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Abstract

Formal Concept Analysis (FCA) is an effective tool for
data analysis and knowledge discovery. Concept lattice,
which is derived from mathematical order theory and lattice
theory, is the core of FCA. Many research works of various
areas show that concept lattices structures is an effective
platform for data mining, machine learning, information
retrieval, software engineer, etc. This paper offers a brief
overview of FCA and proposes to apply FCA as a tool for
analysis and visualization of data in Digital ecosystem, and
also discusses the applications of data mining for Digital
ecosystem.

1 Introduction

Concept is the base of human’s thinking and logic. We
can distinguish and understand the various different objects
of the real world by the concepts that describe the categories
and attributes of the objects. Concept is also important for
data analysis in computer science. Formal Concept Analy-
sis (FCA) is a method for data analysis, information man-
agement and knowledge representation that takes advantage
of the features of formal concepts.

The core of FCA is concept lattice. Theoretical foun-
dation of concept lattice founds on the mathematical lattice
theory [3, 11]. Lattice is a popular mathematical structure
for modeling conceptual hierarchies. Concept lattice is a
method for deriving conceptual structures out of data. For
concept lattice, we study the relations between objects and
attributes in a formal context, and how objects can be hi-
erarchically grouped together according to their common
attributes. Certain object subset and the set of their com-
mon attributes can represent each other, such duality sets
form a formal concept, which the attribute subset is called
intent and the object subset is called extent. Among the for-
mal concepts, it exists an order relation, they form a com-
plete lattice: concept lattice. Each node in the lattice is
a concept and the corresponding graph (Hasse diagram) is

considered as the generalization and specialization relation-
ships between concepts. Such graphical structure represents
directly and visually the relations of conceptual hierarchies.
It allows us to analyze and mine the complex data for such
as classification, association rules mining, clustering, etc.

The application of concept lattice has been an area of ac-
tive and promising research in various fields such as knowl-
edge discovery, information retrieval, software engineer and
machine learning. For example, in the context of associa-
tion rule mining [1], which consists in finding all associa-
tions and correlation among data items with a certain crite-
rion (degree of support and confidence), it’s a hard problem
to find all frequent sets in a large data. The frequent sets
generation is the most important step for association rules.
Concept lattice structure [13] has shown to be an effec-
tive tool for finding frequent concepts for association rules
[17, 20, 18, 24]. The problem of finding frequent sets from
data for association rules can be reduced to find frequent
concepts with concept lattice. And it’s possible to prune the
number of rules produced without information loss using
closed set lattice [16].

We propose to use FCA as a tool for data analysis, infor-
mation management and knowledge representation in Digi-
tal ecosystem.

Digital ecosystem (DE) is a new concept. In the EU re-
search community, the Digital Ecosystem aims at provid-
ing to small and micro enterprises (SMMEs) ICT appli-
cations and services which improve their efficiency, busi-
ness integration and synergies within EU territories, but also
enabling their integration of local value chains within the
global market. In the natural world, an ecosystem is a sys-
tem whose members benefit from each other’s participation
via symbiotic relationships. For the digital ecosystem, it
is a ”digital environment” populated by ”digital species” or
”digital components” which can be software components,
applications, services, knowledge, business processes and
models, training modules, contractual frameworks, law, etc.
A digital component is any useful idea, expressed by a lan-
guage (formal or natural), digitalised and transported within
the ecosystem, and which can be processed by humans or by
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computers. The digital ecosystem infrastructure supports
the description, compositions, evolution, integration, shar-
ing and distribution of the digital components and of knowl-
edge.

The digital ecosystem initiative aims at fostering a cul-
tural change in enterprise networking and in business prac-
tices. It innovates and impacts on three aspects: technology,
business practices and knowledge.

In the digital ecosystem, some knowledge is existing, but
some knowledge is previously unknown, implicit, hidden
in large data. So we should extract the knowledge from
large data. The techniques of data mining (DM) are widely
used in research and application to look for relationships
and knowledge that are implicit in large volumes of data and
are interesting in the sense of impacting an organization’s
practice. Hence, we propose to use the techniques of data
mining to extract knowledge for the digital ecosystem. We
will discuss main issues of application of data mining for
the digital ecosystem.

Contributions. This paper makes the following contri-
butions: propose to use the technologies of data mining to
extract knowledge for digital ecosystem and propose and
describe a new tool, formal concept analysis, for digital
ecosystem to analyze and represent data and knowledge.

2 Knowledge extraction in DE

Digital Ecosystems are emerging as a novel approach for
the catalysis of sustainable development driven by networks
of micro- and small enterprises, enabled by ICT services
and intelligent cooperative solutions, linking multitudes of
socio-economic actors and ICT solutions that are afford-
able, trustworthy, adaptive and evolutionary. Dynamic and
remote collaboration and interaction in structured and un-
structured environments are catalysed by new approaches
and ICT technologies, which consider the knowledge, ICT
solutions and services as digital ecosystem entities which
exhibit the behavior of natural organisms. Thus, the in-
frastructure and the services supporting organisational in-
teraction and networking will form a digital ecosystem con-
sidered a pervasive common infrastructure carrying knowl-
edge, models and services, where complex heterogeneous,
human and digital entities and systems are themselves com-
posed of simpler subsystems.

In order to extract the implicit knowledge from the dig-
ital ecosystem, and help companies to provide better, cus-
tomized services and support decision making. We discuss
the main issues of application of data mining for the digital
ecosystem in this section.

2.1 Main aims of DM for DE

For the digital ecosystem, computer science research fo-
cuses on the seamless management of distributed, multi-
centric and pervasive ICT networks carrying services and
representations of knowledge, enabling the creation of a
self-organising environment that supports the continuous
evolution of business models and software services, by ex-
ploiting paradigms from biology and economics.

The application of the data mining techniques should
consider the features of the digital ecosystem. The pur-
pose of the applications of DM is to develop efficient DM
algorithms that scale up large distributed data sets, inte-
grate efficient DM algorithms and techniques, and P2P dis-
tributed computing environment for extracting knowledge
from large amounts of large and complex distributed data
for DE. The main research works will focus on :

• Robustness, reliability, sustainability, and scalability
of distributed data mining techniques for DE

• Automatic, autonomic and dynamic DM processes for
DE

• Dynamic Peer-to-peer (or abbreviated P2P) architec-
tures for heterogeneous distributed and complex data

• Seamless interoperability with service oriented plat-
forms

• Recursive, reflexive, and self-reinforcing knowledge
discovery

We should provide dynamic, scalable and flexible DM
algorithms for extracting knowledge efficiently from the
heterogeneous, high dimensional and distributed data. We
can use various specific algorithms or approaches for the
same task, because many algorithms or approaches may ex-
ert efficient performance on specific data (particular in size,
density, and type etc.) and distributed environment. The
system should analyze the characteristics of the data, and
then automatically choose a befitting algorithm. Different
sites may perform different algorithms or approaches for
the same task depending on different characteristics of each
site. For example, there are lots of clustering algorithms, but
most of them is only suitable for one type of data. Maybe
many different types of data in the same or different sites
for distributed data. Hence each site can use one suitable
clustering algorithm or combination of several clustering al-
gorithms.

According to the application, we can unify some data
mining tasks. For example, if we need both clustering
and association rule mining for huge distributed transaction
data, we can use some techniques to unify these two tasks
for avoiding large amounts of repetitious computing.
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2.2 Challenges of DM for DE

In recent years, DM has attracted a lot of attention among
the fields of research and applications. Many techniques
and systems of DM have been proposed. However, the data
and infrastructure of DE are very complex. There are many
challenges of the applications of DM for DE such as het-
erogeneous data, complex data, security, privacy and auton-
omy of local databases, network topology and transmission
scheme. We need to develop more scalable and more effi-
cient techniques of DM for DE.

Data mining and knowledge discovery can benefit from
the use of distributed data mining (DDM) techniques to
improve mining performance of huge data or distributed
data. Although there are many efficient algorithms and
techniques for mining centralized data sets, it’s inefficient
or incapable to deal with huge data sets or distributed data
sets.

There are two main reasons to choose DDM. The first
one is that data is very large. If data is too large, it’s hard to
store it at a single site, or it’s inefficient or incapable to mine
such large data at a single site. In such a case, data may be
decomposed into some parts that are distributed at different
sites. Then we perform the data mining operations for each
site. At the end, the mining results of each site are combined
to gain global results. This will optimize centralized data
mining since the work load is distributed among the sites.

The second reason is that we need to deal with inher-
ent distributed data sets. In fact, various wired and wireless
networks such as internet, intranets, local area networks, ad
hoc wireless networks and sensor networks etc. produce
many distributed resources of data. These distributed data
need to be mined to gain global patterns, models or knowl-
edge. The straightforward solution is to transfer all data to
a central site, where data mining is done. However, even if
we have enough capacity to handle the data storage and data
mining at a central site, it may be too expensive to transfer
the local data sets to the central site. On the other hand,
the privacy issue is playing an important role in the emerg-
ing distributed data. The distributed data sets may not be
transferred because of privacy, security or autonomy of the
data sets. Therefore, DDM is an effective and scalable solu-
tion for mining huge and distributed data sets in distributed
computing environments.

2.3 Complex data in DE

There are large amounts of distributed data in DE. Most
of distributed data is heterogeneous, complex and noisy. It’s
hard to deal with heterogeneous and complex data. Dis-
tributed data can be divided into two categories: homo-
geneous and heterogeneous. In homogeneous data, the
databases located at different sites have the same attributes

and in the same format, while in heterogeneous data, the at-
tributes at each site are different or in different format. Het-
erogeneous data is more complex than homogeneous data
for DDM tasks.

Most studies on DDM assume that local databases are
homogeneous. So many DDM algorithms only deal with
homogeneous data. If the local databases are heteroge-
neous, we need to adopt different techniques to deal with
them. Integrating local models of heterogeneous data is
hard for many data mining tasks. Therefore, developing
DDM algorithms that can handle heterogeneous data is be-
coming increasingly important.

Many real data are high dimensional, high dense, non
static, unbalanced. Increasingly complex data sources,
structures, and types (like natural language text, images,
time series, continuous data streams, multi-relational and
object data types etc.) are emerging. It requires the develop-
ment of new methodologies, algorithms, tools, and services
to mine such complex data. One solution for managing the
complex data for DDM is to unify different data. For exam-
ple, we can use XML to present complex data.

Sometimes, complexity of data rests with noise in the
data. Real world data is dirty and noisy. In a large database,
many of the attribute values will be inexact or incorrect,
or there are some missing attributes and missing attribute
values. Data noise may affect DDM results, so high quality
data for DDM is needed. One solution is data preprocessing
such as data cleaning, data transformation, data reduction.

2.4 Complex infrastructures in DE

Distributed environment is the base of DE. DDM needs
effective infrastructures for distributed large-scale and high-
performance computing and data processing. Various wired
and wireless networks offer the distributed computing en-
vironment. Recently, P2P or grid is considered as more
and more important distributed computing environment in
DDM.

In centralized data mining, the main concern for the ef-
ficiency of a data mining algorithm is its I/O and/or CPU
time. In a distributed environment, the communication
cost should be considered, it may be a bottleneck in DDM
[2, 19]. The cost of transferring large blocks of data may
be prohibitive and result in very inefficient implementations
in DDM. For a slow network, the communication cost will
dominate the overall cost. The communication cost is deter-
mined by the infrastructures of the distributed environment,
the network bandwidth and the number of messages that are
sent across the network. In order to reduce the communica-
tion cost, many DDM methods are used to minimize the
number of messages sent. Some methods also attempt to
load-balance across sites to prevent performance from be-
ing dominated by the time and space usage of any individ-
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ual site. We consider that one important method is to choose
a suitable distributed infrastructures and computing service.
The distributed computation infrastructure of P2P or grid is
very suitable for DDM. P2P or Grid can provide an effective
computational support for DDM applications.

A grid is a geographically distributed computation in-
frastructure composed of a set of heterogeneous machines
that users can access via a single interface. A grid environ-
ment provides high performance computing facilities and
transparent access to them in spite of their remote location,
different administrative domains and hardware and software
heterogeneous characteristics. Grid computing provides a
novel distributed environment, computational model, and
unprecedented opportunities for unlimited computing and
storage resources. It’s distinguished from conventional dis-
tributed computing by its focus on large-scale resource
sharing, innovative applications, and, in some cases, high-
performance orientation. Grids can be used as effective
infrastructures for distributed high-performance computing
and data processing [7].

DDM on grid, although is a fairly new research topic,
has been very active in data mining community. The main
disadvantage of grid is that grid software and standards are
still evolving. The development of DDM on grid isn’t easy.

P2P architecture is a type of network in which each
workstation has equivalent capabilities and responsibilities.
This differs from client/server architectures. Generally, P2P
networks are used for sharing files, but a P2P network can
also mean Grid Computing. Techniques and applications of
P2P for DDM can be found in [23].

The primary disadvantage of P2P is the tendency of com-
puters at the edge of the network to fade in and out of avail-
ability. Also, accountability for the actions of network par-
ticipants could be a difficult problem. Several high-profile
implementations have shown that architecture, security, and
systems management issues are difficult to control. For
these reasons, system managers often prefer to operate P2P
systems as separate isolated entities. But, doing so is often
impossible for practical applications.

3 Concept lattice

Concept lattice [11] and Closed itemset lattice are based
on order theory and lattice theory [4, 22]. They are used to
represent the order relation of concepts or closed itemsets.
Concept lattice describes the character of the set pair: intent
and extent of concept. Closed itemset lattice emphasizes the
representation of the character of itemset.

In this section, we define some basic notions: Data con-
text, Closure operator, Formal concept, Concept lattice,
Closed itemset and Closed itemset lattice.

Definition 3.1 Data context is defined by a triple
(G;M ;R), where G and M are two sets, and R is a relation

a1 a2 a3 a4 a5 a6 a7 a8

1 × × ×
2 × × × ×
3 × × × × ×
4 × × × ×
5 × × × ×
6 × × × × ×
7 × × × ×
8 × × × ×

Figure 1. An example of data context

between G and M . The elements of G are called objects or
transactions, while the elements of M are called attributes
or items.

A data context is usually represented by the binary data,
but in practice, the values of attribute are not binary, we
can transform many-valued data context to binary values
context by concept scaling [11].

Definition 3.2 Given a subset A ⊆ G of objects from a
data context (G;M ;R), we define an operator that pro-
duces the set A′ of their common attributes for every set
A ⊆ G of objects to know which attributes from M are com-
mon to all these objects:

A′ := {m ∈ M | gRm for all g ∈ A}.
Dually, we define B′ for subset of attributes B ⊆ M , B′

denotes the set consisting of those objects in G that have all
the attributes from B:

B′ := {g ∈ G | gRm for all m ∈ B}.
These two operators are called the Galois connection

for (G;M ;R). These operators are used to determine a
formal concept.

So if B is an attribute subset, then B′ is an object subset,
and then (B′)′ is an attribute subset. We have:
B ⊆ M ⇒ B′′ ⊆ M . Correspondingly, for object subset
A, we have: A ⊆ G ⇒ A′′ ⊆ G.

Thus we define two closure operators as B → B′′ for
set M and A → A′′ for set G.

For example, Figure 1 represents a data con-
text. G(1, 2, 3, 4, 5, 6, 7, 8) is the set of objects, and
M(a1, a2, a3, a4, a5, a6, a7, a8) is the set of items. The
crosses in the table describe the relation R of G and M .

Definition 3.3 A formal concept of the data context
(G,M,R) is a pair (A,B) with A ⊆ G, B ⊆ M, A = B′

and B = A′. A is called extent, B is called intent.

Definition 3.4 If (A1, B1) and (A2, B2) are concepts,
A1 ⊆ A2 (or B2 ⊆ B1), then we say that there is a hi-
erarchical order between (A1, B1) and (A2, B2).
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All concepts with the hierarchical order of concepts form
a complete lattice called concept lattice.

For example, (68, a1a3a4a6) is a concept of the data con-
text of Figure 1. a1a3a4a6 is intent of (68, a1a3a4a6), and
68 is extent of (68, a1a3a4a6).

Definition 3.5 An itemset C ⊆ M is a closed itemset iff
C ′′ = C.

Thus, a closed itemset is intent of a formal concept. This
definition is very important for closed itemset algorithm.

A formal concept or closed itemset describes more a
stricter relation between objects and attributes than itemset
of association rules mining. For itemset, one attribute set
maps to an object set, it’s injective; but for formal concept,
there is a bijection between one attribute set and one object
set. The intent of a concept is a closed itemset and it’s a
maximal itemset.

For example, {a1,a7} is a closed itemset of the data con-
text of Figure 1.

Definition 3.6 If C1 and C2 are closed itemsets, C1 ⊆ C2,
then we say that there is a hierarchical order between C1

and C2.
All closed itemsets with the hierarchical order of closed

itemsets form of a complete lattice called closed itemset
lattice.

4 Analysis and visualization of data with
FCA in DE

Formal Concept Analysis provides a natural platform for
data analysis and knowledge representation. FCA is differ-
ent from some of the traditional, statistical means of data
analysis and knowledge representation because of its fo-
cus on human-centered approaches. Formal concept pos-
sesses the same features as philosophical concept. From
the formal concepts, we can analyze data such as reveal-
ing stronger association or relation between itemset and the
set of their common objects, classifying objects, generating
implications of attributes or knowledge rules, extracting the
hierarchical relation among formal concepts, etc.

FCA also provides an effective tool of knowledge vi-
sualization. Concept lattice can show how objects can
be hierarchically grouped together according to their com-
mon attributes, and the relations between the formal con-
cepts. Concept lattice facilitate discussion and exploration
of conceptual structures. FCA has been examined with re-
spect to principles of knowledge representation. Wille [21]
identifies ten functions of knowledge processing (explor-
ing, searching, recognizing, identifying, analyzing, investi-
gating, deciding, improving, restructuring and memorizing)
and investigates how these are supported by FCA.

Several algorithms were proposed to generate concepts
or concept lattices on a data context, for example: Bordat
[5], Ganter (NextClosure algorithm) [10], Chein [6], Norris
[14], Godin [12] and Nourine [15], etc. We can use the
formal concepts or concept lattices to analyze and represent
the data. Concept lattice can be also applied to distributed
data to analyze and represent knowledge in DE [8, 9].

For example, using lattice algorithms, we can generate
concepts or concept lattices on a data context (see Figure
1). All formal concepts and the concept lattices on the data
context (see Figure 1) are shown in Figure 3. The closed
itemset lattice of the data context of Figure 1 is presented
in Figure 4. The Figure 2 shows intents of the data context
(see Figure 1).

No. Intent No. Intent
1 {a1} 10 {a1a7a8}
2 {a1a2} 11 {a1a2a4a6}
3 {a1a3} 12 {a1a2a7a8}
4 {a1a4} 13 {a1a3a4a5}
5 {a1a7} 14 {a1a2a3a4a6}
6 {a1a2a3} 15 {a1a3a7a8}
7 {a1a2a7} 16 {a1a2a3a4a6}
8 {a1a3a4} 17 {a1a2a3a7a8}
9 {a1a4a6} 18 {a1a2a3. . .a7a8}

Figure 2. All intents of the data context (see
figure 1)

12345678

1234 34678 12356 5678

234 568

34 123
36

678
56

23 68

3 7 6

∅

a1

a1a7

a1a3

a1a2
a1a4

a1a7a8 a1a4a6

a1a3a7a8 a1a2a7

a1a2a3

a1a3a4

a1a2a4a6

a1a2a7a8 a1a3a4a6

a1a2a3a7a8 a1a3a4a5 a1a2a3a4a6

a1a2a3a4a5a6a7a8

Figure 3. An example of concept lattice
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a1a2a3a4a5a6a7a8

a1a3a4a5 a1a2a3a4a6

a1a3a4a6

a1a2a4a6

a1a4a6
a1a3a4

a1a2a3

a1a2a3a7a8

a1a2a7a8

a1a2a7

a1a3a7a8

a1a7a8

a1a7 a1a3 a1a4
a1a2

a1

Figure 4. An example of closed itemset lattice

5 Conclusion

Formal Concept Analysis provides a natural effective
platform for data analysis and knowledge representation. In
this paper, we propose FCA as a tool of data analysis and
representation for digital ecosystem. We also propose to use
the technologies of data mining to extract knowledge from
huge and complex heterogeneous distributed data in the DE.
Furthermore, some issues of the applications of data mining
for Digital ecosystem is discussed.
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