
Scaling Instant Messaging Communication Services:

A Comparison of Blocking and Non-Blocking techniques

Leigh Griffin, Kieran Ryan, Eamonn de Leastar and Dmitri Botvich

Telecommunications Software and Systems Group

Waterford Institute of Technology

Waterford, Ireland

{lgriffin, kryan, edeleastar, dbotvich} @tssg.org

Abstract— Designing innovative communications services that

scale to facilitate potential new usage patterns can pose

significant challenges. This is particularly the case if these

services are to be delivered over existing protocols and

interoperate with legacy services. This work explores design

choices for such a service: large scale message delivery to

existing Instant Messaging users. In particular we explore

message throughput, accuracy and server load for several

alternative implementation strategies. These strategies focus on

approaches to concurrency, with best practice in current and

emerging techniques thoroughly benchmarked. Specifically, a

conventional Java Executor approach is compared with a

functional approach realised through Scala and its Actors

framework. These could be termed “blocking I/O” technology.

A third approach has also been measured - a “non-blocking

I/O” based on an alternative to Java Virtual Machine

approaches - employing Node.js and Javascript. We believe

that some of the results are startling.

Keywords; Blocking IO; Instant Messaging; Non-Blocking

IO; Scalability; XMPP

I. INTRODUCTION

Instant Messaging (IM) and presence services have
become a mainstay of modern communications. Consumer
messaging services such as Windows Live Messenger [1],
Google Talk [2], and AOL Messenger [3] have become
essential communication services for many organisations and
enterprises. One particular protocol, XMPP (employed by
the google talk service), is especially prevalent [4]. It is an
IETF standard, is designed with extension in mind, and has a
range of open source server and client implementations.
These implementations provide a platform for customised
implementations of XMPP, either to address security
concerns, introduce new services based on the protocol or
repurpose the protocol for unforeseen usage patterns.
Additionally, the protocol supports federation, which enables
custom servers to be linked to a broader network. Thus new
services can be introduced into an existing network (and
deployed clients).

This work explores techniques for building such service
extensions, and in particular examines challenges associated
with scaling messaging services beyond the levels for which
they were originally architected. In particular we look at
large scale delivery of individual messages, based on

presence, to traditional Instant Messaging clients. Typically,
IM systems assume that a users buddy list is scaled to human
dimensions. So a buddy list (a roster) might typically have
50-100 contacts (buddies). However, in some circumstances
it might be interesting to propose a usage pattern whereby a
given user appears as a contact (buddy) on thousands, or tens
of thousands of rosters. This could be for emergency
services, direct marketing, customised alerts or other forms
of usage that leverage presence of messaging on a large
scale.

Such extensions will have to work with existing XMPP
server implementations, and use custom plugins to provide
these enhanced services. In this work we select the popular
Openfire XMPP service [5], and build a set of plugins to
implement a high volume messaging capability. In order to
understand the limits associated with different approaches to
scalability, we have constructed several variants of the plug-
in, each taking a different approach to scalability. The first
variant is built on the latest version of the Java Executor
framework [6], a revision of the java concurrency support.
The second is implemented in Scala [7]- a JVM compatible
language - which implements an actor-based approach to
concurrent programming. The third eschews Java
completely, and implements the same functionality in
Javascript. Moreover, the Javascript implementation exhibits
a fundamentally different approach - it uses a “non-blocking
I/O” pattern as facilitated by the Node.js [8] javascript
platform.

This last approach (node.js) has achieved some surprising
results recently, particularly in addressing the well known
C10k problem [9]. Put succinctly, this C10k names a
limitation of most web servers: they can handle at most
10,000 connections simultaneously. Node.js approaches are
showing some interesting results when applied to this
problem [10]. This work is not quite a replication of the
C10k problem: we are more interested in a messaging and
presence services than a plain HTTP service (which is the
focus of most C10k experiments). However, we believe that
we have conducted some interesting experiments in devising
a hybrid environment where by some high volume
processing is now possible, even in the context of interacting
with a more traditional “blocking” service such as Openfire.

This paper is broken down into seven sections. This

section, the first, serves as the general introduction. Section

two examines the related work to this paper. The third
section discusses approaches to concurrent programming.
The fourth section presents the problem domain of instant
messaging. The fifth section looks at plugin design. The
sixth section presents our results. The seventh and final
section is our conclusion.

II. RELATED WORK

The authors of [11] investigated the reverse C10k
(RC10k) problem. Supporting 10,000 outbound HTTP
requests presents a different challenge to handling an equal
number of inbound requests. The authors present a
discussion on concurrency and the design issues that arise
out of handling so many connections. An external
component and a thread pool were deployed to manage client
connections coming close to, but not achieving the goal of
solving the RC10k problem. The authors recommended
using a language that is lightweight with no memory sharing.
Languages such as Erlang and Scala possess these
characteristics.

 Tilkov recently published [12] an article on using
Node.js to build high performance network programs. The
Javascript event based model of utilising callbacks provides
a more efficient, controlled and scalable environment for
developers. Node.js is presented as an emerging ecosystem
supported by Javascript in the key roles of front-end and
back-end, thus creating a low friction environment ideal for
tackling issues of scalability within a demanding
environment.

 Xiao [13] documented the traffic characteristics of
Instant Messaging in a previous study. This work reinforces
the view that presence and roster sizes present a serious
scalability bottleneck. When operating under heavy load
XMPP drops packets, including messages, in order to
preserve the integrity of the roster management.
Understanding the traffic profile of an XMPP server and the
workload generated is essential for the efficient design of
extensions,

Griffin [14] examined the management capabilities of
XMPP when deployed to solve the communication needs of
a large scale healthcare scenario. A care group formed to
meet the needs of a patient is an ever evolving group, with a
dynamic membership base that needs to be current and
accurately replicated on all participants’ devices. When the
group size scaled up the cascading effect of roster updates as
members joined and left the group, overwhelmed the XMPP
server and showed that the roster design is a scalability
bottleneck.

III. CONCURRENCY PROGRAMMING PARADIGMS

A. Traditional Approaches

Diverse approaches to programatically “coping” with
concurrency have long been a source of contention among
software developers. The evolution of the various
approaches to concurrency are well illustrated in the C like
languages, particularly Java. Although Java was designed
with thread based concurrency in mind (unlike C & C++), its
currency support has evolved significantly since its

inception, with adjustments made to the core syntax, the
libraries and the recommended approaches. The fundamental
mechanism (synchronised keyword to serialise method
access), has been supplemented with concurrent data
structures, more expressive annotations, and an extensive
rework of the concurrency model in Java 5 [15] to
incorporate a new “executor” framework. However,
concurrent programming in Java is still regarded as complex
and error prone, with non-determinism an ever present
worry, even for systems long deployed in the field.

The java concurrency module is founded on the shared

state semantics of a single multi-threaded process, whereby
threads can share resources and memory, but with locks
associated with specific data structures. Alternatives to this
model have gained some ground. The actors model rules out
any shared data structures (and their resource hungry locks),
with concurrency achieved by message passing between
autonomous threads - each thread (an actor) has exclusive
access to its own data structures. In functional languages
derived from Java (Scala, clojure), immutability itself is
elevated to be the default programming model. This requires
wholesale adoption of functional approaches (or object-
functions hybrids in the case of Scala), with the consequent
profound change in programming style and heritage. With all
of these approaches there is one common characteristic.
Separate threads are created, with their own stacks and
program counters. Although the opportunities for inter-
thread synchronization vary, such synchronization must
occur at some stage, with consequent overhead associated
with task switching, memory usage and general processor
load.

B. An Alternative Approach

There is an alternative, which has its origins in an era that
predates the general acceptance of multi threaded
infrastructure. Evolved to meet the requirements for
responsive I/O in single processor systems, it sometimes
takes the term “Non Blocking I/O”, although this term has
also been applied to threaded designs. Originally devised as a
set of interrupts and associated daisy chained interrupt
handlers, in the modern sense (if we can call it that), non-
blocking I/O implies an extensive use of callbacks in API
design and usage. In this context, all opportunities for
blocking are replaced by passing a callback parameter, to be
invoked on completion of the deferred task or I/O request. A
somewhat counter-intuitive programming style, it has been
criticised for its verbosity and general awkwardness.

In certain programming languages it is indeed verbose -

Java in particular is encumbered with a high-ceremony
anonymous inner class syntax which make callbacks quite
difficult to orchestrate. Also, in Java and other languages of
that generation, the callbacks are limited in scope and place
severe restrictions around the context they can access. What
they lack is a “closure” capability - essentially a form of
delegate/callback/function handle - which also carries
(encloses) a well defined context that can be safely accessed
when it is activated. Closures have become a hot topic in

programming language recently, and Java itself is slated to
this capability in future versions. JVM derived languages
such as Scala and Groovy [16] have this capability, as does
Closjure via its Lisp [17] heritage. In fact the term closure
originates from these functional languages.

C. The Node.js Movement

This approach though has received a new lease of life
recently from an unexpected quarter. Javascript might just be
the most widely deployed programming environment in
history (every web browser in existence). Initially regarded
as a very limited language, its true nature and power has only
recently been appreciated in any depth, and a major move is
now underway to apply this language in new and fascinating
contexts. In particular, its prototypical inheritance
mechanism, innate support for closures, and its highly
expressive and efficient object literal notation (JSON)
provide a foundation for fresh perspectives on performance,
concurrency and efficiency. The node.js initiative - and
associated satellite projects - is at the heart of this movement,
generating impressive initial results and contributing to a
rethinking of many of the fundamental patterns for achieving
highly scalable services and applications.

Google required fast Javascript so that its services like
Gmail and Google Calendar would work well under load. To
do this, Google developed the V8 [18] Javascript engine,
which compiles Javascript into highly optimised machine
code on the fly. The open-source V8 engine was adapted by
the community for cloud computing. The cloud computing
version of V8 is known as Node.js, a high performance
Javascript environment for the server. Node.js wishes to
provide an easy way to build scalable network programs.
The API of Node.js is non-blocking, either because the task
is not blocking or when it is Node.js prevents blocking
allowing a callback to be registered. Every call to the Node.js
API is an opportunity for the engine to change the request
and execute any pending callback waiting. The result is
running requests are gradually executed in parallel. The
additional functionality that node brings can allow an elegant
solution be engineered for traditional scalability problems
that might benefit from non-blocking I/O.

IV. THE PROBLEM DOMAIN

A. Instant Messaging: Reliability and Scalability

Instant Messaging has inherent advantages over other
text based delivery platforms such as email and SMS
because it is almost instantaneous, usually includes a built-in
subscription mechanism, and provides an indication of a
users availability and context via presence. Harnessing
Instant Messaging for mass message delivery is therefore a
compelling use-case; It provides the message publisher with
a receptive and available audience, and the recipient with
instantaneous information when and where they are available
to receive it. However, scaling up is problematic as various
problems are evident under load. Load conditions include

high numbers of simultaneous online users, frequent
messaging and presence updates and increasing roster size.
The eXtensible Messaging and Presence Protocol (XMPP),
the protocol of choice for driving Instant Messaging has
roster size as a known issue for XMPP Servers [19]. Unlike
other non-presence based messaging systems such as email,
XMPP Servers must maintain a “roster”. The roster provides
a dynamic record of the presence relationships between a
user and his buddies. Presence updates become more
expensive to maintain as the number of entries in the roster
grows. For example a user with 20,000 buddies in roster
would trigger 20,000 presence stanzas each time he/she
changes presence from “Away” to “Available”. This results
in an increase in processing load on the XMPP server as well

as increased network traffic both across federated links and

to instant messaging end-users. In addition to this, the XMPP
server must receive and process presence stanzas from all of
its online contacts.

In functional terms, reliable, scalable short message
broadcasting means being able to account for every message
sent, and to be able to deliver messages quickly and

efficiently, even as the number of users attached to the

XMPP roster increases. It could be argued that this use-case
for XMPP was not envisaged, i.e. the normal use-case, is a
private individual with a few hundred or less contacts on
his/her roster where reliability and scalability are not crucial.
As with many other technologies, actual use-cases cannot
always be predicted. Mass presence handling and message
broadcasting built on top of XMPP is attractive for both
publisher and consumer. Implementing this use-case seems
possible, but is certainly not trivial.

B. System Overview and Experimental Approach

For the purposes of our investigation, an XMPP server
was required. Several options were considered for the XMPP
server, with Openfire, eJabberd [20] and Prosody [21]
examined. Openfire, an open source Java based XMPP
server was chosen for the tests. The extensible nature of the
server, delivered in the form of plugins and components,
along with the availability of its core API was desirable. The
service scenarios of interest such as direct marketing
campaigns or emergency communication had the potential to
involve tens of thousands of users. The messages sent would
be time sensitive and only distributed to those in a position to
receive the message. Consulting a roster with thousands of
users was not possible to implement within existing XMPP
servers without the aid of a plugin. Rosters of that size are
unwieldy and have the potential to cripple the performance
of the server. Additionally, no guarantee is provided that the
message sent was received by the server and processed for
delivery. The approach taken saw the authors design three
plugins to be tested with the openfire server and compared to
a fourth legacy plugin. The XMPP plugin extends the
functionality of the Openfire XMPP Server, interacting with
the server, the roster and the end-user in the form of a buddy.

Figure 1. Overview of XMPP Plugin Internals

The role of each plugin, was to accept presence messages
from contacts on the servers roster, record the presence state
and deliver chat messages to designated recipients who were
online and available to receive them. Messages to users with
a presence indication that they were not in a position to chat
would not be sent. Figure 1 above shows the internal
structure of the XMPP plugins.

Figure 2. Experimental Setup

Figure 2 shows the architecture used for the scalability

and reliability experiments. It shows the Openfire XMPP
plug-ins (shaded in yellow) and the role they play within the
architecture. The plugins interacts with the XMPP server, the
XMPP Roster, the end-user in the form of a buddy, and with
a Java Message Service (JMS) Message Broker [22]. The
application server represents an external service that requires

mass message delivery to online and available contacts. This
service maintains groups of JIDs with the end user capable of
sending a message to a specific group or groups. For the
purposes of our experiments the application server’s message
load and recipient list is generated by our simulator and fed
to the JMS message queue. JMS Messages can also be
created by the plug-in if required, such as when presence
changes occur. These messages are checked to measure
accuracy i.e. correctness of the plugin’s behavior.

V. PLUGIN DESIGN

A. Legacy Plugin

The Legacy Java plugin was not developed with a

realisation of the concurrency issues that would come into
play, especially under load conditions. The approach
employed is to wait for an event on the XMPP or JMS
(message queue) interfaces and to process the event to
completion on the event thread. The main class employed
was not thread-safe due to access to a shared hash-map and
the approach was monolithic rather than decomposed into
tasks. This plugin is included for completeness and as a point
of reference for one set of experiments. The plugin could be
classified as non-blocking by virtue of not using threads, but
no attempts are made to optimise the performance.

B. Java Plugin

The Java plug-in uses a fixed size thread pool with a

tunable thread parameter encapsulated by a custom
demultiplexer abstraction. Each type of event is modelled as
a Task which performs a discrete unit of work, or calls on
other Tasks to perform work. In each case the Task is
submitted into an Executor for queueing and execution by
the next available thread from the thread pool. This plug-in
uses the Java Executor framework. There are two such
thread pools employed in this plug-in, one for JMS events
produced by the application server and the other for XMPP
events. Each one may produce new tasks for the other. For
example, a JMS Message request from the application server
will produce an XMPP message event to an XMPP end-user.
Reliable access to shared data was identified as a problem for
the system in this study owing to the use of a shared presence
map. With thread safety a crucial requirement for the plug-
in, it was necessary to implement a reliable thread safe data
structure. The state of the art way to do this is to use Java’s
concurrent collections [23]. The existing non thread-safe
HashMap implementation was replaced by the
java.util.concurrent ConcurrentHashMap. This
implementation employs its own thread-safe concurrency
mechanisms, is highly efficient and is already thoroughly
tested.

C. Scala Plugin

The third plugin uses the Scala language (version 2.8)
and Scala Actors. Five actors are employed: a

PresenceActor, MessageActor, ControlActor, JMSActor and
an XMPPActor. The MessageActor routes XMPP chat
messages to the outgoing JMS queues via the JMS Actor.
The ControlActor processes requests from the application
server, as well as XMPP Query packets, and routes outgoing
messages to the XMPP interface. The JMS Actor sends
control, chat and presence messages over the JMS queues to
the application server, and the XMPP Actor sends XMPP
packets out via the XMPP server. Each Actor uses the
“react()” method rather than “receive()” method which is
well suited to event-based applications, and fine-grained
tasks where the work scheduler can employ “work-stealing”
techniques [24]. The PresenceActor provides guaranteed
thread-safe presence lookups on a Scala Map. This Presence
facility was an important aspect of the design of the plug-in.
Since the data contained in this map is shared between
objects, the default choice for a Java developer would be a
synchronised or concurrent HashMap. This choice was
deliberately avoided in favour of an ordinary Scala HashMap
free of any locking and simultaneous access. The
consequence of this choice is that the lookup becomes
asynchronous. The only practical way for the calling actor to
know which presence result belongs to which message, and
without maintaining state information in the calling Actor, is
to pass the message along with the lookup (see Figure 3) and
to have the Presence Actor return it along with the result.
The possible disadvantage here is the additional data
transferred between the entities but since Instant Messages

are generally short the trade-off seems acceptable. The use of

Case- Classes and pattern matching keeps the code short and
easy to read.

Figure 3. Asynchronous Presence Lookup

D. Node.js Component

A different approach was taken to create the non
blocking plugin. The open source community developed
xmpp.js [25], a node.js library that would allow you to
connect to an XMPP server as a component. An XMPP
component [26] behaves in the same manner as a plugin,
implementing new features but with the added benefit of not
being tied to a specific server implementation, thus making it
portable and reusable. The component binds to the XMPP
server domain and becomes a part of the server in the same
manner as a plugin. It is addressable and has it’s own JID in
the form of a domain name making it accessible e.g.

component1.myserver.com. All incoming stanzas addressed
to that domain or to entities on that domain e.g.
buddy@component1.myserver.com will be routed to the
xmpp.js base code where they will be subsequently
delivered. Outgoing stanzas can be sent on behalf of any user
on the domain giving the component full control of message
delivery and allowing the design of innovative services such
as [27]. The authors used the power of this library to create a
simple component which would deliver the same
functionality as the Java and Scala plugin discussed earlier.
This non-blocking design resulted in the component having
two functions, an onPresence and an onMessage function
which would be used for callbacks to handle presence and
message events respectively.

VI. THE SCALABILITY OF BLOCKING I/O VS NON

BLOCKING I/O

A customised Botz library [28] was designed by the
authors to enable us to rapidly create user accounts and
authenticate with the system. The experiments performed
saw a load generator assume the role of the application
server. The load generators role was to login 10,000 users,
and produce 10,000 messages to be distributed to the user
base, a single message per user. These messages would be
fed to the JMS and subsequently handled by the plugins. A
second set of tests was also devised to investigate how the
plugins throughput would be affected by a heavy presence
load. A second load generator was set up using the Botz
library with 5000 users set to login and logout rapidly, thus
producing “Available” and “Unavailable” presence statuses
upon connecting and disconnecting with the server. This
kind of rapid flooding of presence messages is designed to
replicate a busy XMPP server and provide a more realistic
performance evaluator of each plugin as they attempted to
deal with the messages sent from the original generator. For
each series of tests, the plugins were attached to the same
server independent of each other and every effort was made
by the authors to ensure accuracy and independence in the
results gathered. The machine used for all tests was a
2.13GHz Intel Xeon powered 8.04 Ubuntu Server with 2Gb
of RAM. Openfire version 3.6.4 and JVM version 1.6.020
were also used. Tests were run 20 times and the results
gathered for analysis are presented below

A. Message Throughput

Table I shows the single load generator results. All

figures below are in terms of messages per second that the
plugin dealt with.

TABLE I. SINGLE LOAD GENERATOR RESULTS

Plugin Min Mean Max

Java Exec 109 270 322

Scala 214 249 267

Node.js 1360 1485 1608

The Java Plugin showed a trend of decreased throughput
most noticeable as the thread pool size increased. The Scala
plugins performance was comparable with the Java plugin
but only at the higher end thread-pool settings. For the
smaller thread pool settings the Java plugin was on average
15% faster. The Node.js component non blocking approach
saw the lowest throughput to be one order of magnitude
more then it’s Java equivalent. The average throughput was
considerably higher when threads are removed from the
scenario. Table II shows the results of the dual load
generator with the Legacy plugin included as a baseline
comparison

TABLE II. DUAL LOAD GENERATOR RESULTS

Plugin Min Mean Max

Legacy 8 21 69

Java Exec 14 76 151

Scala 29 82 108

Node.js 518 621 745

The Legacy plugin was used in this series of tests to

provide a base figure for how a standard openfire server
would perform while trying to deliver messages in an
environment with a lot of background presence noise
generated by the second load generator. As to be expected
the plugin performed poorly, dropping to as low as 8
messages per second. The Java Exec plugin had the highest
peak throughput of the non blocking I/O based plugins but
performance was somewhat erratic. The more controlled
nature of the Scala plugin led to more predictable results
with a marginal improvement on average throughput. Figure
4 below shows the three non-blocking I/O plugins
performance.

Figure 4. Dual Throughput performance of blocking I/O plugins

The non blocking I/O node.js component did not suffer
the same percentage drop in average throughput when it was

faced with the noise of the rapid user logins and presence
updates. Figure 5 shows the results gathered over the 20 runs

Figure 5. Dual Throughput performance of blocking I/O plugins

B. Memory footprint

Memory usage was relatively light for all four plugins
with some noticeable differences depending on the load
scenarios. For the single load generator tests, the Scala
profile was less then 50% of the Java profile. This situation
was reversed when the second load generator became active.
Scalas memory footprint increased from an average of 20Mb
to over 180Mb. This was to be expected in an environment
where shared memory is kept to an absolute minimum. The
memory overhead was eventually enough to cause
throughput degradation and eventually heap space errors on
the Openfire JVM. The Legacy, Java and Node plugins had
roughly the same memory footprint of around 70Mb across
all tests.

C. Message Accuracy

Table III shows the message and presence delivery

accuracy of the plugins within the dual load generator tests.

TABLE III. ACCURACY FOR PRESENCE AND MESSAGE PACKETS

Legacy Java Scala Node.js

Presence 100% 100% 100% 100%

Messaging 70% 90% 100% 100%

The legacy plugin became overwhelmed quiet quickly

and the resulting loss of 30% represents a serious QoS
problem for using a default XMPP server within a high load
scenario. The Java plugin was a marked improvement in
terms of accuracy but at times of high contention the
concurrency issues were reflected by the number of

messages lost. The Scala and Node.js plugins resulted in
100% message delivery. It is interesting to note the
priortisation of presence, which is directly related to roster
management. The 100% presence delivery is required to
guarantee the accuracy and integrity of the roster.

D. Observation

The CPU utilization for the tests was also recorded. The
blocking I/O based plugins rarely troubled the CPU and did
not consume many CPU cycles. The Node.js based plugin
however consumed 100% of available CPU resources when
run on the single load generator tests. The multiple callbacks
to handle events and deliver messages required a lot of CPU
usage but delivered a far superior throughput for this trade
off. On the dual load generator tests the throughput of the
node.js plugin was directly related to the available CPU. The
average CPU usage for the node.js process was 68% with the
min and max results outlined earlier having a corresponding
CPU usage of 54% and 79% respectively. The chance to take
more CPU cycles was denied by the prioritsation of the
roster updates by the openfire server. This costly, but
necessary action limited the potential of the node.js
component. Running the node process on a separate machine
to the openfire server would increase the performance but
was not within the scope of this paper due to the nature of
the other plugins developed.

VII. FUTURE WORK AND CONCLUSION

Traditionally Instant Messaging systems involved point

to point communication. Part of our future work vision
involves users actively participating in groups. A group
based communication service when coupled with a richer
multimedia service presents significant challenges. The
stricter QoS metrics and variable network conditions,
particularly for mobile consumers, will make this a difficult
environment to work in. The desirable qualities of XMPP,
which would be required in such a scenario also bring with
them associated problems such as roster management. The
authors have already considered this in previous work and a
novel solution to managing groups of services [29] and
groups within XMPP [14] for an emerging context of interest
has already been proposed. The work presented here could
be extended from sending one message to thousands of
users, to sending many messages to thousands of groups,
each potentially containing thousands of users. This level of
scalability, plus the additional group management overheads
warrants further investigation.

The move towards cloud computing has brought about a
change in attitudes towards scalability. The traditional
approaches of sinking capital into powerful machines has
given way to more innovative design patterns, providing
better optimization, throughput and consequently lower
costs. The emergence of the app store model [30] has
strengthened the position of the cloud, with services
consumed on the move. Innovative group based

communication services, living in the cloud and consumed
on end users devices are under consideration for future work.

This paper examined the characteristics of blocking (both
conventional and functional) and non-blocking I/O, taking a
popular service as a domain for comparison. The authors
developed two approaches to the design of a blocking I/O
plugin to try and guarantee the delivery of messages to a
mass number of users. It was shown that a simple change of
programmatic style can result in a more stable and controlled
approach, guaranteeing a baseline QoS for operators. The
power of the non-blocking approach, championed by the
emerging Node.js, showed that mass message delivery can
not only be accurate, but timely as well.

ACKNOWLEDGMENT

The authors would like to acknowledge funding support
from the Irish HEA PRTLI Cycle 4 FutureComm
programme and by Science Foundation Ireland via grant
08/SRC/I1403 (“Federated, Autonomic Management of End-
to-End Communications Services”). The work in this paper
builds upon research and applications developed as part of
the IMPRUVE and ZIMBIE projects which the authors
would also like to acknowledge.

REFERENCES

[1] Windows Live Messenger [online]. Available from
htttp://explore.live.com/windows-live-messenger
Accessed on 07-FEB-11

[2] Google Talk [online]. Available from http://www.google.com/talk/
Accessed on 07-FEB-11

[3] AOL Messenger [online]. Available from http://www.aim.com/
Accessed on 07-FEB-11

[4] XMPP Standards Foundation [online]. Available from
http://xmpp.org/ Accessed on 07-FEB-11

[5] Openfire XMPP Server version 3.6.4 [online]. Available from
http://www.igniterealtime.org/projects/openfire/ Accessed on 07-
FEB-11

[6] Kim, MinSeong., Wellings., Andy. Using the executor framework to
implement asynchronous event handling in the RTSJ. Proceedings of
the 8th International Workshop on Java Technologies for Real-Time
and Embedded Systems, 2010.

[7] Oliveira, Bruno., Gibbons., J. Scala for generic programmers.
Proceedings of the ACM SIGPLAN workshop on Generic
programming, 2008.

[8] Node.js [online]. Available from http://nodejs.org/ Accessed on 07-
FEB-11

[9] Kegel, D., The C10k problem [online]. Available from
http://www.kegel.com/c10k.html Accessed on 07-FEB-11

[10] Salihefendic, A., Plurk: Instant conversations using Comet [online].
Available from http://amix.dk/blog/post/19490 Accessed on 07-FEB-
11

[11] Liu, D., Deters, R. The Reverse C10k Problem for Server-Side
Mashups. Proceedings of the International Conference on Service
Oriented Computing, 2008

[12] Tilkov, S., Vinoski, S. Node.js: Using Javascript to Build High-
Performance Network Programs. Internet Computing, IEEE, 2010

[13] Xiao, Z., Guo, L., Tracey, J. Understanding Instant Messaging Traffic
Characteristics. 27th International Conference on Distributed
Computing Systems, 2007.

[14] Griffin, L., de Leastar, E., Botvich, D. The Management of Dynamic
Shared Groups within XMPP: An Investigation. IEEE International
Symposium on Integrated Network Management, 2011.

[15] Long, B., Long, B.W. Formal specification of Java concurrency to
assist software verification. Parallel and Distributed Processing
Symposium, 2003.

[16] Koenig, D., Gloer, A., King, P., Laforge, G., Skeet, J. Groovy in
Action, Manning, 2007.

[17] Allen, J. Anatomy of Lisp. McGraw-Hill, 1978.

[18] V8 JavaScript Engine [online]. Available from
http://code.google.com/p/v8/ Accessed on 07-FEB-11

[19] Saint-André, P., Smith, K., and Tronçon, R. XMPP: The Definitive
Guide: Building Real-time Applications with Jabber Technologies.
Farnham: O’Reilly, 2009.

[20] Ejabbered: The erlang Jabber/XMPP daemon [online]. Available
from http://www.ejabberd.im/ Accessed on 07-FEB-11

[21] Prosody IM [online]. Available from http://prosody.im/ Accessed on
07-FEB-11

[22] Chappell, D., Monson-Haefel, R., Java Message Service. O’Reilly,
2000.

[23] Bloch, J. Effective Java (2nd Edition). Prentice Hall, 2008.

[24] Haller, P., Odersky, M. Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 2008.

[25] XMPP.js [online]. Available from https://github.com/mwild1/xmppjs
Accessed on 07-FEB-11

[26] Saint-André, P. XEP-0144: Jabber Component Protocol [online]
Available from http://xmpp.org/extensions/xep-0114.html Accessed
on 07-FEB-11

[27] Zimbie: The online Marketing Tool for Time Sensitive Products
[online]. Available from http://www.zimbie.com/ Accessed on 07-
FEB-11

[28] Botz: Internal Bot Library for Openfire [online]. Available from
http://community.igniterealtime.org/docs/DOC-1130 Accessed on 07-
FEB-11

[29] Foley, C., Power, G., Griffin, L., Chen, C., Donnelly, N., de Leastar,
E., Service Group Management facilitated by DSL driven Policies in
embedded Middleware. International Symposium on Computers and
Commnunications, 2010.

[30] Chrome web store [online]. Available from
https://chrome.google.com/webstore Accessed on 07-FEB-11

