Indian Journal of Chemistry Vol. 59B, March 2020, pp. 369-375

Towards the synthesis of C43 to C51 unit of Amphidinol-3

Jhillu Singh Yadav^{*a,b} & K Bhaskar

^a Center for Semio Chemical Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

^b School of Science, Indrashil University, Kadi, Mehsana 382 740, India

E-mail: jsyadav@indrashiluniversity.edu.in; yadavpub@gmail.com

Received 20 February 2019; accepted (revised) 10 October 2019

Towards the synthesis of C43 to C51 unit of Amphidinol-3 has been achieved following our recently developed protocol for the highly stereoselective synthesis of *trans*-2,6-disubstituted dihydropyran through tandem isomerization followed by C–O and C–C bond formation reaction as the key steps. The other important reactions involved are cross-metathesis (CM) reaction and Jin's protocol.

Keywords: Natural products, cross-metathesis, tandem isomerisation followed by C-O/C-C bond formation, Jin's protocol

The amphidinols are a metabolites isolated from the marine dinoflagellates Amphidinium klebsii and Amphidinium carterae (Figure 1)¹. Amphidinol-3 is one of the mainly biologically active compound, as it exhibits potent hemolytic activity against human erythrocytes and antifungal activity against Aspergillus niger². AM3 is having two highly substituted tetrahydropyran (THP) rings and it exhibits hydrophilic polyhydroxylated moiety containing two tetrahydropyran rings and a hydrophobic polyene moiety. The unique molecular structure and biological activities, a number of synthetic studies on AM3 have been reported, including structure revision²⁻⁶. As a part of our ongoing research on total synthesis of pyran ring containing biologically active natural products⁷ by using our own developed methodology of tandem isomerization followed by C-O and C-C bond formation reaction, we here in report our efforts towards the synthesis of C43 to C51 unit of Amphidinol-3.

The retrosynthetic route for the synthesis of 1 is illustrated in Scheme I. We envisioned that compound 1 could be synthesized from pyran compound 2, which in turn could be synthesized from unsaturated aldehyde 3 using our recently developed protocol for the highly stereoselective synthesis of *trans*-2,6-disubstituted dihydropyran. Compound 3 can be obtained from readily available compound 4.

Results and Discussion

Compound 4 was subjected to 1,2 chelation controlled allylation⁸ in presence of $MgBr_2.Et_2O$,

allyltributyltin to afford syn homo allylic alcohol 5 in 86% yield. The resulted homoallylic alcohol 5 was subjected to cross metathesis (CM) reaction between the alcohol and acrolein using a Grubbs catalyst-II (10 mol%) afforded δ -hydroxy- α , β -unsaturated aldehyde **3**⁹ in 90% yield, Having compound 3 in hand, now the stage is set to perform of iodine-catalyzed our protocol tandem isomerization followed by C-O and C-C bond formation reaction. Accordingly, treatment of aldehyde 3 with allyl-TMS in presence of catalytic amount of molecular iodine afforded trans-pyran ring **2** as a single diastereomer in 87% yield¹⁰ (Scheme II)

Selective oxidative cleavage of terminal double bond in presence of catalytic amount of OsO_4 , 2, 6lutidine, NaIO₄ in one pot following Jin's protocol¹¹ furnished aldehyde **6** in 84% yield. Subsquent reduction of compound 6 with NaBH₄ afforded alcohol **7** in 88 % yield. Protection of primary alcohol **7** with TBDPSCl afforded the compound **8** in 95% yield (Scheme III).

Dihydroxylation of compound **8** using OsO_4 , TMEDA¹² furnished diol compound **9a** as major isomer and **9b** as minor isomer with 9:1 diastereoselectivity in 90% yield. Then followed by protection of diol 9a with 2,2-DMP in presence of CSA gave acetonide product **1a** in 95% yield (Scheme IV).

Our next target was introduction of chiral α -hydroxyl centre by proline catalyzed α -aminoxylation towards the synthesis of C43 to C51 unit of

Scheme I - Retrosynthetic analysis of C43 to C51 unit of Amphidinol-3

Amphidinol-3. Further efforts towards the synthesis of C43 to C51 unit of Amphidinol-3 is in progress and will be reported in due course of time.

Experimental Section

All reactions were performed under inert atmosphere, if argon mentioned. All glass apparatus used for reactions were perfectly oven/flame dried. Anhydrous solvents were distilled prior to use: THF from Na and benzophenone; CH₂Cl₂, DMSO from CaH₂; MeOH from Mg cake. Commercial reagents were used without purification. Column chromatography was carried out over silica gel (60 - 120)mesh) unless otherwise mentioned. Analytical thin layer chromatography (TLC) was run on silica gel 60 F254 pre-coated plates (250 µm thickness). Optical rotations $[\alpha]_D$ were measured on a polarimeter and given in $10^{-1} \text{ degcm}^2\text{g}^{-1}$. Infrared spectra were recorded in CHCl₃/KBr (as mentioned) and reported in wave number (cm⁻¹). Mass spectral data were obtained using MS (EI) ESI, HRMS mass spectrometers. ¹H NMR spectra were recorded at 300, 400, 500, 600 MHz and ¹³C NMR spectra at 75 MHz in CDCl₃ solution unless otherwise mentioned. Chemical shifts are in δ (ppm) downfield from tetramethylsilane and coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

(2*R*,3*R*)-1,2-Bis(benzyloxy)hex-5-en-3-ol, 5: To a solution of crude aldehyde 4 (10 g, 37.03 mmol) in dry CH₂Cl₂ (100 mL) was added MgBr₂.Et₂O (11.5 g, 44.43 mmol). After stirring for 15 min and cooling to -78° C allyl tributyl stannane (12.6 mL, 40.73 mmol) was added. The stirring was continued for 16 h while the temperature was slowly raised to -20° C. The mixture was poured into 10% aq HCl (100 mL). The water phase was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic extracts were washed with sat. aq NaHCO₃ (100 mL) and brine, dried, the solvent was evaporated and the residue purified by column

Scheme III — Synthesis of compound 8

chromatography (hexane: ethyl acetate = 3:1) to give **5** (9.9 g, 86%) as a colorless liquid. $[\alpha]_D^{31} = -5.3^{\circ}$ (*c* 1.0, CHCl₃); IR (neat) 3449, 2912, 2866, 1453, 1093,739, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.23 (m, 10 H), 5.86-5.72 (m, 1 H), 5.06-4.97 (m, 2 H), 4.77-4.71 (d,1 H, *J* = 11.331 Hz), 4.57-4.52 (d, 1 H, *J* = 11.331Hz), 4.52-4.50 (m, 2 H), 3.73-3.56 (m, 3 H), 3.53-3.47 (m, 1 H), 2.33-2.18 (m, 2 H); ¹³C NMR (75MHz, CDCl₃): δ 138.1,137.1, 134.7, 128.4, 127.9, 127.8, 127.7, 127.6, 117.3, 79.4, 73.5, 72.8, 71.1, 70.1, 38.0; ESI-MS: *m/z* [M + Na]⁺ 335.

(5R,6R,E)-6,7-Bis(benzyloxy)-5-hydroxyhept-2enal, 3: Homoallyl alcohol 5 (8.0 g, 25.64 mmol) and acrolein (2.6 mL, 38.46 mmol) were dissolved in CH₂Cl₂ (4.0 mL) and argon gas was purged through it for 10 min. Grubbs 2nd generation catalyst (0.8 g, 1.28 mmol) was added to it at RT and again degassed for 10 min. The reaction mixture was allowed to stir for 3 h. After completion of the reaction, (monitored by TLC) solvent was removed under reduced pressure subjected and the crude was to column chromatography (hexane: ethyl acetate = 5:2) to give δ-hydroxyα,β-unsaturated aldehyde **3** (7.8 g, 90%) as a colorless liquid. $[\alpha]_D^{31} = -4.1^\circ$ (*c* 1.0, CHCl₃); IR (neat) 3454, 2868, 1686, 1453, 1093, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.43 (d, 1 H, *J* = 7.6 Hz), 7.43-7.21 (m, 10 H), 6.79 (dt, 1 H, *J* = 15.86, 7.36 Hz), 6.03 (dd, 1 H, *J* = 15.8, 7.9 Hz), 4.8-4.45 (m, 4 H), 3.9-3.76 (m, 1 H), 3.75-3.54 (m, 2 H), 3.53-3.39 (m, 1 H), 2.6-2.4 (m, 2 H); ¹³C NMR (75MHz, CDCl₃): δ 193.9, 154.7, 134.5, 128.5, 128.0, 127.9, 127.7, 78.9, 73.6, 72.6, 70.6, 69.2, 6.7; ESI-MS: *m/z* [M + Na]⁺ 363.

(2*R*,6*S*)-6-Allyl-2-((*R*)-1,2-bis(benzyloxy)ethyl) -3,6-dihydro-2*H*-pyran, 2: To a stirred solution of δhydroxy α,β-unsaturated aldehyde 3 (7.0 g, 19.23 mmol) in anhydrous THF (100 mL) at 0°C, allyltrimethysilane (4.6 mL, 28.84 mmol) was added drop-wise at RT. It was cooled to 0°C and then I₂ (0.48 g, 3.84 mmol) was slowly added to it at the same temperature. It was allowed to warm to RT, stirred for further 4 h and quenched with saturated solution of Na₂S₂O₃ (100 mL) to get a colorless mixture. It was diluted with ethyl acetate (100 mL) and two layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 100 mL). The

Scheme IV— Synthesis of compound 1a and 1b

combined organic layers were washed with brine $(2 \times 100 \text{ mL})$, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography over silica gel (hexane: ethyl acetate = 10:1) to get the desired cyclic product 2 (6.5 g, 87%) as a colorless liquid. $[\alpha]_D^{30} = +52.0^{\circ} (c \ 1.0, \text{CHCl}_3); \text{ IR (neat): } 2924,$ 1641, 1452, 1074, 699 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.39-7.17 (m, 10 H), 5.90-5.73 (m, 2 H), 5.71-5.61 (m, 1 H), 5.10-4.97 (m, 2 H), 4.74,4.64 (ABq, 2 H, J = 12.1 Hz), 4.54, 4.47 (ABq, 2 H,J = 12.1 Hz, 4.30-4.17 (m, 1 H), 3.89-3.77 (m, 1 H), 3.74-3.48 (m, 3 H), 2.46-2.31 (m, 1 H), 2.29-2.11 (m, 2 H), 1.84-1.69 (m, 1 H); ¹³C NMR (75MHz, CDCl₃): δ 135.2, 128.9, 128.3, 128.1, 127.6, 127.5, 127.5, 124.5, 116.6, 79.4, 73.4, 73.3, 73.1, 70.3, 67.8, 38.4, 26.4; ESI-MS: m/z [M + Na]⁺ 387.

2-((2S,6R)-6-((R)-1,2-Bis(benzyloxy)ethyl)-5,6-dihydro-2H-pyran-2-yl)acetaldehyde, 6: To a solution of 2 (6.0 g, 16.48 mmol) in dioxane-water (3:1) (80 mL), 2,6-lutidine (7.6 mL, 65.93 mmol), OsO_4 (83.8 mg, 0.33 mmol) followed by $NaIO_4$ (14.1 g, 65.93 mmol) were sequentially added at RT and stirred for 2 h. After completion of the reaction (monitored by TLC), diluted with water (30 mL) and 1,4-dioxane was removed under reduced pressure. The residue was extracted with CH_2Cl_2 (3 × 75 mL). The combined organic layer was quickly washed with 1N HCl $(2 \times 150 \text{ mL})$ to remove excess 2,6-lutidine followed by brine (150 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to get the crude aldehyde which on purification by a short flash column chromatography over silica gel (hexane: ethyl acetate = 5:2) to furnish the aldehyde **6** (5.0 g, 84%) as a colorless liquid. $[\alpha]_{D}^{29} = +24.7^{\circ}$ $(c = 0.85 \text{ in CHCl}_3);$ IR (neat): 2906, 1723, 1453, 1094, 699 cm⁻¹; ¹H NMR (CDCl₃, 300MHz): δ 9.76 (q, 1 H, J = 1.51 Hz), 7.37-7.21 (m, 10 H), 5.91-5.82(m, 1 H), 5.69-5.61 (m, 1 H), 4.88-4.79 (m, 1 H), 4.72, 4.59 (ABq, 2 H, J = 12.1 Hz), 4.54, 4.46 (ABq, 2 H, J = 12.1 Hz, 3.86 - 3.78 (m, 1 H), 3.67 - 3.50 (m, 3)H), 2.79-2.68 (m, 1 H), 2.49-2.40 (m, 1 H), 1.83-1.71 (m, 1 H); ¹³C NMR (CDCl₃, 300MHz): δ 201.04, 128.35, 128.24, 128.17, 127.74, 127.62, 127.55, 125.67, 78.93, 73.46, 73.34, 69.55, 68.86, 67.82, 47.43, 26.12; ESI-MS: $m/z [M + 1]^+$ 367.

2-((2S,6R)-6-((R)-1,2-Bis(benzyloxy)ethyl)-

5,6-dihydro-2H-pyran-2-yl)ethanol, 7: To a stirred solution of crude aldehyde 6 (4.0 g, 10.92 mmol) in MeOH (40 mL) was added NaBH₄ (0.66 g, 17.48 mmol) at 0°C in a portion wise. The reaction mixture was stirred at 0°C for 2 h. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with saturated NH₄Cl (40 mL). Methanol was removed and aqueous layer was extracted with ethyl acetate $(3 \times 50 \text{ mL})$. The combined organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 3:2) to obtain 7 (3.5 g, 88%) as a yellow liquid. $[\alpha]_{D}^{31} = +23.8^{\circ}$ (*c* 2.5, CHCl₃); IR (neat): 3430, 2923, 2867, 1452, 1090, 701 cm^{-1} ; ¹H NMR (300MHz, CDCl₃): δ 7.40-7.20 (m, 10 H), 5.83-5.74 (m, 1 H), 5.69-5.61 (m, 1 H), 4.71, 4.64 (ABq, 2 H, J = 12.1 Hz), 4.53, 4.46 (ABq, 2 H,*J* = 12.1 Hz), 4.43-4.33 (m, 1 H), 3.95-3.69 (m, 3 H), 3.68-3.58 (m, 1 H), 3.57-3.45 (m, 2 H), 3.00 (br s, 1 H), 2.15-1.8 (m, 2 H), 1.63-1.52 (m, 2 H); ¹³C NMR (75MHz, CDCl₃): δ 129.6, 128.3, 128.3, 128.1, 127.7, 123.7, 96.2, 80.3, 73.5, 73.0, 69.1, 67.7, 61.3, 35.4, 26.7; ESI-MS: *m/z* [M + Na]⁺ 391.

2-((2S,6R)-6-((R)-1,2-Bis(benzyloxy)ethyl)-5, 6-dihydro-2H-pyran-2-yl)ethoxy)(*tert*-butyl)

diphenylsilane, 8: A solution of alcohol 7 (1.5 g, 4.08 mmol), TBDPSCl (2.1 mL, 8.16 mmol) and imidazole (832 mg, 12.24 mmol) in anhydrous CH₂Cl₂ (30 mL) was stirred at RT for 3 h. After completion of the reaction (monitored by TLC), CH₂Cl₂ (100 mL) and water (50 mL) were added. The organic phase was separated and the aqueous was extracted with CH₂Cl₂ (200 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure to give a colorless oil. This oil was purified by column chromatography (hexane: ethyl acetate = 9:1) to afford compound 8 (2.3 g, 95%) as a colorless oil. $[\alpha]_D^{30} = +16.4^{\circ} (c \ 1.5, \text{CHCl}_3); \text{ IR (neat):}$ 2928, 2857, 1457, 1107, 701 cm⁻¹; ¹H NMR (CDCl₃, 300MHz): δ 7.78-7.61 (m, 4 H), 7.5-7.2 (m, 16 H), 5.86-5.64 (m, 2 H), 4.73, 4.61 (ABq, 2 H, *J* = 12.1 Hz), 4.59-4.52 (m, 1 H), 4.40 (s, 2 H), 3.92-3.50 (m, 6 H), 2.35-2.19 (m, 1 H), 1.93-1.66 (m, 3 H), 1.04 (s, 9 H); ¹³C NMR (CDCl₃, 300MHz): δ 135.58, 135.53, 129.73, 129.50, 128.29, 128.17, 128.12, 127.60, 127.51, 124.02, 79.37, 73.35, 70.1, 70.04, 67.45, 60.46, 36.12, 26.81, 26.49, 19.17; ESI-MS: *m/z* [M + Na]⁺ 630

((2S,3R,4R,6R)-6-((R)-1,2-Bis(benzyloxy)ethyl)-

2-(2-((tert- butyldiphenylsilyl)oxy)ethyl)tetrahydro -2H-pyran-3,4-diol, 9a: To a stirred solution of compound 8 (3.0 g, 4.95 mmol) in CH₂Cl₂ (20 mL), *N*,*N*,*N*',*N*'-Tetramethylethylenediamine (3.0 mL, 19.80 mmol) and OsO₄ (25 mg, 0.099 mmol) were added at -78°C. The reaction mixture was continued to stír at same temperature for 12 h and all volatiles were removed to get the crude product, which on purification over silica gel column chromatography (hexane: ethyl acetate = 5:2) furníshed compound **9a** (2.56 g, 90 %) as a viscous oil. $[\alpha]_D^{29} = -21.7^\circ$ (c 2.0, CHCl₃); IR (neat): 3416, 2928, 2859, 1106, 701 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.69-7.63 (m, 4 H), 7.44-7.27 (m, 16 H), 4.75 (d, 1 H, J = 11.9 Hz), 4.38 (d, 1 H, J = 11.9 Hz), 4.38 (s, 2 H), 4.12-4.07 (m, 1 H), 3.87-3.81 (m, 1 H), 3.80-3.56 (m, 6 H), 3.48-3.43 (m, 1 H), 1.88-1.70 (m, 4 H), 1.05 (s, 9 H); ¹³C NMR (75MHz, CDCl₃): δ 138.0, 137.6, 135.6, 133.6, 129.7, 128.4, 128.0, 127.7, 126.9, 79.5, 73.5, 73.4, 73.0, 71.0, 69.9, 69.5, 65.9, 60.2, 32.7, 31.3, 26.8, 19.2; ESI-MS: m/z [M + Na]⁺ 664.

2S,3S,4S,6R)-6-((R)-1,2-Bis(benzyloxy)ethyl)-2-(**2-((***tert***- butyldiphenylsilyl)oxy)ethyl)tetrahydro-2H-pyran-3,4-diol, 9b**: compound 9b (0.28 g, 10 %) as a víscous oil. $[\alpha]_D^{30} = -33.2^\circ$ (*c* 1.0, CHCl₃); IR (neat): 3447, 2926, 2857, 1085, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.69-7.63 (m, 4 H), 7.44-7.33 (m, 6 H), 7.32-7.24 (m, 10 H), 4.73 (d, 1 H, *J* = 11.880 Hz), 4.54 (d, 1 H, *J* = 11.880 Hz), 4.44 (s, 2 H), 4.19-4.10 (m, 2 H), 4.08-4.04 (m, 1 H), 3.79-3.72 (m, 2 H), 3.71-3.62 (m, 4 H), 1.90-1.73 (m, 4 H), 1.03 (s, 9 H); ¹³C NMR (75MHz, CDCl₃): δ 138.2, 135.6, 129.7, 128.4, 128.1, 127.7, 127.6, 80.9, 75.9, 73.4, 71.5, 70.9, 70.4, 69.7, 66.9, 60.5, 34.0, 30.8, 26.8, 19; ESI-MS: *m/z* [M + Na]⁺ 664.

(2-((3aS,4S,6R,7aR)-6-((R)-1,2-Bis(benzyloxy) ethyl)-2,2-dimethy tetrahydro-3aH-[1,3]dioxolo [4,5-c]pyran-4-yl)ethoxy)(*tert*-butyl)diphenylsilane, 1a: To a stirred solution of diol 9a (2.0 g, 3.12 mmol) in CH₂Cl₂ (40 mL), was added 2,2-dímethoxypropane (1.9 mL, 15.62 mmol) and a catalytic amount of camphorsulfonic acid (20 mg) at 0°C. The mixture was continued to stir at RT for 1 h under N₂ atmosphere. After completion of the reaction (monitored by TLC), it was quenched with saturated NaHCO₃ solution (30 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 40) and the combined organic solvent was dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1:25) to afford compound **1a** (2.0 g, 95%) as a colorless liquid. $[\alpha]_D^{28.8} = -8.6^{\circ}$ (*c* 0.8, CHCl₃); IR (neat): 2928, 2857, 1217, 1091 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.70-7.61 (m, 4 H), 7.41-7.19 (m, 16 H), 4.61 (q, 1 H, *J* = 11.7 Hz), 4.42 (s, 2 H), 4.36-4.20 (m, 1 H), 4.10-3.98 (m, 1 H), 3.92-3.72 (m, 4 H), 3.66-3.47 (m, 3 H), 2.05-1.67 (m, 4 H), 1.47 (s, 3 H), 1.33 (s, 3 H), 1.03 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃): δ 135.5, 129.5, 128.3, 128.2, 127.8, 127.6, 127.4, 108.6, 79.7, 76.1, 73.4, 73.1, 71.9, 69.9, 69.8, 69.6, 60.3, 35.7, 29.1, 27.7, 26.8, 25.4; ESI-MS: *m/z* [M + Na]⁺ 704.

(2-((3aR,4S,6R,7aS)-6-((R)-1,2-Bis(benzyloxy))))ethyl)-2,2-dimethyltetrahydro-3aH-[1,3]dioxolo [4,5-c]pyran-4-yl)ethoxy)(tert-butyl)diphenylsilane, **1b**: To a stirred solution of diol 9b (0.25 g, 0.37 mmol) in CH₂Cl₂ (20 mL), was added 2,2dímethoxypropane (0.3 mL, 2.35 mmol) and a catalytic amount of camphorsulfonic acid (10 mg) at 0°C. The mixture was continued to stir at RT for 1 h under N₂ atmosphere. After completion of the reaction (monitored by TLC), it was quenched with saturated NaHCO₃ solution (20 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL) and the combined organic solvent was dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1:25) to afford compound 1b (0.24 g, 92%) as a colorless liquid. $[\alpha]_D^{29.2} = -11.0^\circ$ (*c* 0.8, CHCl₃); IR (neat) 2929, 2859, 1106, 771, 700 cm⁻¹; ¹H NMR (200MHz, CDCl₃): δ 7.70-7.61 (m, 4 H), 7.41-7.21 (m, 16 H), 4.74, 4.57 (ABq, 2 H, J = 11.754 Hz), 4.53-4.45 (m, 3 H), 4.21-4.08 (m, 1 H), 4.02-3.94 (m, 1 H), 3.93-3.77 (m, 3 H), 3.75-3.68 (m, 2 H), 3.55-3.46 (m, 1 H), 2.05-1.65 (m, 4 H), 1.47 (s, 3 H), 1.30 (s, 3 H), 1.02 (s, 9 H); ¹³C NMR (75MHz, CDCl₃): δ 135.5, 129.5, 128.3, 128.2, 127.8, 127.6, 127.4, 108.6, 79.7, 76.1, 73.4, 73.1, 71.9, 69.9, 69.8, 69.6, 60.3, 35.7, 29.1, 27.7, 26.8, 25.4; ESI-MS: m/z $[M + Na]^+$ 704.

Conclusion

In conclusion, efforts towards the synthesis of C43 to C51 unit of Amphidinol-**3** was made following our recently developed protocol for the highly stereoselective synthesis of *trans*-2, 6-disubstituted dihydropyran through tandem

isomerization followed by C–O and C–C bond formation reaction as the key steps. Other important reactions are cross-metathesis (CM) reaction and Jin's protocol.

Supplementary Information

Supplementary information is available in the website http://nopr.niscair.res.in/handle/123456789/60.

Acknowledgments

KB thanks Dr. J. S. Yadav, Former Director and Bhatnagar Fellow, CSIR-IICT, Hyderabad for the Contingency grant.

References

- 1 Satake M, Murata M, Yasumoto T, Fujita T & Naoki H, J Am Chem Soc, 113 (1991) 9859.
- 2 Paul G K, Matsumori N, Konoki K, Sasaki M, Murata M & Tachibana K, in *Harmful and Toxic Algal Blooms*, Proceedings of the Seventh International Conference on Toxic Phytoplankton, UNESCO: Sendai, Japan, p.503 (1966); (b) For a review see: C Bensoussan, N Rival, G Hanquet, F Colobert, S Reymond & J Cossy, *Nat Prod Rep*, 31 (2014) 468
- 3 Murata M, Matsuoka S, Matsumori N, Paul G K & Tachibana K, J Am Chem Soc, 121 (1999) 870.
- (a) Bensoussan C, Rival N, Hanquet G, Colobert F, Reymond S & Cossy J, Tetrahedron, 69 (2013) 7759; (b) Rival N, Hanquet G, Bensoussan C, Reymond S, Cossy J. & Colobert F, Org Biomol Chem, 11 (2013) 6829; (c) Flamme E M & Roush W R, Org Lett, 7 (2005) 1411; (d) Hicks J D, Flamme E M & Roush W R, Org Lett, 7 (2005) 5509; (e) Hicks J D & Roush W R, Org Lett, 10 (2008) 681; (f) de Vicente J, Huckins J R & Rychnovsky S D, Angew Chem Int Ed, 45 (2006) 7258; Angew Chem, 118 (2006) 7416; (g) Huckins J R, de Vicente J & Rychnovsky S D, Org Lett. 9 (2007) 4757; (h) Paquette L A & Chang S-K, Org Lett, 7 (2005) 3111; (i) Chang S-K & Paquette L A, Synlett, 2915 (2005); (j) Bedore M W, Chang S-K & Paquette L A, Org Lett, 9 (2007) 513; (k) Crimmins M T, Martin T J & Martinot T A, Org Lett, 12 (2010) 3890; (1) Grisin A & Evans P A, Chem Sci, 6 (2015) 6407; (m) Yadav J S, Gopalarao Y, Chandrakanth D & Reddy B V S, Helv Chim Acta, 99 (2016) 436.
- 5 De Vicente J, Betzemeier B & Rychnovsky S D, *Org Lett*,7 (2005) 1853.
- (a) Peng J, Place A R, Yoshida W, Anklin C & Hamann M T, J Am Chem Soc, 132 (2010) 3277; (b) Waters A L, Oh J, Place A R & Hamann M T, Angew Chem Int Ed, 54 (2015) 15705; Angew. Chem, 127 (2015) 15931; (c) Wakamiya Y, Ebine M, Murayama M, Omizu H, Matsumori N, Murata M & Oishi T, Angew Chem Int Ed, 57 (2018) 6060–6064.
- 7 (a) Banoth S, Maity S, Kumar S R, Yadav J S & Mohapatra D K, Eur J Org Chem, 2300 (2016); (b) Mohapatra D K, Banoth S & Yadav J S, Tetrahedron Lett, 56 (2015) 5930; (c) Mohapatra D K, Maity S, Banoth S, Gonnade R G & Yadav J S, Tetrahedron Lett, 57 (2016) 53; (d) Mohapatra D K, Krishnarao P S, Bhimireddy E & Yadav J S, Synthesis, 46 (2014) 1639; (e) Pradhan T R, Das P P &

Mohapatra D K, *Synthesis*, 46 (2014) 1177; (f) Mohapatra D K, Maity S, Rao T S, Yadav J S & Sridhar B, *Eur J Org Chem*, 2859 (2013); (g) Yadav J S, Pattanayak M R, Das P P & Mohapatra D K, *Org Lett*, 13 (2011) 1710–1713.

- 8 De Brabander J & Vandewalle M, Synthesis, 30 (1994) 856-865.
- 9 (a) Garber S B, Kingsbury J S, Gray B L & Hoveyda A H, J Am Chem Soc, 122 (2000) 8168; (b) Dinh M T, Bouzbouz S, Peglion J L & Cossy J, Tetrahedron, 64 (2008) 5703– 5710.
- 10 Mohapatra D K, Das P P, Pattanayak M R & Yadav J S, Chem Eur J, 16 (2010) 2072–2078.
- 11 Yu W, Mei Y, Kang Y, Hua Z & Jin Z, Org Lett, 6 (2004) 3217–3219.
- (a) Tomioka K, Nakajima M & Koga K, J Am Chem Soc, 109 (1987) 6213; (b) Wang Y, Babirad S A & Kishi Y, J Org Chem, 57 (1992) 468; (c) Donohoe T J, Moore P R, Waring M J & Newcombe N J, Tetrahedron Lett, 38 (1997) 5027; (d) Jacqueline D, Hicks E M, Flamme W R & Roush W R,Org Lett, 7 (2005) 5509-5512.