
Web-based Learning through Mixed-Initiative Interactions: Design and
Implementation

Nantha Kumar Subramaniam

Open University Malaysia, Jalan Tun Ismail, 50480 Kuala Lumpur, Malaysia

nanthakumar@oum.edu.my

Tel: 6-03-27732114

Accepted subtheme: 3

Abstract: Mixed-initiative interaction is a naturally-occurring feature of human-human
interactions. It characterize by turn-taking, frequent change of focus, agenda and control
among the “speakers”. This human-based mixed-initiative interaction can be implemented
through a mixed-initiative systems which are a popular approach to building intelligent
systems that can collaborate naturally and effectively with people. Mixed-initiative systems
exhibit various degrees of involvement in regards to the initiatives taken by the user or the
system. In any discourse, the initiative may be shared between either, a learner and a system
agent, or between two independent system agents. Both the parties in question establish and
maintain a common goal and context, and proceed with an interaction mechanism involving
initiative taking that optimizes their progress towards the goal. However, the application of
mixed-initiative interaction in web-based learning is very much limited. In this paper, we
discuss the design and implementation of a web-based learning system through mixed-
initiative system known as JavaLearn. JavaLearn allows the interaction between the system
(in the form of a software agent) and the individual learner. Here, the system supports the
learning through a problem solving activity by demanding active learning behaviour from
the learner with minimal natural language understanding by the agent and embodies the
application-dependent aspects of the discourse. It guides the learner to solve the problem by
giving adaptive advice, hints and engage the learner in the real time interaction in the form
of “conversation”. The principal features of this system are: It is adaptive and are based on
reflection, observation and relation. The system acquires its intelligence through the finite
state machine and rule-based agents.

Introduction
Four mode of interactions that can be found in a web-based learning environment are
student-student, student-instructor, student-content and student-interface (Thurmond &
Wambach 2004). The student-interface interaction is a new form of interaction, thanks to
the increased processing power of computers and the advancement made in the field of
artificial intelligence (Thurmond & Wambach 2004). The student-interface interaction is
defined as the interaction between the learner and the tools needed to perform the required
learning task. In most cases, student-interface requires active participation from the user. This
eventually demands active learning behaviour among the learners. Furthermore, active
learning is an important teaching and learning technique especially for the adult learners
(Huang 2002).There are various ways that can be adopted to realize the student-interface
interaction. One way to do it is through mixed-initiative interaction. Mixed-initiative
interaction is a naturally-occurring feature of human-human interactions (Menon et al. 2005).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open University Malaysia Knowledge Repository

https://core.ac.uk/display/298087264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is characterized by turn-taking, frequent change of focus and control among the “speakers”.
This human-based mixed-initiative interaction can be implemented through a mixed-initiative
systems which are a popular approach to building intelligent systems that can collaborate
naturally and effectively with people. Mixed-initiative systems exhibit various degrees of
involvement in regards to the initiatives taken by the user or the system. In any discourse, the
initiative may be shared between either, a learner and a system agent, or between two
independent system agents. Both the parties in question establish and maintain a common
goal and context, and proceed with an interaction mechanism involving initiative taking that
optimizes their progress towards the goal. One of the key elements for successful mixed-
initiation is the ability of the system to recognize opportunities for mixed-initiative
interactions.

Problem Statement
The use of mixed-initiative interaction in the form of mixed-initiative systems for web-based
learning is considered a new phenomenon as most of the mixed-initiative systems have been
developed for non-education sector (Rich & Sidner, 1998). Limited researches of using
mixed-initiative systems for education purposes have been carried out by Hanson, Judd and
Rich (2009), Shakya et al. (2005) and Rao et al. (2006) especially in the programming
courses. Hanson, Judd and Rich (2009) had designed a game environment to teach students
about basic programming and object-oriented concepts using text-based mixed-initiative
interaction. Shakya (2009) used Self Regulated Learning to determine strategies and tactics
that learners used in their mixed-initiative interactions. The system was modeled based on
the concept of pair-programming. On the other hand, Rao et al. (2006) had developed a real-
time architecture called MICE (Mixed-Initiative Coding Environment). It uses ontologies to
model-trace programming styles, employs rules to assist programmers to regulate their
programming styles, and engages mixed-initiative scaffolding tactics and strategies to
provide feedback. In open and distance education, web-based learning is normally conducted
using Learning Management System such as WebCT or Moodle and these platforms lack the
mixed-initiative interaction component.

Objective
The objective of the paper is to discuss the design and implementation of web-based learning
system based on mixed-initiative system for learning of Java programming. Java is chosen as
it is a programming subject that requires active learning approach in order to understand the
subject matter. The system/prototype known as JavaLearn is able to engage the learners in a
problem solving activity and at the same time allows the students to “interact” with the
system as part of the learning process activity in solving the problem. Here, the system
supports the learning through a problem solving activity by demanding active learning
behaviour from the learner with minimal natural language understanding by the agent and
embodies the application-dependent aspects of the discourse. It guides the learner to solve
the problem by giving adaptive advice, hints and engage the learner in the real time
interaction in the form of “conversation”. The principal features of this system are: it is
adaptive and are based on reflection, observation and relation.

Prototype Design
Our version of the software agent paradigm which we term JavaLearn is illustrated in Figure
1. This paradigm mimics the relationships that hold when two humans collaborate on a task
involving a shared artifact, such as two mechanics working on a car engine together or two
computer users working on a spreadsheet together. Notice that the software agent is able to

both communicate with and observe the actions of the user and vice versa. A crucial part of
successful collaboration is knowing when a particular action has been performed. In our
proposed JavaLearn, this can occur one way: by clicking the action button. Typically, the
agent queries the application state using the finite state machine. The tasks that can be done
by the user in JavaLearn are:

i. Solve the problem by doing the action in an orderly manner represented as “cycles”
(described later in other section)

ii. While solving the problem, chat with the agent using the “predefined messages”
provided by the agent. Although, in the long run, communication between users and
interface agents will very likely be in spoken natural language, we have decided to
include limited natural language understanding in JavaLearn. As a practical matter,
natural language understanding, even in this limited setting, is a very difficult problem
in its own right, which we would like to sidestep for the moment.

Figure 1 Collaborative interface agent for JavaLearn

This discussion between the agent and student in JavaLearn is conducted on the premise of
that the learners’ learning is not so much a matter of building up correct responses or
eliminating incorrect responses. The most important thing is for students to have the
opportunity to test the adequacy of their ideas. It is the process of how the learners “persist”
in the problem solving activity rather than on actually being able to solve the problem
successfully. The general overview of the system (JavaLearn) is shown below.

Figure 2 General Overview of the JavaLearn

The proposed architecture of the system will use rule-based multi-agent approach. Agent
approach is adopted as it is goal oriented, take action when necessary to fulfil the goal,
capable to perform tasks given by the user autonomously, monitor the environment and adjust
an event without direct intervention from the user. Figure 2 shows the components that make
up the proposed system. JavaLearn has FOUR agents, namely chat, helper, advisor and
pedagogy agents performing different tasks. The facts and rules for the agents will be stored
in the respective knowledge bases. In JavaLearn, the students are given a task or problem to
be solved through collaborative discussion with the chat agent. In order to engage in the
discussion, the students will post their messages using the “predefined messages”. These
“predefined messages” are determined by the system during the runtime based on the user’s
state in the finite machine. Only one message can be selected per posting by the learner to
engage in the discourse. These “predefined messages” for the learners to choose are in the
form of “questions” as listed below (Rich et al. 2001):

What ...
Where
When
Why
How...
Can

In addition, the following “predefined messages” are also included in JavaLearn so that the
learners can take a lead in the discourse with the agent irrespective whether the learner is on
the right track in solving the problem. This is in line with the mixed-initiative philosophy that
mimics human-human interaction that has frequent change of focus:

No..I do not think so
Why not ….
I think ….
We should ….

We are motivated to use the “predefined” messages based on the work done on using
sentence opener (Baker & Lund (1996). In the sentence opener approach, the opening words
is given and student need to complete the sentence using their own words. However, in

JavaLearn, the complete sentences are given for the students to choose and they are not
required to type any extra words. This will reduce the mental load of the student in solving
the problem given to them. In this study, the “predefined messages” are formulated based on
the Collaborative Skills Network (CSN) proposed by Israel (2003). The state of the finite
machine in JavaLearn will determine which messages that will be pushed for the students
view for that particular problem solving cycle. Figure 3 shows the JavaLearn architecture.

 Figure 3 JavaLearn architecture

In our proposed system (JavaLearn), each action selected by the learner will be first parsed
by the chat agent that will do the following tasks as describe in Table 1.

Table 1 Assistant agents in JavaLearn

i. Identify whether the student has posted the message using the pre-defined message

provided the system or has used his/her own words. If latter is the case, the chat
agent will invoke the helper agent;

ii. Identify if the student is yet to post any new message after certain time interval and
call the timer agent if it is so; and

iii. If the student has posted a message from the predefined messages prepared by the
system within the time frame, it will call the advisor Agent.

In the case of (i), helper agent will analyse the message posted by the student and select the
appropriate response(s) from the knowledge base. This response(s) will be sent to the chat
agent so that it can be posted in the chat interface for the student view. If the helper agent fail

to understand the message posted by the user, it will advise the learner (via chat agent) to
select the predefine message already provided by the system. This agent uses Knuth-Morris
pattern-matching algorithm in analyzing the messages posted by the learner.

In the case of (ii), the timer agent will send an alert message via chat agent reminding the
students that he/she spending too much of the time in selecting the “action”.

In the case if (iii), advisor agent will determine the suitable reply that need to be sent to the
chat agent by querying the current state of the finite machine. the At the same time, if the
learner has selected the wrong action and struggling to get the correct “action” in a particular
cycle, the agent will call pedagogy agent in order to give an appropriate advice to the student.
This is done by utilizing the knowledge base and finite state machine. When the learner is in
the midst of solving the problem by selecting the correct “action”, the chat agent will also
update the finite state machine to reflect the current student model. In all these cases, chat
agent merely acts as an interface between the system and the user. It conveys the message
posted by the user to other agent and at the same time, update the finite machine. Chat agent
uses the identity “DrJava” when posting the messages. At one time, the chat agent can only
call one agent. Since there are multi-agents in JavaLearn, chat agent will use the following
priority level (from Table 1) to determine which agent that need to be called:

Priority level for the chat agent: ii>i>iii

Finite state machine is used to (a) keep track the sequence of action selected by the user; and
(b) control the flow of conversation. Users must select the message from the list each time
they add to the discussion. The list is determined by the state in the finite state machine which
provides a mechanism to structure, and rather than to understand, the conversation. Finite
state machine is elaborated in detail in the next section.

Prototype Implementation
The agents in the JavaLearn have been built using JADE (Java Agent Development
Environment) while the interface is a Java Applet. These agents will involve in back-end
processing running in a LINUX server. It can be called from the web browser by typing its
URL. Figure 4 shows the interface of JavaLearn.

Figure 4 JavaLearn interface

Chat area is the place where the learner will interact with the agent. Work area is the place
where the student will construct the class program by choosing the correct “action buttons”
from the action palette. Here, the buttons represents “actions” that can be chosen by the
student. Each action has its own identifier. Typing area is the editable combo box where the
student will type their queries or select predefined messages provided by the system. Action
Palette contains the disorganised program codes. The learner needs to arrange the codes in
the correct sequence in the work area so that it forms a complete class program (Note:
Developing class program is the most important concept in Java). This is done by clicking the
button (which represent the “action”) and it will get displayed in the work area of JavaLearn.
When the learner is in the midst of solving the problem by selecting the correct “action” from
the action palette, it will be updated in the finite state machine to reflect the current student
model. Figure below shows a segment of an example of real usage of JavaLearn:

Chat area

Work area

Action palette

Utility buttons

Typing area

Figure 5 A segment of interactions in JavaLearn between the student (guest) and the agent

(DrJava)

In the case of wrong action selected by the learner, the system is capable to revert to its
earlier state so that the student can resume working to select the correct action. There are 11
possible actions that can be chosen by the learners for the one problem given in JavaLearn
(Figure 5). Among these 11 actions, 9 is the correct actions and 2 actions are the distracters.
Thus, there will be 9 problem solving cycles for this problem. In each cycle, the learners may
select the correct answer in the first attempt or obtain the correct answer after few attempts.
In either cases, the chat agent will guide the learners until he/she chooses the correct answer
so that they can progress to the next cycle. Figure 6 shows the possible paths in the finite
state machine (FSM) for cycle 1. Figure 7 shows the possible paths in FSM for last cycle.

Figure 6 FSM for 1st cycle

Note: Actn in Figure 6 and Figure 7 refers to the “action button” identifier in the action palette

The depth/density of FSM will be reduced as a student progressing through these cycles.
This is because the available actions that can be selected by the learners will be reduced as
they progressing over the problem solving cycles. The agent will “fire” the appropriate
feedbacks/messages/hints based on the paths taken by the student in the finite state machine.
In each of these cycles, the control of the discussion may shift alternately between the learner
and the agent. This is in line with philosophy of the mixed initiative interactions which
mimics human-human interaction.

Figure 7 FSM for the last cycle

Learners’ Evaluation
The beta-testing has been conducted for JavaLearn by 5 learners who took this course. At the
end of using the system, a questionnaire has been distributed to them. The questionnaire has 8
items and are measured in the Likert scale of 1 (very weak) to 5 (very good). The mean
scores for all the items are shown below.

 Table 2 Mean score of the items

 Item Mean
Square

1 How would you rate the accuracy of JavaLearn? (accuracy
refers to the correctness of the responses displayed by
JavaLearn)

3.33

2 How would you rate the usefulness of the "predefined
messages"?

3.50

3 How would you rate the quality of the responses made by
JavaLearn? Quality refers to clarity and appropriates of
messages responded by JavaLearn.

3.75

4 How would you rate the usefulness of JavaLearn for
accomplishing your individual work?

3.63

5 How would you rate the usefulness of JavaLearn for
collaborative discussions with JavaLearn.

3.33

6 How would you rate the ease of using the JavaLearn
interface for the activity and interactions?

4.00

7 How would you rate your overall satisfaction with
JavaLearn?

3.71

8 How would you rate the success of JavaLearn? Success
refers to whether you feel you learned more by using this
tool than you would do without it.

3.80

The result shows that the learners gave favourable responses for JavaLearn. It has managed
to provide the opportunity to the learners to persist in the problem solving activity.

Conclusions and Future work
This paper has presented an architecture for JavaLearn prototype which is able to engage the
learners in a problem solving activity and the same time allows the students to “interact” with
the system as part of the learning process activity. The system was built using rule-based
agents. The agents acquired the intelligence through the finite state machine. The feedback
from the students during the beta testing shows that the system had contributed to the
enhancement of their and understanding on the subject matter. JavaLearn provides the
following significance:

• It converge mixed-initiative interactions, web-based learning and collaborative
learning in a single platform;

• It provides a computational model for the system based on the mixed-initiative
interactions using finite machines to deliver learning to the learners;

• It enables the students to do an activity and at the same time engage in a
“conversation” with the agent. Thus, it eliminates the human intervention; and

• The model proposed in this paper can be easily expanded to other subject areas.

Developing mixed-initiative systems that mimics the typical human-human interaction is a
daunting task. The challenges of developing JavaLearn is that it must have a comprehensive
knowledge bases (rules) and ‘predefined messages” as the agents are dependent on these
knowledge bases in interacting with the learners. We are currently in the investigating the
idea of using JavaLearn in mobile phones to support mobile learning. JADE provides a
mechanism to develop such mobile applications.

References
Baker, M. & Lund, K. 1996. Flexibly structuring the interaction in a CSCL environment.
Proceedings of the European Conference on Artificial Intelligence in Education (EuroAIED
‘96), 401-407.

Charles Rich and Candace L. Sidner, “COLLAGEN: A Collaboration Manager for Software
Interface Agents”, User Modeling and User-Adapted Interaction 8(3), 1998, Kluwer
Academic Publishers, pp 315-350.

Hanson, P., Sarah Judd and Charles Rich. 2009. Zeppelin Time: Exploring the Future of
Mixed Initiative in Educational Games. http://web.cs.wpi.edu/~rich/courses/cs525u-
s09/projects/ZeppelinTime/ProjectNotes.pdf

Huang, H. (2002). Toward constructivism for adult learners in online learning environments.
British Journal of Educational Technology, 33(1), 2737.

Israel, Judith Lynne. 2003. Collaborative learning enhanced by an intelligent support
system. Doctoral Dissertation. Temple University,

Menon S., Shakya J., Kumar V., Rule-Based Mixed-Initiative Scaffolding, International
Workshop on Applications of Semantic Web Technologies for E-Learning (SW-EL), Banff,
Canada, 2005.

Rao S., Kumar V., Hatala M., Gasevic D., Mixed-Initiative Interfaces to Recognize,
Regulate, and Reflect Programming Styles, I2LOR Conference, November, Montreal,
Canada, 2006.

Shakya J., Menon S., Doherty L., Jordanov M., Kumar V.S. Recognizing Opportunities for
Mixed-Initiative Interactions based on the Principles of Self-Regulated Learning. Workshop
on Mixed-initiative interactions for Problem-solving. AAAI Fall Symposia, Arlington, VA,
2005.

Thurmond, V., & Wambach,K. 2004. Understanding Interactions in Distance Education: A
Review of the Literature. International Journal of Instructional Technology and Distance
Learning.

