Kinetics of Os(VIII) Catalysed Chromic Acid Oxidation of Maleic, Fumaric, Acrylic & Cinnamic Acids

P. S. RADHAKRISHNAMURTI* & B. K. PANDA

Department of Chemistry, Berhampur University, Berhampur 760 007

Received 23 June 1981; revised and accepted 10 August 1981

Kinetics of Os(VIII) catalysed chromic acid oxidation of maleic, fumaric, acrylic and cinnamic acids have been studied in aqueous and aq. acetic acid media in the presence of perchloric acid. Maleic acid and cinnamic acid exhibit zero order dependence in oxidant at lower concentrations of the oxidant and first order dependence at higher concentrations of the oxidant. Acrylic acid shows zero order dependence in oxidant in the total range of [oxidant] studied while a fractional order dependence in oxidant is observed in the case of fumaric acid. The dependence on substrate is unity for all the compounds studied. First order dependence on catalyst has been observed in the case of fumaric and acrylic acids in a wide range of [oxidant]. First order dependence on catalyst in the case of cinnamic and maleic acids is observed at zero order concentration ranges of the oxidant. In the first order range of [oxidant] in the case of cinnamic and maleic acids, the dependence on catalyst is fractional. The effect of acidity is marginal and with increase in the percentage of acetic acid the rate decreases.

THE title investigation is in continuation of earlier works from our laboratory^{1,2} on the Os(VIII) catalysed periodate and Ce(IV) oxidations of unsaturated compounds.

Materials and Methods

All the reagents used were of extra pure quality (either BDH or E. merck). Perchloric acid (BDH, AR) was used. OsO_4 solution was used after proper dilution allowing necessary correction for the alkali present in it.

The kinetics of the reactions, in aqueous and aq. acetic acid media in the presence of perchloric acid were followed by estimating the unreacted Cr(VI) iodometrically against standard thiosulphate using starch as indicator. The rate constants are reproducible within $\pm 3\%$ error.

Results and Discussion

(A) Oxidation of maleic and cinnamic acids — The significant features of the investigations are listed below :

(i) The oxidation of maleic and cinnamic acids shows zero order and first order dependences in oxidant at different oxidant concentration ranges (see Table 1). The first order dependence at high [oxidant] is further supported by the linear plots of log [Cr(VI)] versus time. (ii) Increase in the concentration of substrate both at the zero order and first order ranges of oxidant concentration increases the rate of oxidation (Table 2). The plots of log k_0 versus log [substrate] and log k_1 versus log [substrate] are linear with unit slopes indicating unit dependence in substrate both at zero order and first order ranges of [oxidant]. (iii) The rate constants at various concentrations of Os(VIII) at both the ranges of [oxidant] are given in Table 3. While the plots of

indicating first order dependence with respect to Os(VIII), the plots of log k_1 versus log [Os(VIII)] are linear with slopes less than unity indicating fractional dependence with respect to Os(VIII). The results clearly proved that (I) the catalyst exhibits first order dependence when the dependence on [oxidant] is zero and (II) it exhibits fractional order dependence when the dependence on [oxidant] is unity. (iv) Increase in the concentration of perchloric acid from 0.05M to 0.30M slightly increases the reaction rate $(k_0/[S] \times 10^4 \text{ min}^{-1})$ from 0.88 to 1.38 for maleic acid and from 4.20 to 6.20 in case of cinnamic acid at zero order ranges of [oxidant] and from 2.05 to 3.76 (10 \times k_1 /[S] litre mol⁻¹ min⁻¹) in case of maleic acid at first order range of [oxidant]. (v) Increase in the percentage of acetic acid of the reaction medium decreases the rate of oxidation. The plots of log k_0 versus 1/D are linear with negative slopes indicating these reactions to be dipole-dipole type. (vi) The reaction has been carried out at different temperatures in the range 50° - 70° and the total second order rate constants at 50°, 60° and 70° for maleic acid are 2.09, 4.41 and 7.02 M^{-1} min⁻¹ respectively. The Arrhenius activation parameters have been computed from the linear plot of log k_2 versus 1/T and found to be $E_a = 47.84 \text{ kJ mol}^{-1}$, $\triangle H^+_{\pm} = 45.11 \text{ kJmol}^{-1}$, $\log_{10}A = 3.08 \text{ and } \triangle S^+_{\pm} = -195.1 \text{ JK}^{-1}\text{mol}^{-1}$.

 $\log k_0$ versus log [Os(VIII)] are linear with unit slopes

(B) Oxidation of acrylic and fumaric acids — The salient features observed in case of acrylic acid oxidation are :

(i) The oxidation is zero order with respect to oxidant in a wide range of [Cr(VI)] (Table 5). (ii) The plot of log k_0 versus log [substrate] is linear with unit slope indicating first order dependence with respect to substrate (Table 5). (iii) The plot of log

				and the second se	Children, Steam can generate party of the second				
TABLE 1 — EFFECT		ying [Cr(VI)] Rate	ON THE R	EACTION	Table 3 — Effect	of Vary	ING [Os(VI] Rate	[I)] on the	REACTION
[HClO ₄]-0.1 <i>M</i> ;	[Os(VIII mediun	$] = 3.93 \times 10^{-6}$ n; temp. = 60°	M; solven	t =	$[\text{HClO}_4] = 0.1M;$	solvent	= aq. me	edium; tem	p. =60°C
	04[Cr(VI) M		10	$k^3 \times k_1$ nin^{-1}	Range		Os(VIII)] 1 1 1 1	$0^4 \times k_0/[S]$ nin ⁻¹ litre m	$10 \times k_1/[S]$ nol ⁻¹ min ⁻¹
Mat 1	0.00	1.07			[MA	LEIC ACI	0 = 0.005	M	
Maleic acid 0.005	2.66 2.80	1.07 0.904		.56 .68	Zara andar				
	5.47	1.01	2.	.11	Zero-order [Oxidant]=0.0003 M	1	.96	1.08	
	10.5	2.06		.24		3.	.93	2.18	
	21.4 42.3	3.73 6.43		.98 .73			.86	3.59	
	1210	0110	1.		First-order	11	.78	5.03	
*Cinnamic acid	3.0	5.0		8.5	[Oxidant] = 0.001 M	1 1	.96		3.27
0.01	5.5 9.74	5.0 5.4		.77 .37			.93		4.42
	25.86	6.8		.64			.86 .78		7.17
	36.56	11.8	4.	.12		11	.70		9.74
	44.88	14.7	4.	.18	IC	INNAMIC	ACID $]^* = ($	0.01 <i>M</i>	
*Reaction carried	d out in	10% an HOA	c(y y)		Zero-order		, including a second		
Reaction carrier	u out m	10/0 aq. 110A			[Ox dant] = 0.0005 M		.98	1.28	
				-			.96 .93	2.30 5.00	
TABLE 2 — EFFECT	OF VARYI	NG [SUBSTRATE]	ON THE F	REACTION			.86	9.36	
		RATE			First-order				
	LO-QUIT	2.02	10-5 16	.1	[Oxidant] = 0.003 M		.98		2.0
$[\text{HClO}_4] = 0.1M;$		$1) = 3.93 \times 1000$ ium; temp. = 60		olvent =			.96 .93		2.85 3.77
	aq. meu	ium, temp.—o	, Ç				.90		5,60
	×[S] 10	$^{6} \times k_{0} 10^{3} \times k_{1}$			*D		100/		
M			[S]	[S]	*Reaction carrie	d out in	10% aq. 1	HOAC (v/v)	
	mol litro min ⁻¹		min ⁻¹ li	tre mol ^{-1} min ^{-1}					
		ALEIC ACID		11111	TABLE 4 — EFFECT		NG SOLVENT	r Composit	ION ON THE
Zero order [Oxidant]=0.0003M 2.77 0.53 1.93			$[Cr (VI)] = 0.0005M; [S] = 0.005M; [HClO_4] = 0.1M;$ temp. = 60°C						
	5.10 10.27 18.0	0.90 1.83 3.06	1.78 1.78 1.70		Substrate	$10^{4} \times k_{0}$	[S] values in HO	n aq. HOAc Ac %	containing
First order						10	20	30	40
[Oxidant]==0.001M		1.26		4.20	Maleic acid	1.50	1.23	1.07	
	5.19 10.0	2.24		4.30 3.71	Cinnamic acid*	5.0	3.10	2.35	1.72
	18.2	6.91		3.82	Acrylic acid†	4.93	4.35	3.26	
							$10^{2} \times k_{1/3}/$	[S] values	
	14	NAMIC ACID			Fumaric acid	3.38	2.36	1.65	1.25
	*CIN								
Zero order					4.75		*.1 F *		M
Zero order [Oxidant]=0.0005M	2.55	1.24	4.86		*Reactions carrie				
	2.55 5.25	2.50	4.76		*Reactions carrie †Reactions carrie				
	2.55	1.24 2.50 5.00 8.50							
	2.55 5.25 10.0	2.50 5.00	4.76 5.00		†Reactions carrie	ed out wi	th [Cr(VI)] = 0.001 M	1
[Oxidant]=0.0005M	2.55 5.25 10.0 18.4 3.05	2.50 5.00 8.50	4.76 5.00 4.62	4.23	†Reactions carrie marginal (Table	5). (vi)	th [Cr(VI)]] = 0.001 M	ave been
[Oxidant]=0.0005M First order	2.55 5.25 10.0 18.4 3.05 4.90	2.50 5.00 8.50 1.29 1.90	4.76 5.00 4.62	3.88	†Reactions carrie marginal (Table carried out at ter	5). (vi)	th [Cr(VI)] The reares 50, 60] = 0.001 A actions h and 70°	ave been C and the
[Oxidant]=0.0005M First order	2.55 5.25 10.0 18.4 3.05 4.90 9.64	2.50 5.00 8.50 1.29 1.90 3.80	4.76 5.00 4.62	3.88 3.94	†Reactions carried marginal (Table carried out at ter rates constants (5). (vi) mperatu $k_0/[S]$) a	The reares 50, 60 are 3.33, 5	= 0.001 M actions h and 70° .75 and 10	ave been C and the 0.14 min-
[Oxidant]=0.0005M First order	2.55 5.25 10.0 18.4 3.05 4.90	2.50 5.00 8.50 1.29 1.90	4.76 5.00 4.62	3.88	†Reactions carried marginal (Table carried out at ter rates constants (respectively. Th	5). (vi) mperatu $k_0/[S]$) and plot of	The real res 50, 60 the real res 50, 60 the real res k_1 (c) the real real real real real real real rea	= 0.001 M actions h and 70°(.75 and 10 $k_0/[S]$) ve	ave been C and the 0.14 min ⁻¹ ersus 1/T
[Oxidant]=0.0005M First order	2.55 5.25 10.0 18.4 3.05 4.90 9.64 20.2	2.50 5.00 8.50 1.29 1.90 3.80 7.74	4.76 5.00 4.62	3.88 3.94	†Reactions carried marginal (Table carried out at ter rates constants (respectively. Th is linear. The a	5). (vi) mperatu $k_0/[S]$) and plot cuctivatio	The real res 50, 60 re 3.33, 5 of log k_1 (n parame	actions h and 70°C .75 and 10 $k_0/[S]$ veters have	ave been C and the 0.14 min- ersus 1/J been cal
[Oxidant]=0.0005M First order [Oxidant]=0.003M	2.55 5.25 10.0 18.4 3.05 4.90 9.64 20.2	2.50 5.00 8.50 1.29 1.90 3.80 7.74	4.76 5.00 4.62	3.88 3.94	†Reactions carried marginal (Table carried out at ter rates constants (respectively. Th	5). (vi) mperatu $k_0/[S]$) a ne plot c uctivatio d to be <i>I</i>	The real res 50, 60 are 3.33, 5. of log k_1 (n parame $E_a = 47.80$	actions h and 70°C .75 and 10 $k_0/[S]$ ve ters have $6kJ mol^{-1}$	A have been C and the 0.14 min ⁻¹ crsus $1/T$ been cal- $\wedge H^{\pm}_{\pm} =$
[Oxidant]=0.0005M First order	2.55 5.25 10.0 18.4 3.05 4.90 9.64	2.50 5.00 8.50 1.29 1.90	4.76 5.00 4.62	3.88 3.94	†Reactions carried marginal (Table carried out at ter rates constants (5). (vi) mperatu $k_0/[S]$) a	The reares 50, 60 are 3.33, 5	= 0.001 M actions h and 70° .75 and 10	ave b C and 0.14 mi

are as follows :

(C) Oxidation of fumaric acid — The salient features observed in case of fumaric acid oxidation

(i) The zero order rate constant gradually increases

with the increase in [oxidant]. Similarly the first order rate constant gradually decreases with the increase in [oxidant]. This clearly indicates that these

 k_0 versus log [Os(VIII)] is linear with unit slope confirming first order dependence with respect to Os(VIII) (Table 5). (iv) Increase in the percentage of acetic acid decreases the rate of reaction and the plot of log k_0 versus 1/D is linear with negative slope indicating the nature of reaction to be dipoledipole type (Table 4). (v) Effect of acid is

Ø

129

TABLE 5	— Effect of \ [HClO4]	ARYING [Cr(ON THE R			Ds(VIII)],
	Solvent : a	q. medium;	temp. =	60°C	
104[Cr(V M	I)] 10 ³ [Acrylic acid] M	10 ⁵ [Os(VIII)] <i>M</i>	[HClO ₄] M	$\begin{array}{c} 10^6 \times k_0 \\ \text{mol} \\ \text{litre}^{-1} \\ \text{min}^{-1} \end{array}$	$10^4 \times k_0 / [S] min^{-1}$
2.99 5.80 10.97 21.2 37.1	5.0	3.93	0.1	3.3 3.22 3.6 4.15 3.4	
10.00	3.61 6.08 24.80 54.00	3.93	0.1	2.34 3.60 13.90 30.00	6.48 5.92 5.61 5.55
10.00	5.00	1.96 3.93 5.90 7.86	0.1	50.00	4.13 5.92 9.82 12.58
10.00	5.0	3.93	0.05 0.1 0.2 0.3		6.3 5.92 7.0 7.2

TABLE 6 — EFFECT OF VARYING [Cr(VI)], [SUBSTRATE], [Os(VIII)], [HCIO₄] on the Reaction Rate

Solvent : 10% HOAc; temp. = 60° C

104[Cr(M	· · · · · · · · · · · · · · · · · · ·	ic] 10⁵[Os (VIII)] <i>M</i>	М	$\begin{array}{c} 10^{4} \times k_{1/2} \\ \text{mol}^{1/2} \\ \text{litre}^{-1/2} \\ \text{min}^{-1} \end{array}$	$\begin{array}{c} 10^{2} \times k_{1/2} \\ [S] \\ mol^{-1/2} \\ litre^{1/2} \\ min^{-1} \end{array}$	
3.01	. "Ordania		1999 - 1999	1.58		
5.94				1.69		
11.05	5.0	3,93	0.1	1.56		
20.76	0.76					
40.73	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	/24		1.42		
· · · ·	2.63			0.59	2.25	
5.0	5.20	3.93	0.1	1.11	2.15	
	9.43			2.0	2.16	
	19.68			3.58	1.82	
. V. 1	Charles .	1.96			1.44	
		3.93			3.38	
5.0	5.0	7.00	0.1		4.30	
÷()	100	11.78			7.62	
1.25			0.05		3.35	
5.0	5.0	3.93	0.10		3.40	
	SECT OF		0.20		3.20	
		1.	0.30		3.21	

reactions are not routed through a single path. But the fractional order rate constant computed with the formula $2/t \{a^{1/2}-(a-x)^{1/2}\}$ are almost constant at different concentrations of oxidant indicating fractional dependence with respect to oxidant (Table 6). (ii) The plot of log $k_{1/2}$ versus log [substrate] is linear with unit slope indicating first order dependence with respect to substrate. (iii) The plot of $\log k_{1/2}$ versus log [Os(VIII)] is linear with unit slope indicating unit dependence with respect to catalyst. (iv) Increase in the percentage of acetic acid decreases the rate of oxidation (Table 4). The plot of log $k_{1/2}$ versus 1/D is linear with negative slope as observed in the case of other unsaturated compounds. (v) The effect of perchloric acid is marginal (Table 6).

130

(vi) The reaction has been carried out at different temperatures in the range 50-70°C. From the linear plot of log $k_{3/2}$ versus 1/T the Arrhenius parameters have been computed and found to be : $E_a = 47.86$ kJ mol⁻¹, $\triangle H^+_{\pm} = 45.11$ kJ mol⁻¹, $\log_{10}A = 3.49$ and $\triangle S^+_{\pm} = -187.4$ JK⁻¹ mol⁻¹.

Mechanism-Kinetic features observed in the present investigation indicate that the reaction is not routed through identical mechanisms in all the substrates studied. The rate determining step in the reaction is dependent on the concentration of the oxidant. This complex dependence on oxidant needs rationalisation. As reported earlier^{3,4}, the unsaturated compounds can form complexes with the catalyst to give inter-mediate complexes. These complexes then disproportionate in a rate determining step, to give Os(VI) which is oxidised in a fast step by Cr(VI) leading, as observed experimentally at lower [oxidant], to zero order dependence with respect to oxidant. But at higher [oxidant], the oxidant forms complexes with the substrates and the resultant complexes disproportionate in presence of catalyst in a rate determining step leading to first order dependence with respect to oxidant.

The zero order, first order and fractional dependences with respect to oxidant have been noticed. To account for this behaviour in oxidant Schemes 1 and 2 are proposed.

Scheme 1

Postulating steady state treatment for the complex formed in step 1, the rate-law is given by Eq. (3) Rate $= k_2$ [Complex]

$$=\frac{k_1k_2 \text{ [S] } [Os(VIII)]_{T}}{k_{-1}+k_2+k_1 \text{ [S]}} \qquad \dots (3)$$

As the dependence on substrate is unity, the term k_1 [S] in the denominator can be neglected. The rate assumes the form (4)

$$-\frac{d[\operatorname{Cr}(\operatorname{VI})]}{dt} = \frac{k_1 k_2}{k_{-1} + k_2} [S] [\operatorname{Os}(\operatorname{VIII})]_{\mathrm{T}} \dots (4)$$

where $[Os(VIII)]_T = [Os(VIII)] + [Complex]$

$$C = k_3 + Cr (VI) \stackrel{k_3}{\rightleftharpoons} Complex \dots (5)$$

Complex + Os(VIII) $\xrightarrow{k_4}$ Products ...(6) slow Scheme 2

Rate = k_4 [Complex] [Os(VIII)] = $\frac{k_3k_4$ [S] [Os(VIII)] [Cr(VI)]_T}{k_{-3} + k_4 [Os(VIII)] + k_3 [S]}

As the dependence on substrate is unity the term k_3 [S] in the denominator can be neglected.

$$-\frac{d[\operatorname{Cr}(\operatorname{VI})]}{dt} = \frac{k_3 k_4 [S] [\operatorname{Os}(\operatorname{VIII}) [\operatorname{Cr}(\operatorname{VI})]_{\mathrm{T}}}{k_{-3} + k_4 [\operatorname{Os}(\operatorname{VIII})]} \dots (7)$$

Combining equations (4) and (7)

$$-\frac{d[Cr(VI)]}{dt} = \frac{k_1k_2}{k_{-1}+k_2} [S] [Os(VIII)]_{T}$$
(A)
$$+\frac{k_3k_4[S] [Os(VIII)] [Cr(VI)]_{T}}{k_{-3}+k_4[Os(VIII)]}$$
(B) ...(8)

Equation (8) explains all the observed facts. The operation of first term(A) explains the zero order in oxidant in the concentration range $2.5 \times 10^{-4} M$ to $5.5 \times 10^{-4} M$ of the oxidant in the case of cinnamic acid and maleic acid.

The operation of second term (B) explains the first order dependence on oxidant in the concentration range $1.0 \times 10^{-3} M$ to $4.5 \times 10^{-3} M$ of oxidant for cinnamic and maleic acid.

In the case of acrylic acid in the total range studied term (A) alone operates giving rise to zero order dependence on oxidant.

In the case of fumaric acid in the total range studied terms (A) and (B) both operate simultaneously leading to fractional dependence on oxidant.

Acknowledgement

One of the authors (B. K. P.) is thankful to the UGC for the award of a teacher fellowship.

References

- 1. RADHAKRISHNAMURTI, P. S. & MISRA, S. A., Indian J. Chem., 20A (1981), 797.
- 2. RADHAKRISHNAMURTI, P. S. & PADHI, L. P., 20A (1981), (in press).
- 3. ZELIKOFF, M. & TAYLOR, H. A., J. Am. chem. Soc., (1950), 5039.
- SIMANDI, L. I. & JAKY, M., J. chem. Soc., Perkin II (1973), 1856.