Kinetics of Os(VIII) Catalysed Chromic Acid Oxidation of Maleic, Fumaric, Acrylic \& Cinnamic Acids

P. S. RADHAKRISHNAMURTI* \& B. K. PANDA
Department of Chemistry, Berhampur University, Berhampur 760007

Received 23 June 1981; revised and accepted 10 August 1981

Abstract

Kinetics of Os (VIII) catalysed chromic acid oxidation of maleic, fumaric, acrylic and cinnamic acids have been studied in aqueous and aq. acetic acid media in the presence of perchloric acid. Maleic acid and cinnamic acid exhibit zero order dependence in oxidant at lower concentrations of the oxidant and first order dependence at higher concentrations of the oxidant. Acrylic acid shows zero order dependence in oxidant in the total range of [oxidant] studied while a fractional order dependence in oxidant is observed in the case of fumaric acid. The dependence on substrate is unity for all the compounds studied. First order dependence on catalyst has been observed in the case of fumaric and acrylic acids in a wide range of [oxidant]. First order dependence on catalyst in the case of cinnamic and maleic acids is observed at zero order concentration ranges of the oxidant. In the first order range of [oxidant] in the case of cinnamic and maleic acids, the dependence on catalyst is fractional. The effect of acidity is marginal and with increase in the percentage of acetic acid the rate decreases.

THE title investigation is in continuation of earlier works from our laboratory ${ }^{1,2}$ on the $\mathrm{Os}(\mathrm{VIII})$ catalysed periodate and $\mathrm{Ce}(\mathrm{IV})$ oxidations of unsaturated compounds.

Materials and Methods

All the reagents used were of extra pure quality (either BDH or E. merck). Perchloric acid (BDH, AR) was used. OsO_{4} solution was used after proper dilution allowing necessary correction for the alkali present in it.

The kinetics of the reactions, in aqueous and aq. acetic acid media in the presence of perchloric acid were followed by estimating the unreacted $\mathrm{Cr}(\mathrm{VI})$ iodometrically against standard thiosulphate using starch as indicator. The rate constants are reproducible within $\pm 3 \%$ error.

Results and Discussion

(A) Oxidation of maleic and cinnamic acids - The significant features of the investigations are listed below :
(i) The oxidation of maleic and cinnamic acids shows zero order and first order dependences in oxidant at different oxidant concentration ranges (see Table 1). The first order dependence at high [oxidant] is further supported by the linear plots of $\log [\mathrm{Cr}(\mathrm{VI})]$ versus time. (ii) Increase in the concentration of substrate both at the zero order and first order ranges of oxidant concentration increases the rate of oxidation (Table 2). The plots of $\log k_{0}$ versus \log [substrate] and $\log k_{1}$ versus \log [substrate] are linear with unit slopes indicating unit dependence in substrate both at zero order and first order ranges of [oxidant]. (iii) The rate constants at various concentrations of Os (VIII) at both the ranges of [oxidant] are given in Table 3. While the plots of
$\log k_{0}$ versus $\log [\mathrm{Os}(\mathrm{VHII})]$ are linear with unit slopes indicating first order dependence with respect to $\mathrm{Os}(\mathrm{VIII})$, the plots of $\log k_{1}$ versus $\log [\mathrm{Os}(\mathrm{VIII})]$ are linear with slopes less than unity indicating fractional dependence with respect to $\mathrm{Os}(\mathrm{VIII})$. The results clearly proved that (I) the catalyst exhibits first order dependence when the dependence on [oxidant] is zero and (II) it exhibits fractional order dependence when the dependence on [oxidant] is unity. (iv) Increase in the concentration of perchloric acid from 0.05 M to 0.30 M slightly increases the reaction rate $\left(k_{0} /[\mathrm{S}] \times 10^{4} \mathrm{~min}^{-1}\right)$ from 0.88 to 1.38 for maleic acid and from 4.20 to 6.20 in case of cinnamic acid at zero order ranges of [oxidant] and from 2.05 to $3.76\left(10 \times k_{1} /[\mathrm{S}]\right.$ litre $\left.\mathrm{mol}^{-1} \mathrm{~min}^{-1}\right)$ in case of maleic acid at first order range of [oxidant]. (v) Increase in the percentage of acetic acid of the reaction medium decreases the rate of oxidation. The plots of $\log k_{0}$ versus 1/D are linear with negative slopes indicating these reactions to be dipole-dipole type. (vi) The reaction has been carried out at different temperatures in the range $50^{\circ}-70^{\circ}$ and the total second order rate constants at $50^{\circ}, 60^{\circ}$ and 70° for maleic acid are $2.09,4.41$ and $7.02 M^{-1} \mathrm{~min}^{-1}$ respectively. The Arrhenius activation parameters have been computed from the linear plot of $\log k_{2}$ versus $1 / \mathrm{T}$ and found to be $E_{\mathrm{a}}=$ $47.84 \mathrm{~kJ} \mathrm{~mol}^{-1}, \triangle H_{\ddagger}^{\ddagger}=45.11 \mathrm{kJmol}^{-1}, \log _{10} A=$ 3.08 and $\triangle S_{\ddagger}^{\ddagger}=-195.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(B) Oxidation of acrylic and fumaric acids - The salient features observed in case of acrylic acid oxidation are :
(i) The oxidation is zero order with respect to oxidant in a wide range of $[\mathrm{Cr}(\mathrm{VI})]$ (Table 5). (ii) The plot of $\log k_{0}$ versus \log [substrate] is linear with unit slope indicating first order dependence with respect to substrate (Table 5). (iii) The plot of \log
Table 1 - Effect or Varying $[\operatorname{Rate}(\mathrm{VI})]$ on the Reaction
$\left[\mathrm{HClO}_{4}\right]-0.1 \mathrm{M} ;[\mathrm{Os}(\mathrm{VIII})]=3.93 \times 10^{-5} \mathrm{M}$; solvent $=$ aq. medium; temp. $=60^{\circ} \mathrm{C}$

[Substrate] M	$10^{4}[\mathrm{Cr}(\mathrm{VI})]$ M	$10^{6} \times k_{0}$ $\mathrm{~mol} \mathrm{litre}^{-1} \mathrm{~min}^{-1}$	$10^{3} \times k_{1}$ $\mathrm{~min}^{-1}$
Maleic acid	2.66	1.07	4.56
0.005	2.80	0.904	3.68
	5.47	1.01	2.11
	10.5	2.06	2.24
	21.4	3.73	1.98
	42.3	6.43	1.73
*Cinnamic acid	3.0	5.0	18.5
0.01	5.5	5.0	11.77
	9.74	5.4	8.37
	25.86	6.8	3.64
	36.56	11.8	4.12
	44.88	14.7	4.18
*Reaction carried out in 10% aq. HOAc (v/v)			

Table 2 - Effect of Varying [Substrate] on the Reaction
RATE
$\left[\mathrm{HClO}_{4}\right]=0.1 \mathrm{M} ; \underset{\text { aq. medium; temp. }=60^{\circ} \mathrm{C}}{[\mathrm{Os}(\text { VIII })]=3.93 \times 10^{-5} \mathrm{M} ; \text { solvent }=}$

Maleic acid

Maleic acid					
$\begin{aligned} & \text { Zero order } \\ & \text { [Oxidant] }=0.0003 \mathrm{M} \end{aligned}$	2.77	0.53		1.93	
	5.10	0.90		1.78	
	10.27	1.83		1.78	
	18.0	3.06		1.70	
First order [Oxidant] $=0.001 \mathrm{M}$					
	3.0		1.26		4.20
	5.19		2.24		4.30
	10.0		3.71		3.71
	18.2		6.91		3.82
*Cinnamic acid					
Zero order					
[[xidant] $=0.0005 \mathrm{M}$	2.55	1.24		4.86	
	5.25	2.50		4.76	
	10.0	5.00		5.00	
	18.4	8.50		4.62	
First order [Oxidant] $=0.003 \mathrm{M}$					
	3.05		1.29		4.23
	4.90		1.90		3.88
	9.64		3.80		3.94
	20.2		7.74		3.83

*Reaction carried out in 10% aq. HOAc (v/v)
k_{0} versus $\log [\mathrm{Os}(\mathrm{VIII})]$ is linear with unit slope confirming first order dependence with respect to $\mathrm{Os}(\mathrm{VIII})$ (Table 5). (iv) Increase in the percentage of acetic acid decreases the rate of reaction and the plot of $\log k_{0}$ versus 1/D is linear with negative slope indicating the nature of reaction to be dipoledipole type (Table 4). (v) Effect of acid is

Table 3 - Effect of $\underset{\text { Varying [Os(VIII)] on the Reaction }}{\text { Rate }}$
$\left[\mathrm{HClO}_{4}\right]=0.1 \mathrm{M} ;$ solvent $=$ aq. medium; temp. $=60^{\circ} \mathrm{C}$
Range $\quad \begin{gathered}10^{5} \times[\mathrm{Os}(\mathrm{VIII})] \\ M\end{gathered} \underset{\mathrm{~min}^{-1}}{10^{4}} \times k_{0} /\left[\mathrm{litre} \mathrm{mol}^{-1} 10 \times k_{1} /[\mathrm{SS}]\right.$
$[$ Maleic Acid $]=0.005 \mathrm{M}$

Zero-order			
[Oxidant] $=0.0003 \mathrm{M}$	1.96	1.08	
	3.93	2.18	
	7.86	3.59	
	11.78	5.03	
First-order			
[Oxidant] $=0.001 \mathrm{M}$	1.96		3.27
	3.93		4.42
	7.86		7.17
	11.78		9.74
$\left[\right.$ CinNAMTC ACID] ${ }^{*}=0.01 \mathrm{M}$			
Zero-order			
[Ox dant] $=0.0005 \mathrm{M}$	0.98	1.28	
	1.96	2.30	
	3.93	5.00	
	7.86	9.36	
First-order			
[Oxidant] $=0.003 \mathrm{M}$	0.98		2.0
	1.96		2.85
	3.93		3.77
	5.90		5.60

*Reaction carried out in 10% aq. HOAc (v/v)

Table 4-Effect of Varying Solvent Composition on the Reaction Rate

$$
[\mathrm{Cr}(\mathrm{VI})]=0.0005 \mathrm{M} ;[\mathrm{S}]=0.005 \mathrm{M} ;\left[\mathrm{HClO}_{4}\right]=0.1 \mathrm{M} ;
$$

Substrate	$10^{4} \times k_{0} /[\mathrm{S}]$ values in aq. HOAc containing HOAc \%			
	10	20	30	40
Maleic acid	1.50	1.23	1.07	
Cinnamic acid*	5.0	3.10	2.35	1.72
Acrylic acid \dagger	$4.93 \quad 10^{4} \times k_{1 / 8} /[\mathrm{S}]$ values			
Fumaric acid	3.38	2.36	1.65	1.25

*Reactions carried out with $[$ substrate $]=0.01 \mathrm{M}$
\dagger Reactions carried out with $[\operatorname{Cr}(\mathrm{V} 1)]=0.001 \mathrm{M}$
marginal (Table 5). (vi) The reactions have been carried out at temperatures 50,60 and $70^{\circ} \mathrm{C}$ and the rates constants $\left(k_{0} /[\mathrm{S}]\right)$ are $3.33,5.75$ and $10.14 \mathrm{~min}^{-1}$ respectively. The plot of $\log k_{1}\left(k_{0} /[\mathrm{S}]\right)$ versus $1 / \mathrm{T}$ is linear. The activation parameters have been calculated and found to be $E_{\mathrm{a}}=47.86 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta H_{\ddagger}^{\dagger}=$ $45.11 \mathrm{~kJ} \mathrm{~mol}^{-1}, \log _{10} A=1.96, \triangle S_{\ddagger}^{\ddagger}=-216.7$ $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
(C) Oxidation of fumaric acid - The salient features observed in case of fumaric acid oxidation are as follows:
(i) The zero order rate constant gradually increases with the increase in [oxidant]. Similarly the first order rate constant gradually decreases with the increase in [oxidant]. This clearly indicates that these

Table 5 - Effect of Varying [Cr(VI)], [Substrate], [Os(VIII)], [HClO_{4}] on the Reaction Rate

Solvent : aq. medium; temp. $=60^{\circ} \mathrm{C}$

$10^{4}[\mathrm{Cr}(\mathrm{VI})]$	10^{3} [Acrylic acid] M	$\begin{gathered} 10^{5}[\mathrm{Os}(\mathrm{VIII})] \\ M \end{gathered}$	$\left[\begin{array}{c} \left.\mathrm{HClO}_{4}\right] \end{array}\right.$	$\begin{aligned} & 10^{6} \times k_{0} \\ & \mathrm{~mol}^{1 i t r \mathrm{e}^{-1}} \\ & \mathrm{~min}^{-1} \end{aligned}$	$\begin{gathered} 10^{4} \times k_{0} / \\ {[\mathrm{S}]} \\ \min ^{-1} \end{gathered}$
2.99				3.3	
5.80				3.22	
10.97	5.0	3.93	0.1	3.6	
21.2				4.15	
37.1				3.4	
	3.61			2.34	6.48
	6.08			3.60	5.92
10.00	24.80	3.93	0.1	13.90	5.61
	54.00			30.00	5.55
		1.96			4.13
		3.93			5.92
10.00	5.00	5.90	0.1		9.82
		7.86			12.58
			0.05		6.3
			0.1		5.92
10.00	5.0	3.93	0.2		7.0
			0.3		7.2

Table 6 - Effect of Varying [Cr(VI)], [Substrate], [Os(VIII)], [HClO_{4}] on the Reaction Rate

Solvent : 10% HOAc; temp. $=60^{\circ} \mathrm{C}$

$\begin{gathered} 10^{4}[\mathrm{Cr}(\mathrm{VI})] \\ M \end{gathered}$	10^{3} [Fumaric] acid] M	$10^{5}[\mathrm{Os}$ $(\mathrm{VIII})]$ M	$\begin{gathered} {\left[\mathrm{HClO}_{4}\right]} \\ \hline \end{gathered}$	$\begin{aligned} & 10^{4} \times k_{1 / 2} \\ & \mathrm{~mol}^{1 l^{1 / 2}} \\ & \mathrm{litre}^{-1 / 2} \\ & \mathrm{~min}^{-1} \end{aligned}$	$\begin{gathered} 10^{2} \times k_{1 / 2} \\ {[\mathrm{~S}]} \\ \mathrm{mol}^{-1 / 2} \\ \mathrm{litre}^{1 / 2} \\ \min ^{-1} \end{gathered}$
3.01	,			1.58	
5.94				1.69	
11.05	5.0	3,93	0.1	1.56	
20.76				1.53	
40.73				1.42	
	2.63			0.59	2.25
5.0	5.20	3.93	0.1	1.11	2.15
	9.43			2.0	2.16
	19.68			3.58	1.82
\therefore :		1.96			1.44
		3.93			3.38
5.0	5.0	7.8611.78	0.1		4.30
					7.62
\ldots			0.05		3.35
5.0	5.0	3.93	0.10		3.40
			0.20		3.20
	!		0.30		3.21

reactions are not routed through a single path. But the fractional order rate constant computed with the formula $2 / t\left\{a^{1 / 2}-(a-x)^{1 / 2}\right\}$ are almost constant at different concentrations of oxidant indicating ifractional dependence with respect to oxidant (Table 6). (ii) The plot of $\log k_{1 / 2}$ versus \log [substrate] is linear with unit slope indicating first order dependence with respect to substrate. (iii) The plot of $\log k_{1 / 2}$ versus $\log [\mathrm{Os}(\mathrm{VIII})]$ is linear with unit slope indicating unit dependence with respect to catalyst. (iv) Increase in the percentage of acetic acid decreases the rate of oxidation (Table 4). The plot of $\log k_{1 / 2}$ versus $1 / D$ is linear with negative slope as observed in the case of other unsaturated compounds. (v) The effect of perchloric acid is marginal (Table 6).
(vi) The reaction has been carried out at different temperatures in the range $50-70^{\circ} \mathrm{C}$. From the linear plot of $\log k_{3 / 2}$ versus 1/T the Arrhenius parameters have been computed and found to be : $E_{\mathrm{a}}=47.86$ $\mathrm{kJ} \mathrm{mol}^{-1}, \quad \triangle H^{\ddagger}=45.11 \mathrm{~kJ} \mathrm{~mol}^{-1}, \log _{10} A=3.49$ and $\triangle S_{\ddagger}^{\ddagger}=-187.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
Mechanism-Kinetic features observed in the present investigation indicate that the reaction is not routed through identical mechanisms in all the substrates studied. The rate determining step in the reaction is dependent on the concentration of the oxidant. This complex dependence on oxidant needs rationalisation. As reported earlier ${ }^{3,4}$, the unsaturated compounds can form complexes with the catalyst to give intermediate complexes. These complexes then disproportionate in a rate determining step, to give $\mathrm{Os}(\mathrm{VI})$ which is oxidised in a fast step by $\mathrm{Cr}(\mathrm{VI})$ leading, as observed experimentally at lower [oxidant], to zero order dependence with respect to oxidant. But at higher [oxidant], the oxidant forms complexes with the substrates and the resultant complexes disproportionate in presence of catalyst in a rate determining step leading to first order dependence with respect to oxidant.
The zero order, first order and fractional dependences with respect to oxidant have been noticed. To account for this behaviour in oxidant Schemes 1 and 2 are proposed.

Postulating steady state treatment for the complex formed in step 1, the rate-law is given by Eq. (3)

Rate $=k_{2}$ [Complex]

$$
\begin{equation*}
=\frac{k_{1} k_{2}[\mathrm{~S}][\mathrm{Os}(\mathrm{VIII})]_{\mathrm{T}}}{k_{-1}+k_{2}+k_{1}[\mathrm{~S}]} \tag{3}
\end{equation*}
$$

As the dependence on substrate is unity, the term k_{1} $[\mathrm{S}]$ in the denominator can be neglected. The rate assumes the form (4)

$$
\begin{equation*}
-\frac{d[\mathrm{Cr}(\mathrm{VI})]}{d t}=\frac{k_{1} k_{2}}{k_{-1}+k_{2}}[\mathrm{~S}][\mathrm{Os}(\mathrm{VIII})]_{\mathrm{T}} \tag{4}
\end{equation*}
$$

where $[\mathrm{Os}(\mathrm{VIII})]_{\mathrm{T}}=[\mathrm{Os}(\mathrm{VIII})]+[$ Complex $]$

$$
\begin{align*}
& \stackrel{\mathrm{C}}{\stackrel{C}{C}}+\mathrm{Cr}(\mathrm{VI}) \underset{\mathrm{k}_{-3}}{\stackrel{k_{3}}{\rightleftharpoons}} \text { Complex } \tag{5}\\
& \text { Complex }+\mathrm{Os}(\mathrm{VIII}) \xrightarrow[\text { slow }]{\stackrel{k_{4}}{\longrightarrow}} \text { Products } \tag{6}\\
& \text { Scheme } 2 \\
& \text { Rate }=k_{4} \text { [Complex] [Os(VIII)] } \\
& =\frac{k_{3} k_{4}[\mathrm{~S}][\mathrm{Os}(\mathrm{VIII})][\mathrm{Cr}(\mathrm{VI})]_{\mathrm{T}}}{k_{-3}+k_{4}[\mathrm{Os}(\mathrm{VIII})]+k_{3}[\mathrm{~S}]}
\end{align*}
$$

As the dependence on substrate is unity the term $k_{3}[\mathrm{~S}]$ in the denominator can be neglected.

$$
\begin{equation*}
-\frac{d[\mathrm{Cr}(\mathrm{VI})]}{d t}=\frac{k_{3} k_{4}[\mathrm{~S}]\left[\mathrm{Os}(\mathrm{VIII}][\mathrm{Cr}(\mathrm{VI})]_{\mathrm{T}}\right.}{k_{-3}+k_{4}[\mathrm{Os}(\mathrm{VIII})]} \tag{7}
\end{equation*}
$$

Combining equations (4) and (7)

$$
-\frac{d[\mathrm{Cr}(\mathrm{VI})]}{d t}=\frac{k_{1} k_{2}}{k_{-1}+k_{2}}[\mathrm{~S}][\mathrm{Os}(\mathrm{VIII})]_{\mathrm{T}}
$$

(A)

$$
\begin{equation*}
+\frac{k_{3} k_{4}[\mathrm{~S}][\mathrm{Os}(\mathrm{VIII})][\mathrm{Cr}(\mathrm{VI})]_{\mathrm{T}}}{k_{-3}+k_{4}[\mathrm{Os}(\mathrm{VIII})]} \tag{8}
\end{equation*}
$$

(B)

Equation (8) explains all the observed facts. The operation of first term(A) explains the zero order in oxidant in the concentration range $2.5 \times 10^{-4} \mathrm{M}$ to $5.5 \times 10^{-4} \mathrm{M}$ of the oxidant in the case of cinnamic acid and maleic acid.
The operation of second term (B) explains the first order dependence on oxidant in the concentration range $1.0 \times 10^{-3} \mathrm{M}$ to $4.5 \times 10^{-3} \mathrm{M}$ of oxidant for cinnamic and maleic acid.

In the case of acrylic acid in the total range studied term (A) alone operates giving rise to zero order dependence on oxidant.

In the case of fumaric acid in the total range studied terms (A) and (B) both operate simultaneously leading to fractional dependence on oxidant.

Acknowledgement

One of the authors (B. K. P.) is thankful to the UGC for the award of a teacher fellowship.

References

1. Radharrishnamurti, P. S. \& Misra, S. A., Indian J. Chem., 20A (1981), 797.
2. Radhakrishnamurti, P. S. \& Padhi, L. P., 20A (1981), (in press).
3. Zelikoff, M. \& Taylor, H. A., J. Am. chem. Soc., (1950), 5039.
4. Simandi, L. I. \& Jaky, M., J. chem. Soc., Perkin II (1973), 1856.
