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Microwave scatterometer is sensitive to the melting snow. When the freeze-thaw phenomenon occurs, the backscatter 
coefficients will have a sharp rising and falling mutation. Mathematical morphology has the characteristics with edge-
preserving filter and wavelet transform has the characteristics with the automatic edge extraction, which does not depend on 
the priori snowmelt information. A new automatic Antarctic snowmelt detection method was proposed based on 
mathematical morphology combined with wavelet transform. This method improves the snowmelt detection accuracy, 
because this method can remove the interference of the edge extraction. Melt onset date, end date and duration can be 
obtained with high accuracy by identifying and tracking the sharp rising and falling edge. Compare the snowmelt results in 
this work with the temperature of ten automatic weather stations (AWS), which shows that the snowmelt detection method 
proposed in the paper improves the detection accuracy from about 50 % to 62.5 % in AWS Cape Denison.  

[Keywords: Generalized Gaussian model; Mathematical morphology; Microwave scatterometer; Snowmelt detection; 
Wavelet transform] 

Introduction 
Antarctica plays an important role in the global heat 

budget. As one of the main sources of cold air on the 
Earth, Antarctica has a profound impact on global 
climate. Ice sheet is one of the most important 
environmental factors in Antarctica, and changes in ice 
sheet play an important role in regulating the global 
climate. The near-surface snowmelt in Antarctica will 
cause the increase of the surface humidity, leading to 
the collapse of the ice shelves, sea level rise1, and then 
it will change the movement of the ice streams, and 
also change the radiation reflectivity of the snow and 
thus affecting the polar radiation balance. Therefore, 
the polar snowmelt could serve both as a sensitive 
indicator and a strong contributing factor to global 
climate change2-3. So accurately and objectively 
detecting melt onset date, end date, and duration of the 
snow has important theoretical significance and 
practical application value. 

The QuikSCAT scatterometer has the widely 
spatial coverage and daily time resolution, and it is 
not affected by weather and night and has high 
sensitivity, which provides an ideal tool for the 
seasonal snowmelt detection over Antarctica4. When 
the liquid water content of snow increases, there is a 
sudden decrease in the backscatter values from the 

QuikSCAT scatterometer5-7, and this property has 
been successfully used for the detection of polar ice-
sheet and the ice-shelf melt onset date4,8,9. The sharp 
decline time of the backscatter coefficient is 
consistent with the air temperature more than 0 °C 
and this phenomenon can be used for snowmelt 
detection8,10. In the melt season, due to the increase of 
microwave absorption, the decrease of backscatter 
coefficient (radar cross section 0 ) is dramatic such 
that this phenomenon can be easily used to detect the 
snowmelt. For example, microwave scatterometer 
data has been successfully used in Arctic to recognize 
the thaw-freeze information of snow and ice11, which 
has been successfully applied to the ice-sheet melt 
area and the duration map in Greenland12, and 
estimate the snow and ice-sheet accumulation of 
Greenland island13, and determine the Arctic melting / 
freezing onset date13-14. 

There are the following several kinds of methods of 
ice-sheet freeze-thaw detection for the microwave 
scatterometer: (1) The threshold-based ice-sheet 
freeze-thaw detection methods6,15-18: Ashcraft and 
Long16 used the mean and standard deviation of the 
backscatter coefficient during the winter where a drop 
in the backscatter coefficient of eight winter standard 
deviations below the winter mean indicates a melt. 
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Nghiem et al.17 used QSCAT to detect melt over 
Greenland based on the diurnal variability. Ashcraft 
and Long16 used a threshold of 3 dB below the winter 
mean. Bartsch et al.18 presented an approach for 
monitoring of differences in backscatter measured 
during morning and evening passes. Bothale et al.6 
presented a threshold method based on temperature 
HH polarized backscatter coefficient relation and 
average HH polarized backscatter coefficient for the 
months January-March used for melt/freeze detection 
in Himalaya. Bothale et al.7 presented an adaptive 
threshold-based classification for melt/freeze 
detection using austral winter mean and standard 
deviation. (2) The model-based ice-sheet freeze-thaw 
detection methods: it mainly includes αQ method of 
QuickSCAT scatterometer and αE method of ERS 
scatterometer15. (3) The improved methods are based 
on the former two methods11,12,19. The typical ice-
sheet freeze-thaw detection methods are based on the 
averages of the backscatter coefficients for 5 days in a 
row, and three-step method is based on the change of 
the backscatter coefficient in a day, as well as the 
method of dynamic threshold value and the method of 
dual threshold values and so on. (4) The ice-sheet 
freeze-thaw detection methods based on edge 
detection: Steiner and Tedesco8 proposed wavelet-
based melt algorithm based on wavelets and 
multiscale analysis. The advantage of this method is 
that it does not depend on the field measurements, 
which depend only on the relative backscatter values. 
The disadvantage is that the mutation is not very 
ideal, and the typical sample of the double Gauss 
model is time-consuming. 

Microwave scatterometer has high sensitivity and 
the roughness has a greater influence on the 
backscatter coefficient, and the surface roughness of 
the wet snow is generally greater than the dry snow, 
therefore, the backscatter coefficient of the wet snow 
is very sensitive to the surface roughness. In order to 
get accurate melt information by wavelet edge 
detection method, there is a need to remove the 
interference of the surface roughness of the wet snow. 
The introduced mathematical morphology is not only 
able to filter out the interference effectively but also 
can well keep the edge information. 
 
Materials and Methods 
Materials 

The scattermeter SeaWinds / QSCAT was launched 
in 1999 with QuikSCAT satellite, and its working 

frequency is 13.4 GHz using a conical scanning pen 
type antenna. Internal and external beams of QSCAT 
use two fixed incident angle (46° and 54°) and 
corresponding HH (horizontal polarization) mode and 
VV (vertical polarization) mode. This paper mainly 
uses the spatial resolution 4.45kmkm45.4   data with 
SIR (Scatterometer Image Reconstruction) format. 
This file is composed of the file header and the data 
subject, and the size of the file header is 512 bytes, 
which contains the data subject information and 
projection information. 

Both every 3-hour temperature data and every 10-
minute temperature data can be used in Antarctica. 
Because the every 3-hour temperature data has been 
calibrated and the erroneous data has been removed, we 
use every 3-hour temperature data to verify the results. 
The mean value of the daily maximum three data is used 
as the verification for Antarctic snowmelt results. 
 
Methods 
Mathematical morphology 

Mathematical morphology is a new image 
analytical science, and it is the mathematical 
foundation of integral geometry and random-set 
theory. Mathematical morphology is a nonlinear 
filtering method in signal processing, and it is not 
sensitive to image edge direction, and it can restrain 
the noise well and keep the real edge. Mathematical 
morphology is initially targeted at the two-value 
image operation, because it can not only simplify the 
image data and keep the basic shape characteristics of 
the image but also can remove the irrelevant structure 
in the image, so it is widely applied in the fields of 
image processing. 

Mathematical morphology detects the signal 
through constantly moving the structure element 
‘probe’, and then the complex signals will be 
decomposed into many parts with the physical 
meaning, and the main characteristics of the signal are 
retained in order to achieve the purpose of extracting 
useful information. It mainly includes four kinds of 
basic operations, including corrosion, expansion, 
opening operation and closing operation. 

The set A  is corroded by the set B  expressed as
BA , which is defined as: 

 

 AxBxBA  :  …(1) 
 

Where, A is the input image, B is the structure 
element. BA  is composed of all the points x  still 
included in A by B  translating x  unit. 
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Dilation operation and corrosion operation are 
dual, so it can be defined by the complementary set  
of the corrosion. cA expresses the complement set  
of A , and then the set A  expanded by the set B  is 
defined as: 

 

 cc BABA )(  …(2) 
 

A  is the input image, and B  is the structure 
element. The opening operation A  done by B  is 
defined as: 

 

  BBABA   …(3) 
 

From equation (3) it shows that opening operation 
is the result that actually A  is corroded first, and then 
it is expanded by B . 

Closing operation is the dual operation of the 
opening operation, first expansion and then corrosion, 
which is defined as: 

 

  BBABA   …(4) 
 

The opening operation and the closing operation of 
the mathematical morphology have the low-pass filter 
characteristics. The opening operation can remove the 
burrs and the tiny spots of the signal to suppress the 
peak (positive impulse) noise in the signal, and the 
closing operation can fill the gaps and the cracks to 
suppress the (negative pulse) noise in the signal. 
These operators and their combination can do image 
segmentation, feature extraction and edge detection. 
 
Multiscale edge detection based on wavelet transform 

Because the large number of edges are not 
differentiable and even not continuous, most of the 
multiscale edge detections are to smooth the original 
signals in different scale, and then detect the upheaval 
point by the first derivative or the second derivative of 
the smoothed signals, and that is the signal edge. 

Let θ(x)  as the smooth function with 

))xO(1/(1θ(x) 2  and 0dtθ(t) 

 . Let 

  )(1)(s sxθsxθ   as the upheaval points of the 
function )(xf  smoothed by (x)θS  in scale s . 

Wavelets (x)ψ1  and (x)ψ2  are defined by the 
following two formulas separately 

dx
xdθ(x)ψ )(1   and 2

2
2

dx
θ(x)d(x)ψ  , and the 

corresponding wavelet transform is defined for 
)()(),( 11 xψxfsµfW   and )()(),( 22 xxfsfW   , 

that is: 

)(x)θ(f
dx
ds)(x)

dx
θd(sff(µ(µW S2

2
2

2
S

2
22    …(5) 

 

))(())((),( S
S1 xθf

dx
dsx

dx
θdsfsµfW    …(6) 

 

It can been seen from formula (5) and formula (6) 
that the wavelet transform of (x)ψ1  and )(2 xψ  for 
f(x)  becomes the convolution with the smooth 

function (x)θS  for one order derivative and two order 
derivative multiplied by s and 2s . In this way, the 
local maximization of (x)ψ1  is corresponding to zero 

point and inflection point of )(2 xψ . 
Detecting the zero point or the local extremum 

point uses the similar method, but the local extreme 
point has its advantages. The inflection point of 

Sθf   is the maximum point and minimum point of 
the absolute value of the first derivative, and the 
maximum point of the first derivative of Sθf   is its 
upheaval points, and the minimum point is its slow 
change point. It is different to distinguish the 
maximum point and minimum point by the zero 
points of the second derivative. But the upheaval 
point and the value can been obtained easily by 
detecting the local maximum values of ),(1 sµfW , and 
it plays a very good deionising effect through the 
screening these local maximum points. 

It can been seen that the large-scale wavelet 
decomposition compared to the small-scale wavelet 
decomposition not only retains the information of the 
dramatic changing edge, but also has a certain 
denoising effect from the multi-scale wavelet 
decomposition. 
 
Mathematical morphology combined with wavelet transform 

Daily backscatter coefficient ( 0 ) variations for 
typical wet and dry pixels are displayed for the 
horizontal polarization QuikSCAT data from July 1, 
2000 to June 30, 2001 as shown in Figure 1. The wet 
pixel and the dry pixel are filtered by mathematical 
morphology with edge preserving properties. The dry 
pixel (80.07˚S, 45.00˚E) is located in the interior of 
Antarctica, where the ice sheet remained continuously 
dry and the backscatter coefficient varied smoothly. 
The wet snow pixel (68.00˚S, 61.18˚W) is located in 
Larsen ice shelf of Antarctic Peninsula, where the ice 
sheet experienced melting during the austral summer. 
The most prominent feature of the wet snow pixel is 
that its backscatter coefficient decreased rapidly at the 
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melt onset date in early summer. This stands in sharp 
contrast to the upper 0  observed during the nonmelt 
conditions, forming a strong downward step edge 
(cliff) on the time series of daily 0  observations. An 
apparent prolonged period (plateau) of elevated 
backscatter coefficients is observed during the 
summer. A dramatic increase in backscatter 
coefficients corresponding to the snow refreezing 
creates an obvious upward edge (cliff) on the 0  time 
series curve during the late summer. The basic steps 
of the filter for the long time series of backscatter 
coefficient data by mathematical morphology are as 
follows: 1) The backscatter coefficient data of 
microwave scatterometer is pre-processed. 2) The 
opening operation of mathematical morphology does 
the filter for the long time series of backscatter 
coefficient data. 3) The closing operation of 
mathematical morphology does the filter for the 
results proposed by step 2). It can been seen from the 
front depiction that the backscatter coefficient 
changes of the wet snow pixel are mainly determined 
by the liquid water content in the wet snow. With the 
increase of the liquid water content in the wet snow in 
summer, the long time series of backscatter 
coefficient data has a distinct falling edge filtered by 
mathematical morphology, which indicates that the 
ice sheet is melting20,22. 

Based on the above theory, Figure 2 shows 
Antarctic ice-sheet freeze-thaw detection basic flow 
chart based on mathematical morphology with 
wavelet edge detection for microwave scatterometer. 
The basic principle is as follows: mathematical 
morphology filters the long time series of 
backscatter coefficient data with edge preserving, 
and the sharp falling edge in the curve reacts the ice-
sheet melt, and the sharp rising edge in the curve 
reacts the ice sheet from the melt to the freezing. The 
melt onset date in every year is the first sharp  falling  

 
Fig. 2 — Freeze-thaw flowchart of mathematical morphology 
combined with wavelet transform 
 

edge for the backscatter coefficient curve along the 
time axis, and the melt end date in every year is the 
last sharp rising edge for the backscatter coefficient 
curve along the time axis, and melt duration can 
been obtained by the sum of each period of the year. 
The method can detect whether each pixel 
experiences freezing and thawing and determine 
freeze-thaw time. The basic steps of the algorithm 
are as follows: 
(1) Preprocess long time series of backscatter 

coefficient data. 
(2) Mathematical morphology does the filtering for 

the preprocessed long time series of backscatter 
coefficient data. 

(3) Use wavelet transform for long time series of 
backscatter coefficient data processed by 
mathematical morphology to do the multi-scale 
wavelet decomposition and extract the edge 
information under different scales. 

(4) Automatically obtain the optimal edge threshold 
of wet snow and dry snow classification by using 
variance analysis and generalized Gauss model 
based on the extracted edge in step (3) . 

(5) Obtain the distribution map of Antarctic 
snowmelt onset date, duration and end date of 
each pixel based on the optimal edge in step (4). 

 
Fig. 1 — Daily backscatter coefficient variations for typical wet and dry pixels 
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(6) Design a median difference operator to 
automatically check and flag potential errors.  
We examined each pixel with 3×3 
neighbourhood, which ultimately determines the 
melt onset date, melt duration and melt end date. 

 
Results and Discussion 

Antarctic microwave scatterometer QuikSCAT 
data from July 1, 2000 to June 30, 2001 is used to 
study the snowmelt information, and the long time 
series of the backscatter coefficient data is done by 
preprocessing method to eliminate the problem data, 
and then partial external interference can been 
removed by edge-preserving mathematical 
morphology. Automatically obtain the optimal 

classification threshold of dry snow and wet snow 
through the wavelet edge detection and the 
generalized Gauss mode, and then obtain the 
Antarctic snowmelt distribution map. Figure 3 is 
distribution map of the Antarctic melt onset date, 
duration and end date from July 1, 2000 to June 30, 
2001 based on mathematical morphology combined 
with wavelet transform. Figure 4 is distribution map 
of the Antarctic melt onset date, duration and end date 
from July 1, 2000 to June 30, 2001 based on wavelet 
transform. 

The total melt areas of Figure 3 are about 902,499 
square kilometres, accounting for 6.5 % of the total 
Antarctica. The total melt areas of Figure 4 are about 
998,046 square kilometres, accounting for 7.2 % of 

 
 

Fig. 3 — Antarctic snowmelt detection results based on edge detection for scatterometer data for the proposed method (a) Melt onset date 
(where, 10.4 is October 4, 2000, and so on) (b) Melt duration (c) Melt end date 
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the total Antarctica. We can see from Figure 3 and 
Figure 4 that the melt areas were mainly distributed 
on the edge of the Antarctic ice shelves and there are 
many differences in melt onset date, duration and end 
date. 

Use the near surface air temperature data of ten 
automatic weather stations from July 1, 2000 to  
June 30, 2001 to verify melting state of wet snow and 
dry snow, and the geographic information of ten 
automatic weather stations are shown in Table 1, and 
the temperature variation curve of the dry snow 
stations is shown in Figure 5 and the temperature 
variation curve of the wet snow stations is shown in 
Figure 6.  

From Figure 5, the air temperatures of six dry snow 
sites change greatly from July 1, 2000 to June 30, 
2001, but the annual air temperatures are lower  
than -5 °C , which indicates that the locations of six 
automatic meteorological stations were not melt, and 
this is consistent with the ice-sheet freeze-thaw 
detection results obtained by the proposed algorithm 
as shown in Figure 3. 

As we can see in Figure 6, Butler Island station 
reached 0 °C or more than 0 °C only in early January 
and mid January, which is very consistent with the 
results shown in Figure 3. The air temperatures in 
Larsen Ice Shelf station and Cape Denison station 
reached 0 °C or more than 0 °C in mid December, and 
the air temperatures began less than 0 °C in February, 
and the ice-sheet freeze-thaw detection results are 
consistent with the results of these two sites. 
Bonaparte Point station location is in the melt state 
from November 2000 to the end of March 2001, 
which is very consistent with the air temperature 
results shown in Figure 6.  

Table 1 — Geographic information of ten automatic weather 
stations 

Type Name Code Longitude  Latitude 

Dry snow points 

Swithinbank 356 81.20˚S 126.17˚W 
Elizabeth 361 137.08˚W 82.61˚S 
Harry 900 121.39˚W 83.00˚S 
Relay Station 918 43.06˚E 74.02˚S 
Siple Dome 938 148.77˚W 81.66˚S 
Dome C II 989 123.37˚E 75.12˚S 

Wet snow points 

Butler Island 902 60.16˚W 72.21˚S 
Bonaparte Point 923 64.07˚W 64.78˚S 
Larsen Ice Shelf 926 60.91˚W 66.95˚S 
988 988 142.66˚E 67.01˚S 

 

It can been seen that the snowmelt results based on 
mathematical morphology combined with wavelet 
edge detection algorithm can accurately reflect the 
Antarctic snowmelt time and space distribution by the 
comparisons of the air temperatures of 10 typical dry 
and wet snow sites and the results of the proposed 
method. 

In order to verify the feasibility of mathematical 
morphology combined with wavelet transform, the 
results are compared with wavelet transform method. 
It can been seen from Figure 6 that the temperature of 
Cape Denison is higher than 0 °C for 32 days. 
Nevertheless, the melt duration of wavelet transform 
method is 16 days, and the melt duration of the 
proposed method is 20 days, so the detection accuracy 
is about 50 % for the wavelet transform method and 
the detection accuracy is about 62.5 % for the the 
proposed mathematical morphology combined with 
wavelet edge detection method. Overall, the proposed 
method has more accurate.  

In short, the proposed mathematical morphology 
combined with wavelet edge detection algorithm can 

 
 

Fig. 4 — Antarctic snowmelt detection results based on edge detection for scatterometer data for wavelet transform method (a) Melt onset 
date (where, 10.4 is October 4, 2000, and so on) (b) Melt duration (c) Melt end date 
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not only extend ice-sheet freeze-thaw detection 
method of the microwave scatterometer, but also 
obtains better snowmelt detection results. 
 
Conclusion 

The backscatter coefficient of microwave 
scatterometer is very sensitive to the liquid water content 
of the snow. With melting begins and ends, the 
backscatter coefficients will have dramatic changes, and 
a new automatic Antarctic snowmelt detection method 
was proposed based on microwave scatterometer 
SeaWinds/QSCAT data by mathematical morphology 
combined with wavelet transform. The method did not 
depend on the priori snowmelt information. To some 
extent, this method can improve the snowmelt detection 
accuracy because this method can remove most of the 
interference by the filtering of mathematical 
morphology. Comparison of the freeze-thaw results in 
this work with the surface air temperature of ten 
automatic weather stations shows that the proposed 
snowmelt detection method is feasible.  
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