References

- MAHADEVAPPA, D. S. & NAIDU, H. M. K., Aust. J. Chem., 27 (1974), 1203; 28 (1975), 899.
- MORRIS, J. C., SALAZAR, J. A. & WINEMAN, M. A., J. Am. chem. Soc., 70 (1948), 2036.
- 3. NAIDU, H. M. K. & MAHADEVAPPA, D. S., Indian J. Chem., 13 (1975), 976.

Diamagnetic Susceptibilities of Some Cyclic Dialkylsilylamidoximes

A. B. GOEL*

Chemistry Department, Rajasthan University Jaipur 302004

Received 14 January 1976; accepted 6 March 1976

The diamagnetic susceptibilities of some newly synthesized dialkylsilylamidoximes derived from dialkyldichlorosilanes and amidoximes have been determined and found to be in good agreement with calculated values obtained by the method of Baudet. The Xsi and XCH, values have also been reported and the lower values of Xsi have been explained on the basis of 'back-bonding'.

DIAMAGNETIC studies have been proved helpful in the interpretation of structural chemistry of silicon¹. The values of χ_{Si} and χ_{CH_2} calculated for a series of silicon compounds containing Si-O bonds have thrown light on the nature of Si-O bonding. However, very little attention was paid to the compounds containing Si-N bond². Very recently diamagnetic studies of trialkylsilylamidoximes³ and dialkylsilyl derivatives of amidoximes⁴ have been reported. In this note experimental and the calculated values of diamagnetic susceptibility of cyclic dialkylsilylamidoximes (containing both Si-O and Si-N bonds) and the values of χ_{Si} and $\chi_{CH_{a}}$ for these series are being reported and discussed.

Precautions were taken to exclude moisture throughout the experimental manipulations. Freshly prepared and purified samples of dialkylsilylamidoximes⁵ (I) were used for the diamagnetic susceptibility measurements. Benzene was used as a reference liquid having specific susceptibility -0.702×10^{-6} cgs units and all the measurements were carried out at room temperature (38°) by Gouy method. For the theoretical value of molecular susceptibility, a wave mechanical method using the concept of bond susceptibility has been employed6-8.

$$R(HN)C = NOSIR'_{2}$$

$$| _ _ |$$

$$I = a, R' = CH_{3}$$

$$b, R' = C_{2}H_{5}$$

The experimentally determined and the theoretical values for diamagnetic susceptibility are summarized in Table 1 and exhibit fairly good agreement.

The χ_{M} values for the compounds Ia and Ib (n = 1, 2, 3) reported in Table 1 have been treated graphically by plotting molar susceptibility against

Table	1 DIAMAGNETIC SUSCEPTIBILITY DATA FOR DIALKYLSILYLAMIDOXIMES (Ia and b)			
	R	R'	χ_{M^*} (obs.)	Diff. (%) between obs. and calc.
	Co	MPOUNDS	OF THE	туре Іа
	Me	Me	81.8	-5.2
	Et	Me	93.0	-4.8
	Pr	Me	105.0	-4.0
	Ph	Me	125.4	-1.6
	Co	OMIOUNDS	OF THE	type Ib
	Me	Et	105.0	-4.0
	Et	Et	116.0	-3.6
	Pr	Et	127.5	-3.2
	$\mathbf{P}\mathbf{h}$	Et	148.2	-1.3
3	*Nume	rical value	s are —	10-6 cgs units.

TABLE 2	- DIAM	AGNE	TIC S	SUSCEPTIBI	LITY O	F THE	
METHYLENE	GROUPS	AND	THE	CENTRAL	METAL	Атом	IN

	la A	AND ID		
Gradie of plot X _M vs	ent χ_{CH_2} of n	Axial intercept	X _{Si}	
	Compounds	OF THE TYPE	Ia	
11.22	2 11.22	70.47	17.77	
	Compounds	OF THE TYPE	Ib	
11.26	5 11·26	93.22	17 .80	

the length of the alkyl chains in the homologous compounds. Both the plots were linear and the axial intercepts of both give the values of molar susceptibility for the compounds Ia and Ib when n = 0. χ_{Si} and χ_{CH_2} (Table 2) have been obtained with the help of these plots using the standard values 6.9, 10.

The lower values of χ_{si} (17.77 and 17.80) in comparison to χ_{si} for Si-C system (reported to be 21.00 for tetra-compounds) is explainable by 'backbonding' to the silicon atom from oxygen and nitrogen lone-pairs forming $(p \rightarrow d) \pi$ -bonding. These results are consistent with earlier findings for dialkylsilyl derivatives of amidoximes⁴ (systems containing two Si-O bonds). The relatively lower values can be attributed to the lower electronegativity of nitrogen (in comparison to oxygen) permitting relatively stronger π -bonding. Further, these χ_{si} values are consistent with that for monomeric dialkylsilyl derivatives of amidoximes; supports proposed symmetrical structure (II) for dimeric dialkylsilylamidoximes⁵.

The author wishes to thank the CSIR, New Delhi, for financial support.

References

- 1. MITAL, R. L. & GUPTA, R. R., Inorg. Chim. Acta Revs.,
- MITAL, R. E. & GUFTA, R. R., THOPS, CHAM. 1014, 1021, 4 (1970), 97.
 ABEL, E. W., BUSH, R. P., JENKINS, C. R. & ZOBEL, T., Trans. Faraday Soc., 60 (1964), 1214.
 GOEL, A. B. & GUPTA, V. D., Indian J. Chem., 13 (1975),
- 181.

^{*}Present address: School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332.

- A. B. & GUPTA, V. D., J. organometal. Chem., 85 4. GOEL. (1975), 327.
- 5. GOEL, A. B. & GUPTA, V. D., Austr. J. Chem., 27 (1974), 3319.
- 6. PACAULT, A., HOARAU, J. & MARCHAND, A., Advances in chemical physics, edited by I. Prigogine (Interscience,
- New York), 1961, 171. 7. BAUDET, J., TILLIER, J. & GUY, J., C.r. hebd. Seanc. Acad. Sci. Paris, C 244 (1957), 920.
- BAUDET, J., J. chim. Phys., 58 (1961), 228.
 ANGUS, W. R., LLEWELVN, G. I. W. & SCOTT, G., Trans. Faraday Soc., 55 (1959), 88.
 10. DORFMAN, YA. G., Diamagnetism and chemical bond (Elsevier, New York), 1965.

Ni(II), Ru(III) & Os(VIII) Complexes with **Pyrimidines**

MOHAN KATYAL

St. Stephen's College, Delhi 110007

and

(Miss) P. JAIN, (Miss) V. KUSHWAHA & R. P. SINGH Department of Chemistry, University of Delhi Delhi 110007

Received 26 November 1975; accepted 16 January 1976

Ni(II) and Ru(III) react with 4-amino-6-hydroxy-5nitroso-2-methylpyrimidine and Ru(III) and Os(VIII) with 2,4,5,6-tetrahydropyrimidine forming coloured complexes suitable for spectrophotometric determination of the metals. Ni(II) and Ru(II) form 1:2 complexes (metal:ligand) while Os(VIII) forms 1:4 complex (metal : ligand). For Ru(III) determination, both the compounds are comparable in sensitivity and selectivity. Formation of Os(VIII) complex with tetraaminopyrimidine (λ_{max} 490-500 nm; ϵ_{max} 20000) in the pH range 1.0-5.0 provides a method for its determination which is comparable to well-known methods.

IN our investigations to explore the analytical potentialities of pyrimidines1-7, we found that pyrimidines are generally useful for the determination of iron and platinum group metals. In the present note, the complexes of Ni(II) and Ru(III)with 4-amino-6-hydroxy-2-methyl-5-nitroso-pyrimidine (λ_{max} 300, 345 nm; ϵ , 4790, 6420) and Ru(III) and Os(VIII) with 2,4,5,6-tetraaminopyrimidine sulphate $(\lambda_{\text{max}}, 280, 370 \text{ nm}; \epsilon, 10200, 200)$, are described. These ligands have also been used for the spectro-

photometric determination of Ni(II), Ru(III) and Os(VIII).

Standard solutions of the ligands (Aldrich Chemical Co., USA) were prepared in hot water. Metal solutions were prepared by dissolving NiSO₄-(NH₄)₂SO₄.6H₂O in water, RuCl₃3H₂O (Koch Light, UK) in 1.0N HCl and OsO₄ (Johnson Matthey, UK) in 0.5N NaOH. The solutions were standardized by recommended procedure. Ru(III) solution was preserved in nitrogen atmosphere to prevent oxidation.

When aqueous solutions of the metal and the ligand were mixed, complex formation took place. The characteristics of the complexes obtained are summarized in Table 1.

TABLE 2 - TOLERANCE LIMITS (ppm) OF DIVERSE IONS IN DETERMINATION OF METALS USING PYRIMIDINOL AND TETRAAMINOPYRIMIDINE

Diverse ion	Pyrin	nidinol	Tetraaminopyri- midine		
	Ni(II)	Ru(III)			
			Ru(III)	Os(VIII)	
Fluoride	40	500	100	100	
Chloride	1000	1000	1000	1000	
Bromide	200	1000	1000	1000	
Iodide	400	500	1000	1000	
Nitrite	80	*	*	*	
Nitrate	400	500	500	1000	
Perchlorate	800	1000	1000	1000	
Thiocyanate	80	500	1000	1000	
Acetate	200	1000	1000	1000	
Thiosulphate	400	500	500	1000	
Oxalate	200	100	100	500	
Tartrate	200	500	100	200	
EDTA	Ι	100	15	50	
Thiourea	160	50	100	*.	
Borate	800	500	500	500	
Phosphate	200	1000	500	1000	
Citrate	200	100	100	1000	
Ca(II) or Sr(II)	50	200	150	100	
Ba(II)	50	200	150	500	
Zn(H)	100	200	150	200	
Cd(II)	100	60†	400	250	
Hg(II)	*	10‡	100	100	
TI(I)	50	100	200	100	
Sn(IV)	*	*	50	50	
V(IV)	*	60	20	10	
Mn(II)	200	60	100	100	
Co(II)	3	60¶	60	150	
Ni(II)		200	100	100	
Pd(II)	5	10	10	10	
*Interferes t	Melled a	with EDTA	+Mishod	with indide	

sked. with EDTA, [‡]M_c sked with iodide. Masked with thiocyanate.

The presence of Cu(II), Fe(II), Fe(III), Ru(III) or Os(VIII) causes interference.

TABLE 1 — CHA	ARACTERISTICS OF 1	THE METAL COMPLEXES	WITH PYRIMIDINES		
Characteristic	Pyrimidinol	complex with	Aminopyrimidin	Aminopyrimidine complex with	
	Ni(II)	Ru(III)	Ru(III)	Os(VIII)	
Colour	Yellow	Red	Green	Red	
λ_{max} (nm)	380-390	540	590	490-500	
$\sigma_{\rm max}$ (litre mole ⁻¹ cm ⁻¹)	6666	13515	15300	20000	
Reagent needed for full colour development	15 times	25 times	32 times	10 times	
pH range for maximum absorbance	6.5-7.5	4.2-6.8	4.5-6.5	1.0-2.0	
Beer's law range $(\mu g/ml)$	Up to 3.5	Up to 5.5	Up to 6.9	Up to 9.8	
Accurate range of determination (ppm)	0.66-2.69	0.79-4.89	0.6-2.9	1.3-9.5	
Sandell's sensitivity	0.0028	0.0073	0.0060	0.0090	
Composition (metal-ligand)	1:2	1:2	1:2	1:4	
Behaviour in organic solvents	Not ext	tractable	Not ext	Not extractable	
Std devn from 8 samples (metal	0.0012	0.0010	0.0010	0.0020	
conc. in ppm; mean absorbance)	(2.3; 0.40)	(3.95; 0.53)	(3.90; 0.60)	(4.7; 0.50)	