On the performance of access control policy
evaluation

Leigh Griffin, Bernard Butler, Eamonn de Leastar, Brendan Jennings and Dmitri Botvich
Telecommunications Software & Systems Group,
Waterford Institute of Technology, Waterford, Ireland
{lgriffin, bbutler, edeleastar, bjennings, dbotvich}@tssg.org

Abstract—There is growing awareness of the need to protect
digital resources and services in both corporate and home
ICT scenarios. Meanwhile, communication tools tailored for
corporations are blurring the line between communication mech-
anisms and (near) real-time resource sharing. The resulting
requirement for near real-time policy-based access control is
technically challenging. In a corporate domain, such access
control mechanisms must be unobtrusive and comply with strict
security objectives. Thus policy evaluation performance needs to
be considered while addressing traditional security concerns. This
paper discusses policy system design principles that motivate a
novel Policy Decision Point (PDP) implementation and associated
policy language. These principles are consistent with recent web
development techniques designed to improve performance and
scalability. Given a modern web development stack comprising
a language (Javascript), a framework (Node.js) and a database
management system (Redis), the proposition is that significant
performance gains can be made. Our performance experiments
suggest this is the case when, through various design iterations,
our prototype PDP implementation is compared with an estab-
lished, Java/XACML-based access control PDP implementation.
The experiments presented in this paper suggest that newer
technologies offer better performance. The analysis suggests that
this is because they offer a more efficient data representation
and make better use of computing resources.

I. INTRODUCTION

Information and communication technologies (ICT) have
become indispensable in modern society. The technological
and cost barriers to creating and sharing content are much
lower than in previous decades. Direct communication be-
tween people is also easier, particularly when participants
share their presence information. However, some communi-
cation events, with or without intermediate content, are con-
sidered “harmful”. Consequently, access control mechanisms
are used to prevent such harmful communication. For example

o A parent might wish to share family photographs with
their relatives, but not with the wider user community of
a photograph-sharing site;

« In an organisation, corporate governance procedures im-
pose restrictions on staff using communication tools
across groups, both internal and external.

Such scenarios require simple but robust and performant
access control procedures that are informed by access control
policies. Taking the latter scenario as an example, corporate
integrated communication solutions [1], [2] have widespread
adoption within industry. The tools have revolutionized com-
munication by both enabling and controlling it, in near real

time. As such, any access control mechanism used to protect
corporation communications must provide a decision in near
real time in order to preserve usability of the underlying
communication medium. Much of the public literature on
access control policies focusses on techniques to ensure that
sets of deployed policies are consistent with high level security
requirements. This paper focuses instead on how to optimize
the policy evaluation performance at the Policy Decision Point
(PDP) in order to meet performance objectives.

In previous work [3] we analysed the performance charac-
teristics of two open source PDP implementations. Based on
our analysis, we propose that the following features lead to
improved PDP evaluation performance:

« Policies and requests should be encoded more efficiently

— policies and requests should be relatively terse, to
reduce the string handling overhead per request

— policies and requests should be encoded in a way
that minimizes the parsing overhead.

— policies should be directly implementable.

o PDP implementations should be more efficient

— policies and requests should be stored in ways that
make retrieval more flexible and efficient

— the PDP should scale outwards, to enable more
efficient use of available resources.

This paper presents a careful analysis of the performance of
different PDP implementations and considers the relationship
between the PDP, the language that is used to encode the
policies it uses and the access requests it decides upon. The
first contribution is a novel PDP prototype implementation
(labeled njsrPDP) that is motivated by the design princi-
ples above. It benefits from applying techniques that are
achieving increasing attention in other domains [4], such as
non-blocking I/0O, to access control systems. Published open-
source Java/XACML implementations do not employ such
features. Unlike other proposals such as Xengine [5], the
novel policy representation it uses is intended both to be
easy for humans to interpret and to be as easy as XACML
for machines to reason over. A parser was added to translate
existing policies from XACML to its representation, therefore
the new PDP (with its inbuilt parser) is (conceptually) a drop-
in replacement for a XACML PDP. The second contribution
is a new representation of policies (and requests) that takes
full account of the performance improvements that are made

possible by the new PDP implementation. That is, it uses the
same basic vocabulary and syntax as the translated policies and
requests, but is optimized both to reduce unnecessary “bloat”
and to make concept matching easier at policy evaluation time.

Section II examines related work in policy based access
control and scalable web deployments. Section IIT describes
our architectural decisions. Section IV discusses JSON and
compares it with XML. Section V evaluates the prototype by
comparing its performance against more established access
control implementations. Section VI discusses the results of
this evaluation. Section VII presents our conclusions.

II. RELATED WORK

The industry standard for access control policy specification
and evaluation is XACML [6]. The standard architecture
separates concerns effectively but practical deployments often
encounter scalability difficulties, particularly in the PDP com-
ponent. Researchers have begun to address the challenge of
policy evaluation in XACML PDPs. We developed the STACS
(Scalabity Testbed for Access Control Systems) testbed to
enable performance experiments to be carried out under con-
trolled conditions [7]. This testbed was used again to validate
our hypothesis that the PDP implementation we propose has
significant performance advantages, see Section V.

Butler et al. [3] surveyed proposals to improve the perfor-
mance of policy-based access control. One of the most radical
was proposed by Liu et al. [5]; the resulting Xengine PDP
prototype evaluates policies and requests that were converted
from textual to numerical format. The authors claim dramatic
performance increases. However, the resulting representation
is opaque, non-symbolic and difficult to analyse.

Most ICT resources requiring protection are made avail-
able using web standards. Thus it is instructive to see what
those standards and practices might offer to access control
deployments. In particular, cloud computing generates new
and highly challenging requirements for scalability and elas-
ticity. Non-blocking I/O, where interrupt handling is achieved
through the extensive use of callbacks, has re-emerged as
a possible solution. The need for blocking is removed by
passing a callback parameter that is invoked on completion
of the deferred task. Javascript [8], a language with the
above characteristics, is being re-evaluated for use as a server-
side language, with the community promoting the Node.js
movement [9]. The result is better scalability, more efficient
use of resources and very fast execution [10], [11]. More
generally, software architects are exploring the use of the non-
blocking I/O approach to re-appraise well-established software
engineering best practices to tackle issues of scalability and
performance. Previously, we investigated blocking and non-
blocking approaches for high traffic real time services such
as Instant Messaging [4], suggesting that non-blocking ap-
proaches have much better performance characteristics in that
domain.

III. OUR ARCHITECTURE

With the Node.js framework [9], Javascript is no longer
just a language supporting user interaction within browsers
(client-side). Based on the Google initiated, open source V8
javascript engine, Javascript can be be compiled into highly
optimized server-side machine code on the fly. The non
blocking nature of Javascript is present within Node.js with
all requests gradually executed in sequence through the usage
of callbacks both in API design and usage. Node.js allows
an elegant solution to be engineered for traditional scalability
problems and an alternative approach for domains that might
benefit from a non-blocking IO approach.

In addition to using Node.js, a complementary data per-
sistence system is required. Maintaining the low-friction ob-
jective, a NoSQL database [12] with a Node.js interface
was sought. NoSQL databases are non-relational, distributed
databases that deliver horizontal scalability. Several options
were considered, with each having bindings to Node.js ensur-
ing compatibility. The data structure-oriented Redis server [13]
was chosen because of its speed (in 1 minute, on one instance
of the experimental platform, it averaged 11300 answered
requests per second) and its data structures directly supported
sets, lists and hashes, easing policy management.

Node.js provides a number of advantages that benefit the
design of the access control system.

o It supports better modular design through component-
based programming, benefiting from specifications sup-
porting interoperability between server modules and even
between server- and client-side modules;

o The non-blocking architecture facilitated by Javascript
callbacks makes more efficient use of CPU resources
than traditional systems that sit idle while a complex IO
request is executing. In a Node.js deployment, the spare
CPU cycles can be used more productively, e.g., to handle
the next request or prepare the response;

« It uses events to trigger callback execution. A benefit of
the event model is a publish/subscribe mechanism built
into the environment. This promotes greater flexibility,
since the access control system can include listeners
(handlers) for particular events, such as obligations;

« The absense of complicated blocking semantics simplifies
development.

The OASIS XACML TC defined data flows, see Figure 1,
for XACML 2.0-conformant implementations. The flows re-
quired for a minimal installation of XACML were imple-
mented in a Node.js supported Policy Execution Point (PEP),
Policy Decision Point (PDP) and Policy Retrieval Point (PRP).

The other characteristics identified in Section I relate to
implementation efficiency. The prototype PDP uses Redis
to ensure flexibility and high performance when processing
policy data structures, and the non-blocking I/O coding style
fostered by the Node.js framework makes more efficient use of
computing resources. The simplicity arising from streamlining
policy evaluation should not be underestimated: the domain
(policy) model is based on events, so if the execution model

A 8. Decision
ccess Communicated
2k PEP
Request 'k
& 7
s o
5. Evaluation K &
~ o
6. Respor:se Context (Context
4. Request r;otification \Handler]

1. Policy Loaded

Fig. 1. XACML data flows and components relevant to this paper (a subset
of Figure 1 in [6]).

is likewise, there is better alignment between the two. The PDP
conforms to the CommonJS standard specification for module
development [14]. This standard ensures the interoperability
of a module and allows for integration with existing systems
or future systems with syntax extensions. It also ensures
that any Node.js modules will have the minimum features
required to provide interoperability within the PDP. The PDP
itself is composed of several functions governing both general
and policy set specific behavior, mostly relating to style and
formatting issues within XACML. The design is flexible with
the ability to handle various policy and request combinations.
This is evident throughout the njsrPDP scenario testing with
multiple input types supported. The PDP is thus a fully
independent generic PDP, with a core set of generic functions
to interpret and successfully parse specific policy sets.

IV. JAVASCRIPT OBJECT NOTATION

JavaScript Object Notation (JSON) [15] is a lightweight,
text-based, language-independent data-interchange format de-
rived from the object literals of the ECMAScript (JavaScript)
programming language standard. JSON objects are analysed as
string arrays, permitting higher parsing efficiency and easier
preparation than heavier transport formats such as XML [16].
Crockford [15] describes JSON as “the fat-free alternative
to XML” arguing that XML is not as well suited to data
interchange because XML is much more verbose than JSON
and rarely matches the data model of its host programming
language. By contrast, JSON is built on just two data struc-
tures: a collection of name-value pairs and an ordered list
of values. Having a data format that is interchangeable with
a programming language’s builtin data structures eliminates
translation time and reduces complexity and processing time.
Furthermore, Wang [17] notes that the strengths of XML are
also present within JSON, so nothing significant is lost.

A. Conversion of existing XML policies or requests to JSON

Several attempts (such as [18]) to automate conversion
between XML and JSON formats have emerged, thus enabling

"Policy":{
"id":"RPS1ist.7.0.1",
"target":{

"subjects":{
"subject":{
"role":"
}
3

"resources":{
"resource":{
"isPending":"false"
}r

"actions":{
"action":{
"action-type":"write"

admin"

}
}
+
"rule":{
"id":"RPSlist.7.0.1.r.1",
"effect":"permit"
}
}
Fig. 2. JSONPL Policy Excerpt. The original XACML-encoded policy had

1473 characters versus 454 characters for the JSONPL encoding.

interoperability between XML policies/requests and a PDP
that handles JSON natively. The conversion process makes
structural changes to how data might traditionally be repre-
sented within JSON. For example, XML is designed as a
language independent data representation format, which means
metadata is associated with elements in order to ensure correct
interpretation at a language level. Translation from XML to
JSON indirectly brings this metadata, which is unnecessary
within a JSON compliant language such as Javascript. The
result is a “bloated” JSON format. Additionally, XML can con-
tain sibling elements with the same outer identifier. However,
JSON is a key:value storage mechanism, so it cannot have the
same name for two keys. The solution, when translating, is the
extensive use of arrays in JSON. While the JSON produced
from a translation process is valid and semantically identical,
it is harder to read and extra programmatic safeguards are
needed to ensure correct interpretation.

B. JavaScript Object Notation Policy Language: JSONPL

Examining the output of the translated XML to JSON policy
sets, the predefined vocabulary and semantics expressed in the
XACML 2.0 specification [6] was apparent. Stripping away
the redundant metadata and cleaning up the array translation
process produced a policy vocabulary encoded in JSON that
semantically was identical to the original XML policy. For
brevity, the full formal JSONPL specification is not provided,
however its major features are indicated in Figure 2. As
with XML, deep nesting of arrays and objects is possible
within JSON, allowing complex hierarchical structures to be
represented. The dot notation is the most natural way to access
data within a JSON document. For example, in Figure 2,
the value associated with role can be accessed directly by
calling Policy.target.subjects.subject.role, yield-
ing the value admin.

The hierarchical structure of JSONPL mirrors that
of XACML so a comparison is instructive. As with
XQuery/XPath processing of XML documents, the execution
time for retrieving a value from a known location in a JSON
data structure is independent of the size of that structure.
Policy and/or rule combining algorithms can be applied in
JSONPL in the same way as in XACML. The policy language
is as expressive as an XML based XACML policy, is arguably
more human-readable and provides native compatibility with
many programming languages, easing authoring and inter-
pretation issues. To the best of our knowledge, a JSON-
based access control policy language has not been attempted
before and as such represents a novel contribution. All the
desirable features relating to policy and request specification
and encoding identified in Section I are provided. As seen in
Section V, the policy language supports rapid response times
with low overheads in a suitable PDP.

V. EVALUATION
A. Comparison of PDPs

Experiments were performed to compare the
JSON/Node.js/Redis implementation described above
with more traditional XACML/Java implementations of
SunXACML and EnterpriseXACML. A set of XACML
policies and their related requests was chosen and were
translated manually to their JSONPL equivalents. The two
Java-based PDP implementations were placed in STACS
[3] so that service times per request could be recorded in
a repeatable fashion. The prototype Node.js implementation
was instrumented in the same way, taking advantage of the
Node.js eventing model to collect service times based on the
same triggering events that were used in STACS:

o PDP Policy Read start
o PDP Policy Read end
o Request arrives at PDP
« Response leaves PDP.

A simplified queueing discipline was employed, namely, when
response n from the PDP arrived at the PEP, it triggered
the submission of request n + 1 from the PEP to the PDP.
This sequential processing was easily achieved in STACS
using loops and in the NnjsrPDP harness using callbacks.
The entire experiment was replicated Ny, = 100 times, in
random order, for each set of host X pdp conditions. When
measuring elapsed times in the PDP, we do not have full
control over other processes that can use computing resources
needed by the PDP. Thus the measured service times generally
have a positive bias. More formally, assume that service time
t measured by t;,i = 1,..., Nep is subject to additive
nonnegative error e; according to

ti=1+e;, where e; >0, i =1,..., Nyep. (1)

The best estimate of £ is given by min;{t;}, i = 1,..., Nyep.
The measured service time data was standardized to use the

same labels and time units to ensure that data features were

consistent between STACS and non-STACS sources.

TABLE I
SERVICE TIME MEASUREMENTS AND THEIR CONTEXT.

Name Type Possible values
policy Common continue
reqGrp Common single
host Factor bear, inisherk
pdp Factor SunXACML, EnterpriseXACML,
njsrPDP
duration Response Numeric
TABLE II

SCENARIO CONDITIONS

Manually gener-
ated Policies
Scenario la

Auto generated
policies (bloated)
Scenario 1b

Manually generated Requests

Auto generated requests | Scenario 2a Scenario 2b
(bloated, prepared)
Auto generated requests | Scenario 3a Scenario 3b

(bloated, on the fly)

The factors considered in our main experiment are shown
in Table I. The continue policy and single request group
are published (in XACML form) as part of the test suite for
XEngine [5], and were translated to JSON format as described
earlier. This policy set and associated requests was used in the
experiments and models access control rules and requests for
a Conference Paper Management System. While that domain
does not require microsecond evaluation times, the policy set
contains reasonably complex business rules such as separation
of duties constraints and other features representative of real-
time corporate communications. The two host instances are
Intel 64-bit dual-core machines, each with 2GB RAM but
differing in other computing resources, running Ubuntu 11.04.

The primary experiment compares njsSrPDP with two exist-
ing XACML PDP implementations. The secondary experiment
examines iow NjSIPDP achieves increased performance.

B. Experimental Scenarios

Six experimental scenarios are considered as described in
Table II and were used to compare the effects of different
policy and request formulations for a given PDP (in this case,
the njsrPDP prototype).

Referring to Figure 3, we see the main features of the
scenarios to be compared with each other. Summarising,

o the A scenarios formulate the policies as JSON in ways
that are “optimized” for evaluation performance, while
the B scenarios use the policies as translated by a generic
XML to JSON converter.

o the “1” scenarios formulate the requests as JSON in ways
that are “optimized” for evaluation performance

o the “2” and “3” scenarios use the requests as translated by
a generic XML to JSON converter. They differ in respect
of when the translation occurs: before reaching the PEP
for “2”, or within the PEP itself for “3”.

Note that the experimental conditions in Scenario 1A are those
used when comparing njsrPDP with the SunXACML and
EnterpriseXACML PDPs, see Section V-A.

JSON JSON
Request Policy
PEP PDP

(a) Scenario 1A: Manual Xx Manual

XML
Request
Xml2json JSON JSON
translation Request Policy

PEP PDP

(c) Scenario 2A: Prepared-Auto x Manual

XML
Request

JSON
Policy

Xml2json
translation

PEP PDP

(e) Scenario 3A: Inflight-Autox Manual

XML
Policy

I

JSON Xml2json JSON
Request translation Policy

PEP PDP

(b) Scenario 1B: Manual X Auto

XML XML

Request Policy
Xml2json JSON Xml2json JSON
translation Request translation Policy
PEP PDP

(d) Scenario 2B: Prepared-Auto X Auto

XML XML
Request Policy

Xml2json
translation

Xml2json
translation

PEP PDP

(f) Scenario 3B: Inflight-Auto x Auto

Fig. 3. njsrPDP policy xrequest scenarios; scenario conditions are defined in Table II.

In summary, all of the policies and request artefacts were
originally encoded as XACML and so benefits from the
XACML ecosystem. However the artefacts are converted to
JSON by different methods and at different stages of policy
evaluation. The performance improvements arising from each
research contribution can be estimated by comparing the
timing results.

VI. RESULTS
A. Comparing njsrPDP with its peers

Figure 4 shows histograms of the service times for SunX-
ACML, a reference Java-based XACML PDP, compared with
the service times for njsrPDP, the implementation introduced
in this paper. The influence of the host and pdp factors can
be seen clearly. Indeed, the new implementation has noticeably
better performance when other factors are equal.

The Node.js/Redis prototype PDP implementation, labeled
njsrPDP in Figure 5 has the following performance features:

1) The mean service time per request is much less (one

TABLE III
ANALYSIS OF VARIANCE: HOST, PDP, HOST:PDP EFFECTS ARE VERY
SIGNIFICANT—ca PROBABILITY UNDERFLOWS MACHINE EPSILON €.

Df* SumSq MeanSq® F value® Pr(>F)

host 1 1.97e-05 1.97e-05 2.24e+04 <e
pdp 2 1.15e-04 5.75e-05 6.55e+05 <e
decision 2 1.00e-09 5.00e-10 5.14e-01 0.60
requestindex 190 1.61e-07 1.00e-09 9.67e-01 0.61
host:pdp 2 7.50e-06 3.75e-06 4.27e+03 <e

Residuals? 954 8.37e-07 1.00e-09

“(Number of) degrees of freedom
bSumSq/Df

F ratio: MeanSq/MeanSq_Residuals
dQOther, unspecified factors

TABLE IV
ANALYSIS OF MEANS: HOST INISHERK HAS BETTER PERFORMANCE
THAN BEAR.
host bear inisherk
time 6.3e-04 3.7e-04
#replicates 576 576

1)
80000
|
|

60000
Il

40000
Il
\L

20000
Il

density (scaled so that Total Histogram Area

7Z N

MWMMWWWMMMMM\ |

0.000115 0.000125 0.000135

o LA
[_K_LL

0.000105

seconds
(a) njsrPDP on bear
Fig. 5.

TABLE V
ANALYSIS OF MEANS: PDP NJSRPDP HAS BETTER PERFORMANCE THAN
THE OTHER PDPs

pdp SunXACML EnterpriseXACML njsrPDP
pdp 5.56e-04 8.61e-04 9.3e-05
#replicates 384 384 384
3
8 — O inisherk—njsr O bear-njsr O inisherk-SX O bear-SX
0

= o

1 S

[\ o

5 O

€

s

2 o

2 8

£ S

5 O

8

5 o

£ S

2 S

3 ©

T

> 8

B O

g 8
o ﬂ]h]]:,
T T 17 1T 1T T T T T T T T T T T

0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

seconds

Fig. 4. Comparative service time histograms for hosts bear and inisherk
and PDP implementations SUnNXACML and njsrPDP, for Scenario 1A.

sixth that of SUNXACML, one eighth that of Enterpri-
seXACML), see Table V.

2) The performance profile for njsrPDP is bell-shaped;
for EnterpriseXACML it is approximately uniformly
distributed; for SUNXACML it is a skewed mixed dis-
tribution.

1)
150000

100000

50000
Il

density (scaled so that Total Histogram Area

[mem—umw]

6.8e-05 7.2e-05 7.6e-05 8.0e-05

seconds

(b) njsrPDP on inisherk

njsrPDP request service times on hosts bear and inisherk.

3) The implementation on the two hosts shows a similar
profile (see Figure 5) though different performance
levels, see Table IV because inisherk has a faster
CPU and more L1 cache. This suggests that performance
scales vertically on a single host and also that the
performance profile and observations are reproducible.

It should be noted from Table III that these differences are
statistically significant [19] and hence are highly unlikely to
arise by chance. The challenge is to show how the design prin-
ciples outlined in Section I and implemented in the JSONPL
prototype described in Section IV contribute to the statistically
significant performance improvements summarized in Table V.

The system resources used by the JSON and XACML
implementations were captured using dstat, which collects
resource statistics (cpu, memory, disk usage, etc) on a timed
basis while the experiments run in the testbed. Figure 6 shows
that njsrPDP uses far less CPU (10% versus 60%, say). The
cpu wait time is generally low, suggesting that both Node.js
and the JVM are quite efficient. However, the user cpu
cycles are much greater for the Java/XACML implementations.
The CPU has to work much harder to evaluate policies in
Java/XACML PDP implementations. This is consistent with
observations elsewhere in building scalable web applications
[4]. Furthermore, the idle cpu usage is much higher for
njsrPDP, suggesting there is much more capacity available
for increased throughput.

The memory usage was also recorded, supporting the
contention that njsSrPDP makes particularly efficient use of
computing resources, including 35% less memory.

B. Policy-Request Scenario Comparison

Scenario 3 incurs serious overheads. Firstly, the converter
requires 83% of the total time needed to make the access
decision. Secondly, translation introduces a large object that
needs to be maintained at the top of the callback chain. When
the PDP evaluates and wishes to pass its decision to the PEP it

100
I

80
I

| o —
o o °
8 -
o o -
s | o [
© o |
3 8 !
8 o !
=1 | 1
ES !
1
o '
(=]
¥ 7 o ©° o - o
o 1
b3 g ° ! o
4
o L
3 o] - !

& o 8 :] :
T o o - \ | o \ T
=- L8
T g | -
4 1 1
= = P o=t

o 4 o L e L
T T T T T T T T T T T T

bear.njsr inisherk.njsr bear.sxex inisherk.sxex

I:I user I:I wait I:I idle

Fig. 6. CPU usage for selected host X pdp combinations. Hosts are bear
and inisherk and PDPs are SUnXACMLEnterpriseXACML (sxex) and
njsrPDP (njsr).

must “walk” back up the callback chain. The top level callback
needs to retain a link including the context of the request and
its arguments throughout the whole chain. By placing such a
large object in the top callback, translation imposes greater
overheads down the callback chain, so the computation time
is increased. Therefore the next step is to investigate how the
system would perform if the penalty for translation, which
increases evaluation time in two ways, were removed.

By pretranslating the requests the overhead incurred in
translating the requests at run time is removed as well as the
added overheads in the callback chain. The challenge becomes
that of guaranteeing safe and accurate policy evaluation. Some
approaches, identified in Section IV, impose performance
losses while traversing arrays, with other losses emerging
when developing the PDP. One complication is that, depending
on the XML schema, the ordering of some child elements
may be unspecified. Consequently the position of sibling
child elements in policies within the same policy set can be
different. A XACML PDP’s XML parser has no difficulty in
this regard but the translating program makes no allowance
for consistency in the generated JSON. Thus njsrPDP has
to account for this, handling all ordering permutations so
as to operate correctly. While these problems also occur in
Scenario 3, the additional translation overhead masked this
feature. A minor performance gain was identified when using
a combination of pre translated JSON requests and optimized
(JSONPL-formatted) policies, as there is less overall bloat.

The boxplot in Figure 7 indicates that the best performance
is obtained when optimized (JSONPL) policies and requests
are used (Scenario 1A) and that performance degrades as
bloated/more complex automatically translated JSON is used

scenario2A scenariolB scenario2B
1 1 1
-
'
'
'
.

- -
' E i '
' '

' '
' '
T '
'
8 : 8
'
.
. o .
' '
l o l
' .
- -]
=]
8 8
o
o

scenario1A
L
o
_
'
'
'
'
'
T
'
'
'

'
.
o
o

T T T T T T T
6.0e-05 6.5e-05 7.0e-05 7.5e-05 8.0e-05 8.5e-05 9.0e-05

service time (seconds)

Fig. 7. Service times for Scenarios 1A, 1B, 2A, 2B
O ScenariolA O Scenario2B O SunXacml O Scenario3B =] EmerpriseXacmwl

i
5 8
s 8 —
§
g
s o
g 8
F 8
3
B
8§ o
38 o
z 8 7
5 3
()
o

o

T 1 T T T 1T 1T 1T T T T T T T T 1
0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

seconds

Fig. 8. Service time comparison. Ranked in decreasing order of performance
(left to right in the figure above), they are: njsrPDP Scenario 1A, 2B;
SunXACML; njsrPDP Scenario 3B, EnterpriseXACML.

to represent polices and requests (Scenario 2B).

The service time histograms in Figure 8 show how different
njsrPDP scenarios compare with “traditional” PDP imple-
mentations. Clearly there is no net performance benefit of
the JSON implementation when requests are translated on the
fly: mean services times for njsrfPDP Scenario 3A are greater
than those for SUNXACML, but njsrPDP has much greater
performance potential (see Scenario 1A).

Table VI confirms that factors such as scenario type, deci-
sion and request type are significant variables when modelling
service times. The comparison of mean service times for each
Scenario in Table VII shows how different Scenario 3 is to

TABLE VI
ANALYSIS OF VARIANCE FOR SCENARIO SERVICE TIMES

Df Sum Sq Mean Sq F value Pr(>F)
scenario 5 6.4e-05 1.27e-05 7.43e+05 <e
decision 2 1.0e-09 4.00e-10 2.54e+01 1.8e-11
requestindex 190 8.0e-09 0.00e+00 2.32e+00 <e
Residuals 954 1.6e-08 0.00e+00

TABLE VII
MEAN SERVICE TIMES FOR EACH OF THE SCENARIOS

1A 6.4e-05 IB 7.4e-05

2A 7.8e-05 2B 7.8e-05

3A 57.8e-05 3B 56.5e-05

the others, and how much request format optimization affects
performance (compare Scenario 1A and 2A).

VII. CONCLUSIONS

We outlined why access control systems are necessary,
and why policy evaluation performance is a particular con-
cern. We suggested some features that are likely to improve
PDP performance and that motivated us to consider whether
implementations based on new languages, transfer formats,
frameworks and storage mechanisms might benefit policy
evaluation performance. Thus we reviewed recent progress in
frameworks, languages and practices for developing scalable
web services more generally and showed how they are consis-
tent with the design features we identified as being desirable
for policy evaluation performance.

The policy evaluation service times obtained using njsrPDP
are significantly less than those of traditional approaches,
supporting the analysis in Section V. This performance im-
provement was achieved without compromising the semantics
of the policy set or its readability—arguably, the JSONPL
encoding is easier for humans to understand.

Based on its performance results, the prototype njsrPDP
shows considerable promise. The authors published some of
the modules as open source components [20] to help it achieve
its potential. The published components also include policies
and requests in XML, JSON and JSONPL formats.

In the future, we wish to test the performance of njsrPDP
with more extensive policy sets. This will enable us to measure
the effects of performance enhancements and configuration
changes and serve to validate the performance benefits in
typical scenarios. Ensuring compatibility with existing policy
based specifications, notably XACML, warrants further inves-
tigation. By automating the process of translating an XML
file into formatted JSONPL, and vice versa, the potential of
the underlying technological stack would be maximized. This
would be a challenging but reachable goal. Inside, extended,
semantically aware converters would allow backwards com-
patibility with existing legacy policy systems and potentially
allow JSONPL to act as a DSL for policy authoring. The
performance results in this paper are impressive, but further
experiments are needed to test whether they result in greater
scalability and elasticity. Furthermore, we assume that high-
level “business” policies of the policy continuum [21] have

already been converted to lower level policies referencing
managed entities directly. Thus the wide gap between high-
and low-level policy specifications, which is an important
research topic in its own right that may also affect policy
evaluation performance, is not in scope for this paper.

ACKNOWLEDGMENT

The authors acknowledge funding from Science Foundation
Ireland grant 08/SRC/11403 “Federated Autonomic Manage-
ment of End-to-End Communication Services” and from the
Irish HEA PRTLI Cycle 4 FutureComm programme.

REFERENCES

[1] Cisco. (2012, Jan) Voice and Unified Communications. [Online].
Available: http://www.cisco.com/en/US/products/sw/voicesw/index.html

[2] IBM. (2012, Jan) Unified Communications. [Online]. Available:
http://www.ibm.com/software/products/us/en/category/SWAAA

[3] B. Butler, B. Jennings, and D. Botvich, “An experimental testbed to pre-
dict the performance of XACML Policy Decision Points,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM),
Dublin, Ireland, 2011, pp. 353-360.

[4] L. Griffin, K. Ryan, E. de Leastar, and D. Botvich, “Scaling Instant
Messaging communication services: A comparison of blocking and non-
blocking techniques,” in IEEE Symposium on Computers and Commu-
nications (ISCC), 2011, pp. 550-557.

[51 A. X. Liu, FE. Chen, J. Hwang, and T. Xie, “Xengine: a fast and scalable
XACML policy evaluation engine,” in ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. New
York, NY, USA: ACM, 2008, pp. 265-276.

[6] OASIS XACML-TC. (2005, February) XACML 2.0. [Online]. Available:
http://docs.oasis-open.org/xacml/2.0/ XACML-2.0-OS-ALL.zip

[7]1 B. Butler, B. Jennings, and D. Botvich, “XACML Policy Performance
Evaluation Using a Flexible Load Testing Framework,” in 17th ACM
Conference on Computer and Communications Security (CCS 2010).
ACM, 2010, pp. 648-650, short paper.

[8] D. Crockford, “ECMAScript Language Specifica-
tion,” Jun. 2011. [Online]. Available: http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[9] R. Dahl, “Node.js: Evented IO for V8 javascript,” Aug. 2011. [Online].

Available: https://github.com/joyent/node

R. M. Lerner, “At the forge: Node.JS,” Linux J., vol. 205, May 2011.

S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-

Performance Network Programs,” IEEE Internet Computing, vol. 14,

no. 6, pp. 80 —83, Nov-Dec 2010.

R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec.,

vol. 39, pp. 12-27, May 2011.

R. M. Lerner, “At the forge: Redis,” Linux J., vol. 197, Sep 2010.

CommonJS, “Commonjs modules 1.1 specification,” Jan. 2012.

[Online]. Available: http://wiki.commonjs.org/wiki/Modules/1.1

[15] D. Crockford. (2006) JSON: The Fat Free Alternative

to XML. 15th International World wide Web Confer-

ence. WWW 2006. Edinburgh, Scotland. [Online]. Available:
http://www2006.org/programme/item.php?id=d8

S. Downes, L. Belliveau, S. Samet, and R. Abdur Rahman, M. and-

Savoie, “Managing Digital Rights Using JSON,” in 7th IEEE Consumer

Communications and Networking Conference (CCNC), 2010, pp. 1-10.

G. Wang, “Improving Data Transmission in Web Applications via

the Translation between XML and JSON,” in 3rd IEEE International

Conference on Communications and Mobile Computing, ser. CMC *11.

Washington, DC, USA: IEEE Computer Society, 2011, pp. 182-185.

Buglabs, “Node xml2json,” Jan. 2012. [Online]. Available:

https://github.com/buglabs/node-xml2json

P. Dalgaard, Introductory Statistics with R, ser. Statistics and Computing.

Springer, 2008.

L. Griffin, “JSONPL repository,” Aug. 2011. [Online]. Available:

https://github.com/lgriffin/ISONPL

S. Davy, B. Jennings, and J. Strassner, “The policy continuum—policy

authoring and conflict analysis,” Computer Communications, vol. 31,

no. 13, pp. 2981-2995, August 2008.

[10]
[11]
[12]

[13]
[14]

[16]

(17]

[18]
[19]
[20]

[21]

