Complexation Reaction of Dihydroxycoumarins: Studies on the Reaction of $\mathrm{Ti}(\mathrm{IV})$ with 7,8-Dihydroxy-4-methylcoumarin (4-Methyldaphnetin)

DEVENDER SINGH \& H. B. SINGH
Department of Chemistry, University of Delhi, Delhi 110007

Received 22 August 1975; accepted 11 December 1975

Abstract

The reaction of $\mathrm{Ti}(\mathrm{IV})$ with 7,8 -dihydroxy-4-methylcoumarin (4-methyldaphnetin) has been studied spectrophotometrically. Three mononuclear complexes $\left.\mathrm{TiOH}_{(\mathrm{RH}}\right)^{+}, \mathrm{TiO}(\mathrm{RH})_{2}$ and TiO(RH) ${ }_{3}^{+}$are formed in solution depending on pH and the concentration of ligand. The log values of stepwise stability constants and the values of molar extinction coefficients are found to be $8.37,7.33$ and 5.70 ; and $3.2 \times 10^{3}, 6.05 \times 10^{3}$ and 8.85×10^{3} respectively.

STEPWISE formation of $1: 1,1: 2$ and $1: 3$ complexes of titanium with o-dipherols with increase in $p H$ is well known ${ }^{1}$. Amongst various o-dihydroxycoumarins, only daphnetin ${ }^{2}$ and 4 -methylesculetin ${ }^{3}$ have been studied earlier, and formation of $1: 3$ complexes reported. This paper describes the results of a detailed study of titanium complex with 7,8-dihydroxy-4-methylcoumarin (4-methyldaphnetin).

Potassium titanyl oxalate (3.54 g) ($\mathrm{AR}, \mathrm{BDH}$) was dissolved in water (1 litre) and then precipitated with ammonia. The precipitate was dissolved in minimum quantity of HClO_{4} and diluted to the required volume. The ionic strength was maintained constant by adding sodium perchlorate.

4-Methyldaphnetin ${ }^{4}$ (m.p. 276-78 ${ }^{\circ}$) was prepared and crystallized from ethyl alcohol.

A Beckman $p \mathrm{H}$ meter, type zeromatic and a Colemann spectrophotometer model 14 were used.

All the experiments have been carried out in 50:50 (v / v) aq. ethanol medium.

Method of calculations - Three general equilibria (1-3) were used for expressing complexation in the presence of excess ligand:

$$
\begin{gather*}
\stackrel{K_{n}}{\mathrm{M}+n \mathrm{H}_{i} \mathrm{R} \stackrel{\mathrm{MR}}{n}} \mathrm{H}_{m}+(n i-m) \mathrm{H}^{+} \\
K_{j} \tag{1}\\
\mathrm{MR}_{n} \mathrm{H}_{m}+j \mathrm{H}_{i} \mathrm{R} \leftrightharpoons \mathrm{MR}_{n+j} \mathrm{H}_{q}+(j \imath-q) \mathrm{H}^{+} \\
\quad K_{p} \tag{2}\\
\mathrm{MR}_{n+j} \mathrm{H}_{q}+p \mathrm{H}_{j} \mathrm{R} \rightleftharpoons \mathrm{MR}_{n+j+p} \mathrm{H}_{r}+(p i-r) \mathrm{H}^{+}
\end{gather*}
$$

For the above equilibria following equatiors (4-8) may be written ${ }^{5-10}$
$A=\epsilon_{1} C_{m}-[H]^{(n i-m)} A / C_{R}^{n} \cdot K_{n}$
$A=\epsilon_{1} C_{M}+C_{R}^{j}\left(\epsilon_{2} C_{M}-A\right) K_{j} /[\mathrm{H}]^{(j i-q)}$
$A=\epsilon_{2} C_{M}-[H]^{(j i-q)}\left(A-\epsilon_{1} C_{M}\right) / K_{j} C_{\boldsymbol{R}}^{j}$
$A=\epsilon_{2} C_{M}+C_{R}^{p}\left(\epsilon_{3} C_{M}-A\right) K_{p} /\left[\mathrm{H}_{]^{(p i-r)}}\right.$
$A=\epsilon_{3} C_{M}-[H]^{(p i-r)}\left(A-\epsilon_{2} C_{M}\right) / K_{p} C_{R}^{p}$
In the above equation A represents absorbance, $\boldsymbol{\epsilon}_{1}, \boldsymbol{\epsilon}_{2}$ and $\boldsymbol{\epsilon}_{3}$ represent molar absorptivities of the three complexes, C_{M} is the total concentration of
metal ion (concentration of free metal ion being small has been neglected), C_{R} is the total concentration of the ligand (amount of ligand complexed being very small in comparison to the free ligand has been neglected), and K_{n}, K_{j}^{n} and K_{p} are equilibrium constants of three species.

The following method is used for evaluating the values of $\boldsymbol{\epsilon}_{\mathbf{1}}, \boldsymbol{\epsilon}_{\mathbf{2}}$ and $\boldsymbol{\epsilon}_{\mathbf{3}}$.

Functions A versus $\left(\mathrm{A}_{[}\left[\mathrm{H}_{j}^{(n j-m)}\right), A\right.$ versus $\left.\left[\epsilon_{2} C_{M}-A\right)\right]$ $[H]^{(i-q)}$ and A versus $\left(\epsilon_{3} C_{M}-A\right) /[H]^{(p i-q)}$ were plotted, which in turn were obtained from the $p \mathrm{H}$ absorbance curves at different $p \mathrm{H}$ values and different ligand concentrations, recorded at suitable wavelength. The values of $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} at this wavelength were then deduced from the above plots. Consequently these values of $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} were substituted in the logarithmic transformations (9)-(11).

$$
\begin{align*}
& \log \frac{A}{\epsilon_{1} C_{M}-A}=n \log C_{R}+(n i-m) p \mathrm{H}+\log K_{n} \tag{9}\\
& \log \frac{A-\epsilon_{1} C_{M}}{\epsilon_{2} C_{M}-A}=j \log C_{R}+(j i-q) j \mathrm{H}+\log K_{j} \tag{10}\\
& \log \frac{A-\epsilon_{2} C_{M}}{\epsilon_{3} C_{M}-A}=p \log C_{R}+(p i-r) p \mathrm{H}+\log K_{p} \tag{11}
\end{align*}
$$

From the slopes of the linear plots obtained using Eqs. (9) to (11) the values of $(m-m),(j i-q)$ and ($p i-r$) were obtained. The equilibrium or stability constants have then been calculated from the plot of $p \mathrm{H}$ versus $-\log C_{R}$, for the equation with the left hand side being zero, and also by plotting log $A /\left(\epsilon_{1} C_{M}-A\right)$ vs $p \mathrm{H}$ and other similat terms vs $p \mathrm{H}$.

Determination of the number of ligand species in the complex and proton liberated during complexation - A set of $p \mathrm{H}$-absorbance curves for solutions containing a constant excess of ligand were analysed (Eqs. 12-14) in corresponding solutionsi.e. for solutions having same values of $\epsilon=A-A_{O R} / C_{M}\left(A_{O R}=a b-\right.$ sorbance of the ligand). Under such conditions simple logarithmic plots are valid whose slopes give directly the ratio of the number of coordinated ligand molecules and that of the protons liberated during the complexation.
$p \mathrm{H}=\frac{n}{(n i-m)}\left(-\log C_{R}\right)+$ constan t
$p \mathrm{H}=\frac{j}{(j i-q)}\left(-\log C_{R}\right)+$ constant
$p \mathrm{H}=\frac{p}{(p i-r)}\left(-\log C_{R}\right)+$ constant
To know the existence of polynuclear complexes, especially dinuclear complexes, solutions containing a constant excess of ligand were examined varying the concentration of metal ion and determining the ratio of the number of metal ions complexed to that of protons liberated, using Eq. (15).
$p \mathrm{H}=\frac{m-1}{m}\left(-\log C_{M}\right)+$ constant
Eqs. (4) to (8) were used for the interpretation of plots of absorbance versus the increasing [ligand] at constant $p \mathrm{H}$.

Characteristics of Ligand

4-Methyl daphnetin behaves as a dibasic acid. The dissociation constant of 4 -methyl daphnctin was determined $p \mathrm{H}$-metrically. The values of $p \mathrm{~K}_{1}$ and $p \mathrm{~K}_{2}$ are found to be 8.2 and 11.4 respectively. In UV and visible region the ligand exhibits ${ }^{11} \lambda_{\text {max }}$ at 261, 321 and $370 \mathrm{~nm}\left(\log \epsilon_{\max } 4 \cdot 14,4 \cdot 8\right.$ and $\left.3 \cdot 7\right)$.

Results

A deep orange colour appeared in solution of TiO^{2+} with 4 -methyldaphnetin in excess. The reaction between TiO^{2+} and 4-methyldaphnetin was reversible in nature in the $p \mathrm{H}$ range $2-5$. Only mononuclear complexes are formed in solution with excess of ligand in the entire $p \mathrm{H}$ region. Absence of polynuclear complexes is inferred from the overlapping of $p \mathrm{H}$ versus $\left(A / C_{R}\right)$ curves at different C_{M} values.

Absorbance- pH curves - A family of curves were obtained at 380 nm with varying ligand concentrations and $p \mathrm{H}$, maintaining a fixed concentration of the metal ion (Fig. 1). The curves indicated
that at the same $p H$ value the absorbance increases if the ligand concentration is raised.

Absorbance- $p \mathrm{H}$ curves have been interpreted in two ways: (i) logarithmic method of analysis; and (ii) corresponding solutions method.
(i) Assuming general equilibria (1-3) the following results are obtained on the basis of transformations (4)-(8) as well as on the results of logarithmic analysis according to (9)-(11).

Fig. 1 - pH versus absorbance curves of titanium-4-methyldaphnetin complex at various [ligand] [Wavelength, 380 nm ; $C_{M}=4 \times 10^{-5} M$; for curves $1-5, C_{R}$ values are $2,4,6,8,12 \times 10^{-4} M$ respectively]

Fig. 2 - Analysis of ligand concentration versus absorbance curves [$\mathrm{pH} 3.0 ; C_{M}=4 \times 10^{-5} M$; curves 1 , 2 at 380 nm and 3, 4 at 400 nm . x represents $A / C R$ for curves 1 and 3 and $A / C^{2} R$ for curves 2 and 4]

Fig. 3 - Analysis of $p H$ versus absorbance curves according to Eqs. (5), (7) and (8) [Wavelength, 380 nm ; C_{R} values of curves $1,5,9=4 \times 10^{-4} M$; for curves $2,6,10=6 \times 10^{-4} M$; for curves $3,7,11,8 \times 10^{-6} M$; and for curves $4,8,12=$ $\left.12 \times 10^{-4} \mathrm{M}\right]$

At 380 nm the plots of A vs A / C_{R} (curve 1, Fig. 2) at $p \mathrm{H} 3.0$ and $\log A /\left(A o_{1}-A\right)$ vs $p \mathrm{H}$ [Fig. 3-(I)] in the $p \mathrm{H}$ region 2.5 to 3.8 were linear with a slope of unity. The plots of A vs $A / C_{R}{ }^{2}$ at 380 and 400 nm respectively, (Fig. 3, curves 2 and 4) cannot be considered in view of the non-linear nature of these curves. So the following equilibria can be assumed in the above pH region:

$$
\mathrm{TiO}^{2+}+\mathrm{H}_{2} \mathrm{R} \rightleftharpoons \mathrm{TiO}(\mathrm{RH})^{+}
$$

Similarly at $p \mathrm{H} 4.2$ and 5.8 at 380 nm the plots of A vs $\left(A-A o_{1}\right) / C_{R}$ and A vs $\left(A-A o_{2}\right) / C_{R}$ were drawn (Fig. 4, II and III) to obtain the values of $A o_{1}$ and $A o_{2}$. With the help of these values, plots of $\log \left(A-A o_{1}\right) /\left(A o_{2}-A\right)$ vs $p \mathrm{H}$ (Fig. 3, II) in the $p \mathrm{H}$ region 4.0 to 4.8 and plots of $\log \left(A-A o_{2}\right) /\left(A o_{3}-A\right)$ vs $p \mathrm{H}$ (Fig. 3, III) in the $p \mathrm{H}$ region $5 \cdot 1$ to $5 \cdot 8$ have been obtained. The plots indicated that only one molecule of 4-methyldaphnetin is successively coordinated and only one proton liberated in each step of complexation in solution with large excess of ligand. Therefore, the equilibria (16 and 17) can be assumed in the $p \mathrm{H}$ regions $4-4 \cdot 8$ and $5 \cdot 1-5 \cdot 8$ respectively.

$$
\begin{equation*}
\mathrm{TiO}(\mathrm{RH})^{+}+\mathrm{H}_{2} \mathrm{R}=\mathrm{TiO}(\mathrm{RH})_{2}+\mathrm{H}^{+} \tag{16}
\end{equation*}
$$

$\mathrm{TiO}(\mathrm{RH})_{2}+\mathrm{H}_{2} \mathrm{R}=\mathrm{TiO}(\mathrm{RH})_{3}^{-}+\mathrm{H}^{+}$
(ii) In this case $-\log C_{R}$ vs $p \mathrm{H}$ was plotted and linear plots of unity slope in different $p \mathrm{H}$ regions were obtained, confirming the existence of $1: 1,1: 2$ and $1: 3$ complexes in different $p \mathrm{H}$ regions. However, a mixture of $1: 2$ and $1: 3$ complexes cannot be ruled out in intermediate region of $p \mathrm{H}$.

Method of continuous variations - The Job curves at 400 and 450 nm provided evidence for the
existence of 1:1 complex at $p \mathrm{H} 3 \cdot 0,1: 2$ complex at $p \mathrm{H} 4.2$ and $1: 3$ complex at $p \mathrm{H} 5.5$.

Discussion

The stepwise formation of three complexes of $\mathrm{Ti}(\mathrm{IV})$ with 4-methyldaphnetin has been established depending upon the concentration of ligand and $p \mathrm{H}$. The liberation of one proton in different $p \mathrm{H}$ ranges indicates the stepwise formation of three protonated complexes.

All the three complexes formed are mononuclear, viz. $\mathrm{TiO}(\mathrm{RH})^{+}, \mathrm{TiO}(\mathrm{RH})_{2}$ and $\mathrm{TiO}(\mathrm{RH})_{\mathbf{3}}^{-}$. The $1: 1$ complex prevails in acidic solutions and 1:3 complex formed at $p \mathrm{H}>5 \cdot 0$, while $1: 2$ complex is present in the intermediate $p \mathrm{H}$ range.

The difference in the reactivity of the two hydroxyl groups has been reported by Rastogi ${ }^{12}$. They found that the 7 -hydroxyl group is more reactive but not significantly.

Hence the following reaction is suggested:

Stability constants of the complexes - The stability constants K_{1}, K_{2} and K_{3} of the three complexes were calculated from Eqs. (18)-(20).

Fig. 4 - Logarithmic analysis of $p \mathrm{H}$-absorbance curves [Wavelength, $380 \mathrm{~nm} ; C_{M}=4 \times 10^{-5} M ; C_{R}=2,4,6,8,12$ $\times 10^{-6} M$. $\quad \mathrm{H}$ H $2 \cdot 75,3 \cdot 0,3 \cdot 25$ for curves $1-3 ; 4 \cdot 2,4 \cdot 5$ for curves 4,$5 ; 5 \cdot 7,5 \cdot 8,5 \cdot 9,6 \cdot 0$ for curves $6-9$ respectively. $\quad \mathrm{X}$-axis $=(\mathrm{I})$ A / C_{R}; (II) $A-A O_{1} / C_{R}$; and (III) $\left.A-A O_{2} / C_{R}\right]$
$\log \frac{A}{\epsilon_{1} C_{M}-A}\left(1+\frac{K_{a i}}{(H)}\right)=p \mathrm{H}+\log C_{R}+\log K_{1}$
$\log \frac{A-\epsilon_{1} C_{M}}{\epsilon_{2} C_{M}-\bar{A}}\left(1+\frac{K_{a i}}{(H)}\right)=p \mathrm{H}+\log C_{R}+\log K_{2}$
$\log \frac{A-\epsilon_{\mathbf{2}} C_{M}}{\epsilon_{\mathbf{3}} C_{M}-A}\left(1+\frac{K_{a i}}{(H)}\right)=p \mathrm{H}+\log C_{\boldsymbol{R}}+\log K_{\mathbf{8}}$
The \log values of stepwise stability constants of the three complexes were found to be $8.37,7.33$ and $5 \cdot 70$ respectively.

Also the values of molar absorptivities of $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} of three complexes were found to be 3.2×10^{3}, 6.05×10^{3} and 8.85×10^{3} respectively.

Acknowledgement

Authors express their grateful thanks to Dr Yag Dutt for his valuable guidance and constant encouragement.

References

1. Kuzenecov, V. I., $Z h$. obshch. Khim., 14 (1944), 902.
2. Jain, B. D. \& Singh, H. B., Indian J. Chem., 2 (1964), 246.
3. Jain, B. D. \& Singh, H. B., Indian J. Chem., 2 (1964), 245.
4. Pechmann, H. V. \& Cohen, J. B., Ber. dt. chem. Ges., 17 (1884), 2187.
5. Sommer, L., Kucerova, J., Prochazkova, H. \& Hnilickova, M., Publications faculty science Univ. Brno, 464 (1965), 249.
6. Chiacchierini, E., Havel, I. \& Sommer, L., Colln Czech. Chem. Commun., 33 (1968), 4215.
7. Tagui Khan, M. M., Stability constants, edited by L. G. Sillen \& A. E. Martell (The Chemical Society, London), 1964, 477.
8. Wahlberg, O. \& Ulmgren, P., Acta chem. scand., 21 (1957), 2759.

9 Stoljarov, K. P. \& Aman Tovo, I. A., Talanta, 14 (1967), 1237.
10. Sommer, L., Kuban, V. \& Havel, J., Facultaties scientiarum naturalium, Univ. Brno (Chemia), 11 (1970).
11. Singh, H B., Studies on orthodihydroxy coumarins and their analytical applications, Ph.D. thesis, University of Delhi, 1966.
12. Rastoci, C. L., Chemical investigation in coumarin series, Ph.D. thesis, University of Delhi, 1960.

