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Abstract

Smart dairy farming has become one of the most exciting and challenging area in cloud-based data analytics.
Transfer of raw data from all farms to a central cloud is currently not feasible as applications are generating
more data while internet connectivity is lacking in rural farms. As a solution, Fog computing has become a key
factor to process data near the farm and derive farm insights by exchanging data between on-farm applications
and transferring some data to the cloud. In this context, learning in the compressed data domain, where de-
compression is not necessary, is highly desirable as it minimizes the energy used for communication/computation,
reduces required memory/storage, and improves application latency. Mid-infrared spectroscopy (MIRS) is used
globally to predict several milk quality parameters as well as deriving many animal-level phenotypes. Therefore,
compressed learning on MIRS data is beneficial both in terms of data processing in the Fog, as well as storing
large data sets in the cloud. In this paper, we used principal component analysis and wavelet transform as two
techniques for compressed learning to convert MIRS data into a compressed data domain. The study derives near
lossless compression parameters for both techniques to transform MIRS data without impacting the prediction
accuracy for a selection of milk quality traits.

Keywords: Compressed learning, MIRS, principal component analysis, wavelet transformation, partial least
squares regression, fog computing.

1. Introduction

Even though smart farming is advancing with the recent developments of Internet of Things (IoT), cloud-based
computing, and deep learning, it has become one of the most challenging industrial sectors in big data analytics
due to the limitations of ICT infrastructures [47]. However, according to the statistics from the Food and Agriculture
Organization of the United Nations (FAO), smart farming will be a key contributor to sustainable intensification in
agriculture to feed the 9.2 billion human population by 2050 [1]. There is also a growing interest in pasture-based
smart dairy farming in the countries like New Zealand and Ireland, which tend to be in less direct competition with
human edible protein and energy sources. Therefore, more harmonized research is needed to optimally utilize ICT
infrastructures in precision dairy farming to minimize consumed storage space, communication and computations
to facilitate contemporary analytics providing near real-time insights on-farm [37]. This is where the notion of
effective data compression approaches are important.

Most sensor-based technologies and IoT platforms are designed today to collate and store vast quantities of
raw data readings from different sources in geographically distributed farms. Many computational facilities for
data analytic applications such as MyAgCentral1 are now seeking computational resources in cluster-based servers
in large centralized data centres. At same the time, the Agricultural Information Management Standards of FAO
(AIMS) has already started developing standards and maintaining interoperable trans-national databases for open
agricultural data. Therefore farm data will be aggregated as big datasets and there is a requirement to store these
data for long-term analytical purposes. This is beneficial since aggregation of data, which extracts a large number
of descriptive features in temporally and spatially diverse domains, contributes to an improved learning accuracy.
Therefore, compression of such data without a loss of accuracy is vital in terms of the storage requirement.

Dissemination of data in its raw format (i.e., in the measurement domain) into large cloud-based data centers
is generally not feasible for most farms due to high energy consumption, time criticality of the applications, and
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Fig. 1. PCA and WT for MIRS have been applied to avoid overfitting and de-noising in the conventional spectrometry analysis. The two
techniques can be used for data compression in future distributed analytics platforms with compressed learning.

the poor/costly rural internet connectivity. For example, if a disease detection system is centralized, it may slow
down the farmers’ response because of the necessity to transfer vast quantity of data readings to a remote cloud
and wait for the outcome to return. Therefore, compression of data is also important in terms of the communication
efficiency.

However, the key challenge today is whether the centralized storage and computational technologies (with com-
munication networks) contributing to smart dairy farming will still not be sufficient to deliver the future demand
without an advanced data analytic infrastructure closer to remote farm management systems. Therefore, a scalable
computational infrastructure under constrained resources (proximate to the farm) is essential. In such a constrained
infrastructure, compression is a key performance factor also for computational efficiency in addition to storage and
communication.

Emergence of Fog Computing: With the increase in the amount of data generated from connected sensors, there
is a demand to move processing capabilities closer to the data sources, which is in contrast to centralizing raw
data in a large data centre. This phenomenon of distributing computations towards the data was first termed as
data gravity by Dave McCrory in 2010 and is now being realized with new technologies such as Fog (i.e., edge)
computing [3] and cloudlets [21]. Fog computing can enable datasets to be processed at the extreme edge of
the internet. This computational infrastructure may collectively be formed by low computational proximate devices
located near or within the farm. Therefore Fog computing will be a key enabler for many farm analytics to run using
scalable in-memory data processing platforms like Spark2, Flink2, Storm2 and H203 with in-memory databases like
Ignite2 and SAP HANA. Therefore raw-data compression near the data source is a desirable requirement for near
future.

As a result, machine learning models, which have targeted highly-provisioned cloud infrastructures, must be
re-designed for these resource-constrained infrastructures to minimize storage, communication and computational
requirements. New distributed machine learning paradigms like compressed learning [4] and attribute-distributed
learning [50] have significant potential to develop effective learning models [49] rather than centralizing all raw
datasets from the farms. The main motivation of the present paper is to validate a compressed learning approach [4]
for milk quality analysis based on Mid-infrared spectroscopy (MIRS) technology, which can effectively overcome
those three challenges in Fog computing. With compressed learning, any machine learning algorithm can be used
in a low-dimensional (i.e. latent) space without decompressing data, while optimizing the resource requirement
as well as learning efficiency and accuracy of outcomes. Even though the compressed learning approach has been
widely used in many fields for learning from complex data sources, such as high-resolution image and video
processing and text analysis [25, 30], its applicability is new to the MIRS based milk quality analysis.

MIRS is the most economical technology used for assessing milk quality. Therefore, MIRS spectra in predictive
models are frequently used to develop farm decision-support tools for efficient milk data processing. For instance,
the OptiMIR4 project has used MIRS of milk recordings in an innovative way to observe different characteristics
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of cows such as energy balance and early detection of diseases. Also, the routinely obtained MIRS of milk can be
used for deriving novel models to quantify milk composition on both an animal basis and on bulk tank samples
as well as derive milk related herd-level phenotypes [28]. In addition, variation in MIRS of milk can be used as
an indicator in predicting animal characteristics such as the physiological state of an animal and its feed efficiency.
The collaborative use of MIRS milk data from different farms can also improve the accuracy of the predictions.
Therefore processing vast quantities of milk samples with Fog computing is highly desirable for MIRS milk quality
analysis in the future smart dairy farming.

Conventional MIRS analysis [42, 43] has been conducted based on co-located data processing by a single com-
putational facility. As shown in Fig. 1, the raw data are directly collated into a repository, mostly by non-experts
of data science, and later analyzed by the domain-specific data science experts. This significantly increases the
computation and power resource requirement on the cloud using raw MIRS data. In modern distributed processing
infrastructures, data pre-processing such as de-noising and dimensionality reduction can be carried out closer to
data sources. It would, in turn, improve three forms of resource efficiency of the system and reduce the input
cost compared to the conventional approach. Water absorbance data collected using MIRS technology, for instance,
hampers the accuracy of milk quality prediction. Removal of these data using distributed computing, prior to send-
ing to the cloud would potentially improve the model accuracy as well as reduce the amount of data in the cloud.
Therefore, interpretation of biological data on the edge, using domain-specific knowledge of MIRS, would optimize
resource utilization both in big data analytics as well as Fog computing [3].

Compression techniques such as Principal Component Analysis (PCA) [19], Wavelet Transform (WT) [44], man-
ifold and deep learning methods [14] have been widely used for learning from compressed data. The present study
investigates the linear learnability of MIRS milk quality data for a selection of milk quality traits in a compressed
data domain. We examine in detail PCA and WT as two compression techniques, which have been widely used for
MIRS data analysis [42]. The two compression techniques will provide a near lossless compression for many of the
currently investigated milk quality parameters. The study concludes with the generalized/harmonized compres-
sion parameters required for the two compression techniques to perform compressed learning, i.e. the number of
principal components (l) in PCA and the number of wavelet coefficients (r) in WT. We also discuss the additional
factors to be required for de-compression, if needed. The impact on the MIRS prediction accuracy at different com-
pression levels was investigated using Partial Least Squares (PLS) linear regression modelling, which has frequently
been used in milk MIRS-based predictions [43]. We discuss the importance of sample size in PCA and WT-based
compressions and the benefits of supervised compression in compressed learning. Furthermore, we compare our
PCA and WT-based compressed learning approaches with state-of-the-art neural network based deep learning tech-
niques such as auto-encoder, GoogleNet and ResNet. While the root mean square error obtained for our approach
is comparable for certain features, it is typically higher compared to these techniques. However, the use of deep
learning techniques requires a large amount of resources that makes their deployment unsuitable for our resource
constrained environments.

Section 1 introduces the paper by discussing the importance of learning in the compressed data domain for
MIRS-based analytics from the perspective of Fog computing and big data analytics. Section 2 presents the related
works in compressed domain machine learning approaches and applications. Section 3 describes the MIRS tech-
niques used in predicting milk quality traits. Compressibility analysis of MIRS data using PCA and WT is given
in Section 4. Section 5 presents the performance statistics of applying the PLS on compressed MIRS data. Sec-
tion 6 discusses generated results, applicability and a comparison with a state-of-the-art techniques while Section 7
concludes the paper.

2. Related Works

The concept of learning in the compressed data domain has been used in a vast range of applications such as
hyperspectral image analysis in neuro-science [7] and geo-sciences [41], feature selection in video processing [25, 14],
machine learning applications in mobile computing [35], distributed data fusions in sensor networks [32, 30], as
well as classification of complex and big data structures (e.g. text and images) [31, 11]. Generally, the primary
purpose of using machine learning in the compressed data domain (in the rest of the paper we refer to simply
as compressed learning) was based on a few main reasons: 1) efficient access to large data volumes in big data
computations, 2) energy-efficient communications between constrained devices, and 3) computations in resource
limited Fog computing environments. In general, the main categories of compressed learning techniques comprise
of the PCA, WT, and deep neural networks as compression methods and the learning methods such as regression
and classification. The related works presented here have shown that compressed learning has effectively minimized
communications, memory, and data storage, while also reducing the learning complexity and hence the processing
time of the applications.

A universal framework for compressed learning, in association with compressed sensing, has been presented
periodically in the literature [7]. Dimensionality reduction and data compression have been applied on measure-
ment data based on different basis functions mainly using Fourier and Wavelet. To avoid complete reconstruction
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of time domain signal of electroencephalograms based on random projections, [36] provided a comprehensive anal-
ysis of a methodology and mathematical framework for compressed learning with data sparsity. Additionally, [26]
explained a compressed signal processing approach to adequately preserve the similarity metric of pattern recog-
nition in electroencephalograms. The generality of random projections on Nyquist-domain data enables significant
reductions in computation.

In order to accurately reconstruct a signal from the Nyquist-domain, the highest frequency of a signal should
be less than half of the sampling rate [38]. However, Donoho in 2004 proposed a compressed sensing approach,
stating that with the knowledge of signal’s sparsity, a signal can be recovered even with fewer samples [6]. This
compressed sensing approach combines signal acquisition and compression into one step (i.e. compression at the
time of sampling) instead of performing in two steps (traditional sampling) [38]. Hence, compressed sensing reduces
potentially the computational, storage, and communication in higher dimensional data processing compared to
the traditional data sampling and compression. Therefore, compressed sensing has gained much attention in the
recent past for compressed learning with higher dimensional data such as photography, holography and facial
recognition [33].

The requirement of dimensionality reduction of big data for subsequent use in machine learning were discussed
and classical PCA has failed as a strategy when the number of observations is very large. This has resulted in
issues of memory and storage limitations for single processor computers. As an alternative, [49] proposed a new
PCA approach based on scanning data by rows. The study [8] outlined compressed linear algebra (CLA) for
in-memory operations such as matrix-vector multiplication in compressed data domain. Also [8] documented
the drawbacks of heavy weight compression algorithms due to computational complexity in decompressing and
lightweight algorithms because of poor compression ratios while making a clear case for the operation of linear
algebra directly using matrices with compressed data.

Learning from feature extraction has been extensively used in image and video analysis. A novel technique for
constructing high resolution images from low resolution images and recognition of such images using a singular
value decomposition (SVD) based PCA approach have been investigated in [14]. Moreover, a SVD-based approach
to extract potential global features from facial images given in [15] used special properties of singular values of an
image to devise a compact, global feature for image-representation. Also the authors of [15] theoretically proved
that leading singular values can be used as rotation-shift-scale-invariant global features of an image. Texture image
retrieval and classification based on SVD was investigated in [17], while [11] proposed a texture-based image
classification approach based on cross-covariance matrix of image textures. The authors of [11] claim to have
reduced the processing time of image classifications by using the compressed domain cross-covariance vectors of
the original image data. Sometimes PCA and WT have been jointly used in compressed learning. For instance, PCA
has been used to accelerate WT and eye location verification based on the features extracted from facial images
using WT-salient maps in [16]. Moreover, a WT-based salient feature extraction approach has been presented
in [13]. Another approach to mimic the human visual system’s salient detection in images using wavelet-based
salient patch detection is given in [18].

High resolution space-borne optical images were analyzed when proposing an efficient ship detection approach
using compressed learning with a Deep Neural Network (DNN) algorithm [41]. Only the relevant information
was extracted using WT from space-borne optical images to observe ship positions with less detection time. Sim-
ilarly, [32] proposed an energy-efficient ship navigation method based on compressed domain learning. A large
amount of sensor-based ship navigation data was compressed on-board using PCA. Also [32] applied regression
analysis in an on-shore located data centre to derive optimal navigation paths based on the compressed data. A loss-
less dictionary-based compressed learning approach for unsupervised feature learning for text data was discussed
in [31] as well as also the applicability of k-grams based compressed data for many tasks in text processing.

Compressed learning has been used extensively in feature learning applications in sequential video frames. The
method presented in [25] can separate (as background and foreground of a sequence of video frames) a large set of
raw data using a small amount of information based on prior knowledge. The authors of [25] named the protocol
Compressive Online Robust Principal Component Analysis (CORPCA) and stated that it can be used to extract only
significant features from high dimensional data of time-variant processes by taking a single instance at a time (i.e.,
a frame). In CORPCA, compression is performed recursively using the compressive information that is extracted
from its previous stage. In [30], PCA was applied in compressed domain for re-enforcement learning. This approach
reduced the table sizes of state space and action space thereby minimizing the memory spaces and learning times.
The study [30] also showed that PCA reduced communications in multi-agent distributed learning environment.

Compressed learning and models are becoming more popular in big data and mobile computing platforms.
DNN models are commonly used in mobile applications. However, such applications are too large to fit into
constrained mobile computing resources. Therefore, compressed versions of DNN models were introduced in [35],
which have the same properties as their corresponding original models and provide an energy-efficient platform
to run those models. In addition, distributed computing frameworks such as Apache Spark have been combined
with a compressed data representation framework developed by the Saccinct project 5. This framework enables to
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query data stores in a compressed data domain, so that Spark users benefit in searching point queries directly on a
compressed representation of the input data. Deep learning techniques have achieved higher classification accuracy
than the traditional compression techniques. An application of auto-encoder technique for hyper-spherical image
classification has been provided in [48].

Different spectrometric analyses have benefited from compression techniques to perform further learning. The
study [27] discussed a general overview of MIRS applications as a phenotyping tool for deriving milk quality traits,
while [10] explained the use of MIRS with WT and PCA in a quantification of the extra-virgin olive oil adulteration
process. MIR (and NIR) spectroscopic techniques were used in [23] to determine the dry matter content of tea; WT
and PLS chemometric techniques were performed to determine the tea dry matter content.

In general, compressed learning has been used extensively in a vast range of spectrometry applications. How-
ever, spectrometry analysis towards a generalized (harmonized) compressed learning process for MIRS-based milk
quality monitoring has not been thoroughly investigated. Even though the two compression algorithms, PCA and
WT, have been used [42], application of data compression where data are generated (near sensing) has not been
thoroughly studied for use in future analytics platforms.

3. MIRS FOR PREDICTING MILK QUALITY TRAITS

Fourier Transform (FT)-MIRS is the prominent MIRS approach currently used in routine milk testing. Globally,
milk samples from individual dairy cows and bulk samples are routinely taken to assess milk quality which can
be subsequently used by dairy producers and processors in making management decisions but also by breeders
to identify genetically elite candidate parents of the next generation. The milk quality information originates from
predictions from the transmittance of light in the mid-infrared region (i.e. 2500− 25000nm; 900− 5000cm−1) of the
electromagnetic spectrum. The outcome of the MIRS analysis is a spectrum for each sample and this transmittance
value is available for each wavelength irrespective of its information content [28]. Milk protein, fat, lactose, urea,
minerals, acetone, ketone bodies, casein are some of the most reported milk quality parameters predicted from
MIRS [28], which are used in deriving many priori and posteriori phenotypes by the stakeholders.

Some compression algorithms like Lempel-Ziv-Welch (LZW) deliver the objective of data compression (i.e., data
are compressed without losing information), but de-compression is still necessary to convert the data into its original
(measurement) domain because statistical learning cannot be applied to compressed data. This type of compression
method help in optimizing issues such as storage and communication difficulties. However, de-compression brings
back the original data dimensionality with irrelevant and redundant MIRS data. Thus, the complexity of learning
from the original data remains unchanged. Therefore, such lossless compression algorithms increase only the
computational cost of de-compression without making any contribution to the learning process. In conventional
cloud systems, decompression happens in high-end servers where energy and computational power are generally
not a constraint. However, in Fog computing, decompression may be performed at a resource constrained Fog
node [3]. Therefore, compared to the general compression-decompression approaches, the compressed learning
concept in MIRS using PCA and WT offers an effective methodology in a resource constrained infrastructure.

The quality and the dimensionality of MIRS data are crucial factors for machine learning. High dimensionality
and multi-collinearity (i.e. correlated data) also limits the use of multiple linear regression. As an early approach
to compressed learning, [5] proposed a better lossless data compression technique using only a few and potentially

Fig. 2. Pipeline of the Compressed Learning framework: Data pre-processing/aggregation is performed at a very early stage. Compression of
MIRS data is carried out using PCA or WT irrespective of the intended milk quality trait (unsupervised). Data in the compressed domain (i.e.
scores in PCA or indexed WCs in WT) will be used by different machine learning applications.

5



Table 1
Mathematical notations used in the paper to represent MIRS dataset
and PCA, WT, PLS algorithms.

Notation Description
Xorg Original MIR spectra with values in absorbance
X Water removed MIR spectra
n Number of samples in the gold standard
m Number of wavenumbers in X after removing water
Y Target variables of milk quality components in %
k Number of selected milk quality components
(x, y) A sample (a row) of X and Y in the gold standard
l Number of PCs selected using PCA
G Scores matrix of PCA in compressed domain
P PCA loadings matrix for data recovery
a Averages of selected l columns
r Number of WCs selected using WT compression
C WT after thresholding in compressed domain
q Level of scale in WT
X′ Reconstructed MIR spectra from the compressed domain
u Number of Latent Variables in PLS

disjoint sets of highly significant WT coefficients in an orthonormal basis. In addition to using WT, in the present
study, we attempted to compare compression performances with PCA as a widely used technique in MIRS. There
are many well-defined pre-treatment techniques (e.g. scaling, scatter correction, etc.) in MIRS analytics to undertake
quality control of data which we need to apply before the compression process. For example, the spectrum contains
dissolved water absorbance (O = H bonds) in the 1500− 1800cm−1 and 2900− 3800cm−1 ranges, and these regions
are not useful in the prediction of milk quality traits.

In compressed learning, the original data can be recovered with the recovery algorithm of PCA and WT only if
it is needed. However, by performing all analytical processes in the compressed domain, we can eliminate the addi-
tional cost of de-compression, which is in contrast with some other user-interacted data compression applications
like in multimedia. Since WT uses a known basis (Daubechie− 4 at scale q in Fig. 2), no additional information is
needed to decompress. However, in PCA, the loading matrix and the column averages (a and P in Fig. 2) of the
original data matrix are required for the decompression as we explain later in the paper.

The compression level of a MIR spectrum (X) depends on the target response variable (Y) of the learning
algorithm. For example, an analytical engine for animal health status can be run in one computational sub-system
while another analytical algorithm for milk quality may be run in another sub-system. In the present study we
investigate a generalization approach of compression of MIRS data only using X (Fig. 2), which is the important
research question in compressed learning for MIRS milk quality monitoring. However, we briefly discuss the
possibility of further compression based on a known Y within the discussion section.

The data used in the paper originated from the Teagasc research dairy farm at Moorepark, Ireland where MIR
spectra were collected and the composition of milk was determined using FOSS MilkScan prediction equations. The
input data matrix contained the spectra of 712 different milk samples in the wavenumber region 925− 5005cm−1

with a resolution of 3.853cm−1; wavenumbers were rounded to the nearest integer. As a result, the given spec-
trum contained 1060 transmittance data points. Therefore, the original MIRS spectra used (called gold standard)
to develop linear prediction models was a (712× 1060) size matrix and denoted by Xorg. We converted them to
absorbance values by taking log10 of the reciprocal of the given transmittance values. Absorbance indicates the
amount of absorption of electromagnetic radiation when the MIR light penetrates through the milk sample. Higher
absorbance values indicate that the MIR light penetrates less at certain wavenumbers according to the molecular
bonds. In addition, percentages of the selected milk nutrient components; lactose, fat, protein and urea, correspond-
ing to each sample were stored in a column matrix (Yn×k, where n = 712 and k = 5). PLS model calibration and
validation were applied on to these gold standard data (Y) to derive our generalized compression parameters.

4. COMPRESSIBILITY OF MIRS MILK QUALITY DATA

This section will discuss the compressibility (unsupervised or general) of MIRS dataset using PCA and WT.
First, we will investigate the data redundancy of the available MIR spectra and hence the compressibility of such
data, which can be improved using PCA and WT without noticeable information loss. Second, we will discuss
the selection of main input (or compression) parameters required for the PCA compression (number of principal
components (l)) and WT compression methods (number of wavelet coefficients (r)). Since there is no prior infor-
mation regarding the learning purposes (e.g. regression, classification) which the compressed data will be used for,
the compression should be performed by preserving the original properties of the MIRS data as much as possible.
Therefore, the selection of compression parameters is important and should be performed carefully. In order to se-
lect reliable values for l and r, their impact on the quality of compression was examined. The variance explained by
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Fig. 3. Water-free MIR spectra (X) of 712 milk samples in the wave region 925 − 5005cm−1. Pre-processing has reduced the feature-space
dimensionality from 1060 wavenumbers to 847 due to removal of water absorption.

the principal components and the reconstruction error were used to quantify the quality of compression. We have
used compression ratio as the final evaluation metric of our approach as it indicates computation, communication
and storage performance of the analytics infrastructure. The notations used to represent different matrices, vectors,
and values in MIRS dataset, PCA, WT and PLS algorithms are given in Table 1.

4.1. Pre-Processing of the MIRS Data
In spectrometry analysis, dissolved water adds unnecessary variability to the MIR spectra and could affect the

resulting prediction accuracy. Most possibly, this effect is a random fluctuation or a systematic shift of the spectra.
For instance, milk spectrum indicates two random sharp fluctuation regions, which occur in the wavenumber
regions 1500 − 1800cm−1 and 2900 − 3800cm−1 per visual observation. Those regions are the water absorbance
regions according to the pure water spectrum at 25◦C. In distributed analytics, we precisely identify those two
regions based on PLS model calibration on our gold standard data and suggest these regions should be removed
in the pre-processing stage before the compression. Therefore, based on our systematic identification of the two
water regions, the corresponding wavenumbers can be removed from all raw MIR spectra in the measurement data
domain.

In order to identify the water regions, we selected visually observable bare minimum water regions as 1464−
1849cm−1 and 2890− 3814cm−1 and removed these from Xorg. Then we progressively recaptured one wavenumber
at a time from the discarded regions to our predictors. In each step, the impact of the addition was quantified
based on cross-validated root mean squared error (RMSECV) of the PLS predictive algorithm (explained in Section
5). The predictive error indicated a noticeable increase as the water absorbance regions began to be included in
the prediction. Our finalised wave regions removed were 1607− 1734cm−1 and 3021− 3707cm−1. By removing the
wavenumbers which were in the water absorbance regions, the dimensionality of water free spectrum (X) became
712× 847 (i.e., m = 847), which reduced the amount of unwanted MIRS data by 20.1% and Fig. 3 represents the
water absorbance regions removed spectra. The pre-processing stage could precisely remove the wavenumbers from
the original spectra to obtain X, which is then fed into the compression stage.

In order to reliably develop our prediction model, we applied pre-treatment processes to the gold standard data.
We mean-centred and scaled the values of X so that the mean and the standard deviation (SD) of each wavelength
was 0 and 1, respectively. Scaling was not a compulsory approach in MIRS data since all the features were in the
units of absorptions. However, this standardization could avoid confusion when using widely available machine
learning libraries. We verified the normality of each response variable using Shapiro similarity check as a pre-
requirement for applying PLS regression [34]. Outliers in Y, which were identified as when the difference between
the value and its mean is more than three times the SD of a target variable, were removed from the data. Gold
standard data (i.e., Y) were not available for all the samples and were therefore not considered if missing. After
applying these pre-treatments, the final number of samples used for fat prediction was 701 and for lactose, protein
and urea was 704.
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4.2. Compression with Principal Component Analysis
The existence of strong correlations among the feature vectors makes MIRS predictions unamenable to simple

analytic techniques like multiple linear regression due to matrix singularity (n=712<m=847) and multi-collinearity
(correlations among feature variables), which could contribute to over-fitting. To overcome these issues, mostly
PCA has been used for dimensionality reduction in MIRS, while WT has been used for de-noising [39]. However,
both techniques can also be used for de-noising as well as for dimensionality reduction. In addition, PCA can
particularly be useful as a data visualization tool and for feature extraction while WT can be used as an accelerating
tool for efficient feature extraction by PCA. Therefore, the order of applying the techniques in a resource-constrained
distributed computational infrastructure is important, but this has not been a concern for users of MIR spectroscopic
analytics in the past.

Application of PCA in most of the higher dimensional data studies was variance based [45]. Feature vectors,
which explain a significant portion of the variance in the original data (motive to capture only significant informa-
tion as possible), are extracted based on the correlations among the different predictive variables (columns of X).
Once a certain number of PCs are selected, this forms a low dimensional subspace of data such that every selected
component is orthogonal to the other with minimum loss of information. Because of neglecting components, which
contribute little to explaining the variability in the data, this concept has been used for dimensionality reduction of
multi-dimensional data in a vast range of applications [19].

From a mathematical point of view, suppose n < m in the feature matrix Xn×m, where n and m are integers.
PCA computes a new set of transformed variables called principal components (PCs) as linear combinations of the
original variables. The first PC (PC1) accounts for the largest possible variance in X while the second PC (PC2),
which explains the second largest variance in X, is computed to be orthogonal to PC1. The third PC (PC3) is derived
to be orthogonal to both PC1 and PC2. The remaining PCs are computed in the same way and the transformed
values of these PCs are called scores. The total number of PCs that can be generated from X is the minimum of n
and m. In our MIRS data, PC1, PC2 and PC3 respectively explained 6.9%, 5.6% and 4.8% of the variability in Xorg,
and 68.5%, 23.0% and 4.9% of the variability in X. The Singular Value Decomposition (SVD) technique was used in
the present study to compute PCs [19].

The new feature space of X ( Gn×l - compressed domain data) is formed by selecting the columns from G which
correspond to the first l largest singular values in D. The value of l is decided upon based on a threshold of the
cumulative variance of PCs. The coefficients of the linear combinations are contained in Pl×l , which we need to
transform Gn×l back to the original domain X′ (i.e. when the column average vector a of length l is provided).

We used the R package pls 2.6-0 [29] which was developed to calculate the PCs from our MIRS dataset. PCA of
Xorg and X gives 712 PCs, which is the minimum of n = 712 for both 1060 or m = 847. The proportion of variance
accounted by the different number of PCs were studied and also the loss of information from recovering the original
data from those PCs were quantified by using the reconstruction error for both Xorg and X. Fig. 4 (left) shows the
cumulative percentage of variance from 99% onwards explained by PCs of both Xorg and X. Fig. 4 (right) also

Fig. 4. Cumulative variance explained and the reconstruction error at different number of PCs of the original (Xorg) and water removed (X)
spectra.
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shows the reconstruction error (∑n
i=1(

√
∑m

j=1(δx2
i,j)/m)/n) at different PCs, where δxi,j is the difference between

the original value (X) and the reconstructed value (X
′
) of a data point for i = 1, 2, · · · , n and j = 1, 2, · · · , m. For

example, the number of PCs needed to explain 99.9% of total variance were 145 and 20 for the original and water
removed spectra, respectively. Then the dimensions of the compressed domain data of X can be reduced to 712× 15
providing a compression ratio (defined as c

m × 100, where c = l, r, for the rest of the paper) of 98.2% having a
reconstruction error of 3.05× 10−4. The cumulative variance explained by the PCs of X was above 99.99% and its
increment was less than 10−3 after the first 100 PCs. Therefore, the optimal value for l was selected as 100 with
minimum loss of information (0.01%) in our analysis. The reconstruction error corresponding to the first 100 PCs
of X was 6.28× 10−5 which guaranteed that the amount of information loss was small ( the compression ratio was
85.96%).

Fig. 4 shows that PCA can significantly reduce the dimensionality of the MIRS data at different accuracy levels.
The results also show that the water-related wavelengths contribute a significant amount of variability in the dataset,
which should be removed based on our concluded wavenumber regions prior to compression. Hence, a significant
amount of communication and computation energy can be saved for the benefit of future Fog and big data analytics.
PCA-compressed data also minimizes over-fitting where the compressed domain data (Gn×l) can directly be used
in subsequent linear regression models.

However, our presented PCA compressed data may not have removed high frequency noise, while Wavelet com-
pression in the next section can remove such noise in MIRS data. Since PCA is an unsupervised learning approach,
it only accounted for collinearity among feature variables. However, in most of the real-world datasets, including
our MIRS data, collinearity between response and feature variables also exist. In such situations, supervised di-
mension reduction techniques can be used and the optimal number of PCs required to generate a stable prediction
model might be further reduced as shown in Section 6.

4.3. Compression with Wavelet Transformation
WT can be applied to a single or any finite group of spectra and analysed on any scale with orthogonal basis

functions [44]. Every basis function consists of two types of functions : 1) wavelet function (mother wavelet), which
is a high-pass filter capturing sharp behaviours (called details), and 2) scaling function (father wavelet), which is
a collection of scaling functions capturing more general behaviours (called approximations) and act as a low-pass
filter. In general, the data passes through these two filters and then generates approximate and detailed signals
at a certain scale (q). The outcome of the high-pass filter is taken as Wavelet Coefficients (WCs), representing
high frequency components. When the scale is higher, WCs are increased while the Scaling Coefficients (SC) are
reduced. The number of filtering steps might deteriorate the transformed signal and may affect reconstruction
(de-compression) after a certain scale [23], which we need to select for our MIRS data compression.

When selecting a basis function, the important properties to be considered are orthogonality of basis, preserva-
tion of data sparsity, independence between wavelet coefficients, and easiness in the reconstruction of the signal.
Since there are different types of basis functions such as Haar, Symmetric and Daubechie, selecting an optimal basis
is an important factor in WT. For instance, Haar wavelet is not suitable for the description of smooth functions;
instead we used Daubechie-4 in our evaluations with the most commonly used WT, which is Discrete Wavelet
Transform (DWT) [42].

Let x be a signal (e.g. a spectra) from X of length m. First we apply zero padding (which may sometime cause
a considerable edge effect which linear padding minimizes [2]) to extend the array of n = 847 to 1024, which is the
nearest 210 format of our dataset (to apply WT, the signal length must be of the form 2b, where b ∈ Z+). DWT was
applied on a Daubechies-4 wavelet basis for different number of scales where the maximum was 10. The elements
which are less than a selected threshold (λ) were regarded as noise (insignificant information) and removed from
the transformed signal. According to [2], there are many thresholding methods such as universal, hard, and soft,
but we used the soft thresholding approach. We then obtained our compressed domain data matrix Cn×r. The
indexes of the selected components are required to reconstruct the original data. In reconstructing the original
signal x, we replaced all the removed positions with zero and applied the Inverse DWT for the same numbers of q.
We used Multi Resolution Analysis (MRA) [43], which is a simple, fast and easily illustratable DWT method.

In general, MIR spectra contain high and low frequency signal components. The signals that have frequencies
above a certain level are considered as noise components. We used the R package wavelets 0.3 in our MRA based DWT
6. Wavelet transform was applied on X and the coefficients were retained, which has the dimensions of 712× 1024.
The number of SCs and WCs are shown at the 4th scale in Fig. 5 for a single spectrum. We used a threshold (λ)
of 0.01 to compress the spectrum at this level discarding insignificant components. According to this threshold,
scaling and wavelet coefficients of 53 and 74, respectively can be selected. These components need to be stored as
key-value pairs at the compression stage to use in compressed learning.

The optimal number of scale levels (q) and threshold (λ) are the main parameters required for selecting the
most significant WCs in WT. Therefore, the behaviour of the number of significant WCs were experimented with

6 http://CRAN.R-project.org/package=wavelets

9



Fig. 5. Distribution of SCs and WCs at the 4th scaling (q = 4) of a single water-free spectrum of our MIRS data using ’Daubechies-4’. Threshold
(λ) of 0.01 indicate that the spectrum compresses to 127 components.

by changing the values of q and λ. The first graph of Fig. 6 shows the variability in the number of WCs at different
scales under different threshold values (exponentially selected between 0.0012 and 0.02). For simplicity, we refer
to the number of WCs as the sum of both scaling and wavelet coefficients at a certain threshold in the rest of
the paper. According to Fig. 6, the number of coefficients is high (but with lower reconstruction error) for small
thresholds. Increasing q up to the maximum possible scale is not required. Fig. 6 shows a saturation behaviour
at the number of WCs after the 6th scale, which we will use in Section 5. Therefore, WT does not capture any
high or low frequencies of spectra after this point in our MIRS data. For example, at a threshold of 0.01, our data
can be compressed to 127 coefficients with a 1.9× 10−3 reconstruction error. To select an optimal value for r, the
reconstruction error was computed for different WCs using the scale and threshold values of 6 and 0.0025. The
second graph in Fig. 6 represents the behavior of reconstruction error. The reconstruction error of X was almost
saturated (the error change was less than 10−3) after 200 WCs. Therefore, the optimal r value was selected as 200
with the reconstruction error of 8.2× 10−4 and a compression ratio of 71.91%.

Our MIR spectra can be considerably compressed while keeping most of the critical information and discarding
most of the unnecessary information both using PCA or WT techniques. This concludes therefore that spectra can
be transformed into their compressed domain and can be recovered with minimal error, if necessary. However, our
results show that PCA required a fewer number of components than the required number of coefficients in WT
to achieve a similar reconstruction error. The next section will investigate the impact of our compression on the
PLS prediction accuracy of four different milk traits and hence derive our generalized/harmonized compression
parameters (l and r) for compressed learning.

5. IMPACT ON PREDICTION ACCURACY BY COMPRESSED LEARNING

This section investigates the impact of compression parameters on compressed learning performances. First, we
study the impact of l and r on the learning performances derived from a supervised compressed learning approach
and second, we select optimal parameter values based on their impact on the learning performances. We apply
PLS, which is commonly used for analyzing MIRS data [1, 27, 10], on the compressed MIRS data (i.e. PCA scores
Gn×l and Wavelet-transformed data Cn×r) to quantify how much the predictive accuracy is impacted by PCA and
WT based compressions. At different compression levels (i.e., varying l and r), prediction performance in model
calibration and external validation using compressed data is compared with the data in the uncompressed mea-
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Fig. 6. Number of significant WCs at different thresholds (λ) and different scales (q). The number of coefficients saturate at scale 6. Reconstruction
errors in WT are higher when compared to PCA.

surement domain (X). The following indexes for the regression model have been used to evaluate the compressed
learning performances.

The root mean-square error (RMSE) quantifies the standard deviation of the residuals (between the real and the
predicted response variable Y) and is shown in the units of absorbance. The coefficient of determination (R2) depicts
the proportion of variance in the response variable Y explained by the predictor variables in X. These measures are
computed by the following two equations (subscript i - real response value and p - predicted value).

RMSE =

√
∑N

i=1(yi − yp)2

N − 1
, R2 = 1− ∑N

i=1(yi − yp)2

∑N
i=1(yi − ȳ)2

The Ratio Performance Deviation (RPD) represents the practical utility of the model, and is calculated as (1 −
R2)−1/2. As a rule of thumb, if RPD > 3, then the model can be used for practical analytical purposes.

All performance indexes are calculated for both the calibration (c) and external validation (prediction) (p) data
segments of our gold standard MIRS data. Based on these evaluations, near lossless compression parameters l and
r for PCA and WT, respectively are derived for each milk trait. We have selected four of the most used milk quality
parameters: lactose, fat, protein and urea, all derived from milk MIRS [27].

5.1. Partial Least Squares (PLS) Regression
PLS is a projection method that models the relationship between the predictors X and responses Y (a.k.a. Projec-

tion on Latent Structures) [9]. The PLS method considers not only the correlations among the predictor variables in
X, but also the correlations each predictor in X and the response in Y. The general procedure of PLS is somewhat
similar to when dimensionality reduction of PCA is combined with Least Squares Regression (LSQ), which is called
as PCR. However, PLS and PCR differs mainly in the methods used in extracting factor scores. PCR produces a
loading matrix P reflecting the covariance structure among the predictor variables. PLS produces a loading matrix
P reflecting the covariance structure between the predictor and the response variables [9]. The set of significant
components in PLS is called the Latent Variables (LV). PLS decomposes both X and Y using SVD.

Fig. 7(a) shows the logical overview of the essential steps that we have followed in this section to derive l and
r. The sub-sampled training dataset (model calibration) is selected randomly having 80% of the total n samples.
The remaining set of samples is used for testing the model (external validation). To increase the validity of model
performance, we repeat the above process for 10 different data selections while keeping the same ratio for training
and test data partitions. We have selected samples randomly (from n = 712) under each iteration and the average
of performance measures has been calculated.

5.2. PLS Accuracy using uncompressed MIRS Data
First, we calculated PLS accuracy with the MIRS data in the measurement domain (X). This accuracy (RMSECV =

η) was used as the reference to estimate our near lossless compression parameters. Different compression param-
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(a) Overview of the different stages when PCA and WT compressed data
is applied with the PLS regression ( Green and pink colours respectively
represent the data in the measurement and the compressed domains)

(b) Determination of the optimal number of LVs at an optimal
RMSECV for lactose using uncompressed data. The optimal
value is selected not to exceed RMSECV of 0.001 from the ab-
solute minimum

Fig. 7. Overview of the PLS learning procedure from PCA and WT and selection of LVs from PLS calibration for building predictive models

eters; lx and rx where x ∈ {lactose, f at, protein, urea}, were derived by fitting a PLS model on the compressed
data for the four selected milk parameters. We achieved the prediction performance using compressed data to be
comparative with the reference model performance (ηx). The selection procedure of the compression parameters is
explained only for lactose but the same procedure was followed for fat, protein and urea and the summary is given.

First, a PLS regression model was fitted to the training data in the uncompressed domain (X) and we obtained
the cross-validated mean of RMSECV by changing the number of LVs in the PLS model to select the minimum
error at an optimal number of LVs (u). However, in this process, u was selected as the LV corresponding to the
RMSECV , which did not make a considerable difference (p-value ≤ 0.001) to the global minimum of RMSECV (i.e.,
LV corresponds to the selected RMSECV such that the difference between the selected and the global minimum
RMSECV is not greater than the p-value). u has been selected (as explained above) in our evaluations according to a
permutation model explained in [29] and a 10-fold cross validation, followed 1000 iterations, for selecting each LV.

According to Fig. 7(b), the optimal RMSECV of 0.0154, is achieved with 12 LVs for lactose (ulactose = 12), when
the water-removed spectra (X) were used. Twelve LVs were selected as the optimal number of LVs even though
the absolute minimum of RMSECV occurred at 17 LVs. The graph on the right of Fig. 7(b) provides performance
statistics of the PLS model with a comparison of calibration and external validation statistics based on R2. In Fig
7(b), the performance indexes of the calibration and external validation values do not change much beyond the
selected optimal LV point (after the dashed line). Therefore, the optimal PLS model can reliably be derived with 12
LVs for lactose.

Table 2 presents the optimal RMSECV and minimum LVs we can achieve with the measurement domain data for
all the four different milk traits we have selected. Statistics in Table 2 indicate a well performed regression models
for lactose and fat, because the R2 were > 87% for both models and the RPD was ≥ 3 for lactose and close to three
for fat in both the calibration and validation. The regression models of protein and urea content were not as good
as the lactose and fat regression models, because R2 and RPD values were only > 73% and ≥ 2 in the both the
calibration and external validation.

Table 2 also shows that we can achieve a 12.7% improvement in RMSECV concurrent with a 20.1% compression
by just removing the water-related wavelengths of the spectrum during the pre-processing stage of our compressed
learning. Then we conducted the same PLS procedure using PCA and WT compressed data by changing com-
pressed dimension parameters l and r .

Table 2
PLS model performance on the original (X). Our near lossless PCA and WT compressions
find optimum number for l and r according to these reference values.

Milk Trait
Reference Values Calibration External Validation

#LVs (u) RMSECV

(η)
RMSEc R2

c RPDc RMSEp R2
p RPDp

Lactose (Xorg) 5 0.0173 90.25 3.2152 0.0190 88.53 3.0379
PLS model performance for water removed Spectra (X)

Lactose (X) 12 0.0154 0.0151 92.60 3.6929 0.0167 91.17 3.4578
Fat 5 0.0892 0.0865 88.49 2.9540 0.0919 87.35 2.8607

Protein 4 0.0601 0.0574 76.12 2.0570 0.0625 73.61 2.0461
Urea 15 0.3443 0.3098 81.55 2.3350 0.3523 77.64 2.1428
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(a) PCA (b) WT

Fig. 8. Compressed domain PLS performance at different number of PCs and WTs for lactose. The dashed line represents the optimal PCA (a)
and WT (b)

5.3. Impact on PLS Accuracy with PCA compression
The performances of the PLS model were computed by changing the number of PCs, l = 5, · · · , 100 with a step

of 5 PCs. The results on predicting lactose are given in Fig. 8(a). During the evaluations, the score matrix (Gn×l)
at different selected number of PCs was applied as the compressed domain input to the PLS model. RMSECV of
cross-validation were compared with the reference accuracy of lactose (ηlactose), which is given in the Table 2.

PLS calibration and validation accuracies using PCA compressed data decreased as the number of PCs increased.
With 45 PCs, it shows a similar minimum RMSECV compared to the reference PLS accuracy of 0.0154. Adding more
PCs after 45 PCs into to the model did not make a significant contribution to improve the model performance (i.e.
the impact of l on lactose predictive model is up to a certain value only). Thus, the results reveal that the PCA
compression with at least 45 PCs is stable. Therefore, we conclude that the optimal compression level can be
achieved with 45 PCs for lactose prediction (llactose = 45) resulting in a compression ratio of 94.7%.

Results in Table 3 shows the optimal number of PCs required to predict all the milk traits using PLS. These
models were derived in the similar way to as described for lactose. Moreover, different milk traits have their own
optimum number of PCs; llactose = 45, l f at = 30, lprotein = 37 and lurea = 65. Therefore, with respect to each trait,
the water-removed spectra can be compressed by 94.7%, 96.5%, 95.6% and 92.3% for lactose, fat, protein and urea,
respectively using PCA at the compression stage.

5.4. PLS Accuracy with WT compressed Data
The same procedure of PLS regression as explained in the previous section for PCA compression was applied

for the WT compressed data. In this case, the PLS was applied to the WT coefficient matrix Cn×r by changing the
number of WCs, r = 5, · · · , 200 with a step of 5 WCs. Fig. 8(b) shows PLS prediction performance for lactose and
the regression model with 100 WCs indicates an RMSECV close to the data domain accuracy of ηlactose. Therefore,
the optimal compression was achieved using 100 WCs for the prediction of lactose (rlactose = 70). In addition, the
behaviour of the impact of r was also similar to the behaviour which was obtained with PCs in Fig. 8(a).

Table 3
PLS model accuracies for the selected milk traits at optimal PCA compressed points. Optimal
number of PCs has been selected based on 0.01 RMSECV threshold from the absolute minimum.
Optimal RMSECV has been tallied to reference η.

Milk Trait
#PCs

(l)
#LVs
(u)

Calibration External Validation Reconstruction
ErrorRMSEc R2

c RPDc RMSEp R2
p RPDp

Lactose 45 12 0.1580 91.85 3.5152 0.0175 90.16 3.3018 1.266× 10−4

Fat 30 5 0.0871 88.30 2.9386 0.0918 87.41 2.8537 1.860× 10−4

Protein 37 4 0.0577 75.91 2.0474 0.0627 73.50 2.0448 1.554× 10−4

Urea 65 15 0.3334 78.63 2.1687 0.3705 75.07 2.0351 0.928× 10−4
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Table 4
PLS model performance for different milk traits for Wavelet compressed data. Optimal number
of PCs has been selected based on 0.01 RESECV threshold from the absolute minimum. Optimal
RMSECV has been tallied to reference η.

Milk Trait
#WCs

(r)
#LVs
(u)

Calibration External Validation Reconstruction
ErrorRMSEc R2

c RPDc RMSEp R2
p RPDp

Lactose 70 12 0.1650 91.31 3.3803 0.0178 89.86 3.2284 4.8× 10−3

Fat 40 5 0.0864 88.49 2.9682 0.0920 87.37 2.8455 4.3× 10−3

Protein 45 5 0.0575 76.08 2.0549 0.0625 73.72 2.0432 9.5× 10−3

Urea 75 15 0.3333 78.64 2.1700 0.3730 74.95 2.0239 3.9× 10−3

Table 4 shows the prediction performance in the WT compressed domain for all the selected milk traits. Different
milk traits had their own optimum number of WCs; rlactose = 70, r f at = 40, rprotein = 45 and rurea = 75. WT can
compress MIRS data by 91.7%, 95.3%, 94.7% and 91.1% for lactose, fat, protein and urea, respectively.

PLS regression models focused on finding an optimum level of compression ( optimal l and r) for our MIRS
data based on either PCA or WT. We validated the near lossless compression using its impact on PLS regression-
based learning accuracies for the different milk traits. Therefore, transformed data can be used to learn in their
compressed domain. Both PCA and WT compressions had similar compression performance. Based on the four
milk quality traits we selected, the number of PCs in a general PCA compression (l) and the number of WCs in a
general WT compression (r) should have at least l = 65 and r = 75 components (i.e., 92.3% and 91.1% compression
can be achieved from PCA and WT, respectively). Therefore, selection of the largest number of PCs and WCs is the
requirement to preserve the predictability of urea without losing any information on the investigated milk traits.

6. DISCUSSION

6.1. Sample size selection of PCA and WT
Real-time data transfer always consumes greater energy and is not used in many agricultural infrastructures.

Instead delay-tolerant networks and data logging systems are mostly used [20]. Therefore, the MIRS source can
collect a certain number of spectra before data compression and transmission takes place (e. g. in robotic milking
cows are milked in every 7-10 minutes by a single machine). If the delay is large, some extra memory space is
needed to store the spectra until data are compressed and later transmitted. However, there can also be cases where
in-situ milk quality (online) monitoring is used by the dairy industry. In this case, time becomes a critical factor
and WT should be used for compression instead of PCA.

The sample size (n) plays an important role in PCA-based compression since fewer samples create instability in
PCA. The general understanding is that the larger the sample size, the better the stability. Selecting an adequate
sample size for our MIRS data is a compromise for timeliness of decision making. There are no simple rules
to determine the appropriate sample size for PCA. The variability in reconstruction error with respect to sample
size was examined with PCA and WT compressions for our MIRS data X. According to Fig. 9(a), WT using our
recommended number of WCs, does not improve reconstruction error as the number of spectra available increase.
PCA using the recommended number of components can improve reconstruction error by increasing the number
of samples. At a certain point beyond 190 samples, PCA has less reconstruction error than WT.

6.2. Customization using supervised compression
Standard PCA does not know what portion of variance in each variable is important and should be preserved.

Sufficient application knowledge with intended milk traits (supervisory learning) can further optimize our com-
pression performance. PLS can be used in supervised compression only using LVs (compressed domain) or using
significant wave indexes in a linear model (measurement domain). We analyzed the composition of each milk qual-
ity trait within the spectrum using PLS (Fig. 9(b)). The results show that a customized approach can be applied
at the compression stage or on top of our generally compressed data using PCA or WT to further improve our
compression performance.

As an example, a farm decision support tool may need to identify only the fat and protein content of certain
milk samples [28] to quantify cow-level energy balance in the herd. Such a customized system can further compress
MIRS data beyond our unsupervised compression techniques, when data are transferred between the Fog nodes or
into the big data systems.

6.3. Impact on advanced analytics
Linear PCA assumes that the original data can be converted into a single scale and the relationship between

the orthogonal PCs are linear. However, these assumptions are not always true with real data. For instance,
categorical data consists of ordinal and nominal variables, which is not easy to convert onto a single scale. Hence,
PCA compression could possibly lose significant information, due to multi-scale data with non-linear behaviour
and correlations. If data have non-linear behaviours, linear PCA may inadequately capture significant variances.
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(a) Batch-based compression of PCA and WT selecting different
number of samples (n = 10 · · · 700)

(b) Significant PLS coefficients (higher than the stand deviation) at
the optimal number of LVs.

Fig. 9. Compressed Learning with sample-size sensitivity and supervised compression

According to [24], non-linear PCA overcomes not only these issues, but also facilitates the application of PCA
without changing the existing scales. Even though some PCs capture very little variance from the data, those
PCs may represent substantial information. Therefore, PCA variants such as kernel PCA may solve some of these
difficulties in linear PCA, where compressed learning with MIRS needs further investigation.

PCR and PLS predictive methods are commonly used for statistical learning processes in spectrometric analytics.
However, these methods fit a linear regression model. If compressed domain data presents a non-linear behaviour,
those linear models would not contribute to derive best fit stable predictive models. Use of linear models may
create a negative impact on the robustness and accuracy of the learning process. Therefore, advanced methods
such as Support Vector Machine (SVM) ([39]) and Artificial Neural Network (ANN) ([22]) are available (with the
improvement of pervasive computational capabilities) and can be used to address non-linear behaviours in MIRS
data subjected to the fact that we have preserved non-linearity in the compressed domain data.

6.4. A Comparison with State-of-the-art Techniques
We have compared PCA and WT compressed learning performances with deep auto-encoder (DEA) [48], LeNet-

5, Vgg-19 , GoogLeNet, and ResNet [12], [40], using our MIRS data, all of which are emerging deep learning
techniques. The LeNet-5, Vgg-19, ResNet, and GoogLeNet can be considered as the extensions of the LeNet model.
These techniques are un-supervised and different forms of convolution neural network (CNN) models, which can
also be considered as lossy compression techniques yet differ from the engineered compression techniques (e. g.
JPEG, LZW). The PCA and WT are faster, simpler, and require less computational power, but considered only linear
properties in the data. Whereas the deep learning techniques are much flexible and able to achieve more precise
outcomes than PCA and WT based learning approaches by accounting for the non-linearity in the data. However,
for instance, higher model complexity and computational requirements are the main implementation constraints
in the deep learning approach. To overcome these issues, more advanced versions of CNN approaches have been
proposed and the techniques mentioned above are a few of them.

The water-removed MIRS data was used for deep learning. Three encoding layers were used in the deep auto-
encoder (DAE) model. The number of decoding layers was same as the number of encoding layers. PLS-based
learning procedure was followed to quantify compressed learning performances as in Section 5. The compressed
dimension was set to 70 as a middle compressed dimension to the highest feature variables (65-Table 3 and 75-
Table 4), which were observed from PCA and WT based compression, respectively. Fig. 10 shows the LeNet-5,
Vgg-19, ResNet, and GoogLeNet network models, and to apply these models to our data, each sample was re-sized
as a 32× 32× 1 matrix, applying zero padding. The convolution layers mostly have 1× 1 and 3× 3 filters and
2× 2 Maxpooling filters. The convolution and pooling operations were performed in the intermediate layer (purple
color box) and pooling was applied after the convolution. The red color box was removed from the intermediate
layer when the same convolution was not repeated. We did not use a dropout layer before making the fully
connected layers. Each model has two fully connected layers (second fully connected layer has 70 neurons) and
the last dense layer is a regression layer. The network architectures given in [12] were followed to configure the
Vgg−19 and ResNet models. Although the same convolution was repeated for six times in the ResNet model
in [12], we did it only for four times. The solid and dashed lines in the ResNet model represent the shortcut
connection with same and increased dimensions, respectively. When the dimension was increased with stride
2, zero padding and 1× 1 convolution were used to match dimensions. Three inception modules (the inception
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Fig. 10. Network architectures of four state-of-the art deep learning techniques LeNet-5, Vgg-19, GoogLeNet, and ResNet.

module with dimension reduction [40]) were stacked together to form the GoogLeNet model (for more details about
these network configurations, please follow [12, 40]). Each model was trained for up to 1,000 iterations using the
ADAM optimizer and mean squared error loss function. Also, we used a fixed learning rate of 0.01 and the rectified
activation function. Finally, to compare the performance of these deep learning techniques with our compressed
learning outcomes, the RMSEP was computed, applying all these techniques to each milk quality parameter.

The Fig. 11 shows the predictive learning accuracies from each deep learning model, including PCA and WT. The
learning performances from all methods were approximately similar for lactose and an improvement was observed
for fat, protein, and urea. This can be due to the existence of non-linear associations in the MIRS data, which has an
impact on predicting fat, protein, and urea in milk [46]. The predictive accuracy also increased with the increasing
depth of network models so that the ResNet model achieved the greatest accuracy. Due to the small data size,
selecting a sufficient number of features in convolution, and over-fitting were the major issues when training these
models. Therefore, learning performances may even improve further by using larger datasets with a comprehensive
study of different factors such as data pre-processing, proper constraints, optimizers, and network design.

These state-of-the-art techniques can also be used for the compressed learning which we have discussed in this
study and performed well compared to the traditional methods. However, employing them under some circum-
stances such as with low complexity and under limited computational resources may not be feasible for applications
such as distributed data processing using Fog computing, which is one of our main concern in the smart farming
industry. These limitations would be minimized by using the ResNet and GoogLeNet. The GoogLeNet model has
the potential to control the computational cost required with deep networks so that, it can be used even with limited
resources and low-memory requirements [40]. The ResNet model is easy to optimize and gain accuracy by increas-
ing the depth and width of the network [12]. Although more reliable outcomes can be derived efficiently from these
deep learning methods, further studies are essential to study the feasibility in employing these techniques in the
smart dairy industry because the resources, such as computational infrastructure, energy, and lack of data might
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Fig. 11. Comparison of compressed learning performances of PCA and WT with four state-of-the-art deep learning methods LeNet-5, Vgg-19,
GoogLeNet, and ResNet.

still be the major constraints to run these advanced algorithms. As we can see in Fig. 11, the learning performances
from all methods are approximately similar for lactose, it may not necessary to apply deep learning for deriving a
predictive model for lactose. Thus, performing an initial study to get an overall idea about the general characteris-
tics such as non-linear associations in the original data would help to select the most suitable compressed learning
approach. Consequently, we can optimize the utilization of available resources and obtain reliable outcomes in
resource constraint environment such as Fog Computing.

7. CONCLUSIONS

In this paper, we have shown that MIRS data can be pre-processed and compressed effectively near the data
source without impacting the prediction accuracy of most measured milk quality traits. PCA can generally be
compressed to 65 principal components and WT can be compressed to 75 wavelet coefficients, which leads to com-
pression ratios of 92.3% and 91.1%, respectively. At these compression levels, PLS using PCA and WT compressed
data (i.e. 65 significant scores in PCA and 75 significant coefficients in WT) can achieve the same accuracy, as PLS
can achieve using the pre-processed data in the original measurement domain. Therefore, the results show that
the compressed learning with MIRS is highly advantageous both in Fog and big data processing, which can pre-
serve communication and computation energy, minimize required memory and storage spaces, reduce application
latency and preserve scarce rural network bandwidths.
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