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Abstract—As FlexRay is implemented in production vehicles (e.g. 

BMW X5 and 7 series) there is a growing interest within the 

automotive industry in optimising its utilisation. FlexRay is 

expected to become the standard network for backbone 

communications, replacing CAN in this area. However the 

complexity and cost associated with migrating from existing CAN 

based systems and designs to FlexRay can prove to be a barrier 

in its widespread adoption. One of the biggest problems in 

optimising a FlexRay cycle is formalising the static segment and 

dynamic segment parameters.  

This paper describes a migration framework for the complete 

migration from an existing CAN based application to FlexRay 

based network. This migration framework defines the static (ST) 

segment size by using basic CAN parameters and performing 

task graph analysis. The resulting payload is defined before a 

final ST frame size is obtained. The dynamic (DYN) segment size 

is verified by determining the worst case response time of tasks 

operating in this segment. A sample adaptive cruise control 

(ACC) application is implemented to verify the framework.  

I. INTRODUCTION 

Modern consumers are seeking improved safety features and 

increased infotainment when purchasing an automobile. The 

increased use and sophistication of distributed electronic 

control systems in the automotive industry has resulted in 

rising traffic volumes on in-vehicle networks. Implementing 

these features among existing applications on established 

predominant automotive protocols (e.g. CAN), will prove a 

challenge. Due to CANs ET (Event-Triggered) nature, as the 

bus load approaches capacity all tasks with lower priority will 

find it difficult to access the bus [1] to complete operation.  

This growing communication demand stimulated the 

establishment of the FlexRay consortium in 2000 and the 

development of the FlexRay protocol[2]. The FlexRay 

communications protocol aims to address the demands of such 

future applications by providing the following features; 

 

• Synchronous and asynchronous data transmission 

• Support of a fault tolerant scalable time-base 

• Scalable electrical/electronic architectures supporting 

a multiple of platforms 

• Single channel gross data rate of 10Mbits/s 

• Arbitration free transmission 

• Support for bus and star topologies 

• Fast error detection and signalling 

• Support of wake-up and sleep functionality via the 

bus 

• Deterministic data transmission with guaranteed 

message latency and message jitter 

• Support for redundant transmission channels 

FlexRay provides higher data transfer rates, determinism and 

fault tolerance not available directly using the CAN protocol. 

FlexRay is configurable in numerous network topologies such 

as point-to-point, passive star, linear passive bus, active star 

network, cascaded active stars and hybrid topologies. 

However these features come at an increased cost when 

compared to CAN as FlexRay is still a relatively new protocol 

so initial purchasing and development costs are still high. 

Even though FlexRay has many features not available on CAN 

it is not envisaged that FlexRay will completely replace 

CAN[3] as illustrated in Figure 1. Both CAN and FlexRay can 

be implemented side by side through the use of gateways [4] 

or complete migrations.  

 

 
The paper is organised as follows. Section II covers related 

works from other authors. This includes work into FlexRay 

frame parameter definition. Section III contains the actual 

migration process. Section IV contains the case study. Section 

V contains the results and the paper is concluded with section 

VI the conclusion.  

II. RELATED WORKS 

In [3] the author takes the approach from the view point of 

configuring the minimum number of ST slots (2 

synchronisation slots) and the rest is implemented in the DYN 

segment. This approach works but the ST segment of the 

FlexRay cycle is completely unutilised. In [5] the author 

examines the DYN segments performance explicitly. This is 

done using a markov chain based evaluation. Because only the 
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Figure 1: Possible FlexRay Usage 



 
 

DYN segment is examined the evaluation technique does not 

comprehensively cover the complete FlexRay cycle. 

Evaluation platforms are available from companies such as 

Fujitsu [6]. Other authors have approached scheduling from 

the view point of just utilising the ST segment such as [7] and 

[8]. In [7] the author uses a genetic algorithm (GA) approach 

to scheduling. First the algorithm is generated then refined by 

means of optimisation, crossover and mutation. The GA is 

verified and found to improve on past approaches. The 

approach in [8] uses deadline analysis to synthesise task times. 

By clustering messages and slot reuse the author demonstrates 

improved utilisation of ST segment bandwidth under tested 

conditions.  

While the previously mentioned works only deal with certain 

aspects of the FlexRay cycle [9] gives a more comprehensive 

approach using holistic analysis techniques. Again as with 

previous examples validation is carried out through 

simulation.  

In [10] the author provides some of the FlexRay cycle 

parameters used in the electronic damper control in the BMW 

X5. The Goal when defining the FlexRay system parameters 

was to have a “Constant parameter set for all series projects 

to support carry over of ECUs”. Using a 10Mbit/s baud rate 

and a FlexRay frame cycle time of 5ms, comprising of a ST 

segment size of 3ms and a DYN segments size of 2ms. With 

possible repetition cycles for frames in the ST segment being 

2.5ms, 5ms, 10ms, 20ms, 40ms, this represents a base period of 

2.5ms. This allows a configuration so that all the other values 

are multiples of this base period and the DYN segment can be 

freed for less critical diagnostics messages. 

III. CAN - FLEXRAY MIGRATION 

This paper adds to works previously undertaken in the area of 

scheduling FlexRay frames. Both the ST and DYN cycle 

segments are accounted for in this framework, while other 

works focus on utilisation of certain aspects of the FlexRay 

cycle structure as previously stated in section 2. The approach 

taken here uses task graph analysis in determining static slot 

sizes and hence the static segment size. A response time 

analysis technique is used in determining if dynamic segment 

size is appropriate for it requirements. While guaranteeing 

successful transmission the proposed methods result in a high 

degree of redundancy in the system. Where this work differs 

from other works described above is that the CAN and 

FlexRay parameters are tested on hardware and not simulated. 

This has the advantage of uncovering discrepancies that would 

not been apparent through simulation.  

 

A. CAN and FlexRay Comparison 

Table 1 gives a brief overview of the basic features of CAN 

and FlexRay. FlexRay has the advantage over CAN in areas of 

protocol type due to it containing ET and TT (Time-

Triggered) properties, data rate due to FlexRays 10Mbit/s on 

two channels (redundancy). FlexRay features complete fault 

tolerance as opposed to only having fault tolerance on low 

speed CAN. Due to CAN being a mature protocol and having 

fewer complexes than FlexRay it is more attractive for the 

designer to use. 

 

B. FlexRay Communication Protocol 

FlexRay while offering improved data throughput, 

determinism, redundancy and fault tolerance; this comes at a 

cost of complexity as well as previously mentioned increased 

monetary cost. The higher monetary cost is a feature with all 

new products. This will reduce as FlexRay matures and is 

implemented on a wider scale. This increased complexity [11] 

is derived from a FlexRay frame containing both a static (ST) 

and a dynamic (DYN) segment amongst other features. The 

ST segment is based on time-triggered TDMA type protocol 

whereas the DYN segment is based on an event-triggered 

flexible TDMA (FTDMA) type protocol. Each FlexRay cycle 

is concluded by a communications free period made up of the 

symbol window and/or Network Idle Time (NIT) as illustrated 

as just NIT in Figure 2. In the ST segment all slots are the 

same size. A ST frame can transmit if the ST frame ID 

matches the ST slot ID. In the DYN segment a minislot size is 

defined at compile time also. A DYN frame transmits if the 

DYN frame ID matches the DYN slot ID. If a DYN message 

does not use its slot a period of 1 minislot is used so as to 

allow the minislot counter to increment.  

 

 
A message can occupy more than one minislot as illustrated in 

 
Figure 2: FlexRay Cycle Structure 

TABLE 1 

CAN – FLEXRAY COMPARISON 

Feature CAN FlexRay 

Protocol 

Type 

Event-

Triggered 

Time and Event 

Triggered 

Segments 

Channels 1 2 

Data Rate 1MBit/s max 10Mbit/s max 

on 2CH 

Costs Low High 

Complexity Not Overly 

Complex 

Complex Protocol 

Fault 

tolerance 

Yes (Low 

Speed CAN) 

Yes 

Network 

Management 

By Software By Hardware  

through Bus 

driver or Bus 

guardian 

 



 
 

Figure 2 where message 2 occupies minislot 2 and 3. A 

message will not transmit in the DYN segment if the minislot 

counter value is greater than the pLatestTx value. The NIT can 

be used for synchronisation purposes or to transmit a wake up 

symbol.  

C. Migration Requirements 

As already stated, the migration procedure is designed to 

transition pre-existing CAN based systems to FlexRay. 

Because CAN systems physical architecture invariably 

consists of a bus topology, it is assumed that this topology is 

maintained as part of the migration procedure. Each CAN 

application is logically abstracted as a task graph in order to 

analyse and extract input and output parameters for the 

migration procedure. A simple example of a 

sensor/processor/actuator task graph is shown in figure 3 

where each node represents a CAN task (Ti) and each edge 

represents a directed communication link between nodes. The 

arrow indicates the direction of data transfer. Here we have the 

task graph release time ri the deadline time Di. The task graph 

starts at task Ti and ends at task Ti+n. 

 

Deciding on which tasks are assigned to the ST or DYN 

segments is done by individually assigning application tasks 

into critical and non-critical priorities. In this framework all 

critical tasks (e.g. Brake-by-wire) are mapped into the ST 

segment and all non-critical (e.g. air conditioning) tasks are 

mapped into the DYN segment. 

 

 
Physically each task is allocated to a specific processor with 

inter-processor messages requiring transmission across the 

underlying communication network. Each task in the CAN 

application can have the following time based properties; 

 

• Task (Ti) 

• WCET (wi) 

• Task Deadline Times Di and Release Times ri 

• Task Period (Task Frequency) 

 

The task worst case execution time (WCET) forms a central 

part in this framework. This is done so as many delays as 

possible are taken into consideration to obtain improved 

validity of the results. 

The initial input parameters of the migration framework are 

provided from the existing CAN application.  

 

D. Parameter Calculation 

A key feature of this framework is moving from task analysis 

to message analysis by calculating the properties of all inter-

processor messages. This is required because the migration 

process decouples messages from tasks through task graph 

analysis. Each tasks execution time is calculated from when 

the task is signalled to execute until it has completed 

execution. To initially schedule a task parameters required 

from the task graph are ri and Di.  

 

This is necessary because, as illustrated in Figure 3, execution 

of task Ti can potentially delay task Ti+1 from executing. This 

results in equation 1. 

 

To schedule an intermediate task; 

• An intermediate task deadline is represented by di 

• The intermediate tasks execution times are required 

prior to intermediate task scheduling 

• The release time of the first intermediate task (Ti+1 in 

Figure 3) is derived from the deadline of the previous 

(initial) task (Ti)  

• This intermediate task deadline is then obtained by 

adding its release time to its execution time 

• This process is repeated for each task resulting in an 

initial release time and deadline time for each 

intermediate task. 

• The total amount of slack for re-allocation is 

illustrated in equation 1 where ci is the execution time 

of a task Ti along the chosen path. 

 

∑−= iii cDTotalSlack  Eqn (1)      

 

To determine the final task parameters, any slack in the system 

is re-allocated equally among each task on a particular path x 

of the task graph as illustrates in equation 2. 

 

x

TotalSlack
slack i

i =  Eqn (2)      

 

When a task is assigned a new release time or deadline time, 

the task graph is updated to include these new values. The 

updated times are removed from the original task graph before 

the next task graph path is analysed. The path resulting in the 

longest ri and di times is chosen to propagate through the 

system. This is because all other value will return quicker 

paths and times.  

This process is demonstrated using the example task graph 

illustrated in Figure 4. 

 

 
Fig 3: Basic Task Graph 
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The execution time for each task is shown in Table 2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The release and deadline times of each task are then updated 

after being recalculated. 

Path Ti+2 is then calculated separately with its release time 

determined by the deadline time of the previous task Ti. This 

gives a release time of 17.25 and deadline time of 45.75. The 

final task release and deadline times are shown in Table 3. 

 

 
In the case of a multi-rate system the cycle value of the least 

common multiple (LCM) of all coupled applications is 

required to guarantee the timely execution of all tasks while 

maintaining message periods. An example of this is if there 

are two task graphs with periods of 2ms and 5ms respectively. 

A hyper-cycle of 10ms is required to guarantee transmission of 

all messages. 

E. Message Analysis 

Message analysis can only be carried out once the initial task 

parameters have been determined. Message analysis prepares 

for message discretisation. Equation 3 can be used as an initial 

check to see if the individual task parameters are valid. 

 

iii rdw −≤  Eqn (3) 

 

A key factor in determining timing properties of a message is 

the maximum amount of time available to transmit that 

message once the source task has completed execution. If a 

task Ti is a message source then the task must complete 

execution and transmit the resulting message mi before the 

task deadline, di expires. If the message delay is greater than 

the deadline time for that message is not feasible to transmit 

that message. Therefore once the deadline expires an allocated 

transmission “slot” will not be available until the next 

communication cycle. Each messages deadline td(mi) is 

determined by subtracting the task release time and WCET [8] 

from the task deadline as illustrated in equation 4. Where 

td(mi) is the transmission deadline of message i. 

 

iiii wrdmtd −−=)(  Eqn (4) 

 

The primary factors affecting message transmission are; 

  

• If a node attempts to transmit  

• Available bandwidth  

• Message size 

 

Bus contention is not required for consideration due to the 

deterministic nature of message transfer. The transmission 

delay may be calculated using equation 5. The size(mi) and 

Busspeed are in units of bits. 

 

speed

i

Bus

msize
delayontransmissi

)(
=  Eqn (5) 

 

In the ST segment, task 1 (T1) transmits message 1 (m1) so 

message 1 is assigned to ST slot 1 and message 2 (m2) is 

assigned to ST slot 2 up to message n being assigned to ST 

slot n. 

 

F. Payload Optimisation 

The FlexRay frame is composed of the Header, Payload and  

Trailer segment as per the FlexRay specifications [12]. The 

header and trailer are considered overhead because the data is 

used for transmission but not used by the application to carry 

out any function. Figure 5 illustrates an example of the 

overhead required in relation to the payload size. 

 

The overhead associated with this was calculated at 14bytes. 

The 14bytes overhead frame was composed of: 

TABLE 3 

FINAL TASK TIMES 

Task 

Number 

Release 

Time 

Deadline 

Time 

iT  0 17.25 

11+
T  17.25 24.2 

2+iT  17.25 45.75 

3+iT  30.5 45.75 

niT
+

 45.75 60.0 

 
Figure 4: Sample Task Graph 
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TABLE 2 

TASK GRAPH EXECUTION TIMES 

Task Number Execution Time 

iT  10 

11+
T  5 

2+iT  8 

3+iT  6 

niT
+

 8 

 



 
 

• 5 bytes for the header 

• 3 bytes for the CRC (Cyclic Redundancy Check)  

• 2 byte max of a TSS (Transmission Start Sequence) 

• 4 bytes for the clock and security (there is a 

minimum variance required between messages from 

different nodes so there is no overlap. Includes safety 

margin of 4µs ) 

 

 
 

Frame payload dictates the size of the static slot. Therefore it 

is an important optimisation parameter because a payload 

value larger than what is required can lead to underutilisation 

of bus bandwidth. An example, when transmitting messages of 

up to 6 bytes in a static frame that can accommodate up to 10 

bytes results in suboptimal use of available bandwidth. 

Furthermore, choosing a smaller payload size can enable the 

designer to choose a smaller static slot size resulting in finer 

granularity to the static segment. The optimal scenario is 

maximising data transmission while minimising transmission 

overhead.  

 

Equation 6 is used to determine the number of frames required 

to transmit a message at the chose payload size. Here FR 

framesn is the number of frames required at the chosen 

payload size for the transmission of a complete message cycle 

mi…mx. This procedure involves rounding up to the nearest 

whole integer value. 









=

sizepayload

sizem
framesFR i

n
 Eqn (6) 

 

The total number of bytes for complete transmission gives a 

clear indication which combination of, Number of Messages 

n, Payload Size and Frame Size are the most appropriate. The 

number of Total bytes is given in equation 7. 

 

messagesnSizeFrameBytesTotal ×=  Eqn (7) 

 

By graphing the Bytes per Cycle v’s Frame Size the general 

graph profile is as illustrated in Figure 6. 

 

As the frame size increases initially, the number of bytes per 

cycle drops rapidly (region 1). After this initial period the 

difference between the number of bytes per cycle in 

consecutive frames sizes gets smaller (region 2). This is 

because the same amount of data is sent but fewer frames are 

required. By transmitting fewer frames, less overhead is 

incurred. In the final region (region 3) of the graph the number 

of bytes per cycle starts to increase again. This increase is not 

as dramatic as the initial decrease in region 1 and is due to an 

increased payload size leading to an increased frame size, 

while still transmitting the same amount of data. 

 

The FlexRay frame size determines the slot size. The optimal 

frame size is not immediately apparent. This is because the 

optimal frame size is not necessarily the one associated with 

the minimum number of transmitted bytes. By choosing a 

large frame size the through put of data is increased. This in 

turn reduces the granularity of the FlexRay cycle. If the 

system designer chooses a smaller frame size this means there 

are higher overheads associated with sending the same amount 

of data than if a larger frame size was chosen. The final frame 

size is to be chosen by the designer depending on specific 

needs and requirements.  

 

 

G. Slot Size Definition 

By obtaining the message size in a discrete format the 

message size can be represented as a function of discrete slots 

rather than as a function of time. Each ST slot is the same size 

(in terms of the number of macroticks (MT)) in a frame 

according to the FlexRay specifications [12]. The ST slot is 

composed of an integer multiple of MTs.  

The message mi period period(mi) is equal to its task deadline 

td(mi). This guarantees enough time for the message to 

complete communication. 

The calculated optimal slot size gdStaticSlot is the frame size 

in bytes (size (payloadi) and size (overheadi)) divided by the 

bus speed Busspeed as illustrated in equation 8. 

 

speed

ii

Bus

overheadsizepayloadsize
otgdStaticSl

)()( +
= Eqn (8) 

 

Restrictions on the actual obtainable slot size are governed by 

Constraint #15 in Appendix B of the FlexRay specifications 

v2.1 rev A. [12]. 

 

To discretise the static slot size equation 9 is used, where 

gdStaticSlot is the static slot size.  

 
 

Figure 6: Graph of Bytes per cycle v's Frame Size 

 
Figure 5: Frame Overhead 



 
 

 









=

otgdStaticSl

mtd
Mtd i

i

)(
)(  Eqn (9) 

 

The discretised slots at this point enable the message size to be 

displayed as a function of the ST segment which is more 

practical when configuring the ST segment of the FlexRay 

frame. The discretised slot duration is denoted as td(Mi) to 

differentiate it from the un-discretised message delay. 

 

To guarantee the message mi deadline there must be 

periodicity period(mi) between successive messages. The 

maximum distance between successive transmission slots mi is 

to be equal to the period(mi) [8]. 

 

A base period pbase is then selected. The smallest td(mi) is 

chosen as the initial base period pbase. From this value message 

periods in multiple harmonics are chosen which meet the 

periodicity requirement. The base period value is chosen in the 

format of transmission slots. A message integer period greater 

than the maximum number of transmission slot intervals 

results in a violation of the periodicity constraint. All 

messages transmitted in the ST segment are guaranteed to 

meet their deadlines due to the TT nature of the ST segment. 

With this in mind it is important to configure the FlexRay 

cycle to give the DYN segment as much opportunity to 

transmit as possible. If the cycle period can be reduced 

without affecting ST and DYN transmission times adversely 

this should be done so. An example of this is if a cycle period 

of 10ms enables deadlines to be met but a period of 5ms also 

results in deadlines being met the 5ms cycle period should be 

chosen. This allows the DYN tasks the opportunity to gain 

access to the bus twice as often as if a 10ms cycle period was 

chosen. 

 

Once the base period is selected and the discretised delay is 

chosen the parameters need to be validated. Equation 10 is 

used to validate that the chosen parameters meet the required 

deadlines. 

 

base

k

ibase

k
pMtdp ⋅<≤⋅

+12)(2
 Eqn (10) 

 

The base period value can be modified but all modifications 

still have to ensure that the periodicity constraint and the 

distance constraint are met. The procedure is summarised in 

Figure 7 algorithm. 

 

A. Dynamic Task Analysis 

In calculating the DYN segment size the first parameter 

required is the minimum time for the complete FlexRay frame. 

This is obtained from equation 11. This calculates the time 

taken to transmit all the data with no delays.  

 
 

NITmessageIDmessageIDSTtMin nibusFR ++= K)(

 Eqn (11) 

 

The MINFR(t) value will help tell if there are enough slots for 

the messages that will require transmission through the DYN 

segment. Equation 12 checks if there are enough slots in the 

DYN segments at the current frame configuration to give each 

DYN message a chance for transmission. Here FR(t) is the 

size of the FlexRay frame. 

 

)()(__ NITSTtFRDYNofNo busm +−≤  Eqn (12) 

 

To obtain a realistic DYN segment, delays to the DYN 

messages need to be calculated. Worst case response time 

analysis Rm is used to determine the length in time of a 

dynamic messages response. This different (to the ST 

segment) approach is required because the DYN segment is 

event-triggered. Some prerequisites include that only one node 

can transmit on the bus at any one time in a slot (either static 

or dynamic). The node determines when the slot counter is 

equal to the value of a frame identifier. By allocating one slot 

to at most one node this avoids any conflicts that might occur. 

The minislot counter value has to be less than the pLatestTx 

value which is defined in constraint #36 of appendix B in the 

FlexRay specifications v2.1 rev A [12] 

 

Each message is assumed to have an overhead as calculated 

for the static segment in section F (14 bytes). Adding the 

overhead to the message size gives the frame size for 

ST Segment Scheduling Algorithm () 

Initialise initial CAN parameters WCET, ri, Di, Task period 

  Perform Task Graph Analysis 

Obtain intermediate tasks ri and di values 
Re-allocate slack to path undertaking analysis  
Obtain ri and di times along chosen task graph path 

  If (using multirate system) 

   { 

LCM of interacting task graphs is required to guarantee timely 
transmission 

   } 

  Update new ri and di times per path analysed 

Determine message delay td(mi)  
Find optimised payload and configure frame size 

Heuristically chose optimised frame size 

Determine slot size and discretised 

Adjust message periods ensuring periodicity and distance constraint. 

 
Figure 7: ST Scheduling Algorithm 



 
 

transmission per message. The dynamic segment is composed 

of an integral multiple of the minislot length. The size of each 

minislot in the dynamic segment can be any integer value 

between 2 MT and 63 MT as defined in the FlexRay 

specifications v2.1 rev A appendix B [12]. 

 

1) Message Cycle Delays 

The earliest possible time to transmit a DYN message is after 

the ST segment has finished.  

The worst-case response time Rm(t) (equation 13) of a 

dynamic message is calculated from [9] the delay during one 

bus cycle if its slot has passed. The parameters; 

 

• δm the worst-case delay caused by the transmission of 

static messages and higher priority frames  

• wm is the delay caused by static messages and higher 

priority dynamic frames. 

• Cm the communication time  

 

mmmm CtwtR ++= )()( σ
 Eqn (13)  

 

The communication time is determined from the message 

frame size Fmessagei divided by the bus speed Busspeed as 

illustrated in equation 14. Here Fmessagei and Busspeed are in 

bit form. 

 

 

speed

i
m

Bus

Fmessage
C =  Eqn (14) 

 

The worst-case scenario of when a message can be generated 

is if it is generated immediately after the slot with its frame 

identifier has passed. The worst-case delay δm can be written 

as equation 15. The length of the static segment is STbus. 

 

)).(( NITgdMinislotmessageIDSTMin ibusFRm ++−=σ

 Eqn (15) 

 

Next wm is defined in equation 16, as blocking by static 

messages, hp(m) higher priority messages and any unused 

dynamic slots which gives a delay of one minislot gdminislot 

ms(m) each The single minislot is required to enable the 

minislot counter to increment to the next value. For this 

calculation the worst case delay occurs if the message requires 

transmission at the moment the pLatestTx value is the same as 

the minislot counter. Therefore all minislots after this value 

cannot be used for transmission. 

 

The frame identifier also determines the frames priority in the 

DYN segment.  

 

NITpLatestTxmhpSTtw busm +++= )()(  Eqn (16) 

The values obtained can be discretised to determine the DYN 

segment size in slots but is not necessary due to different 

messages occupying different amounts of minislots. 

Also included in the FlexRay frame is the NIT. This value can 

be calculated using constraint #27 and the symbol window is 

calculated from constraint #16 in Appendix B [12] 

 

The DYN segment algorithm is illustrated in Figure 8. 

 

 

IV. CASE STUDY 

The migration procedure was applied to an advanced 

automotive control application as detailed in Figure 9 and 

Table 4. Experimental validation was carried out using the 

following system specification. Initially performance results 

are obtained for the CAN implementation under various traffic 

conditions. Similar results are recorded for the migrated 

FlexRay based system.  

 
 

A. System Design 

A two node system was tested with each task assigned to a 

node depending on its function. The tasks dealing with 

“actions” were placed on node 1 (N1) and the tasks 

performing computational duties were placed on node 2 (N2). 

Channel A on N1 was connected with channel A on N2 

through an active-passive star configuration. Channel B was 

set up with a similar configuration where channel B on N1 is 

connected with channel B on N2. Bus bandwidth of 10MBit/s 

was chosen for FlexRay and a bandwidth of 125kbit/s was 

chosen for CAN. Both test configurations are illustrated in 

Figure 10. 

 
Figure 9: ACC Example Task Configuration 

DYN Segment RTA Algorithm() 
Initialise predefined parameters 
 { 
  MessageIDi, STbus, FR NIT, pLatestTx 
 } 
Find first possible transmission time after ST 
segment 
Determine delay if message slot has just passed 
Determine delay due to hp(m) and ms(m) 
Determine Cm 
Combine delays to for total WCRT Rm(t)

 
 

Figure 8: DYN Segment Algorithm 



 
 

 

B. Experimental Environment 

Both test configurations (CAN and FlexRay) were set up on 

two Fujitsu SK-91F467 FlexRay development boards, with 

each representing one node. The development board contained 

an MCU (microcontroller) and separate CC (communications 

controller). This was connected to the FlexRay physical layer 

via physical layer driver (FlexTiny FT1080) as per the 

FlexRay specifications. 

 
The tasks T1 and T2 are assigned WCET of 0.0ms because the 

start of the application is signalled once one of these values 

has been received. In reality there is some delay from the time 

the sensor detects a value until it is passed but this value is 

considered negligible in this test. Figure 11 illustrates the task 

graph and associated CAN parameters. The CAN parameters 

as they were obtained from task graph analysis are shown in 

Table 5, after the slack has been redistributed. 

 
 

 
 

C. CAN to FlexRay Migration 

Table 6 shows the message sizes in bytes and the transmission 

delay for each message. The solution is considered feasible at 

this stage due to the transmission delay being less than the 

deadline delay td(mi). Using the message sizes as specified in 

Table 6 results in the graph illustrated in Figure 12. A frame 

size of 24 is chosen which results in a payload of 5 two-word-

bytes 

 

The message periods are now discretised. A slot size of 40µs 

is selected. A slot size of 20 µs is extracted from the 

framework as per equation 8. The implemented slot size was 

modified due to the minimum achievable slot being 33µs 

(Decomsys designer restriction as per FlexRay specifications 

constraint #14 ), also a 40µs slot size yields an even slot count 

on all messages so there is no requirement to round off the 

number of slots. If the obtained value of 20µs was used this 

would give a minimum period of 700 slots as opposed to the 

350. The discretised td(mi) is illustrated as the number of slots. 

This is illustrated in Table 7. 

TABLE 5 

ACC PARAMETERS 

TASK 

# 

WCET 

(MS) 

RELEASE 

TIME 

(MS) 

TASK 

DEADLINE 

(MS) 

SLACK  

PER 

TASK(MS) 

TASK 

SCHEDULING 

DEADLINE 

(MS) 

1T  0.000 0.000 0.020 0.019 0.020 

2T  0.000 0.020 0.040 0.019 0.040 

3T  0.006 0.040 0.060 0.019 0.054 

4T  0.002 0.060 0.080 0.019 0.078 

5T  0.006 0.080 0.100 0.019 0.094 

6T  0.002 0.100 0.120 0.019 0.118 

 

 
Figure 11: CAN Task Graph 

 
Figure 10: CAN and FlexRay Test Configuration 

TABLE 4 

ACC PROPERTIES 

Task Number Operation 

T1 Vehicle Velocity 

T2 Distance to Vehicle 

in Front 

T3 Calc Relative speed 

of Vehicle in Front 

T4 Calc Desired 

Velocity 

T5 Calc Absolute 

Throttle Value 

T6 Actuate Throttle and 

Breaks 

 



 
 

 
 

 

 
 

With the smallest message period being 14ms/350 slots, this is 

used as the base period. This value satisfies equation 10. 

 

To evaluate the size of the DYN segment two DYN messages 

were transmitted at random times with constraints. The 

constraints ensure transmission was in the range of very 2ms-

20ms. A minislot size of 6µs was chosen by constraint #14 in 

the FlexRay specifications. 

Table 8 contains the parameters as calculated per equation 13. 

The values can be discretised and calculated as a function of 

number of minislots. This is illustrated in Table 9 

 
 

 
 

V. RESULTS 

The results section demonstrates the findings obtained through 

implementation of the framework as described above. As 

FlexRay contains CH A and CH B this paper deals with CH A 

as the primary channel for ST message transfer and CH B as 

the redundant channel. DYN messages are only assigned to 

CH B. This is the chosen set up because ST data is considered 

of a critical priority, while messages transmitted on the DYN 

segment are not to be considered as critical in this test case. 

All results are recorded over a 30 second sample period. 

 

In the CAN set up a task graph deadline of DCAN = 120ms 

exists. After undergoing task graph analysis the task graph 

deadline becomes DFlexRay = 84ms. The value is obtained from 

modifying the FlexRay message period to 14ms from the CAN 

value of 20ms as illustrated by the findings in Figures 13 and 

14. Figure 13 contains the CAN results and figure 14 contains 

the FlexRay results. Figure 13 shows a message maximum 

execution time of 7.845ms compared to deadline time of 20ms. 

This maximum Figure is taken after the longest WCET of 6ms 

is applied to the task. FlexRay messages result in different 

cycle values depending on the same WCETs as in the CAN 

test. The maximum message cycle is 7.0380ms with a WCET 

of 6ms in the FlexRay test. 

 

Each FlexRay ST message meets its deadline of 14ms as 

shown in Figure 14. The same messages in CAN also meet 

their deadlines but message times are more consistent in 

FlexRay 

From Figure 14 it is observed that all message deadlines are 

easily met including where message times fluctuate in CAN. 

At higher data rates CAN messages would be susceptible to 

message times increasing where as in FlexRay these messages 

times are always guaranteed. To get a clearer indication of if 

the application is as successful on FlexRay as CAN we 

examine the applications cycle times.  

TABLE 9 

DYN MESSAGE ATTRIBUTES (SLOT) 

Message 

# 

Message 

Size 

(Bytes) 

mσ  

(slots) 

)(twm

(slots) 

mC

(slots) 

)(tRm  

(slots) 

7m  4 247 51 3 300 

8m  4 247 53 3 303 

 

TABLE 8 

DYN MESSAGE ATTRIBUTES 

Message 

# 

Message 

Size 

(Bytes) 

mσ  

(ms) 

)(twm

(ms) 

mC

(ms) 

)(tRm  

(ms) 

7m  4 1.4806 0.303 0.0144 1.1980 

8m  4 1.4806 0.317 

 

0.0144 1.8124 

 

TABLE 7 

MESSAGE DEADLINES 

Message # DEADLINE 

)( imtd (MS) 

)( imtd  

(SLOTS) 

1m  0.020 500 

2m  0.020 500 

3m  0.014 350 

4m  0.018 450 

5m  0.014 350 

 

TABLE 6 

MESSAGE ATTRIBUTES 

Message 

# 

Max 
Size 

(bytes) 

Transmission 

Delay  

(µs) 

Transmission 

Delay (Slot) 

1m  10 8 1 

2m  10 8 1 

3m  10 8 1 

4m  10 8 1 

5m  10 8 1 

 
Figure 12: Optimal FlexRay Frame 
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Examining the complete applications cycle times, Figure 15 

represents the CAN data and Figure 16 represents the FlexRay 

data. The CAN cycle has a deadline of 120ms but has 

completed execution by a maximum time of 20.478ms. The 

application implemented in FlexRay has a deadline of 84ms 

but completes execution with a maximum time of 22.947ms. 

This shows redundancy in the system of 61ms in FlexRay and 

99ms in CAN. Even at this maximum cycle time the deadline 

of 84ms is not close to being exceeded.  

 

 
 

 
Table 10 gives a detailed breakdown of the FlexRay ST task 

parameters. As task messages m1 and m2 are the initial times 

and have no precedence constraints there is a minimum delay 

of zero. Column four shows the actual maximum execution 

time.  

The Framework allows the extraction of FlexRay 

configuration parameters. The parameters shown in Table 11 

are required to configure the FlexRay frame for successful 

transmission. The setup includes 6 tasks in the static segment 

and 2 tasks in the DYN segment. A MT was set at 1µs. This 

minimum configuration results in a FlexRay cycle of 

1.750ms.This value is obtained from the pmin value of 14ms. 

 

 
 

 

 
Figure 16: FlexRay ST Message Cycles. Cycle length values have 

been scaled to give a clearer representation. 
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Figure 15: CAN Cycle Times. Cycle length values have been 

scaled to give a clearer representation. 
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Figure 14: FlexRay Cycle Times 
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Figure13 : CAN Message Times 
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Ideally a pbase of 0.875ms is obtainable for configuration to 

enable the DYN messages get access to the FlexRay bus as 

frequently as possible. Due to hardware and software 

constraints this value could not be used. With 6 ST slots 

required at 40µs each this resulted in a ST segment size of 

240µs. With the cycles size of 1.750ms this leaves maximum 

151ms to be divided between the DYN segment and the NIT. 

Each minislot in the DYN segment was set at 6MT. With the 

NIT of 25MT this resulted in a DYN segments size of 1485µs 

or 247 minislots. This is coupled with a worse case response 

time of 263 minislots. 

 

 

VI. CONCLUSION 

This paper addresses the topic of migrating from CAN to 

FlexRay. This was carried out through the development of a 

generic migration framework. The migration framework 

involved synthesising tasks to the message level before 

obtaining associated FlexRay parameters. The proposed 

framework provides a solution utilising both the ST and DYN 

segments of the FlexRay cycle. The framework was then 

successfully implemented using ACC parameters. 

Experimental results show that the FlexRay parameters met 

previous CAN parameters, and also improved on them with 

the deterministic nature guaranteeing message transmission. 

The DYN messages were transmitted randomly so there were 

no predetermined timing constraints. These still demonstrate 

the use of both the ST and DYN segments available. Even 

with the improved results there are still large amounts of 

redundancy for use in future or larger applications. Therefore 

this method successfully migrates from a CAN to a FlexRay 

protocol. 
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TABLE 11 

FLEXRAY FRAME PARAMETERS 

Parameter Value 

Number of ST Slots 6 

Number of DYN 

Slots 

247 

ST Slot Size 40 sµ  

DYN Minislot Size 6 sµ  

Payload Size 5 2-word-bytes 

NIT 25 sµ  

 

TABLE 10 

ST TASK PARAMETERS 

Task # Deadline 

Time 

(ms) 

WCET Execution 

Time (ms) 

1T  14 0 0.000 

2T  14 0 0.0405 

3T  14 6 7.039 

4T  14 2 3.54 

5T  14 6 7.039 

6T  14 2 5.29 

 


