is zero, i.e. to the frame where the electron is at rest on average. The results of such

a boost for the cases of linear and circular polarisation are shown in Figures 3.2 and

3.3, respectively. In the case of linear polarisation the electron exhibits a figure-of-

eight motion, which increases in size proportionally to a0. (We note that these plots
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Figure 3.2: Electron motion in the average rest frame (linear polarisation) for various
a0.
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are consistent with those by Sarachik and Schappert in [47].) The electron motion

follows a Lissajous curve of proportion 2:1. For circular polarisation we find that

the electron follows an elliptical trajectory. Figure 3.4 shows the electron trajectory

in the average rest frame for various degrees of elliptical polarisation. We can see

clearly how the trajectory makes the transition from figure-of-eight to circular as we

change the polarisation.

The transverse oscillations of the electron in the laser field lead to an interesting

and somewhat surprising effect. Since in the average rest frame the electrons com-

plete a whole orbit during a single laser cycle, it makes sense to consider only the

average momentum of the electron over the cycle, since the laser photons cannot

resolve the details of the oscillatory motion [27]. Working in the average rest frame

we define a quasi -momentum q such that q
2 is equal to the square of the proper
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Figure 3.3: Electron motion in the average rest frame (circular polarisation) for
various a0.
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time average of the momentum p

q
2
≡

�
ω

2π

� 2π/ω

0

dτ
�
p(τ �)

�2

= m
2(1 + a

2
0). (3.21)

Hence, analogously to the on-shell condition p
2 = m

2, we are able to define an

effective mass for the electron in the laser field

m
2
∗ ≡ q

2 = m
2(1 + a

2
0). (3.22)

In effect, to the laser photons the electron doesn’t appear to oscillate; instead it

appears to have an intensity dependent shifted mass m∗.
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Figure 3.4: Electron motion in the average rest frame for varying degrees of polari-
sation, a0 = 1. Horizontal axis x2, vertical axis x3.
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3.3 Particle Radiation

As we did in Chapter 2 for crossed fields, we now bring our attention to the radiation

emitted by an electron in a plane wave. The radiated energy can be found once again

by evaluating the integral (2.41). This calculation involves the evaluation of several

nested integrals, and would therefore normally necessitate a recourse to numerics.

However, for the case of circular polarisation, the circular symmetry of the electron’s
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orbit makes an analytical evaluation of the expression possible. Performing the

calculation, one finds that the energy radiated per unit solid angle dP
0
/dΩ can be

expressed as an infinite series of Bessel functions. These Bessel sums may be written

in closed form, giving an analytical expression for dP 0
/dΩ. For an electron at rest

in the lab frame, this may be written as

dP
0

dΩ
=

e
2
ω
2
a
2
0

64π

�
1

(1− θ)
7
2

�
1 + 1

2a
2
0 sin

2
�
1
2θ
��4

�

×

��
cos θ − 1

2a
2
0 sin

2
�
1
2θ
��2

�
1 + 1

2a
2
0 sin

2
�
1
2θ
�� (4 + Θ2) + (1−Θ2)(4 + 3Θ2)

�
, (3.23)

where

Θ =
a0 sin θ

√
2
�
1 + 1

2a
2
0 sin

2
�
1
2θ
�� . (3.24)

For details of the calculation we refer the reader to Sarachik and Schappert [47]

and Esarey et al [48]. We note that the solid angle measure dΩ is a function of

the scattering angle θ only, since the circular symmetry of the electron motion in

a circularly polarised plane wave means that the radiated energy has no azimuthal

(φ) dependence.

We consider the angular distribution of the radiated energy for various laser

intensities in Figure 3.5. This is of particular interest to us, since in Chapter 5 we

will be considering the properties of the emitted radiation using a strong field QED

approach. We can see from Figure 3.5 that the peak radiated energy moves towards

the θ = 0 (forward scattering) direction as the laser intensity increases. It is also

clear that the signal strength increases with the laser intensity.

Before we go on to consider the the electron dynamics in an infinite plane wave

from a QED perspective, in the next chapter we will introduce a numerical scheme

to calculate the electron trajectory in an arbitrary classical background field.
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Figure 3.5: Plot showing the angular distribution of the radiated energy for an
electron in a circularly polarised plane wave. Calculations are for the lab frame,
where the electron is assumed to be initially at rest (γ = 1).
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Chapter 4

Electron Dynamics in Arbitrary
Classical Fields

So far we have solved the Lorentz force equation (2.1) for the cases of constant

fields and plane waves. In these cases the electron velocities and trajectories are

obtainable analytically. However, if we are to progress to more complex/realistic

field configurations, then we will be forced to resort to numerics.

4.1 Covariant Matrix Numerics

A standard approach to numerically solving the Lorentz force equation (2.1) would

involve taking a discretisation of proper time into steps of length h. Under such a

discretisation we would have

d

dτ
u
2 = 2u · u̇ = O(hn) �= 0; n > 0, (4.1)

for a numerical scheme of order n. The result of this would be that the on-shell

condition p
2 = mc

2 (i.e. u
2 = c

2) would be violated. The introduction of such

an unphysicality could lead to numerous undesirable effects including, for example,

that the acceleration u̇ will no longer be spacelike. In fact, when the discretisation
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error is considered in relation to p
2, we find that

p
2 = m

2
u
2
→ m

2(u2 +Kh
n), (4.2)

for some constant K. Hence the introduction of a discretisation error can effectively

be viewed as a mass/momentum shift of the electron. In the previous chapter we

saw that, in a plane wave, an electron experiences a laser -induced mass shift. It

follows that if we are to study such effects using a numerical scheme, it is undesirable

for such a scheme to introduce its own discretisation-induced mass shift. With this

in mind, we present a new type of numerical scheme which is manifestly covariant

and precisely preserves the on-shell condition u
2 = c

2.

Our numerical scheme is based upon a SL(2, ) representation of the four-

velocity. This method was used by Itzykson and Zuber [75] to find the analytical

solution to (2.1) for constant electric and magnetic fields, and is considered from

a mathematical perspective in [76]. However, what we propose here is to use the

method as a basis for a numerical scheme that can be used to solve the Lorentz force

equation (2.1) for completely arbitrary field configurations. We begin by introducing

the matrix basis σµ ≡ ( ,σ) where σ denotes the three Pauli matrices

σ
1 =




0 1

1 0



 , σ
2 =




0 −i

i 0



 , σ
3 =




1 0

0 −1



 , (4.3)

which satisfy

σ
a
σ
b = δab + i�abcσ

c
, (4.4)

where �abc is the Levi-Civita tensor in three-dimensions. Now we introduce the
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matrix U which represents the particle four-velocity in this basis

U ≡ u
µ
σµ ∈ SL(2, ). (4.5)

Using (4.4) we find the following commutator and anti-commutator relations

1

2
[σk, U ] = i�kamu

a
σ
m
,

1

2
{σk, U} = σku

0 + u
k
. (4.6)

Using these we find we can re-write the equation of motion (2.1) as

U̇ =
e

m

� †
U + U

�
, (4.7)

where

†
≡ (E + iB) · σ. (4.8)

Introducing the time-ordering operator

L(τ) ≡ T

�� τ

0

dτ
� †(τ �)

�
, (4.9)

we may write the implicit general solution to (4.7) as

U(τ) = L(τ)U(0)L†(τ). (4.10)

In order to turn this into a numerical method, we must discretise (4.10). To do

this we introduce a discrete set of n+1 equally spaced proper times τk (k = 0, . . . , n)

τ0 = 0, τk = k, τn = τ, k ≡
�
x(τk)

�
. (4.11)
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Making use of the Baker-Campbell-Hausdorff formula [65], we then find approxi-

mately (up to order O(dτ 2))

L = exp
� †

ndτ
�
× . . .× exp

�
†
1dτ

�
=: n, (4.12)

where ‘×’ denotes matrix multiplication. Thus our numerical solution becomes

Un = nU(0) †
n, (4.13)

such that

U(τ) = Un(τ) +O(dτ). (4.14)

In order to utilise this method we must solve (4.13) iteratively. We begin with an

initial guess for u(τi) based upon our value for u(τi−1). Then we use the trapezium

rule to calculate an initial guess for the particle position x(τi). Once we have the

position we can insert it into the expression for the electric fields to find the value of

†(τi), which we subsequently use to find an improved four-velocity u(τi) via (4.13).

This procedure is iterated until the particle positions x(τi) and velocities u(τi) do

not change within given error margins.

Now a crucial point is that, in our SL(2, ) representation, the on-shell condition

u
2 = c

2 reads

detU(τ) = c
2 = 1. (4.15)

Due to the fact that trσk = 0, we have

det exp
�

†
idτ

�
= exp

�
tr †

1dτ

�
= 1, (4.16)
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and so

det i = det †
i = 1. (4.17)

Hence

detUn(τ) = detU(0) = c
2
, (4.18)

meaning that the on-shell condition is exactly preserved by the discretisation.

4.2 Numerical Examples

We test our code using a light-cone time (n · x) dependent linearly polarised plane

wave field, encapsulated in a Gaussian pulse. In the notation of Chapter 3 we have

F1 = P (n · x) sin(k · x), (4.19)

F2 = 0, (4.20)

where P (n · x) = P (τ) is the pulse function which we define to be

P (τ) = Aexp

�
−
(τ − τ0)2

η2

�
, (4.21)

where we have once again traded light-cone time n ·x for proper time1 τ using (3.7).

The constant τ0 specifies the centre of the pulse and η is a measure for the number

of laser wavelengths within the width of the pulse. Neglecting the radiative back-

reaction effects and proceeding along the same lines as in Chapter 3, we can solve

the equation of motion (2.1) analytically down to the final integrals, which must

1Note that we expressed P in terms of τ here in the text to improve the clarity of notation. In
our actual numerical experiments our codes will calculate in terms of the light-cone time n · x.
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be evaluated numerically. This will give us a benchmark against which to test our

code.

Figure 4.1: The results of calculating u0 numerically using our method and using
the Euler method, a0 = 1, η = 10, dτ = 0.125.
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In order to quantify the accuracy of the new method, we introduce two measures

of numerical error. The first is the Euclidean norm �euc defined

�euc =

���� 1

∆τ

� τ0+∆τ

τ0−∆τ

dτP 2(τ)
3�

µ=0

[uµ(τ)− u
µ
anl(τ)]

2
, (4.22)

with uanl(τ) being the analytical solution. Since we are now dealing with a pulsed

field, it is important to choose the region ∆τ , over which we consider the errors, with

care. This is because the numerical errors are very small when the field strengths

are very low, and so the error can be made arbitrarily small by increasing the width
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∆τ of interest. Therefore we define our parameters as follows:

τ0 =
1

N

� ∞

∞
dτ �τ �P 2(τ �), N =

� ∞

∞
dτ �P 2(τ �), (4.23)

∆τ = 2
�

τ2 − τ
2
0 , τ2 =

1

N

� ∞

∞
dτ �(τ �)2P 2(τ �). (4.24)

Thus it can be seen that we are considering the Euclidean norm over a region that

covers one standard deviation each side of the centre of the pulse τ0. Our other

measure of numerical error will be the maximum norm �max

�max = max
µ,τ

[|uµ(τ)− u
µ
anl(τ)|] , (4.25)

We also consider it useful to compare our method directly with a conventional

numerical scheme; in this case we will choose to compare with the Euler method

[77]. While a higher order method would be more accurate, we have chosen the

Euler method because, like our method, it is first order and so we will be comparing

like with like.

For a pulsed plane wave field our definition of a0 (1.12) needs qualifying, since

Erms averaged over all proper time will be zero. The most convenient solution is for

us to adopt the definition

a0 =
eEmax

ωm
. (4.26)

Figure 4.1 shows u0 for an electron subjected to the field (4.19) for a0 = 1, η = 10,

calculated using our new method and using the Euler method. The discretisation

size is dτ = 0.125 ≈ 0.02ω periods, which we can see is too coarse for the Euler

method to perform effectively, while the difference between our method and the

analytical solution is less than the thickness of the plotting lines. In Figure 4.2 we

consider the errors as a function of the discretisation size. As we would expect for
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Figure 4.2: Numerical errors for both methods as a function of the proper time
discretisation size dτ .
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first order methods, both schemes produce errors that increase linearly with dτ . We

find for our method

�euc ≈ 0.39dτ, �max ≈ 0.49dτ, (4.27)

and for the Euler method

�euc ≈ 2.8dτ, �max ≈ 3.1dτ. (4.28)

Finally, in Figure 4.3 we demonstrate the fact that our new method preserves the

on-shell condition u
2 = c

2, whereas the Euler method (a conventional scheme) does

not.

In summary, we have developed a novel numerical scheme for solving the Lorentz
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Figure 4.3: Plot demonstrating that our numerical scheme preserves the on-shell
condition u

2 = c
2, whereas the Euler method does not.
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force equation (2.1) for an electron in an arbitrary background field. Unlike con-

ventional discretisation schemes, our method is fully covariant, precisely preserving

the on-shell condition. The method we have presented is a first order scheme, and

so we have compared it directly with a conventional first order method – the Euler

method. We found our method the be well-behaved, more accurate than the Euler

method, and we confirmed numerically that the on-shell condition is indeed pre-

served. Although we have not considered the effect of the radiation back-reaction

on the electron motion, the scheme we have presented here could be adapted to

incorporate this. More information on this is given in Appendix B. It is hoped

that the covariant method presented here will be of use to researchers studying the

effects of the beam profile on the electron dynamics.
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Chapter 5

Nonlinear Compton Scattering of
an Electron in a Plane Wave

5.1 Introduction

Having outlined the behaviour of an electron in a classical plane wave, we now

move on to study such behaviour from a quantum perspective. We thus consider

the nonlinear Compton scattering that occurs when an electron collides with a high

intensity plane wave laser field. Since this study is motivated primarily by the

advent of high intensity laser facilities, we will pay particular attention to intensity

dependent effects in the scattering processes. Such scattering processes have been

considered previously, most notably by Brown and Kibble [49], Goldman [51] and

Nikishov and Ritus [52, 53, 20, 26]. In this chapter we will re-visit this work in light

of the recent increases in laser intensities, outlined in Chapter 1. We will consider

nonlinear Compton scattering involving a very high intensity laser (a0 > 1) and

electrons of moderate to high energy (i.e. γ ∼ 1 . . . 100). The phenomenology of

the scattering processes with such parameter values has now become experimentally

relevant.
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5.2 Volkov Electrons and the S-Matrix

Specifically, we consider the nonlinear Compton scattering that is the sum of the

sub-processes

e
− + nγL → e

− + γ, n ∈ (5.1)

where an electron absorbs n laser photons γL and then emits a single photon γ. For

a plane wave, the energy density T
00 = (E2 + B

2)/2 = E
2. The laser photons have

energy �ω, so in a volume V containing nγ photons we have

E
2 =

nγ�ω
V

≡ Nγ�ω. (5.2)

Since the laser intensity a0 is proportional to E
2 (see (1.12)), it must therefore be

proportional to the photon density Nγ. The precise relationship can be written

a
2
0 = 4παν2

λ̄
3
Nγ, (5.3)

where α is the fine structure constant and we have introduced the rescaled (dimen-

sionless) measure of frequency

ν ≡
ω

m
. (5.4)

As the authors state in [20], the probability for a given nth order scattering process

(5.1) is proportional to a
2n
0 ∼ N

n
γ . Hence for n > 1 the probability becomes non-

linear in the photon density and thus the process is known as nonlinear Compton

scattering.

From (5.3) we see that for a0 ∼ 1 there are of order λ̄
3
Nγ ∼ 1012 photons in

a laser wavelength cubed. With such a high photon density it seems reasonable to
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neglect the effects of beam depletion in the scattering process. Therefore we shall

adopt the formalism used by Nikishov and Ritus [52] and Brown and Kibble [49],

where the electrons interact with a quantum photon field Âµ plus a classical back-

ground field Aµ(x). In effect, the electron lines in the Feynman diagrams become

‘dressed’ by the background field Aµ. Diagrammatically, they are represented by

heavy lines as shown in the left-hand side of Figure 5.1. Such diagrams can be

expanded into an infinite sum of conventional QED diagrams (i.e. those involving

free electron propagators), each one representing the scattering process involving n

laser photons. We note that the analogous S-matrix element, corresponding to the

Feynman diagram on the left hand side of Figure 5.1 but with ‘naked electrons’,

would vanish due to momentum conservation.

Figure 5.1: Feynman diagram for the nonlinear Compton scattering of an electron
in a background field. The thick lines represent electrons dressed by the background
field. The diagram can be expanded into an infinite series of conventional QED
Compton scattering diagrams, each involving the absorption of n laser photons.

Once again we take our background field to be a plane wave dependent on the

light-cone time k · x, Aµ ≡ Aµ(k · x). We are fortunate that the Dirac equation can

be solved exactly for such a field (the ‘Volkov solution’ [54]), giving us the electron
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wave function

Ψp(x) = e
iS
�
1 +

e

k · p
/k /A

�
up ≡ e

iSΓpup, (5.5)

where we have adopted the Feynman slash notation, /a ≡ γ
µ
aµ, and S is the

Hamilton-Jacobi classical action

S = −p · x−
1

2k · p

� k·x

0

dφ
�
2eA · p− e

2
A

2
�
≡ −p · x− Ip. (5.6)

At this point we will define our background field to be

A
µ = a

µ
1 cos(k · x) + a

µ
2 sin(k · x), (5.7)

where the four-amplitudes aj are equal in magnitude and orthogonal aj ·ak = −a
2
δjk

and satisfy the Landau gauge condition aj · k = 0. Thus we are specifically consid-

ering the case of circular polarisation, since this is the only case where the photon

emission rate calculations are expressible in terms of standard functions. In terms of

our plane wave definition given in Section 3.2, this corresponds to setting δ = 2−1/2

and multiplying the amplitudes A by a factor ω.

Applying the kinetic momentum operator p̂−eA = i∂−eA to the Volkov solution

(5.5), and (suggestively) denoting the time-average of the result by q, we find

q = p+
a
2
0m

2

2(k · p)
k ≡ p+ qL. (5.8)

Thus the electron acquires an additional intensity-dependent longitudinal momen-

tum qL, caused by the presence of the laser field. The zero component of the quasi

momentum q
0 was first found by Volkov [54], while the generalisation to the four-

vector qµ is due to Sengupta [56]. Squaring q, we find that the intensity dependent
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momentum shift leads to an intensity dependent mass shift

q
2 = m

2(1 + a
2
0) ≡ m

2
∗. (5.9)

This is precisely the same momentum/mass shift that we found in our classical

analysis in Section 3.2.

As we are going to be studying the photon emission rates, we need to know the

S-matrix elements for the scattering process. These were originally calculated by

Nikishov and Ritus [52] and are presented by Landau and Lifshitz in [57]. Here we

will briefly run through the calculation, but adopting the more physically transpar-

ent formalism used by Heinzl et al [59] in their study of pair-production.

The S-matrix relating the final electron state f to the initial state i is

Sfi = −ie

�
d4
xΨ̄p�e

−ik�·x
/�Ψp, (5.10)

where � is the polarisation four-vector. We find

Sfi = ie

�
d4
xe

i(p−p�−k�)·x
M(k · x), (5.11)

where M = e
i(Ip−Ip� )ūp�Γ̄p�/�Γpup. Since Ψp is an eigenfunction of p, we obtain after

integrating out the spatial coordinates

Sfi = −ie(2π)3δ(3)(p− p�
− k�)

�
dx−

e
i(p−−p�−−k�−)·x

M(x−). (5.12)

Now, for a plane wave, Ip can be decomposed into a constant average (Fourier zero

mode) plus an oscillatory component. The average over a wavelength is precisely

the longitudinal component of the quasi-momentum (5.8), so we find we can write
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the action (5.6) as

Sp = −p · x− (q− − p−)x
− + δIp, (5.13)

where (q− − p−)x− comes from the Fourier zero mode and δIp the oscillatory com-

ponent. Introducing the boost invariant, light-cone quasi-momentum fractions

q−

k−
−

q
�
−
k−

−
k
�
−

k−
≡ Q−Q

�
−K

�
, (5.14)

and changing variables from x
− to k · x = ωx

−, we can write

Sfi = −ie(2π)3
1

k−
δ
(3)(p− p�

− k�)

�
d(k · x)ei(Q−Q�−K�)k·x

M(k · x), (5.15)

where M = M but with I → δI. Now M is a purely oscillatory, periodic function

and so we can expand it into the Fourier series

M(k · x) =
�

n

�Mne
ink·x

. (5.16)

Thus we find

Sfi = −ie(2π)3
1

k−
δ
(3)(p− p�

− k�)
�

n

�Mnδ(Q−Q
�
−K

� + n), (5.17)

and so the S-matrix can be expressed as a ‘δ-comb’. Hence we see that the quantity

Q − Q
� −K

� + n is conserved, which is equivalent to writing q− + nk− = q
�
− + k

�
−.

Now, we can see from (5.8) and Section 3.2 that the quasi-momentum q differs from

the momentum p only in the light-cone component, therefore it follows that the full

quasi-momentum is conserved in the scattering process,

q + nk = q
� + k

�
. (5.18)
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5.3 Kinematics

We now study the kinematics resulting from the quasi momentum conservation

(5.18). We begin by introducing the Mandelstam invariants s, t , u, [57, 58]

sn = (q + nk)2 = m
2
∗ + 2nk · p, (5.19)

tn = (nk − k
�)2 = −2nk · k

�
, (5.20)

un = (nk − q
�)2 = m

2
∗ − 2nk · p

�
, (5.21)

where we have used the fact that, since k is lightlike,

q · k = p · k, q
�
· k = p

�
· k. (5.22)

Note that the three Mandelstam variables are not independent of each other since

sn + tn + un = 2m2
∗. Also since they are n-dependent, they will be different for each

scattering process. From (5.19) and (5.20) it is immediately clear that the invariants

are subject to the conditions

sn ≥ sn−1, (n > 1) (5.23)

tn ≤ 0. (5.24)

We also find

snun = m
4
∗ − 4n2(k · p)2 ≤ m

4
∗, (5.25)

which means that one of the boundaries of the physical region in the Mandelstam

plane is a hyperbola. If we fix a line s = sn then, for the nth order scattering process,
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the physically allowed ranges for t and u are

tmin = 2m2
∗ − sn −m

4
∗/sn umax = m

4
∗/sn back scattering

tmax = 0 umin = 2m2
∗ − sn forward scattering

(5.26)

To see how the Mandelstam parameters relate to the scattered photon frequen-

cies, we return to the quasi-momentum equation (5.8). Squaring both sides and

substituting in (5.22), we can eliminate q
�

nk · p = k
�
· p+

�
n+ a

2
0

m
2

2k · p

�
k · k

�
, (5.27)

since k2 = k
�2 = 0. In order to simplify our discussion, we will from here on assume

that the photons and electrons collide head-on. This means that there is now only

one angle to consider – the scattering angle of the photon θ. Therefore,

k = ω(1,n), p = (Ep,−|p|n), (5.28)

and

n · p = −|p|, n�
· p� = −|p| cos θ. (5.29)

Considering just the momentum (zero) components, we can rearrange (5.27) to

give an expression for the frequency of the scattered photon,

ν
�
n =

nν

1 + jn(1− cos θ)
, (5.30)

where

jn =
nν − γβ + a

2
0γ(1− β)/2

γ(1 + β)
. (5.31)
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Figure 5.2: The dependence of t on θ (FZD values). We see that t attains its
minimum for forward scattering (θ = π).
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It can be seen that when jn < 0 the maximum emission frequency occurs when

the photons are backscattered (θ = π). Conversely, when jn > 0 the maximum

frequency occurs for forward scattering (θ = 0). We note that the frequency ranges

of the scattered photons are dependent on the number of laser photons absorbed,

n. The spectrum resulting from the scattering process where n = 1 will be referred

to as the ‘fundamental harmonic’. Where n > 1 laser photons are involved, these

spectra will be referred to as ‘higher harmonics’.

It should be noted that the linear Compton case, well known from physics text

books, occurs in the limit a0 → 0, n = 1 (i.e. in the low intensity limit). Thus the

possibility of the electron absorbing n > 1 laser photons and subsequently generating

a higher harmonic, is exclusive to the nonlinear regime.1

1The emission of higher (n = 2, 3) harmonics has been observed experimentally by colliding an
electron with a linearly polarised laser beam. In such a beam the electron (classically speaking)
exhibits a figure-of-eight motion, which causes the scattered photon frequency spectrum to have an
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Figure 5.3: The dependence of t on ν
� (FZD values).
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From (5.30) we can see that ν �
n(0) = nν. Thus, in the case jn < 0 the emitted

photon frequency is blue shifted relative to laser photons, and in the case jn > 0 it

is red shifted,

jn < 0 =⇒ nν < ν
�
n(θ) < ν

�
n(π) blue shift (5.32)

jn > 0 =⇒ ν
�
n(π) < ν

�
n(θ) < nν red shift. (5.33)

Sometimes, in the literature, the case of a red shift is referred to as ‘Compton

scattering’ and that of a blue shift as ‘inverse Compton scattering’. Since these are

frame dependent statements, we choose not to make the distinction in this discussion.

The frequency range given by (5.32), (5.33) corresponds to the t interval in the

additional dependence on the azimuthal angle, φ. The second and third harmonics were then able to
be identified by observing the resulting quadrupole and sextupole radiation patterns, respectively
[61, 60] (see also [19]). Such an observation is not possible using a circularly polarised laser, due to
the azimuthal symmetry of the scattered photon distribution (resulting from the circular motion
of the electrons in such a field).
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Figure 5.4: Plot showing the relationship between θ and ν
�. γ = 100, ω = 1,

m = 0.511 MeV, a0 = 20.
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Mandelstam representation (5.26). Evaluating the Mandelstam invariants explicitly

in terms of ν � and θ, we have

sn = m
2
∗ + 2nm2

νγ(1 + β) (5.34)

tn = −2nm2
νν

�(1− cos θ) (5.35)

un = m
2
∗ − 2nm2

ν (γ(1 + β)− ν
�(1− cos θ)) . (5.36)

Figures 5.2 and 5.3 show the relationship between tn and θ and ν
� respectively. As

discussed, we see that tn achieves its minimum when ν
� = ν

�
max or θ = π. Figure 5.3

shows that there is a linear relationship between tn and ν
�, unlike between tn and θ,

where there is a rapid decrease in the value of tn as θ → π.

We return now to consider the relationship between the scattered photon fre-

quency ν
� and the scattering angle θ. Figure 5.4 shows a plot of ν � as a function of θ
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for typical parameter values. It is evident that emitted frequency is maximal when

θ = π (backscattering). Provided jn �= 0, it is possible to use (5.30) to trade ν � for θ

in our expressions (and vice versa). (When jn = 0 the scattered frequency ν
�
n looses

its θ-dependence, collapsing to the line nν.)

For parameter values similar to those at the FZD (i.e. a0 ∼ 20, γ ∼ 100) we find

jn > 0, and so the maximum frequency of the emitted photons is given by

ν
�
max(FZD) =

(1 + β)2γ2
nν

1 + a
2
0 + 2νn(1 + β)γ

. (5.37)

For large γ this gives us

ν
�
max(FZD) ≈

4γ2
nν

1 + a
2
0

. (5.38)

At this point it is useful to define an effective γ, much in the same spirit as our

effective mass,

γ
2
∗ ≡

E
2
p

m2
∗
=

γ
2

1 + a
2
0

, (5.39)

thus (5.38) becomes2

ν
�
max(FZD) ≈ 4γ2

∗nν. (5.42)

For a given n we can plot the fixed line s = sn on the Mandelstam diagram. For

n = 1, 2, 3, 4, these lines are shown in Figure 5.5. From our above consideration

2It is interesting to compare this to the case of linear Compton scattering, where we have

ν�max =
4γ2ν

1 + 4γν
, (5.40)

which for large γ becomes

ν�max ≈ 4γ2ν. (5.41)
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of t, we can see that, as we move downwards along the sections of these lines that

are in the physical region, we are moving along the ranges ν
� = ν

�
min . . . ν

�
max and

θ = 0 . . . 2π. The point where the lines s = sn meet the hyperbola su = m
4
∗ is the

point where ν
� = ν

�
max and θ = π.

Figure 5.5: Mandelstam plot for nonlinear Compton scattering (5.1) using FZD
values. The shaded area shows the physical region of the Mandelstam plane.

5.4 Photon Emission Rates

We now return to our S-matrix calculation (5.17). The S-matrix may be translated

into an emission rate, which we would expect to be comprised of Bessel functions,

since it consists of an exponential of Volkov phases. Indeed, we find that the differ-

ential rate for the emission of a single photon of frequency ν
� by the nth harmonic
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process (5.1) is

dWn

dx
=

1

(1 + x)2
Jn(a0, ν, ν

�
n, z), (5.43)

which was previously obtained by Nikishov and Ritus [20]. The function Jn is

defined

Jn(a0, ν, ν
�
n, z) = −

4

a
2
0

J
2
n(z) +

�
2 +

x
2

1 + x

�
[J2

n−1(z) + J
2
n+1(z)− 2J2

n(z)], (5.44)

where Jn are the Bessel functions of the first kind. We have introduced the three

new kinematic (and Lorentz) invariants x, y and z

x ≡
k · k�

k · p�
, yn ≡

2nk · p

m2
∗

, z ≡
2a0
y1

�
x(yn − x)

1 + a
2
0

. (5.45)

Physically, yn represents the maximum recoil of the electron during the scattering

process. The relationship of x and y to the Mandelstam invariants is

x =
t

u−m2
∗

(5.46)

yn =
sn

m2
∗
− 1. (5.47)

From our analysis of the physically allowed ranges of the Mandelstam invariants in

Section 5.3, we find that the kinematically allowed range of x for the nth harmonic

is

0 ≤ x ≤ yn. (5.48)

Outside of this range the rate for the nth harmonic vanishes. (We see that for x

outside of this range the Bessel parameter z becomes complex.) To obtain the total
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emission rate we simply sum over all the harmonics,

dW

dx
=

∞�

n=1

dWn

dx
. (5.49)

In Figure 5.6 we show the first few partial emission rates as a function of x. It

Figure 5.6: Partial emission rates for nonlinear Compton scattering as a function
of x (FZD values). The emission rate for linear Compton scattering is shown for
comparison.
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can be seen that the higher harmonics have a reduced signal strength compared to

the fundamental harmonic, and that each subsequent higher harmonic is reduced

compared to the previous one. Also included in the plot is the emission rate cor-

responding to linear Compton scattering. A striking observation is that the edge

x = y1 of the (nonlinear) fundamental harmonic, which we will from here on refer to

as the ‘Compton edge’, has been shifted to the left by several orders of magnitude

compared to the linear case. The size of this shift may be calculated analytically as
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follows. Evaluating yn explicitly we find

yn =
2γ(1 + β)nν

1 + a
2
0

= ny1. (5.50)

Thus we may express yn as a function of a0, allowing us to write

yn = yn(a0) = ny1(a0) =
n

1 + a
2
0

y1(0). (5.51)

We can therefore see that the fundamental harmonic will be shifted by a factor of

1/(1 + a
2
0) to the left compared to the linear case. This is a highly significant result

since it offers an experimentally detectable signal of the mass shift (5.9).

Figure 5.7 shows the total emission rate summed to 30, 60 and 100 harmonics.

We can see that convergence only becomes an issue at the far extremity of the plot

(x � 10−5). An interesting observation is that the peak at the Compton edge (from

here on known as the ‘Compton peak’) gets bolstered by the higher harmonics,

increasing the signal strength compared to the linear peak.

Frequency Parameterisation

Using (5.30) to eliminate θ from our expressions, it is possible to express the emission

rate (5.43) in terms of the scattered photon frequency ν
�

dWn

dν � =
dWn

dx

dx

dν � = −
1

γ(1 + β)jn
Jn(a0, ν, ν

�
n, z). (5.52)

The frequency range of each individual harmonic is determined by (5.32) and (5.33).

In Figure 5.8 we have plotted the first few individual harmonics for FZD parame-

ter values. As with the x parameterisation, we see that each harmonic has a reduced

signal strength compared to the previous one, the difference being most noticeable

between the fundamental and second harmonic.
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Figure 5.7: Sum of partial emission rates as a function of x (FZD values). Dashed,
lower curve: n = 1 . . . 20, dotted, middle curve: n = 1 . . . 60, solid, top curve: n =
1 . . . 100. The emission rate for linear Compton scattering is shown for comparison
(in grey).
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Figure 5.9 shows the total spectrum for the same parameter values. It is clearly

evident that, analogously to the phenomenology of the x parameterisation, the

Compton edge experiences a frequency red shift compared to the linear Compton

case. We emphasise that the total frequency range is blue shifted, relative to the

incoming photon frequency ν, due to the presence of the higher harmonics. This can

be seen from (5.32) and (5.33). Once again it can be seen that the higher harmonics

bolster the (fundamental harmonic’s) Compton peak, increasing its signal strength

as compared to linear Compton scattering.

In an experimental context the red shift of the spectra is important for two

reasons. Firstly, the observation of the frequency shift will provide experimental

evidence of the electron mass shift. Secondly, the measurement of the red shift
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Figure 5.8: Individual harmonic spectra for nonlinear Compton scattering (FZD
values). The spectrum for linear Compton scattering is included for comparison.
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could be used to determine the laser intensity a0 by (5.30) and (5.31). Looking

once again at the emission spectra in Figure 5.9, we see that it should, in principle,

be possible to observe the peaks corresponding to n = 1, 2, 3 and even 4. This

assumes of course that the presence of various background effects, not included in

our theoretical analysis, will not be too detrimental to the signal quality.

Previously we have discussed the dependency of the scattered photon frequency

ν
� on the sign of jn. We now consider this in more detail in the context of the

emission spectra. Recall from (5.32) and (5.33) that, for jn < 0 (> 0), the emitted

photon frequency (for a given scattering process) is blue (red) shifted relative to

the laser photons. This implies that, by tuning the ‘free’ parameters γ and a0, it

should, at least in principle, be possible to change from a blue shift to a red shift.

In particular, at the point where jn changes sign the nth harmonic will collapse to

the single line ν
�
n = nν. Setting (5.31) equal to zero we find that, in order for the
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Figure 5.9: Emission spectrum for nonlinear Compton scattering (FZD values).
Spectrum for linear Compton scattering is included for comparison.
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nth harmonic to collapse, the critical value of a0 must be

a
2
0,crit ≡

2(γβ − nν)

γ(1− β)
. (5.53)

For large γ we find

a0,crit = 2γ − nν −
3 + n

2 + ν
2

4γ
+O

� 1

γ2

�
. (5.54)

Thus we may approximate

a0,crit ≈ 2γ, (5.55)

for large γ and all small n (i.e. n2 � 4γ). In the case of linear Compton scattering,

the point where there is no frequency shift in the scattering process (ν � = ν) is the
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point where the total momentum P = k + p equals zero. This is, of course, the

centre-of-mass frame for the collision. Making the analogy to nonlinear Compton

scattering, we see that the point where the nth harmonic collapses is the point

where the total momentum P = nk + q = nk + p + qL equals zero. Therefore we

can consider the point where jn = 0 to define a ‘centre-of-mass’ frame for the nth

scattering process.

Evaluating (5.53) for the FZD values we find that the fundamental harmonic

will collapse for a0 ≈ 200. In Figure 5.10 we show a sequence of plots of the

total spectra with a0 going from 20 to 300. Looking at the plots we observe the

following. In the subcritical regime (a0 < a0,crit, first three plots) the harmonic

ranges are blue shifted relative to the frequencies nν (shown as dotted vertical

lines). This is more clearly seen in Figure 5.11 where we have plotted the individual

harmonics. As a0 is increased the harmonic ranges shrink (i.e. the right-hand edges

are increasingly less blue shifted) and gaps begin to appear between the individual

harmonics. At the critical a0 the fundamental harmonic does indeed collapse to

the line ν
� = ν, disappearing from the plot. The n = 2, 3, 4, . . . harmonics are

very narrow for this value of a0 since, assuming that γ is large enough for (5.54)

to hold, the expansion of a0,crit is only n dependent in the second term and above.

As a0 increases further (into the supercritical regime), the fundamental and first

few higher harmonics are red shifted relative to the lines nν (again best seen from

Figure 5.11). The harmonic ranges begin to increase again and the gaps begin to

close. Hence, as we have discussed, there is an analogy between tuning the laser

parameter a0 and changing the Lorentz frame in which the processes are considered,

as the quasi-momentum (and hence P ) change continuously as a function of a0.

This is shown diagrammatically in Figure 5.12.
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Figure 5.10: Sequence of emission spectra for nonlinear Compton scattering showing
the transition from the subcritical (a0 < a0,crit) to the supercritical (a0 > a0,crit)
regime. γ = 100, a0,crit ≈ 200. The vertical (dotted) lines correspond to the
frequencies nν.
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Angular Parameterisation

Alternatively we can consider the emission rates as a function of the scattering angle

θ. Using (5.30) to now eliminate ν
� from our expressions, we calculate the angular
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Figure 5.11: Sequence of individual emission harmonics for nonlinear Compton scat-
tering showing the transition from the subcritical (a0 < a0,crit) to the supercritical
(a0 > a0,crit) regime. γ = 100, a0,crit ≈ 200. The vertical (dotted) lines correspond to
the frequencies nν. The grey lines show the total (summed) spectra. The harmonics
are coded; dashdot:n = 1, dashed:n = 2, dotted:n = 3, solid:n = 4.
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emission rate to be

dWn

dΩ
=

dWn

dx

dx

dΩ
=

nν

γ(1 + β)[1 + jn(1− cos θ)]2
Jn(a0, ν, ν

�
n, z). (5.56)
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Figure 5.12: Diagrams showing how the centre-of-mass frame becomes intensity
dependent.

Here we have used the angular measure dΩ = sin θdθ, which is the solid angle

measure up to a factor of 2π since the circularly polarised laser field is not dependent

on the azimuthal angle φ.

In Figures 5.13 and 5.14 we show the first few individual angular harmonics for

the FZD values. We see that for these parameter values, the main emission intensity

for each harmonic is concentrated in the region close to θ = π (back scattering

direction). However, it is only the fundamental harmonic that is non zero actually

at the point θ = π. The higher harmonics fall to zero at this point, exhibiting what

are known as ‘dead cones’. Thus true back scattering occurs only for the scattering

process where n = 1.

Figure 5.15 contains a sequence of plots of the individual harmonics for various

a0 (again, FZD values). We see that as a0 is increased, the bulk of the signal for
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Figure 5.13: First 5 angular harmonics for nonlinear Compton scattering (FZD
values). Only the fundamental harmonic contributes at θ = π.
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each harmonic begins to shift away from θ = π. As a0 reaches 200 the harmonics

become symmetrical about θ = π/2, with the fundamental harmonic contributing in

both the forward (θ = 0) and back scattering (θ = π) directions. As a0 is increased

further, the harmonics shift further to the forward direction. Just as it did in the

back scattering direction for low a0, the fundamental harmonic now contributes in

the forward direction while the higher harmonics, though moving increasingly close

to θ = 0, still exhibit dead cones at this actual point.

Before we can sum the harmonics to calculate the total emission rate, we are

forced to confront the issue of convergence. (We note that this was not an issue with

the ν
� parameterisation since, due to (5.32) and (5.33), a given frequency interval

only contains a finite number of harmonics. With the θ parameterisation all the

harmonics are constrained to the finite range θ = 0 . . . π.) To begin, we note that

the kinematic invariants x and z both have an n dependence, which we will now
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Figure 5.14: Log plot of the first 5 angular harmonics for nonlinear Compton scat-
tering (FZD values).
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write explicitly as xn ≡ x and zn ≡ z. Evaluating these invariants we find that they

scale with n like

xn(θ) =
2nν(1− cos θ)

γ[(1 + β)(1 + cos θ) + (1 + a
2
0)(1− β)(1− cos θ)]

= nx1(θ) (5.57)

zn(θ) = 2n

�
a
2
0

1 + a
2
0

�
x1

y1

�
1−

x1

y1

�
= nz1(θ), (5.58)

and we already have yn = ny1 from (5.50). We find it useful at this point to introduce

the rescaled variable

r ≡
x1

y1
, 0 ≤ r ≤ 1. (5.59)
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Figure 5.15: Sequence of plots showing the first 5 angular harmonics for various a0
(γ = 100). Solid line (black): n = 1, dashed: n = 2, dotted: n = 3, dashdot: n = 4,
solid grey: n = 5.
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Thus we may rewrite (5.58) as

zn(θ) = 2n

�
a
2
0

1 + a
2
0

�
r(1− r). (5.60)

A simple differentiation shows that z1 achieves its maximum when r = 1/2, and
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thus z1 lies in the interval

0 ≤ z1 ≤

�
a
2
0

1 + a
2
0

< 1. (5.61)

Figure 5.16: Log plot of the angular emission rate summed to the first 5000 har-
monics (FZD values).
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We are now ready to consider the total emission rate

∞�

n=1

dWn

dΩ
=

nν

γ(1 + β)[1 + jn(1− cos θ)]2
Jn(zn), (5.62)

where we now have

Jn(zn) = −
4

a
2
0

J
2
n(nz1) +

�
2 +

n
2
x
2
1

1 + nx1

��
J
2
n+1(nz1) + J

2
n−1(nz1)− 2J2

n(nz1)
�
.
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Figure 5.17: Angular emission rate summed to 5000 (solid line) and 10000 (dotted
line) harmonics (FZD values). They only differ at the point θ = θ0 ≈ 2.94, which is
the location of the peak.
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Employing the Bessel function identity [46]

Jn±1(z) =
n

z
Jn(z)∓ J

�
n(z), (5.63)

where the prime denotes the derivative of the Bessel function with respect to the

argument z, we may write the emission rate as

∞�

n=1

dWn

dΩ
=

∞�

n=1

A

�
(1− z

2
1)n

3
x
3
1

(1 + nx1)3
+

2(1− 2z21)n
2
x
2
1

(1 + nx1)3
+

(1− 3z21)nx1

(1 + nx1)3

�
J
2
n(nz1)

+
∞�

n=1

B

�
n
3
x
3
1

(1 + nx1)3
+

2n2
x
2
1

(1 + nx1)3
+

2nx1

(1 + nx1)3

�
J
�2
n (nz1),
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where A and B are the n-independent prefactors

A =
2ν + x1γ((1 + β)− (1− a

2
0)(1− β))

νa
2
0z

2
1(1− cos θ)

,

B =
4(1− z

2
1)[2ν + x1γ((1 + β)− (1 + a

2
0)(1− β))]

2νz21(1− cos θ)
.

We see that the terms of interest are the series of the form

∞�

n=1

n
N

(1 + nx1)3
J
2
n(nz1) and

∞�

n=1

n
N

(1 + nx1)3
J
�2
n (nz1),

where N ∈ {1, 2, 3}. Since x1 > 0 we can bound the series from above, e.g.

∞�

n=1

n
N

(1 + nx1)3
J
2
n(nz1) <

∞�

n=1

n
N
J
2
n(nz1) ≡ SN , (5.64)

∞�

n=1

n
N

(1 + nx1)3
J
�2
n (nz1) <

∞�

n=1

n
N
J
�2
n (nz1) ≡ S

�
N . (5.65)

The series SN and S
�
N are examples of Kapteyn series of the second kind and are

known to converge when 0 ≤ z1 ≤ 1, which is true in our case due to (5.61). For

an excellent discussion of these series and their convergence, we refer the reader

to the papers [62] and [63] by Lerche and Tautz. In [62] the authors state that

summing the series to 1000 terms yields errors below 10−6 for z1 � 0.95. However,

the convergence becomes very slow for z1 close to 1. Thus the convergence will be

slowest when z1 is maximal, which we found earlier to be when r = 1/2. Calculating

r explicitly, we find the angle where z1 is maximised to be

θ0 = arccos
1 + a

2
0 + γ(1− β)

1 + a
2
0 + γ(1 + β)

. (5.66)

Figure 5.16 shows a plot of the emission rate summed to 5000 terms. We expect

the convergence to be good everywhere apart from the small region around θ =

θ0 ≈ 2.94, which is the location of the peak. In order to test how well the series
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Figure 5.18: Sequence of plots showing the angular emission rate summed to 5000
harmonics for various a0 (γ = 100).
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has converged, in Figure 5.17 we have plotted the emission rate (for FZD values)

summed to 5000 and 10000 terms. We can see that, as predicted, they only differ at

the actual peak and so Figure 5.16 provides a relatively accurate representation of

the angular emission rate. Considering this plot now with more confidence, we note

the following observations. Firstly, for these parameter values the peak emission
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Figure 5.19: Black dotted (outer lines): the angular positions of the two emission
rate peaks as a function of a0 (summed to 5000 harmonics, γ = 100). Grey solid
(inner line): the angle θ0 which defines the maximum of z1. We see that the point
where z1 is maximal and the convergence is slowest, corresponds to the local minima
between the two peaks.
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is close to the back scattering (θ = π) direction, although the rate falls off at

θ = π (the remaining shoulder at this point being solely due to the fundamental

harmonic). Secondly, the angular rate is practically zero in the forward scattering

(θ = 0) direction.

In Figure 5.18 we investigate the dependence of the angular spectra on a0. We

see that as a0 is increased, the peak emission rate moves from the back scattering

direction to the forward direction. In other words the laser gets ‘stiffer’ compared

to the electron beam – the photons don’t ‘bounce back’ (backscatter) so easily, but

continue forwards (i.e. forward scatter) instead. It can be seen that the peak takes

the form of a double peak which becomes symmetrical for a0 ≈ 200. In Figure 5.19

we determine numerically the positions of the two peaks and compare them to our
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expression for θ0 (5.66). It can be seen from this plot that θ0, the point where z1 is

maximal and convergence is slowest, corresponds to the local minima between the

two peaks.

5.5 The Classical Limit

Having calculated the photon emission rates quantum mechanically, we now assess

how these calculations compare to their classical counterparts. Keeping with the

formalism we have used throughout this chapter, the classical limit may be expressed

as (see Nikishov and Ritus [52])

yn =
2nk · p

m2
∗

� 1, (5.67)

which is equivalent to stating that m∗ is the dominant energy scale. Since yn repre-

sents the recoil of the electron during the scattering process, the classical (Thomson)

limit amounts to neglecting the transfer of momentum from the laser photons to the

electron. From (5.67) we can see that we are in the classical limit if we have a large

a0, and are not considering harmonics with a very large harmonic number. Since

xn ≤ yn, (5.67) may be expressed as

xn � 1. (5.68)

Thus we reach the classical limit if we take xn = nx1 to zero in our sums (5.64),

(5.65). This argument is valid for large a0 since for low harmonic numbers (5.68)

clearly holds, and for high harmonic numbers the contributions to the sums are

heavily suppressed by J
2
n. In other words, this means that the bounding expression

(5.64), (5.65) for the summed angular emission rate (5.62) is also the classical limit.

If we now compare the quantum and classical (i.e. ‘Compton’ and ‘Thomson’)
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emission rates we find, for a0 = 20, that the graphs are nearly indistinguishable.

Plotting the relative difference we find that it is effectively zero everywhere apart

from a small region around θ = θ0, where it rises to about 0.7% (Figure 5.20). This

Figure 5.20: Relative difference of the photon emission rates |Compton −

Thomson|/Compton as a function of the scattering angle θ. FZD values, with har-
monics summed to n = 10000.
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is as we would expect since, for the FZD, yn ∼ O(10−6) � 1 putting us squarely

in the classical regime. However, if we consider the SLAC E-144 experiment [28]

where γ ≈ 105 and a0 ≈ 0.4, then yn ∼ O(1) implying that quantum effects should

be important. This is indeed the case – the difference between the quantum and

classical calculations is as high as 60% (Figure 5.21).

As a final remark, we note that throughout this chapter we have considered the

emission spectra in terms of the photon emission rates dWn. We can relate these to
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Figure 5.21: As Figure 5.20 but for parameter values corresponding to the SLAC
E-144 experiment.

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

θ (radians)

R
el

at
iv

e 
D

iff
er

en
ce

 (%
)

the emitted photon intensity dIn by the relation [52]

dIn = mν
�
dWn. (5.69)

5.6 Summary

To summarise, we have considered the phenomenology of laser-electron collisions us-

ing a strong field QED approach. Modelling the laser beam as an infinite plane wave,

we analysed the signatures of intensity effects in Compton scattering. The main in-

tensity effects are due to the intensity dependent mass shift m2 → m
2
∗ = m

2(1+ a
2
0)

of the electron in the laser field. We predict that this will result in a redshift of the

kinematic Compton edge for the fundamental harmonic, with the harmonic collaps-

ing to a line spectrum for a critical a0. If observed, this will provide experimental
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evidence of the electron mass shift. Our analysis also predicts the presence of higher

harmonic peaks (n > 1) in the photon spectra. We emphasise that, for a circularly

polarised laser field, the higher harmonics have not been detected in any previous

experiment. We then considered the angular distribution of the emitted photons.

This involved evaluating the sums of infinite series, the terms of which being func-

tions of Bessel functions. This we achieved by employing Kapteyn series results.

We subsequently found that, for low intensities, the peak emission is in the back

scattering (θ = π) direction. As the laser intensity is increased, the peak moves

towards the forward scattering (θ = 0) direction. Loosely speaking, at higher inten-

sities the laser beam becomes ‘stiffer’ and so the laser photons stop ‘bouncing back’

from the electron (back scattering), instead continuing to move forwards (forward

scattering). Finally, for the FZD parameters we found that the classical limit was in

good agreement (� 0.7%) with the strong field QED calculation. Thus, when carry-

ing out more detailed modelling of the FZD experiments (considering the effects of

the beam profile, for example), one can utilise the numerical scheme we presented

in Chapter 4. For different parameter values, where yn � 1 no longer holds, the

classical limit no longer offers a suitable approximation and so one must proceed

using strong field QED.

89



Chapter 6

Conclusion and Outlook

6.1 Summary

It is now 50 years since the invention of the laser and we find ourselves pushing

the limits of what can be achieved. The next few years will see a succession of new

experimental facilities coming online, each one with a power unmatched by anything

that has gone before it. The resulting, unprecedentedly high, electromagnetic field

strengths will allow the probing of fundamental physics in previously inaccessible

regimes. The kinds of physics available (strong field QED – namely Compton scat-

tering, vacuum birefringence and pair production) were outlined in Chapter 1. In

this thesis we chose to devote our attention to the dynamics of electrons in such

fields, with particular attention paid to intensity effects in the nonlinear Compton

scattering emission spectra. The reason for this is that, out of all the different

physical processes that it is possible to study using a laser field, nonlinear Compton

scattering is the only one that does not have a minimum threshold of laser intensity,

and is the most readily accessible with the facilities we expect to become available

in the next few years.

We began our study in Chapter 2 by considering the classical behaviour of an

electron in a constant electromagnetic field. Neglecting the effects of the radiative
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back-reaction on the electron motion, the governing equation of motion is the Lorentz

force equation (2.1). For the case of constant fields, this is solvable directly by

exponentiation. The resulting electron orbits can be divided into four (Lorentz

invariant) cases, classified by the values of the scalar and pseudo-scalar invariants

of the field strength tensor. Parameterising the field tensor using a null tetrad, we

demonstrated that the four cases result in electron motion that is either parabolic,

elliptic, hyperbolic or loxodromic. In the parabolic case the field tensor describes

crossed fields. Crossed fields are the most relevant case for us, since they represent

either the high intensity or the long wavelength limit of an infinite plane wave.

We thus proceeded to calculate the radiated energy spectra for an electron in a

crossed field background. Doing so, we found that the radiation is almost exclusively

backscattered, and the radiation signal strength decreases as the initial electron γ-

factor is increased.

Having considered crossed fields, we then moved on to study infinite plane waves.

The plane wave field tensors we considered were linear combinations of the (constant)

crossed field tensors, multiplied by a light-cone time (n · x) dependent prefactor.

These fields are null and, due to their transversality, we found that the light cone

time is directly proportional to the particle’s proper time τ . Hence the Lorentz force

equation becomes linear, and once again solvable by exponentiation. Calculating

the electron trajectories we confirmed that, in the average rest frame, the electron

exhibits figure-of-eight motion for a linearly polarised wave, and circular motion for a

circularly polarised wave. The size of the orbits is proportional to the laser intensity

a0. Considering the proper time average of the electron’s momentum over a laser

cycle, it was shown that the electron acquires a quasi-momentum, which in turn

gives rise to an intensity dependent mass shift. In the case of circular polarisation,

the radiated energy can be expressed in closed form. Evaluating the expression

given by Sarachik and Schappert [47] for an electron initially at rest, we found that
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the signal strength of the emitted radiation increases with the laser intensity. We

also found that the emission peak moves closer to the forward scattering (θ = 0)

direction as the intensity is increased.

If one is to move on to consider more realistic/complex field configurations (mod-

elling the laser field as a Gaussian beam, for example), then the Lorentz force equa-

tion will have to be solved numerically. Conventional numerical schemes are not

covariant and will introduce a discretisation error into the on-shell condition. There-

fore, in Chapter 4 we introduced a novel, first order numerical scheme based upon a

SL(2, ) representation of the electron four-velocity. Our method is fully covariant

and so precisely preserves the on-shell condition. Using the example of a pulsed

plane wave, we successfully demonstrated our new method and also compared it

directly with a conventional first order scheme (the Euler method). We found our

method to be more accurate, and we confirmed numerically that the on-shell con-

dition is indeed preserved. We also remark that our method could be adapted to

incorporate the radiative back-reaction, by solving the Landau-Lifshitz equation.

More details are given in Appendix B.

Once we had studied the electron dynamics classically, we returned to consider

the case of an infinite plane wave from a strong field QED perspective. Motivated by

recent advances in laser technology, we paid particular attention to intensity effects

in the emitted photon spectra. We found that the intensity dependent electron mass

shift m2 → m
2
∗ ≡ m

2(1 + a
2
0) gives rise to an intensity dependent frequency shift of

the kinematic Compton edge for the fundamental harmonic (ω� = 4γ2
ω → 4γ2

ω/a
2
0).

In fact, for a given harmonic, we found that the notion of a ‘centre-of-mass’ frame

becomes intensity dependent, with the first few harmonics collapsing to line spectra

for a0,crit ≈ 2γ. For parameter values away from a0 = a0,crit we found that the

presence of the higher harmonics in the emission spectra serve to bolster the signal

strength of the Compton peak. If detected in an experiment, this would be the
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first time that the higher harmonics are detected for a circularly polarised laser

field. After considering the emission spectra, we then turned our attention to the

angular emission rates. We found that for low a0 most of the emitted radiation is

in the backscattering (θ = π) direction. However, as a0 is increased the emission

peak moves away from θ = π and towards the forward scattering direction. This

can be understood figuratively by saying that at low intensities the laser photons

‘bounce back’ off the electron (i.e. backscatter), whereas at higher intensities the

laser becomes ‘stiffer’ and so the photons continue in a forwards direction (forward

scatter). In order to calculate the angular rates we had to sum over an infinite

number of harmonics. We solved this problem by realising that the sums could be

bounded by Kapteyn series that can be written in closed form. We also found that

the bounding expressions represent the classical limit to the problem, enabling us

to compare the classical and quantum calculations with each other. For the FZD

parameters we found that the classical limit was in very good agreement (� 0.7%)

with the full strong field QED calculation. This means that if one were to carry out

more detailed modelling of the FZD experiments (e.g. considering the effects of the

beam profile), one could utilise the numerical scheme we developed in Chapter 4.

However, for different parameter values, where the condition

yn =
2nk · p

m2
∗

� 1 (6.1)

no longer holds, the classical limit no longer offers a suitable approximation and

so one must proceed using strong field QED. This was aptly demonstrated for the

SLAC E-144 experiment, where we found that the relative difference between the

classical and QED calculation is as high as 60%.
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6.2 Further Developments and Outlook

Over the next few years we can expect a wealth of new experimental data against

which to compare our theoretical predictions. The results from the FZD will be

especially interesting for us, since they will allow us to gauge the validity of our

reasoning in Chapter 5. It would be particularly exciting to confirm our predictions

regarding the tunability of the Compton peak in the emission spectrum. If demon-

strated, this process could potentially provide a source of monochromatic X-rays

of tunable frequency, which could be of use in cancer therapies and other scientific

fields. In terms of fundamental physics benefits, if the experiments are able to detect

the presence of the higher harmonics in the emission spectrum, this would be the

first time that they were detected for a circularly polarised laser field.

While our analysis of an infinite plane wave laser model was an important first

step, the challenge now is to consider a more realistic model of the laser beam. In-

deed, since our work on the emission spectrum for an electron in an infinite plane

wave was carried out, other authors have begun to give consideration to the effects

that changing from an infinite plane wave to a pulsed plane wave has on the spec-

trum. In particular, the work by Heinzl, Seipt and Kämpfer [44] contains a classical

calculation of the emission spectrum for an electron in a circularly polarised, pulsed

plane wave (not including the radiative back-reaction). Their key finding was that,

since the field strength varies as the electron passes through the pulse, radiation

generated at different times will be of different frequencies. The result of this is that

the emission harmonics develop additional oscillatory substructures, which are not

present in the plane wave analysis. As well as considering finite temporal effects,

at much higher intensities it will also be necessary to consider finite spatial effects.

This is because one of the ways in which the laser intensity can be increased is by

focussing the beam more strongly. This will mean that the electron beam will no
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longer be narrow compared to the laser beam waist size, and so we can no longer

assume that the electrons probe just the central focus region – see Figure 6.2. Thus

one must move beyond plane wave models and treat the laser as a Gaussian beam.

For parameter values that place us well within the classical domain, the numerical

scheme we introduced in Chapter 4 can be utilised. However, outside of the classical

regime we will be forced to find a way to perform such calculations using strong field

QED.

Figure 6.1: The implications of beam focussing on our modelling. For a strongly
focussed beam, the electrons can no longer be assumed to probe just the central
focus, and so spatial effects must be taken into consideration.

Aside from nonlinear Compton scattering, the intensities available at future fa-

cilities – ELI in particular – will allow other processes to be studied. The intensities

expected at ELI may be high enough to detect the effects of vacuum birefringence on

the polarisation of probe photons, although it will still be well below the Schwinger

limit at which vacuum pair production may take place. However, pair production

experiments are possible, utilising phenomena such as the Breit-Wheeler process.

Finally, we must make some remarks concerning the radiative back reaction. In this
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thesis our classical analysis neglected these effects, and so took the Lorentz equation

to govern the electron motion. However, the numerical scheme introduced in Chap-

ter 4 could be adapted to solve the Landau-Lifshitz equation, which incorporates the

back reaction via reduction of order. Nevertheless, one often finds that for parame-

ter ranges where the back reaction becomes important, quantum effects also become

significant. Thus we must ask whether one can disentangle the radiation reaction

from quantum corrections. There are many contributions to the literature on this

subject, but we consider the notes by McDonald [79] to be particularly useful.
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Appendix A

Notation

Throughout we will be working in four-dimensional Minkowski space, defined with

a metric such that a covariant vector xµ (µ =0, 1 ,2, 3) is related to its contravariant

counterpart xµ by

xµ = gµνx
ν
, g = diag(1,−1,−1,−1), (A.1)

where repeated indices are summed over. A particle’s position x
µ(τ) is parameterised

by its proper time τ , such that

dτ =
�

dxµdx
µ. (A.2)

Thus we may define a particle’s four-velocity as

duµ ≡
dxµ

dτ
= γ(c,v), (A.3)

where v is the standard three-velocity v = dx/dx0 and

γ =
1�

1− v2/c2
. (A.4)
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Similarly, a particle’s four-momentum is simply pµ ≡ muµ = (Ep/c,p), where m

is the particle mass and Ep = mγ is its energy. An electromagnetic field is char-

acterised by its four-potential Aµ = (φ,A), which in turn allows us to define the

electric field intensity E

E = −
1

c

∂A

∂x0
− gradφ, (A.5)

and the magnetic field intensity

B = curlA. (A.6)

We define the antisymmetric tensor Fµν (the electromagnetic field tensor)

Fµν = ∂µAν − ∂νAµ (A.7)

=





0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0





, (A.8)

where we have introduced the notation

∂µ ≡
∂

∂xµ
=

�
∂

∂x0
,∇

�
. (A.9)

We also introduce the electromagnetic energy-momentum tensor

Tµν ≡
1

µ0

�
− FµαF

α
ν −

1

4
gµνF

δγ
Fδγ

�
. (A.10)
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Appendix B

The Radiation Back-Reaction

In this Appendix we consider the full equation of motion for an electron in an

electromagnetic field – including the radiative back-reaction. The classical action

for such a system can be written as [37]

S = −m

�
dτ − e

�
d4
xj

µ
Aµ −

1

4

�
d2
xF

µν
Fµν , (B.1)

where the gauge potential Aµ refers to the total field and j
µ is the four-current as

defined in (2.40). We can express the field strength tensor as a sum of the tensor

describing the external laser field F
µν
ext, plus the tensor describing the back-reaction

on the field F
µν
R

F
µν = F

µν
ext + F

µν
R . (B.2)

Assuming the laser field is a solution of the vacuum Maxwell equations

∂µF
µν
ext = 0, (B.3)
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and varying the action with respect to the gauge field A
µ and to the trajectory x

µ,

one finds the following governing equations

∂µF
µν
R = j

ν(x), (B.4)

u̇
µ =

e

m

�
F

µν
ext + F

µν
R

�
uν . (B.5)

The solution to these equations is due to Lorentz [69], Abraham [70] and Dirac [71]

and is presented clearly by Coleman [72]. The resulting equation of motion is known

as the Lorentz-Abraham-Dirac equation and can be expressed in the form

u̇
µ =

e

m
F

µν
extuν −

2

3

e
2

4πm

�
ü
µ + u̇

2
u
µ
�
. (B.6)

We draw the reader’s attention to the presence of the infamous second derivative

term ü
µ (third derivative of xµ), which leads to the existence of runaway solutions.

A well known solution to this problem is to replace the üµ and u̇
2 terms using the

Lorentz force equation (2.1) [37], thus ‘reducing the order’ of (B.6). The resulting

equation is known as the Landau-Lifshitz equation

u̇
µ =

e

m
F

µν
uν −

2

3

e
2

4π

�
e

m2
Ḟ

µν
uν +

e
2

m3
F

µα
F

ν
α uν −

e
2

m3
uαF

αν
F

β
ν uβu

µ

�
, (B.7)

where we have changed notation to F ≡ Fext and we will from now on drop the

subscript for clarity. This derivation is valid under the conditions that, in the in-

stantaneous electron rest frame, both the laser frequency �ω and the electric field

energy eE are much smaller than the electron rest energy mc
2 [37]. The derivation

of the Landau-Lifshitz equation has recently been underpinned with more mathe-

matical rigour in [73] and [74].
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Denoting the square of F µν by Θµν

Θµν
≡ F

µα
F

ν
α , (B.8)

we can write (B.7) as

u̇
µ =

e

m
(F µν +G

µν) uν =:
e

m
H

µν
uν , (B.9)

where

G
µν

≡ −
2

3

e

4π

�
e

m
Ḟ

µν
−

e
2

m2

�
u
µΘν

α − u
νΘµ

α

�
u
α

�
, (B.10)

is manifestly anti-symmetric. We note once again that in the special case of a plane

wave field Θµν = T
µν . The fact that the Landau-Lifshitz equation can be expressed

as a combination of anti-symmetric tensors (B.9) means that the new numerical

scheme we presented in Chapter 4 could be adapted to solve it.

To solve the Landau-Lifshitz equation using our numerical scheme, we would

adopt a SL(2, ) basis and discretise, just as in Chapter 4. However, when defining

our electric field matrix (4.8)

† = (E + iB) · σ, (B.11)

we now take our E and B fields to include the full electromagnetic field, i.e.

H0i(x) =: Ei(x), Hik(x) =: −�ikmBm(x). (B.12)

It has recently been shown by Di Piazza [68] that, for the case of a plane wave

field, the Landau-Lifshitz equation can be solved analytically. Using this solution,

in Figure B.1 we show a plot of the electron γ-factor for the FZD parameters, show-
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ing both the Lorentz (no back-reaction) and Landau-Lifshitz (with back-reaction)

solutions. The difference between them is O(1%) over the first laser cycle.

Figure B.1: Plot showing the electron γ-factor for a circularly polarised plane wave,
with and without radiation damping effects (FZD values).
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