
Flexible Multi-Service Telecommunications Accounting System

E. de Leastar and J. McGibney

Telecommunications Software Systems Group, Waterford Institute of Technology, Ireland

e-mail: edeleastar@wit.ie

Abstract

Due to market deregulation and technological advances, a multi-service broadband environment is emerging,
generating a requirement for a new approach to pricing systems. This paper presents such an approach and
describes a working implementation of an innovative and flexible multi-service accounting system. The system
is based on a mature understanding of the nature of charging algorithms, and is implemented as a set of
interoperating distributed components. At the heart of the system is a rating engine built around a service
portfolio, tying together spreadsheet specification of arbitrarily complex services, charging algorithms and tariff
tables. The very wide range of service delivery technologies in existence motivates the design of a system that is
independent of proprietary formats and based on a dynamic service portfolio structure and a generic service
detail record definition.

Keywords

Accounting, Charging, Rating, Multiservice

1. Introduction

Until fairly recently, communications services have generally been straightforward - a limited
number of services on offer, limited scope for customer tailoring of such services, and limited
complexity. Now, however, there is considerable growth in the quantity and diversity of
services. New communication technologies are enabling the introduction of variable-
bandwidth with quality of service guarantees. ATM (ATM Forum, 1999) and Frame Relay
already support a mature set of such services, and work is emerging from the IETF on QoS-
guaranteed IP1. Some services will be provided as standardised network services based on
core technologies, and others as higher-level user services that are in effect an amalgamation
of network services, information content, and other components.

A new kind of accounting system is needed to provide metering and pricing support for these
complex services. It should be capable of supporting the creation new services, charging
algorithms and tariffs without the need for frequent upgrades. It should provide support for
near real-time online billing, where the customer can very quickly obtain information on the
cost of the service just used. And it should hide as much of the complexity associated with
charging algorithms as possible, delivering to service providers a mechanism for manipulating
these algorithms in a familiar environment.

Recent work on the specification of charging schemes for ATM and emerging quality IP
services has been carried out under the European ACTS (Advanced Communications
Technologies and Services) programme, and forms the basis of the work reported on here.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WIT Repository

https://core.ac.uk/display/298076931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper proposes an architecture for a flexible broadband pricing system and reports on a
working implementation that has been used in European trials. An overview of accounting
concepts is presented, identifying the major subsystems within broadband accounting. This is
followed by analytical discussion of the structure of the charging algorithms. A Service
Portfolio is introduced encapsulating the proposed charging approach, and the outline of an
implementation is presented, in CORBA IDL.

1.1. Accounting Concepts and Subsystems

The overall accounting process can be divided into metering, rating (or pricing), and billing
systems, as shown in Figure 1. The role of the metering system is to measure, collect and
forward information that identifies and describes the usage of network services. This
information can then be used for charging purposes. The metering system retrieves this
information from specific measuring points, distributed throughout the network. The
measuring points are dependent on the network. For ATM these are switches, for IP these are
routers and so on. This service usage information is organised in the form of Service Detail

Records (SDRs). The SDR is a generalization of the Call Detail Record (CDR) provided by
most conventional telephony switches.

Billing

Rating

Metering

IP

Router

ATM

Switch

Other

Service

Machines

Figure 1 Accounting Systems

The main role of rating, the focus of this paper, is to provide support for the billing system so
that it can invoice customers for telecommunications services. The rating system computes the

charges from which the billing system composes the customer bills.

2. Multi-service Charging Algorithms

Charging in a multi-service environment is complex. Many different services can be delivered
on the same equipment, and a wide variety of charging schemes and tariffs are possible. The
charging approach proposed here stipulates that all the necessary and sufficient information
for charging be encapsulated in four entities – a charging algorithm, a tariff table, an SDR
type specification, and set of service determination rules. Particular reference is made to an
implementation of charging for ATM and Quality IP services. However, the architecture is
sufficiently flexible for wider applicability to as yet unforeseen technologies.

2.1. Charging Algorithms

The central task of rating is to evaluate the charge for a given service usage so that the user
can be billed appropriately. This involves the application of a charging regime to SDR data to
yield a monetary charge. Charging for a service can be considered as containing elements
relating to subscription and usage sessions (CANCAN, 1997). Of most interest to us is the
session charge. This is the variable component of charging that is normally highly dependent
on the contents of the relevant SDR(s). Generally, the session charge can be expressed as:

C = a1X1 + a2X2 + … + anXn, (Equation 1)

where X1, …, Xn are charging parameters or functions of charging parameters that do not
depend on numeric tariffs,
a1, …, an are charging scheme numeric coefficients, known as tariffs, and,
C is the charge for the session.

Thus X1, …, Xn represent the commodities that are being charged - e.g., duration, packet
counts, bit rates, etc., and it must be possible to express them in terms of SDR field
parameters. The tariff coefficients a1, …, an are then the price factors that are applied to the
chargeable commodities. For example, a proposed charging scheme (SUSIE, 1999) for MPLS
real time service looks like this:

C = a1*P*T, (Equation 2)

where T is the duration of the connection, P is the peak data rate (i.e. the guaranteed
bandwidth) and a1 and C are as above

Table 1 gives an analysis of this charging scheme and how its terms derive from SDR fields

Parameter Parameter Type SDR field(s) Units

C [$]

a1 Tariff [$/kbit]

P Charging ContractedPeakDataRate [kbits/sec]

T Charging (CollectionTime + CollectionTimeOffset) -

(CallStartTime + CallStartTimeOffset) –

DisruptionDuration

[sec]

Table 1: Example charging scheme expressed in terms of SDR Parameters

2.2. Tariff Tables

Tariffs are the coefficients of a charging scheme; they are the price component of each term.
Consider again the charging schemes above (equation 2). Here P and T are charging
parameters as they relate directly to values that can be retrieved from the SDR. a1 is viewed as
the tariff as it is effectively the price that can be altered as the market demands. This tariff is
not necessarily a fixed value however but may depend, for example, on time of day or
geographical location of called party. Such variable tariffs are traditionally organised in tariff
tables, examples of which are the rate cards available from most telephone companies and
published in telephone directories.

2.3. Service Determination Rules

The third, and perhaps most significant, key to charging in a multi-service environment is to
have a means of specifying service determination rules. The purpose of such rules is to allow
us to take an SDR and unambiguously identify the service that was used to produce this SDR.
Then the correct charges and tariffs can be applied. For maximum flexibility it is allowed to
use any combination of SDR parameters to identify the service. An example service
determination rule is as follows:

Service: "ConstantBitRate, local, night, no quality guarantees"

Condition: if ServiceCategory is "CBR"
and CallingNumber and CalledNumber have the same first 3 digits
and CallCreationTime is between 00:00 and 08:00
and CollectionTime is between 00:00 and 08:00 on the same day

It is important that the service identification rules unambiguously identify a single service
from an SDR. It would be too much of a burden on the user to expect all service rules entered
to be mutually exclusive, and to cover the entire “SDR space”, ensuring that any SDR causes
one and only one identification rule to be satisfied. Thus the user is allowed to assign a
priority level to each service rule, and rules of higher priority are tested first.

2.4. Representing the Schemes

The challenge for the implementation of the accounting system to support these schemes is to
define a representation that is flexible and user-friendly, but sufficiently powerful to permit
the most complex of charging regimes to be captured. Specifically, the representation format
must:

- be easy to manage.
- permit arbitrarily complex formulae.
- allow multiple SDR types to be manipulated
- be consistent with the world of accounting and billing.

Flexible representation of charging algorithms, satisfying the above requirements, is achieved
by providing the user with a spreadsheet-like user interface. Usage data is specified for
selection a priori to be placed into cells in the worksheet, and other cells can be used by the
user to enter formulae or conditions. Sample usage data can be entered for testing purposes,
but actual usage data is taken from the SDRs and placed into the specified positions at
runtime, and the calculations are performed automatically.

3. Service Portfolio

A service provider will typically offer a range of services, some at the bearer communications
level and others that are termed "value-added". The term service portfolio is used to represent
this service offering. A present day public fixed line network provider might have the
following service portfolio:

- PSTN residential
- PSTN business
- Virtual Private Network (VPN)
- Freephone

- Call Answering
- Telephone equipment rental
- Directory assistance
- ISDN

Some of these services are entirely different from one another (e.g. Directory Assistance vs.
ISDN) while others have little technical difference and only differ in how they are charged
(PSTN business vs. PSTN residential).

For the purposes of accounting, the service portfolio can be defined as the collection of
service information that is necessary to support the rating process. Formally, we define
service portfolio as a set of service templates that are offered by a service provider, where
each template contains the following:

- SDR type - format of usage data from the service machine
- Service Determination Rule - logic to identify the service
- Tariff Table - algorithm to generate coefficients of the charging scheme; i.e, the prices
- Charging Scheme - algorithm to generate charge for billing

There is no restriction on reuse of any of these elements across multiple service templates. For
example, the same charging algorithm could be applied to different services, but the tariffs
tables could be different.

Figure 2: Service Portfolio

The Service Portfolio is modelled as a set of CORBA IDL types. This facilitates the
centralised management of the service portfolio, with remote access across a CORBA
infrastructure. Client applications include Graphical User Interface (GUI) applications to
create, edit, modify and delete service portfolio entries (the service templates), generalised
report generators, and of course the rating process itself, which will need to match service
templates against incoming SDRs and compute charges accordingly.

The Service Portfolio IDL is divided into three categories, defined as separate modules. The
first category, SDRTypes, specifies a comprehensive generalised representation for usage data
gathered by the metering system. The second category, Schemes, defines the structure of the
algorithms maintained within the service portfolio, specifically the service rules, tariff tables
and charging algorithms. The third category, ServiceTemplate, models individual entries
within the service portfolio in terms of the SDRTypes and Schemes modules.

3.1. SDR Types

The structure of the SDR is at the root of the accounting model, as SDRs are ultimately the
origin of the charges generated by the system. The model developed in IDL is completely
generic, catering for current and future metering technology and service types. Struct
t_ChargeParameter defines a meta-type, describing the name, type, default value, and unit
denomination of one element within an SDR.

struct t_ChargeParameter {

 string name;

 any defaultValue;

 string units;

};

typedef sequence<t_ChargeParameter> t_SDRType;

typedef string t_SDRId;

Figure 3: SDRType Structure

The default value and type are represented as a single any value, which by definition has a
typecode field. For instance a charge parameter for an MPLS-SDR might consist of:

“ContractedPeakCellCount”, 0 (long long), “kbits”

An SDRType is simply a collection of these structures; i.e. a sequence of t_ChargePatameter

objects. SDRType is thus regarded as a meta-type, describing a category of SDRs. This
allows us to define an MPLS-SDR for MPLS traffic, or an IP-SDR for IP based transport, or
we may define an SDR for content delivered. Defining different SDRType representations for
each of these types of service technology is critically important to the composition of
charging algorithms. Essentially the SDRType for a particular category of service defines a
vocabulary in which the charging algorithms can be expressed. This vocabulary permits the
composition of these algorithms in an intuitive manner; with charging formulae manipulating
named charging parameters derived from the SDRType associated with the service.

The actual usage data itself, as measured during the delivery of a service, is represented as a
collection of t_MeterParameter structs. Each meter parameter consists of an identity, locating
a descriptive t_ChargeParameter in a corresponding SDRType sequence, and the actual data
itself, encoded as a CORBA any.

struct t_MeterParameter {

 octet identity; //attribute identifier

 any value; //Value

};

typedef sequence<t_MeterParameter> t_UsageData;

struct t_SDR {

 t_SDRId type; // Type + version information

 t_UsageData data;

};

typedef sequence<t_SDR> t_SDRList;

Figure 4: SDRs

Thus for an MPLS-SDR, a meter parameter might simply be:

12333314, 5

The first number is some parameter gathered from a service machine, and the second

associates this measurement with some t_ChargeParameter meta-type within an SDRType
sequence (say ContractedPeakDataRate from the example above). A t_SDR is defined as a
sequence of these charge parameters, along with an id of the t_SDRType of which this SDR is
an instance.

3.2. Schemes

Each of the three algorithms that compose a service template: the service determination rules,
the tariff table and the charging algorithm, are modelled in IDL as a struct t_Scheme. Using
structs, as opposed to interfaces, is a strategic decision, as client applications will be capable
of preloading the full service portfolio without having to continually invoke remote functions
to access scheme attributes (Mowbray et al, 1997). This reduction in remote invocations is an
important consideration for GUI applications manipulating the portfolio, but absolutely
crucial for the rating process, which will be unable to tolerate network latency implied by
remote invocations during charge computation.

 typedef unsigned long t_SchemeId;

 typedef string t_Name;

 typedef sequence<octet> t_SchemeFormulae;

 struct t_Scheme

 {

 t_SchemeId ID;

 t_Name Name;

 t_SDRId SDRtype;

 t_SchemeFormulae Algorithm;

 };

 typedef sequence<t_Scheme> t_SchemeList;

Figure 5: Scheme IDL

Each Scheme consists of an ID, a Name, an SDRType and an Algorithm. The SDRType
identifier maps to an SDRType structure defined above, defining the vocabulary of the
algorithm.

Modelling the algorithm itself in IDL poses a dilemma. Spreadsheet technology has been
introduced as the appropriate mechanism for defining and manipulating charging algorithms.
In this scenario, the SDRType entities are mapped to specific cells within a spreadsheet, and a
set of interrelated algorithm formulae can be assembled using these cell references to
compose a “result”, or set of results for the algorithm. A spreadsheet is a complex structure,
with multiple internal dependencies between cell contents, and sophisticated formulae of
arbitrary length and structure. Modelling this in IDL would be counter-productive, pushing a
degree of complexity into a domain fundamentally unsuitable for it.

The dilemma was resolved by completely abstracting the entire algorithm within the
t_Scheme structure as a sequence of octets – essentially a binary stream. Within the database
management system hosting the Service Portfolio, the stream is stored as a Binary Large
Object (BLOB) and placed in a relational table. Within the concrete classes that manipulate
schemes, this binary stream is serialized into its native format. For the GUI applications this
native representation is attached to a visual component rendering it as a traditional
spreadsheet. During the rating process, they are similarly serialised into native worksheet
format, but no GUI is attached. Here the calculating engine is employed to recalculate all
cells, and generate results employed in the rating process.

3.3. Service Templates

The Service Template can now be defined as a structure encapsulating naming information +
IDs of the Charging Scheme, Tariff Table and Service Rules objects as defined above.

 typedef unsigned long t_ServiceTemplateId;

 typedef string t_Brand;

 typedef string t_Description;

 struct t_ServiceTemplate {

 t_ServiceTemplateId ID;

 t_Name Name;

 t_Brand Brand;

 t_Description Description;

 t_SchemeId ChargingScheme;

 t_SchemeId TariffScheme;

 t_SchemeId RulesScheme;

 };

 typedef sequence<t_ServiceTemplate> t_ServiceTemplateList;

Figure 6: Serviceportfolio Servicetemplate IDL

A Service Template embodies a charging regime, i.e. a complete set of algorithms which,
when applied to some usage data gathered from a service machine (an SDR), will compute a
charge for that service. The Service Portfolio is thus modelled as a sequence of
t_ServiceTemplate objects – a collection of charging regimes that can be used to compute
charges for all the offerings a service provider may choose to make available.

4. Rating

In order to realize the charging approach embodied in the Service Portfolio, a software
component must be designed to compute the charges based on usage data gathered from
network elements. This is termed a rate engine. This component must be supported by other
components: database and GUI applications to store, retrieve and edit the service portfolio
itself; agents to gather the usage information (SDRs) from the service machines; gateway
components to route these SDRs to rate engine(s), and to route generated charges to database
and/or interested client applications (web browsers for online accounting, for instance).

The components are completely decoupled, with minimal dependencies on shared IDL
specified interfaces. This is achieved through widespread deployment of the OMG Event
Service (Wang et al, 1999), facilitating the asynchronous transmission of the key data
structures (SDRs and Charge Records). While the Event Service does not provide Quality-of-
Service (QoS) guarantees, is serves as a stepping-stone to next generation event service
implementations, specifically those taking advantage of the CORBA 2.3 (OMG, 1998)
messaging and notification services (OMG, 1998). These have a range of QoS parameters,
which can be tuned to meet the demands of the accounting system.

The rate engine is the most computationally intensive of these components, and its structure is
the key to a flexible, performant accounting system. Rate engine components are instantiated
within a multithreaded rating server, each engine listening to one or more event channel for
SDRs, and pushing charge records to an output channel. The SDR channel is fed by metering
agents, typically interfacing with Service Machines (switches & routers) through SNMP.
Attached to the Charge Record channel are listeners pumping the records to a DBMS, or
distributing them to online client applications.

Figure 7: Rating Components

4.1. The Rate Engine

Within the engine, the actual charges themselves are computed. Essentially the engine,
preloaded with the service portfolio using interfaces defined above, applies the appropriate
charging regimes to the incoming SDRs, generating the charge records accordingly. This is
carried out in five stages (Figure 8):

Figure 8: Rating Process

1. Identify candidate service templates from the service portfolio
2. Step through these service templates and apply the service determination rules until a rule

is satisfied. This is the unique service template applicable to the SDR.
3. Using the tariff worksheet for this service template, compute tariff coefficients based on

the received SDR field values
4. Compute the charge by applying the appropriate charging scheme worksheet
5. Write the resultant charge with other relevant information to a Charge Record.

Stages two, three and four involve replacing terms within formulae, and re-evaluating the
formulae to yield results. It is analogous to a recalculation that takes place within a spread-
sheet, with usage data placed on spreadsheet cells, and cell references within the formulae
ensuring that this data percolates through the entire charging algorithm during recalculation.

4.2. Spreadsheet Component

Having determined not to publish the format of this algorithm/spreadsheet in the IDL, the
issue of structure of the sheet itself can no longer be postponed - or perhaps it can?
Spreadsheets are one of the most widely used application categories, and programmable
spreadsheet software components are among the most common items on commercial
component catalogues2. Classical component reuse technology can be deployed here to
significantly cut the cost of development, and reduce the complexity of the implementation.

5. Conclusion

The accounting system described here has been realised as a set of interoperating components
delivering a flexible multi-service accounting system. The system has been trialled primarily
over ATM broadband networks, utilising in-house development testbeds, and that of the
SUSIE project at Basel in Switzerland. The system has proved robust and performant,
delivering a flexible and innovative “laboratory” for devising new types of charging
algorithms appropriate for broadband services. Work is ongoing in deploying the system for
Voice over IP services, implementing charging algorithms appropriate to this technology.

6. Acknowledgements

The authors wish to thank the SUSIE, Bandwidth 2000 and FlowThru consortia for several
helpful discussions. The work of these projects is part-funded by the European Commission.

7. References

ATM Forum, (1999), Traffic Management Specification, Version 4.1.
CANCAN Consortium, (1997), Final Report on Static Charging Schemes and their Performance, Deliverable 9a.
SUSIE consortium (1999) Trials: Accounting Results, Deliverable 6.
Mowbray,T, et,al. (1997), CORBA Design Patterns, Wiley.
Wang,R, et.al. (1999), “Event Bridges Across CORBA Event Service and Programming Language Event
Models”, Journal of Object Oriented Programming, Vol.12, No.4.
Object Management Group (1998), The Common Object Request Broker Architecture, Revision 2.3.
Object Management Group (1998), CORBA Messaging, Revised Submission.

1 http://www.ietf.org
2 http://www.componentsource.com

