
Sponsor: Sumitomo Electrical Wiring Systems - Europe (SEWS-E), YSTRAD

Abstract—As FlexRay is implemented in production vehicles (e.g.

BMW X5 and 7 series) there is a growing interest within the

automotive industry in optimising its utilisation. FlexRay is

expected to become the standard network for backbone

communications, replacing CAN in this area. However the

complexity and cost associated with migrating from existing CAN

based systems and designs to FlexRay can prove to be a barrier

in its widespread adoption. One of the biggest problems in

optimising a FlexRay cycle is formalising the static segment and

dynamic segment parameters.

This paper describes a migration framework for the complete

migration from an existing CAN based application to FlexRay

based network. This migration framework defines the static (ST)

segment size by using basic CAN parameters and performing

task graph analysis. The resulting payload is defined before a

final ST frame size is obtained. The dynamic (DYN) segment size

is verified by determining the worst case response time of tasks

operating in this segment. A sample adaptive cruise control

(ACC) application is implemented to verify the framework.

I. INTRODUCTION

Modern consumers are seeking improved safety features and

increased infotainment when purchasing an automobile. The

increased use and sophistication of distributed electronic

control systems in the automotive industry has resulted in

rising traffic volumes on in-vehicle networks. Implementing

these features among existing applications on established

predominant automotive protocols (e.g. CAN), will prove a

challenge. Due to CANs ET (Event-Triggered) nature, as the

bus load approaches capacity all tasks with lower priority will

find it difficult to access the bus [1] to complete operation.

This growing communication demand stimulated the

establishment of the FlexRay consortium in 2000 and the

development of the FlexRay protocol[2]. The FlexRay

communications protocol aims to address the demands of such

future applications by providing the following features;

• Synchronous and asynchronous data transmission

• Support of a fault tolerant scalable time-base

• Scalable electrical/electronic architectures supporting

a multiple of platforms

• Single channel gross data rate of 10Mbits/s

• Arbitration free transmission

• Support for bus and star topologies

• Fast error detection and signalling

• Support of wake-up and sleep functionality via the

bus

• Deterministic data transmission with guaranteed

message latency and message jitter

• Support for redundant transmission channels

FlexRay provides higher data transfer rates, determinism and

fault tolerance not available directly using the CAN protocol.

FlexRay is configurable in numerous network topologies such

as point-to-point, passive star, linear passive bus, active star

network, cascaded active stars and hybrid topologies.

However these features come at an increased cost when

compared to CAN as FlexRay is still a relatively new protocol

so initial purchasing and development costs are still high.

Even though FlexRay has many features not available on CAN

it is not envisaged that FlexRay will completely replace

CAN[3] as illustrated in Figure 1. Both CAN and FlexRay can

be implemented side by side through the use of gateways [4]

or complete migrations.

The paper is organised as follows. Section II covers related

works from other authors. This includes work into FlexRay

frame parameter definition. Section III contains the actual

migration process. Section IV contains the case study. Section

V contains the results and the paper is concluded with section

VI the conclusion.

II. RELATED WORKS

In [3] the author takes the approach from the view point of

configuring the minimum number of ST slots (2

synchronisation slots) and the rest is implemented in the DYN

segment. This approach works but the ST segment of the

FlexRay cycle is completely unutilised. In [5] the author

examines the DYN segments performance explicitly. This is

done using a markov chain based evaluation. Because only the

Automotive Control Group, Waterford Institute of Technology, Cork Road, Waterford, Ireland

Migration Framework from CAN to FlexRay

Richard Murphy, Frank Walsh and Brendan Jackman

(rmmurphy@wit.ie) (fwwalsh@wit.ie) (bjackman@wit.ie)

Figure 1: Possible FlexRay Usage

DYN segment is examined the evaluation technique does not

comprehensively cover the complete FlexRay cycle.

Evaluation platforms are available from companies such as

Fujitsu [6]. Other authors have approached scheduling from

the view point of just utilising the ST segment such as [7] and

[8]. In [7] the author uses a genetic algorithm (GA) approach

to scheduling. First the algorithm is generated then refined by

means of optimisation, crossover and mutation. The GA is

verified and found to improve on past approaches. The

approach in [8] uses deadline analysis to synthesise task times.

By clustering messages and slot reuse the author demonstrates

improved utilisation of ST segment bandwidth under tested

conditions.

While the previously mentioned works only deal with certain

aspects of the FlexRay cycle [9] gives a more comprehensive

approach using holistic analysis techniques. Again as with

previous examples validation is carried out through

simulation.

In [10] the author provides some of the FlexRay cycle

parameters used in the electronic damper control in the BMW

X5. The Goal when defining the FlexRay system parameters

was to have a “Constant parameter set for all series projects

to support carry over of ECUs”. Using a 10Mbit/s baud rate

and a FlexRay frame cycle time of 5ms, comprising of a ST

segment size of 3ms and a DYN segments size of 2ms. With

possible repetition cycles for frames in the ST segment being

2.5ms, 5ms, 10ms, 20ms, 40ms, this represents a base period of

2.5ms. This allows a configuration so that all the other values

are multiples of this base period and the DYN segment can be

freed for less critical diagnostics messages.

III. CAN - FLEXRAY MIGRATION

This paper adds to works previously undertaken in the area of

scheduling FlexRay frames. Both the ST and DYN cycle

segments are accounted for in this framework, while other

works focus on utilisation of certain aspects of the FlexRay

cycle structure as previously stated in section 2. The approach

taken here uses task graph analysis in determining static slot

sizes and hence the static segment size. A response time

analysis technique is used in determining if dynamic segment

size is appropriate for it requirements. While guaranteeing

successful transmission the proposed methods result in a high

degree of redundancy in the system. Where this work differs

from other works described above is that the CAN and

FlexRay parameters are tested on hardware and not simulated.

This has the advantage of uncovering discrepancies that would

not been apparent through simulation.

A. CAN and FlexRay Comparison

Table 1 gives a brief overview of the basic features of CAN

and FlexRay. FlexRay has the advantage over CAN in areas of

protocol type due to it containing ET and TT (Time-

Triggered) properties, data rate due to FlexRays 10Mbit/s on

two channels (redundancy). FlexRay features complete fault

tolerance as opposed to only having fault tolerance on low

speed CAN. Due to CAN being a mature protocol and having

fewer complexes than FlexRay it is more attractive for the

designer to use.

B. FlexRay Communication Protocol

FlexRay while offering improved data throughput,

determinism, redundancy and fault tolerance; this comes at a

cost of complexity as well as previously mentioned increased

monetary cost. The higher monetary cost is a feature with all

new products. This will reduce as FlexRay matures and is

implemented on a wider scale. This increased complexity [11]

is derived from a FlexRay frame containing both a static (ST)

and a dynamic (DYN) segment amongst other features. The

ST segment is based on time-triggered TDMA type protocol

whereas the DYN segment is based on an event-triggered

flexible TDMA (FTDMA) type protocol. Each FlexRay cycle

is concluded by a communications free period made up of the

symbol window and/or Network Idle Time (NIT) as illustrated

as just NIT in Figure 2. In the ST segment all slots are the

same size. A ST frame can transmit if the ST frame ID

matches the ST slot ID. In the DYN segment a minislot size is

defined at compile time also. A DYN frame transmits if the

DYN frame ID matches the DYN slot ID. If a DYN message

does not use its slot a period of 1 minislot is used so as to

allow the minislot counter to increment.

A message can occupy more than one minislot as illustrated in

Figure 2: FlexRay Cycle Structure

TABLE 1

CAN – FLEXRAY COMPARISON

Feature CAN FlexRay

Protocol

Type

Event-

Triggered

Time and Event

Triggered

Segments

Channels 1 2

Data Rate 1MBit/s max 10Mbit/s max

on 2CH

Costs Low High

Complexity Not Overly

Complex

Complex Protocol

Fault

tolerance

Yes (Low

Speed CAN)

Yes

Network

Management

By Software By Hardware

through Bus

driver or Bus

guardian

Figure 2 where message 2 occupies minislot 2 and 3. A

message will not transmit in the DYN segment if the minislot

counter value is greater than the pLatestTx value. The NIT can

be used for synchronisation purposes or to transmit a wake up

symbol.

C. Migration Requirements

As already stated, the migration procedure is designed to

transition pre-existing CAN based systems to FlexRay.

Because CAN systems physical architecture invariably

consists of a bus topology, it is assumed that this topology is

maintained as part of the migration procedure. Each CAN

application is logically abstracted as a task graph in order to

analyse and extract input and output parameters for the

migration procedure. A simple example of a

sensor/processor/actuator task graph is shown in figure 3

where each node represents a CAN task (Ti) and each edge

represents a directed communication link between nodes. The

arrow indicates the direction of data transfer. Here we have the

task graph release time ri the deadline time Di. The task graph

starts at task Ti and ends at task Ti+n.

Deciding on which tasks are assigned to the ST or DYN

segments is done by individually assigning application tasks

into critical and non-critical priorities. In this framework all

critical tasks (e.g. Brake-by-wire) are mapped into the ST

segment and all non-critical (e.g. air conditioning) tasks are

mapped into the DYN segment.

Physically each task is allocated to a specific processor with

inter-processor messages requiring transmission across the

underlying communication network. Each task in the CAN

application can have the following time based properties;

• Task (Ti)

• WCET (wi)

• Task Deadline Times Di and Release Times ri

• Task Period (Task Frequency)

The task worst case execution time (WCET) forms a central

part in this framework. This is done so as many delays as

possible are taken into consideration to obtain improved

validity of the results.

The initial input parameters of the migration framework are

provided from the existing CAN application.

D. Parameter Calculation

A key feature of this framework is moving from task analysis

to message analysis by calculating the properties of all inter-

processor messages. This is required because the migration

process decouples messages from tasks through task graph

analysis. Each tasks execution time is calculated from when

the task is signalled to execute until it has completed

execution. To initially schedule a task parameters required

from the task graph are ri and Di.

This is necessary because, as illustrated in Figure 3, execution

of task Ti can potentially delay task Ti+1 from executing. This

results in equation 1.

To schedule an intermediate task;

• An intermediate task deadline is represented by di

• The intermediate tasks execution times are required

prior to intermediate task scheduling

• The release time of the first intermediate task (Ti+1 in

Figure 3) is derived from the deadline of the previous

(initial) task (Ti)

• This intermediate task deadline is then obtained by

adding its release time to its execution time

• This process is repeated for each task resulting in an

initial release time and deadline time for each

intermediate task.

• The total amount of slack for re-allocation is

illustrated in equation 1 where ci is the execution time

of a task Ti along the chosen path.

∑−= iii cDTotalSlack Eqn (1)

To determine the final task parameters, any slack in the system

is re-allocated equally among each task on a particular path x

of the task graph as illustrates in equation 2.

x

TotalSlack
slack i

i = Eqn (2)

When a task is assigned a new release time or deadline time,

the task graph is updated to include these new values. The

updated times are removed from the original task graph before

the next task graph path is analysed. The path resulting in the

longest ri and di times is chosen to propagate through the

system. This is because all other value will return quicker

paths and times.

This process is demonstrated using the example task graph

illustrated in Figure 4.

Fig 3: Basic Task Graph

iT

ir

iD

1+iT

niT
+

The execution time for each task is shown in Table 2.

The release and deadline times of each task are then updated

after being recalculated.

Path Ti+2 is then calculated separately with its release time

determined by the deadline time of the previous task Ti. This

gives a release time of 17.25 and deadline time of 45.75. The

final task release and deadline times are shown in Table 3.

In the case of a multi-rate system the cycle value of the least

common multiple (LCM) of all coupled applications is

required to guarantee the timely execution of all tasks while

maintaining message periods. An example of this is if there

are two task graphs with periods of 2ms and 5ms respectively.

A hyper-cycle of 10ms is required to guarantee transmission of

all messages.

E. Message Analysis

Message analysis can only be carried out once the initial task

parameters have been determined. Message analysis prepares

for message discretisation. Equation 3 can be used as an initial

check to see if the individual task parameters are valid.

iii rdw −≤ Eqn (3)

A key factor in determining timing properties of a message is

the maximum amount of time available to transmit that

message once the source task has completed execution. If a

task Ti is a message source then the task must complete

execution and transmit the resulting message mi before the

task deadline, di expires. If the message delay is greater than

the deadline time for that message is not feasible to transmit

that message. Therefore once the deadline expires an allocated

transmission “slot” will not be available until the next

communication cycle. Each messages deadline td(mi) is

determined by subtracting the task release time and WCET [8]

from the task deadline as illustrated in equation 4. Where

td(mi) is the transmission deadline of message i.

iiii wrdmtd −−=)(Eqn (4)

The primary factors affecting message transmission are;

• If a node attempts to transmit

• Available bandwidth

• Message size

Bus contention is not required for consideration due to the

deterministic nature of message transfer. The transmission

delay may be calculated using equation 5. The size(mi) and

Busspeed are in units of bits.

speed

i

Bus

msize
delayontransmissi

)(
= Eqn (5)

In the ST segment, task 1 (T1) transmits message 1 (m1) so

message 1 is assigned to ST slot 1 and message 2 (m2) is

assigned to ST slot 2 up to message n being assigned to ST

slot n.

F. Payload Optimisation

The FlexRay frame is composed of the Header, Payload and

Trailer segment as per the FlexRay specifications [12]. The

header and trailer are considered overhead because the data is

used for transmission but not used by the application to carry

out any function. Figure 5 illustrates an example of the

overhead required in relation to the payload size.

The overhead associated with this was calculated at 14bytes.

The 14bytes overhead frame was composed of:

TABLE 3

FINAL TASK TIMES

Task

Number

Release

Time

Deadline

Time

iT 0 17.25

11+
T 17.25 24.2

2+iT 17.25 45.75

3+iT 30.5 45.75

niT
+

 45.75 60.0

Figure 4: Sample Task Graph

iT

msri 0=

msDi 60=

1+iT

niT
+

3+iT

2+iT

TABLE 2

TASK GRAPH EXECUTION TIMES

Task Number Execution Time

iT 10

11+
T 5

2+iT 8

3+iT 6

niT
+

 8

• 5 bytes for the header

• 3 bytes for the CRC (Cyclic Redundancy Check)

• 2 byte max of a TSS (Transmission Start Sequence)

• 4 bytes for the clock and security (there is a

minimum variance required between messages from

different nodes so there is no overlap. Includes safety

margin of 4µs)

Frame payload dictates the size of the static slot. Therefore it

is an important optimisation parameter because a payload

value larger than what is required can lead to underutilisation

of bus bandwidth. An example, when transmitting messages of

up to 6 bytes in a static frame that can accommodate up to 10

bytes results in suboptimal use of available bandwidth.

Furthermore, choosing a smaller payload size can enable the

designer to choose a smaller static slot size resulting in finer

granularity to the static segment. The optimal scenario is

maximising data transmission while minimising transmission

overhead.

Equation 6 is used to determine the number of frames required

to transmit a message at the chose payload size. Here FR

framesn is the number of frames required at the chosen

payload size for the transmission of a complete message cycle

mi…mx. This procedure involves rounding up to the nearest

whole integer value.

=

sizepayload

sizem
framesFR i

n
 Eqn (6)

The total number of bytes for complete transmission gives a

clear indication which combination of, Number of Messages

n, Payload Size and Frame Size are the most appropriate. The

number of Total bytes is given in equation 7.

messagesnSizeFrameBytesTotal ×= Eqn (7)

By graphing the Bytes per Cycle v’s Frame Size the general

graph profile is as illustrated in Figure 6.

As the frame size increases initially, the number of bytes per

cycle drops rapidly (region 1). After this initial period the

difference between the number of bytes per cycle in

consecutive frames sizes gets smaller (region 2). This is

because the same amount of data is sent but fewer frames are

required. By transmitting fewer frames, less overhead is

incurred. In the final region (region 3) of the graph the number

of bytes per cycle starts to increase again. This increase is not

as dramatic as the initial decrease in region 1 and is due to an

increased payload size leading to an increased frame size,

while still transmitting the same amount of data.

The FlexRay frame size determines the slot size. The optimal

frame size is not immediately apparent. This is because the

optimal frame size is not necessarily the one associated with

the minimum number of transmitted bytes. By choosing a

large frame size the through put of data is increased. This in

turn reduces the granularity of the FlexRay cycle. If the

system designer chooses a smaller frame size this means there

are higher overheads associated with sending the same amount

of data than if a larger frame size was chosen. The final frame

size is to be chosen by the designer depending on specific

needs and requirements.

G. Slot Size Definition

By obtaining the message size in a discrete format the

message size can be represented as a function of discrete slots

rather than as a function of time. Each ST slot is the same size

(in terms of the number of macroticks (MT)) in a frame

according to the FlexRay specifications [12]. The ST slot is

composed of an integer multiple of MTs.

The message mi period period(mi) is equal to its task deadline

td(mi). This guarantees enough time for the message to

complete communication.

The calculated optimal slot size gdStaticSlot is the frame size

in bytes (size (payloadi) and size (overheadi)) divided by the

bus speed Busspeed as illustrated in equation 8.

speed

ii

Bus

overheadsizepayloadsize
otgdStaticSl

)()(+
= Eqn (8)

Restrictions on the actual obtainable slot size are governed by

Constraint #15 in Appendix B of the FlexRay specifications

v2.1 rev A. [12].

To discretise the static slot size equation 9 is used, where

gdStaticSlot is the static slot size.

Figure 6: Graph of Bytes per cycle v's Frame Size

Figure 5: Frame Overhead

=

otgdStaticSl

mtd
Mtd i

i

)(
)(Eqn (9)

The discretised slots at this point enable the message size to be

displayed as a function of the ST segment which is more

practical when configuring the ST segment of the FlexRay

frame. The discretised slot duration is denoted as td(Mi) to

differentiate it from the un-discretised message delay.

To guarantee the message mi deadline there must be

periodicity period(mi) between successive messages. The

maximum distance between successive transmission slots mi is

to be equal to the period(mi) [8].

A base period pbase is then selected. The smallest td(mi) is

chosen as the initial base period pbase. From this value message

periods in multiple harmonics are chosen which meet the

periodicity requirement. The base period value is chosen in the

format of transmission slots. A message integer period greater

than the maximum number of transmission slot intervals

results in a violation of the periodicity constraint. All

messages transmitted in the ST segment are guaranteed to

meet their deadlines due to the TT nature of the ST segment.

With this in mind it is important to configure the FlexRay

cycle to give the DYN segment as much opportunity to

transmit as possible. If the cycle period can be reduced

without affecting ST and DYN transmission times adversely

this should be done so. An example of this is if a cycle period

of 10ms enables deadlines to be met but a period of 5ms also

results in deadlines being met the 5ms cycle period should be

chosen. This allows the DYN tasks the opportunity to gain

access to the bus twice as often as if a 10ms cycle period was

chosen.

Once the base period is selected and the discretised delay is

chosen the parameters need to be validated. Equation 10 is

used to validate that the chosen parameters meet the required

deadlines.

base

k

ibase

k
pMtdp ⋅<≤⋅

+12)(2
 Eqn (10)

The base period value can be modified but all modifications

still have to ensure that the periodicity constraint and the

distance constraint are met. The procedure is summarised in

Figure 7 algorithm.

A. Dynamic Task Analysis

In calculating the DYN segment size the first parameter

required is the minimum time for the complete FlexRay frame.

This is obtained from equation 11. This calculates the time

taken to transmit all the data with no delays.

NITmessageIDmessageIDSTtMin nibusFR ++= K)(

 Eqn (11)

The MINFR(t) value will help tell if there are enough slots for

the messages that will require transmission through the DYN

segment. Equation 12 checks if there are enough slots in the

DYN segments at the current frame configuration to give each

DYN message a chance for transmission. Here FR(t) is the

size of the FlexRay frame.

)()(__ NITSTtFRDYNofNo busm +−≤ Eqn (12)

To obtain a realistic DYN segment, delays to the DYN

messages need to be calculated. Worst case response time

analysis Rm is used to determine the length in time of a

dynamic messages response. This different (to the ST

segment) approach is required because the DYN segment is

event-triggered. Some prerequisites include that only one node

can transmit on the bus at any one time in a slot (either static

or dynamic). The node determines when the slot counter is

equal to the value of a frame identifier. By allocating one slot

to at most one node this avoids any conflicts that might occur.

The minislot counter value has to be less than the pLatestTx

value which is defined in constraint #36 of appendix B in the

FlexRay specifications v2.1 rev A [12]

Each message is assumed to have an overhead as calculated

for the static segment in section F (14 bytes). Adding the

overhead to the message size gives the frame size for

ST Segment Scheduling Algorithm ()

Initialise initial CAN parameters WCET, ri, Di, Task period

 Perform Task Graph Analysis

Obtain intermediate tasks ri and di values
Re-allocate slack to path undertaking analysis
Obtain ri and di times along chosen task graph path

 If (using multirate system)

 {

LCM of interacting task graphs is required to guarantee timely
transmission

 }

 Update new ri and di times per path analysed

Determine message delay td(mi)
Find optimised payload and configure frame size

Heuristically chose optimised frame size

Determine slot size and discretised

Adjust message periods ensuring periodicity and distance constraint.

Figure 7: ST Scheduling Algorithm

transmission per message. The dynamic segment is composed

of an integral multiple of the minislot length. The size of each

minislot in the dynamic segment can be any integer value

between 2 MT and 63 MT as defined in the FlexRay

specifications v2.1 rev A appendix B [12].

1) Message Cycle Delays

The earliest possible time to transmit a DYN message is after

the ST segment has finished.

The worst-case response time Rm(t) (equation 13) of a

dynamic message is calculated from [9] the delay during one

bus cycle if its slot has passed. The parameters;

• δm the worst-case delay caused by the transmission of

static messages and higher priority frames

• wm is the delay caused by static messages and higher

priority dynamic frames.

• Cm the communication time

mmmm CtwtR ++=)()(σ
 Eqn (13)

The communication time is determined from the message

frame size Fmessagei divided by the bus speed Busspeed as

illustrated in equation 14. Here Fmessagei and Busspeed are in

bit form.

speed

i
m

Bus

Fmessage
C = Eqn (14)

The worst-case scenario of when a message can be generated

is if it is generated immediately after the slot with its frame

identifier has passed. The worst-case delay δm can be written

as equation 15. The length of the static segment is STbus.

)).((NITgdMinislotmessageIDSTMin ibusFRm ++−=σ

 Eqn (15)

Next wm is defined in equation 16, as blocking by static

messages, hp(m) higher priority messages and any unused

dynamic slots which gives a delay of one minislot gdminislot

ms(m) each The single minislot is required to enable the

minislot counter to increment to the next value. For this

calculation the worst case delay occurs if the message requires

transmission at the moment the pLatestTx value is the same as

the minislot counter. Therefore all minislots after this value

cannot be used for transmission.

The frame identifier also determines the frames priority in the

DYN segment.

NITpLatestTxmhpSTtw busm +++=)()(Eqn (16)

The values obtained can be discretised to determine the DYN

segment size in slots but is not necessary due to different

messages occupying different amounts of minislots.

Also included in the FlexRay frame is the NIT. This value can

be calculated using constraint #27 and the symbol window is

calculated from constraint #16 in Appendix B [12]

The DYN segment algorithm is illustrated in Figure 8.

IV. CASE STUDY

The migration procedure was applied to an advanced

automotive control application as detailed in Figure 9 and

Table 4. Experimental validation was carried out using the

following system specification. Initially performance results

are obtained for the CAN implementation under various traffic

conditions. Similar results are recorded for the migrated

FlexRay based system.

A. System Design

A two node system was tested with each task assigned to a

node depending on its function. The tasks dealing with

“actions” were placed on node 1 (N1) and the tasks

performing computational duties were placed on node 2 (N2).

Channel A on N1 was connected with channel A on N2

through an active-passive star configuration. Channel B was

set up with a similar configuration where channel B on N1 is

connected with channel B on N2. Bus bandwidth of 10MBit/s

was chosen for FlexRay and a bandwidth of 125kbit/s was

chosen for CAN. Both test configurations are illustrated in

Figure 10.

Figure 9: ACC Example Task Configuration

DYN Segment RTA Algorithm()
Initialise predefined parameters
 {
 MessageIDi, STbus, FR NIT, pLatestTx
 }
Find first possible transmission time after ST
segment
Determine delay if message slot has just passed
Determine delay due to hp(m) and ms(m)
Determine Cm
Combine delays to for total WCRT Rm(t)

Figure 8: DYN Segment Algorithm

B. Experimental Environment

Both test configurations (CAN and FlexRay) were set up on

two Fujitsu SK-91F467 FlexRay development boards, with

each representing one node. The development board contained

an MCU (microcontroller) and separate CC (communications

controller). This was connected to the FlexRay physical layer

via physical layer driver (FlexTiny FT1080) as per the

FlexRay specifications.

The tasks T1 and T2 are assigned WCET of 0.0ms because the

start of the application is signalled once one of these values

has been received. In reality there is some delay from the time

the sensor detects a value until it is passed but this value is

considered negligible in this test. Figure 11 illustrates the task

graph and associated CAN parameters. The CAN parameters

as they were obtained from task graph analysis are shown in

Table 5, after the slack has been redistributed.

C. CAN to FlexRay Migration

Table 6 shows the message sizes in bytes and the transmission

delay for each message. The solution is considered feasible at

this stage due to the transmission delay being less than the

deadline delay td(mi). Using the message sizes as specified in

Table 6 results in the graph illustrated in Figure 12. A frame

size of 24 is chosen which results in a payload of 5 two-word-

bytes

The message periods are now discretised. A slot size of 40µs

is selected. A slot size of 20 µs is extracted from the

framework as per equation 8. The implemented slot size was

modified due to the minimum achievable slot being 33µs

(Decomsys designer restriction as per FlexRay specifications

constraint #14), also a 40µs slot size yields an even slot count

on all messages so there is no requirement to round off the

number of slots. If the obtained value of 20µs was used this

would give a minimum period of 700 slots as opposed to the

350. The discretised td(mi) is illustrated as the number of slots.

This is illustrated in Table 7.

TABLE 5

ACC PARAMETERS

TASK

WCET

(MS)

RELEASE

TIME

(MS)

TASK

DEADLINE

(MS)

SLACK

PER

TASK(MS)

TASK

SCHEDULING

DEADLINE

(MS)

1T 0.000 0.000 0.020 0.019 0.020

2T 0.000 0.020 0.040 0.019 0.040

3T 0.006 0.040 0.060 0.019 0.054

4T 0.002 0.060 0.080 0.019 0.078

5T 0.006 0.080 0.100 0.019 0.094

6T 0.002 0.100 0.120 0.019 0.118

Figure 11: CAN Task Graph

Figure 10: CAN and FlexRay Test Configuration

TABLE 4

ACC PROPERTIES

Task Number Operation

T1 Vehicle Velocity

T2 Distance to Vehicle

in Front

T3 Calc Relative speed

of Vehicle in Front

T4 Calc Desired

Velocity

T5 Calc Absolute

Throttle Value

T6 Actuate Throttle and

Breaks

With the smallest message period being 14ms/350 slots, this is

used as the base period. This value satisfies equation 10.

To evaluate the size of the DYN segment two DYN messages

were transmitted at random times with constraints. The

constraints ensure transmission was in the range of very 2ms-

20ms. A minislot size of 6µs was chosen by constraint #14 in

the FlexRay specifications.

Table 8 contains the parameters as calculated per equation 13.

The values can be discretised and calculated as a function of

number of minislots. This is illustrated in Table 9

V. RESULTS

The results section demonstrates the findings obtained through

implementation of the framework as described above. As

FlexRay contains CH A and CH B this paper deals with CH A

as the primary channel for ST message transfer and CH B as

the redundant channel. DYN messages are only assigned to

CH B. This is the chosen set up because ST data is considered

of a critical priority, while messages transmitted on the DYN

segment are not to be considered as critical in this test case.

All results are recorded over a 30 second sample period.

In the CAN set up a task graph deadline of DCAN = 120ms

exists. After undergoing task graph analysis the task graph

deadline becomes DFlexRay = 84ms. The value is obtained from

modifying the FlexRay message period to 14ms from the CAN

value of 20ms as illustrated by the findings in Figures 13 and

14. Figure 13 contains the CAN results and figure 14 contains

the FlexRay results. Figure 13 shows a message maximum

execution time of 7.845ms compared to deadline time of 20ms.

This maximum Figure is taken after the longest WCET of 6ms

is applied to the task. FlexRay messages result in different

cycle values depending on the same WCETs as in the CAN

test. The maximum message cycle is 7.0380ms with a WCET

of 6ms in the FlexRay test.

Each FlexRay ST message meets its deadline of 14ms as

shown in Figure 14. The same messages in CAN also meet

their deadlines but message times are more consistent in

FlexRay

From Figure 14 it is observed that all message deadlines are

easily met including where message times fluctuate in CAN.

At higher data rates CAN messages would be susceptible to

message times increasing where as in FlexRay these messages

times are always guaranteed. To get a clearer indication of if

the application is as successful on FlexRay as CAN we

examine the applications cycle times.

TABLE 9

DYN MESSAGE ATTRIBUTES (SLOT)

Message

Message

Size

(Bytes)

mσ

(slots)

)(twm

(slots)

mC

(slots)

)(tRm

(slots)

7m 4 247 51 3 300

8m 4 247 53 3 303

TABLE 8

DYN MESSAGE ATTRIBUTES

Message

Message

Size

(Bytes)

mσ

(ms)

)(twm

(ms)

mC

(ms)

)(tRm

(ms)

7m 4 1.4806 0.303 0.0144 1.1980

8m 4 1.4806 0.317

0.0144 1.8124

TABLE 7

MESSAGE DEADLINES

Message # DEADLINE

)(imtd (MS)

)(imtd

(SLOTS)

1m 0.020 500

2m 0.020 500

3m 0.014 350

4m 0.018 450

5m 0.014 350

TABLE 6

MESSAGE ATTRIBUTES

Message

Max
Size

(bytes)

Transmission

Delay

(µs)

Transmission

Delay (Slot)

1m 10 8 1

2m 10 8 1

3m 10 8 1

4m 10 8 1

5m 10 8 1

Figure 12: Optimal FlexRay Frame

130

180

230

280

330

380

430

14 34

B
y
te

s
/C

y
c
le

Frame Size

FlexRay Frame Size

Examining the complete applications cycle times, Figure 15

represents the CAN data and Figure 16 represents the FlexRay

data. The CAN cycle has a deadline of 120ms but has

completed execution by a maximum time of 20.478ms. The

application implemented in FlexRay has a deadline of 84ms

but completes execution with a maximum time of 22.947ms.

This shows redundancy in the system of 61ms in FlexRay and

99ms in CAN. Even at this maximum cycle time the deadline

of 84ms is not close to being exceeded.

Table 10 gives a detailed breakdown of the FlexRay ST task

parameters. As task messages m1 and m2 are the initial times

and have no precedence constraints there is a minimum delay

of zero. Column four shows the actual maximum execution

time.

The Framework allows the extraction of FlexRay

configuration parameters. The parameters shown in Table 11

are required to configure the FlexRay frame for successful

transmission. The setup includes 6 tasks in the static segment

and 2 tasks in the DYN segment. A MT was set at 1µs. This

minimum configuration results in a FlexRay cycle of

1.750ms.This value is obtained from the pmin value of 14ms.

Figure 16: FlexRay ST Message Cycles. Cycle length values have

been scaled to give a clearer representation.

0.0229435
0.022944
0.0229445
0.022945
0.0229455
0.022946
0.0229465
0.022947
0.0229475

0

0.02

0.04

0.06

0.08

0.1

1

7
3

1
4

5

2
1

7

2
8

9

C
y

cl
e

 L
e

n
g

th
 (

s)

C
y

cl
e

 D
e

a
d

li
n

e
 (

s)

Time (ms)

Cycle Time ID1-6 CHA

Cycle Deadline Cycle Time CHA ST

Figure 15: CAN Cycle Times. Cycle length values have been

scaled to give a clearer representation.

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

4
3

8
5

1
2

7

1
6

9

2
1

1

C
y

cl
e

 L
e

n
g

th
 (

s)

C
y

cl
e

 D
e

ra
d

li
n

e
 (

s)

Cycle Number

Cycle Time ID1-6

Cycle Deadline Cycle Time

Figure 14: FlexRay Cycle Times

0.000

0.005

0.010

0.015

1

1
6

4

3
2

7

4
9

0

6
5

3

8
1

6

9
7

9

1
1

4
2

1
3

0
5

1
4

6
8

1
6

3
1

A
ct

u
a

l
M

e
ss

a
g

e
 D

e
a

d
li

n
e

 (
s)

Message Number

Message Deadline

ID1-6 CHA

Cycle Time CHA Msg Deadline

Figure13 : CAN Message Times

0

0.005

0.01

0.015

0.02

0.025

1

1
1

5

2
2

9

3
4

3

4
5

7

5
7

1

6
8

5

7
9

9

9
1

3

1
0

2
7

1
1

4
1

A
ct

u
a

l
M

e
ss

a
g

e
 D

e
a

d
li

n
e

 (
s)

Message Number

Message Deadline

ID1-6

Cycle Time Msg Deadline

Ideally a pbase of 0.875ms is obtainable for configuration to

enable the DYN messages get access to the FlexRay bus as

frequently as possible. Due to hardware and software

constraints this value could not be used. With 6 ST slots

required at 40µs each this resulted in a ST segment size of

240µs. With the cycles size of 1.750ms this leaves maximum

151ms to be divided between the DYN segment and the NIT.

Each minislot in the DYN segment was set at 6MT. With the

NIT of 25MT this resulted in a DYN segments size of 1485µs

or 247 minislots. This is coupled with a worse case response

time of 263 minislots.

VI. CONCLUSION

This paper addresses the topic of migrating from CAN to

FlexRay. This was carried out through the development of a

generic migration framework. The migration framework

involved synthesising tasks to the message level before

obtaining associated FlexRay parameters. The proposed

framework provides a solution utilising both the ST and DYN

segments of the FlexRay cycle. The framework was then

successfully implemented using ACC parameters.

Experimental results show that the FlexRay parameters met

previous CAN parameters, and also improved on them with

the deterministic nature guaranteeing message transmission.

The DYN messages were transmitted randomly so there were

no predetermined timing constraints. These still demonstrate

the use of both the ST and DYN segments available. Even

with the improved results there are still large amounts of

redundancy for use in future or larger applications. Therefore

this method successfully migrates from a CAN to a FlexRay

protocol.

VII. REFERENCES

1. Suri, V.C.a.N. TTET: Event-Triggered Channels on a Time-

Triggered Base. in Ninth IEEE International Conference on

Engineering Complex Computer Systems Navigating Complexity in

the e-Engineering Age. 2004.

2. Consortium, F., The FlexRay Consortium Website. 2008.

3. Cummings, R.W. Easing the Transition of System Designs from

CAN to FlexRay. in SAE World Congress & Exhibition 2008.

2008. Detroit, MI, USA: SOCIETY OF AUTOMOTIVE

ENGINEERS INC.

4. Roland Bacher, B.G.M., B.G.M. Herbert Haas, and I.A.W. Martin

Simons. Integration of FlexRay-based control units in existing test

benches. 2008 [cited; Available from:

http://www.ixxat.com/article_flexray_gateway_feb08_en.html.

5. Jimmy Jessen Nielsen, H.-P.S.a.A.H. Markov Chain-based

Performance Evaluation of FlexRay Dynamic Segment. 2007

[cited; Available from: http://rtn2007.loria.fr/5_Paper.pdf.

6. Microelectronics, F., The Industry's Most Complete FlexRay

Evaluation Kit Now Available from Fujitsu; Enables FlexRay

Hardware Design, Verification Prior to Silicon. 2005:

http://www.fujitsu.com.

7. Shan Ding, N.M., Hiroyuki Tomiyama and Hiroaki Takada. A GA-

Based Scheduling Method for FlexRay Systems. in Proceedings of

the 5th ACM international conference on Embedded software.

2005. Jersey City, NJ, USA.

8. Aloul, N.K.a.F. The Synthesis of Dependable Communication

Networks for Automotive Systems. in SAE Internalional 2005.

2005.

9. Traian Pop, P.P., Petru Elses, Zebo Peng, Alexandru Andrei,

Timinig Analysis of the FlexRay Communication Protocol. 2006.

10. Schedl, D.A. Goals and Architecture for FlexRay at BMW. in 1st

Vector FlexRay Symposium. 2007. Stuttgart, Germany.

11. Eric Armengaud, A.S.a.M.H. Automatic Parameter Identi cation in

FlexRay based Automotive Communication Networks. in Emerging

Technologies and Factory Automation, 2006. 2006: IEEE.

12. Consortium, F., FlexRay Communications System, Protocol

Specification, Version 2.1, Revision A. 2005. p. 245.

TABLE 11

FLEXRAY FRAME PARAMETERS

Parameter Value

Number of ST Slots 6

Number of DYN

Slots

247

ST Slot Size 40 sµ

DYN Minislot Size 6 sµ

Payload Size 5 2-word-bytes

NIT 25 sµ

TABLE 10

ST TASK PARAMETERS

Task # Deadline

Time

(ms)

WCET Execution

Time (ms)

1T 14 0 0.000

2T 14 0 0.0405

3T 14 6 7.039

4T 14 2 3.54

5T 14 6 7.039

6T 14 2 5.29

