Physicochemical Properties of Vegetable Proteins: Part V-Complexes of Vegetable Proteins with Zn(II), Co(II) & Ni(II)

B. R. PURI & (Miss) NEELAM BALA

Department of Chemistry, Panjab University, Chandigarh 160014

Received 16 February 1975; accepted 28 July 1975

The binding of Zn^{2+} , Co^{2+} and Ni^{2+} ions to a few vegetable protein sols stabilized at pH 7.5 has been investigated using the equilibrium dialysis technique. The vegetable proteins used are whole Punjab soybean No. 1 protein, Punjab soybean No. 1 glycinin, whole Bragg soybean protein, Bragg soybean glycinin, peanut arachin, peanut conarachin, and whole gliadin. The number of moles of the metal cations bound per 10⁵ g of protein increases with the increase in [metal cation] in the solution at equilibrium and attains a maximum value which is very close to the number of imidazole groups in the proteins. The intrinsic binding constants (k) as well as the standard free energy (ΔF°_{1}) and entropy (ΔS°_{1}) changes of the process have been calculated.

THE biological significance of the natural metallo-proteins have led several workers1-7 to study the complex formation of various proteins with different metal cations under different conditions. Klotz et al.4-7, while working with a few animal proteins, estimated the number of binding sites and found that the association constants vary significantly with the nature of metal cation and the protein. An examination of the literature shows that similar investigations on some of the common vegetable proteins have not been reported. The experiments based on flocculation studies of the sols of a few such proteins by the action of electrolytes⁸, however, indicate that such proteins can also form complexes with certain transition metal cations. This paper reports the results of such a study.

Materials and Methods

Proteins and their major fractions isolated from the two varieties of soybeans (Punjab soybean No. 1 and Bragg variety) and peanuts (C 501 variety of Punjab Agricultural University) together with gliadin fraction of wheat protein (gluten, BDH) were used in the present investigations. The methods used for the isolation of the proteins and their fractions have been described elsewhere⁹. Sols of 1% concentration at pH 7.5 were prepared by suspending the required amounts of proteins in 20 ml of CO₂-free distilled water, adding enough of NaOH solution gradually with continuous stirring to dissolve the proteins and raise the pH to ~ 8.0 . The excess of alkali was removed by dialysis till the pH was brought down to 7.5. The electrolytes used were the chlorides of zinc, cobalt and nickel of AR (BDH) grade. The solutions were prepared in triply distilled water.

Procedure — Aliquots (5 ml each) of the sols were taken in cellophane bags and placed in contact with aq. solutions of increasing concentrations of a given electrolyte. The amount of cation taken up by the sol, on the attainment of equilibrium at 30° (which required usually 36 hr), was estimated by noting the fall in [cation] in the surrounding solution by the usual analytical methods. Solutions of the electrolytes were prepared in 0.15*M* NaNO₃ to avoid Donnan membrane effect.

Results and Discussion

The number of moles of various metal cations $(Zn^{2+}, Co^{2+} \text{ and } Ni^{2+})$ bound by the various protein sols were plotted against log [cation] in solution at equilibrium (Fig. 1). It is seen that the number of moles of any of the ions bound to a protein increases with the increase [free ions] in solution and, ultimately, tends to attain a maximum value. The maximum values of various cations bound to 105 g of each protein are given in Table 1 and are seen to be fairly close to one another as well as to the number of imidazole groups contained in each protein as obtained from their respective titration curves against sodium hydroxide¹⁰. This shows that only imidazole groups are involved in the binding of Zn^{2+} , Co^{2+} and Ni^{2+} ions. In the case of most of the animal proteins it has been reported^{2,11,12} that while at pH 7 Zn²⁺ ions are bound only to imidazole groups, Co²⁺ and Ni²⁺ ions are bound to carboxyl groups also, as the values are much higher in the latter cases¹². The vegetable proteins studied presently contain large number of carboxyl groups, varying from 39 in wheat gliadin to 162 per 10⁵ g in conarachin fraction of peanut protein, which ionize at pH 7.5, but there appears to be no evidence for the involvement of these groups with any of the three cations studied as the values remain quite low.

Fiess and Klotz¹³, applying the law of mass action, have shown that if all the binding sites have the same intrinsic binding constant k then,

^{Lim}[Free ion] $\rightarrow 0$ r/[Free ion] = nk ...(1) where r is the number of moles of the metal ion bound per 10⁵ g of protein and n is the number of

INDIAN J. CHEM., VOL. 14A, MAY 1976

1.-----WHOLE PUNJAB SOYBEAN NO.1 PROTEIN; 2---- PUNJAB SOYBEAN NO.1 GLYCININ;

5. * * PEANUT ARACHIN ;6 - PEANUT CONARACHIN;7 - WHEAT GLIADIN

Fig. 1 — Effect of concentration of free metal cations on their binding with various vegetable proteins at 30 [(A) Zn^{2+} ; (B) Co^{2+} ; (C) Ni^{2+}]

niedona 16 m 7 10 mai	ABLE 1 — MAX Zn ²⁺ , Co ²⁺ A VARIOUS VEGE	Ximum Numi and Ni ²⁺ Io table Prot	her of Moles ns Bound to teins at pH	5 OF 7.5
No. of bour	moles of meta nd per 10 ⁵ g pr	l cations rotein	No. of imidazole	No. of Carboxyl
Zn ²⁺	Co ²⁺	Ni ²⁺	10 ⁵ g protein	protein
	WHOLE PUNJ.	AB SOYBEAN	No. 1 prote	IN
14.73	14.75	14.40	12	113
	Punjab s	OYBEAN NO	. 1 GLYCININ	
14.73	14.75	14.40	12	134
	WHOLE B	RAGG SOYBE	AN PROTEIN	
15.10	15.00	15.08	16	132
	Brage	G SOYBEAN O	GLYCININ	
15.10	15.00	15.08	12	144
	P P	EANUT ARAC	HIN	
12.15	11.50	12.90	12	137
	Pane law of	EANUT CONA	RACHIN	
13.55	13.05	at it <u>s lis it</u> s	.10	162
	7	WHEAT GLIA	DIN	
12.60	13.90	13.40	13	39

available sites, viz. the number of groups (imidazole+carboxyl) ionizing at pH 7.5. Further, for a single set of binding sites, $nk = k_1$, where k_1 is the equilibrium constant for the first metal ion complexed with the protein. Evidently, the equilibrium constant (k_1) can be evaluated by plotting r/[freeion] against [free ion] and noting the intercept at [free ion] = 0. Such plots for the binding of Zn^{2+} ions to various proteins are shown in Fig. 2. The values of k_1 obtained by extrapolating the above linear plots to zero concentration for the various proteins are given in Table 2.

The intrinsic binding constant (k) can also be calculated by the simplified form of Scatchard¹⁴ Eq. (2), $\ln r/(n-r)$ [free ion] = $\ln k$...(2) which has been used by a number of investigators^{7,13} in the case of proteins. The data relating to the pependence of the extent of binding on [free metal ions] plotted in Fig. 1 were used for calculating kand hence k_1 . The values of log k (Table 3) so calculated were found to be fairly constant. Thus Scatchard equation was quite applicable to the complex formation of metal cations with various vegetable proteins. It is significant to note that the values of equilibrium constant (k_1) obtained from Eqs. (1) and (2) are in fair agreement with each other (Table 2).

The standard free energy change (ΔF_1°) for the complex formation of first metal ion were calculated employing the well known relationship (3), and the values, recorded in Table 2, are seen to be of the same order. However, the values for the binding

Fig. 2 — Plots of ν /[free ion] versus [free ion] for the binding of Zn^{2+} ions with various vegetable proteins

Table 2 — Values of Equilibrium Constant (k_1) , Free Energies $(-\Delta F_1^0)$ and Entropies (ΔS_1^0) of Binding of Various Cations to Vegetable Proteins

Cation	k ₁ ×10 ⁻⁴	$\begin{array}{c} -\Delta F_1^0 \\ \text{(kcal} \\ \text{mole}^{-1} \end{array} $	ΔS_1^{θ} eal mole ⁻¹ deg ⁻¹)
W	HOLE PUNJAB SOY	bean No. 1 f	PROTEIN
Zn ²⁺ Co ²⁺ Ni ²⁺	2·10 (1·55) 0·53 (0·38) 0·69 (0·50)	$6.05 \\ 5.23 \\ 5.40$	19·97 17·25 17·79
	WHOLE BRAGG	OYBEAN PROT	EIN
Zn ²⁺ Co ²⁺ Ni ²⁺	$\begin{array}{c} 2\cdot 59 & (1\cdot 90) \\ 0\cdot 59 & (0\cdot 45) \\ 0\cdot 82 & (0\cdot 53) \end{array}$	6·15 5·29 5·49	20·31 17·46 18·10
	Pebnut	ARACHIN	
Zn ²⁺ Co ²⁺ Ni ²⁺	$\begin{array}{cccc} 2\cdot 24 & (1\cdot 47) \\ 0\cdot 37 & (0\cdot 30) \\ 0\cdot 59 & (0\cdot 43) \end{array}$	6·11 5·02 5·27	20·17 16·56 17·41
	Peanut C	ONARACHIN	
Zn ²⁺ Co ²⁺ Ni ²⁺	$\begin{array}{c} 2.39 & (1.64) \\ 0.62 & (0.41) \\ \end{array}$	6·13 5·32	20·22 17·56
	WHEAT	GLIADIN	
Zn ²⁺ Co ²⁺ Ni ²⁺	$\begin{array}{c} 1.78 & (1.32) \\ 0.63 & (0.48) \\ 0.79 & (0.64) \end{array}$	5·93 5·34 5·46	19·57 17·62 18·04
Values	in narentheses we	re calculated	using Scatchard

equation.

of Zn^{2+} ions are slightly higher in magnitude than those for other metal cations.

 $-\Delta F_1^{\circ} = RT \ln k_1 \qquad \dots (3)$

The standard entropy change (ΔS_1°) for the complex formation of first metal cation was calculated using Eq. (4) (Table 2).

$$\Delta S_1^{\circ} = -\Delta F_1^{\circ}/T \qquad \dots (4)$$

The standard enthalpy changes (ΔH_1°) as calculated

Zn ²⁺]×10 ⁴	log k	[Co ²⁺]	lo	g k
(M)	for Zn ²⁺	${{\rm [Ni^{2+}]\times 10^4}\atop{(M)}}$	Co ²⁺	Ni ²⁺
WHO	DLE PUNJAB	SOYBEAN NO. 1	PROTEIN	
6.31	2.000	28.18	1.361	1.623
7.94	2.087	31.62	1.499	1.623
8.91	2.108	35.48	1.525	1.568
10.00	2.095	39.81	1.509	-
	WHOLE BRA	GG SOYBEAN PR	OTEIN	
6.31	2.196	28.18	1.484	1.580
7.94	2.117	31.62	1.487	1.556
8.91	2.080	35.48	1.502	1.506
10.00	2.040	39.81	1.442	
	Per	ANUT ARACHIN		
6.31	2.065	28.18	1.267	1.477
7.94	2.010	31.62	1.320	1.462
8.91	1.973	35.48	1.325	1.431
10.00	1.929	39.81	1.303	-
	Pean	NUT CONARACHIN		
6.31	2.033	28.18	1.425	
7.94	2.004	31.62	1.397	
8.91	1.964	35.48	1.362	
10.00	1.919	39.81	1.312	_
	W	HEAT GLIADIN		
6.31	2.281	28.18	1.908	2.086
7.94	2.422	31.62	2.021	2.040
8.91	2.464	35.48	1.963	2.130
10.00	2.450	39.81	1.959	-

TABLE 3 - Log k Values for the Binding of

using Eq. (5) for the complex formation of various metal cations to proteins are found to be negligibly small¹³. The results were checked by repeating the experiments at two other temperatures (25° and 35°) when almost identical values were obtained as at 30° .

$$\Delta F_1^{\circ} = \Delta H_1^{\circ} - T \Delta S_1^{\circ} \qquad \dots (5)$$

It is seen from the data in Table 2 that the process in each case is accompanied by an increase in entropy. This appears to be due to extensive hydration of the protein micelles as well as of metal cations. Some of the polarized molecules of water attached to them are released during the complex formation reaction. This results in an increase in the number of molecular species and hence the entropy of the reacting system.

Acknowledgement

The authors are thankful to the Dean, Postgraduate Studies, Panjab Agricultural University, Ludhiana, for supplying different varieties of seeds required for the present work. One of them (N.B.) is thankful to the UGC, New Delhi for financial assistance. INDIAN J. CHEM., VOL. 14A, MAY 1976

Referen	nces			0	7. KLOTZ, I. M. & CURME, H. G., J. Am. chem. Soc., 70
1. GURI	. F. R. N.	& WILCOX. I	P. F. Advanc	hes in protein	8. PURI, B. R. & NEELAM BALA, Indian J. Chem., 14 (1976) in proce
cher /2. FIESS	nistry, 11 (1 5, H. A., J.	1956), 312. Am. chem. S	oc., 74 (1952)	. 3539.	9. PURI, B. R. & NEELAM BALA, Indian J. Chem., 13 (1975). 680.
3. CARR 424	, C. W., A	rch. biochem.	Biophys., 46	(1953), 417,	10. PURI, B. R. & NEELAM BALA, Indian J. Chem., 13 (1975), 144.
4. KLOT 4 (1	cz, I. M., Ca 1950), 97.	old Spring Ha	rbor symposia	quart. biol.,	11. GURD, F. R. N. & GOODMAN, D. S., J. Am. chem. Soc., 74 (1952), 670.
5. KLOT H.	z, I. M., ci Neurath &	ted in The p & K. BAILEY	roteins, Vol. 1 , (Academic	l, edited by Press, New	12. RAO, M. S. N. & HIRA LAL, J. Am. chem. Soc., 80 (1958), 3226.
6. KLOT	k), 1953, 72 z, I. M. & I	27. Fiess, H. A.,	I. phys. Chen	n. Ithaca, 55	13. FIESS, H. A. & KLOTZ, I. M., J. Am. chem. Soc., 74 (1952) 887
(195	51), 101.	Là M			14. SCATCHARD, G., Ann. N. Y. Acad. Sci., 51 (1949), 660.
					2-2-5 2+2+
					when we are the start start is further with the start we want
	244-1				

nator Eq. (5) for the complex formation of various netal estimas to proteins are found to be negligibly mall?. The results were checked by repeating the superiments at two other temperatures (25° and 35°) when aimost identical values were obtained as at 10°.

$\Delta E_{1}^{*} = \Delta H_{1}^{*} - T \Delta S_{1}^{*}$

It is seen from the data to (able 2 that the provisbe each rate is accountanied by an increase in epirone. This appears to be due to extensive lipdration of the method modelles as well as of methcations. Some et the relation moderules of word attached to them are released during the commenbenation reaction. This results in an increase in the attaches of molecular sportes and heave the entropy of the reacting waters.

Acknowledgement

The authors are thanked to the first 1992 17 the quadrate Studies. Parata Accordinal University Laddiana, for supplying different varieties of scale required for the occeses work. One of them (XEC) is theatful to the UGC, New Defin for financial
 Parant statute

 224 1 451
 0.13
 2013

 0.57 0.000
 5.42
 5.53
 5.54

 0.57 0.000
 5.42
 5.42
 5.54

 0.57 0.000
 5.42
 5.42
 5.54

 0.57 0.000
 5.42
 5.42
 5.54

 0.50 0.000
 5.43
 5.42
 5.54

 1.44
 5.20
 6.55
 6.55
 17.44

 1.54
 5.54
 5.54
 17.44

 1.54
 5.54
 5.54
 17.54

 1.54
 5.52
 5.54
 17.54

 1.54
 5.54
 19.55
 19.55

 1.55
 6.64
 5.64
 19.55

valors in parenticam work calculated constraint equation

of Ant interant shell it higher in magnitude that

The standard eitropy chimics (25.1) of the open pley formation of first metal cation way calculated mane Eq. (4) (Table C).

1. Ame 1. Ch

The standard endnator changes that as or quares