
LATEX TikZposter

Inclusion of Dipolar Interactions in the Mathematical
Modelling of Magnetic Hyperthermia through the

Landau-Lifshitz-Gilbert Equation
PJ Cregg, Kieran Murphy & Mangolika Bhattacharya

Waterford Institute of Technology, Ireland

Inclusion of Dipolar Interactions in the Mathematical
Modelling of Magnetic Hyperthermia through the

Landau-Lifshitz-Gilbert Equation
PJ Cregg, Kieran Murphy & Mangolika Bhattacharya

Waterford Institute of Technology, Ireland

Introduction

Magnetic Hyperthermia Treatment (MHT) continues to occupy clinicians, and experimental & theo-
retical magneticians alike. The many modelling approaches for non-interacting magnetic nanoparti-
cles(MNPs) were outlined by Carrey et al. [1] at ICCSAMC 2014 in Dresden. Several authors have
outlined the important role interparticle interactions are likely to play in MHT for closely spaced
particles [1–6]. Modelling of MHT for non-interacting MNPs through the Landau-Lifshitz-Gilbert
(LLG) equation was undertaken by Châtel et al. [7].
Our aim is to incorporate the dipole-dipole interactions in the LLG analysis. The effects of interactions
on the frequency response of the heating mechanism are presented for two identical MNPs.

Relaxation mechanisms: Debye and Néel

•Debye relaxation: Brownian rotation of particle.

•Néel relaxation: Internal motion of magnetic moment - gyromagnetic.
For a fixed particle - Debye blocked, Néel mechanism only - this can be described by LLG equation.

The Landau-Lifshitz-Gilbert (LLG) Equation

The LLG equation describes the average damped precessional motion of the magnetic moment, µ
(expressed as the normalised volume magnetisation, M, where µ = VMsM) of an MNP in a magnetic
field H [7, 8].
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where

•α is the dimensionless damping parameter, defined by

α = ηγMs

• η is the Gilbert dissipation constant,

• γ is the effective gyromagnetic ratio,

•µ0 is permeability in vacuum,

•Ms is (volume) saturation magnetisation, and

•V is the volume of the MNP.
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Inclusion of Interactions

The dipole-dipole interaction between MNPs can be included through the addition of the interaction
field, (experienced by MNP 1 due to MNP 2), which for spherical MNPs of radius R, reduces to
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where r is the vector between the MNP centres.

Calculation of Work done

We calculated the heating energy (per unit volume, per cycle), E, through the work done, i.e.,
damping force × distance

E = µ0αM
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This can be shown to be analytically equivalent to that of Châtel et al. [7] where ω is the angular
frequency of H,

E = µ0Ms
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Behaviour of two MNPs

The heating per cycle, E and the consequent Specific Absorption Rate (SAR) (taken to be the
per unit volume value found from SAR = Ef , for frequency f ) can be calculated over a range of
frequencies.
The effect of dipole-dipole interactions is investigated for different MNP orientations.

Effect of inter-particle distance
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Effect of particle centre alignment
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ζ, angle between external magnetic field and particle centres.
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Conclusions

•Our results for the non-interacting case are consistent with ref. [7].

•Consistent with observations in ref. [6], the interparticle interactions are seen
to hinder the heating mechanism. As expected the interaction effects fall off
with ∼ |r|3. Thus, interaction effects predominate when interparticle distance

is ≤ 3

√
Ms

H .

Future Work

More complex arrangements can be considered. These include likely physical
arrangements such as: • Chains • Cluster • Equi-spaced • Random
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