Complexes of Benzoylisonicotinic Acid Hydrazide with VO(II), Mn(II), Co(II), Ni(II), Cu(II) & Zn(II)

R. C. AGGARWAL, N. K. SINGH & LAKSHMAN PRASAD Department of Chemistry, Banaras Hindu University, Varanasi 221005

Received 9 December 1974; accepted 19 March 1975

Benzoylisonicotinic acid hydrazide $C_5H_4NC-N^{1}H-N^2H-C_6H_5$ (BINH) forms neutral chelates of the compositions VO(BINH-H)₂ and M(BINH-H)₂.2H₂O [where M = Mn(II), Co(II), Ni(II), Cu(II) or Zn(II)]. The magnetic and electronic spectral data indicate that Mn(II), Co(II), Ni(II) and Cu(II) form spin-free octahedral complexes while VO^{2+} forms distorted square-pyramidal complex. Analytical data and infrared spectra of the chelates indicate that BINH behaves as a mononegative bidentate ligand and water molecules are coordinated. The probable bonding sites in the chelates are the enolic oxygen arising from the enolization of the keto group attached to the pyridine ring and N² of the ----NH group. Wherever possible, ligand field parameters like 10 D_q , B', β , β° and LFSE have been evaluated.

N continuation of our earlier work¹ on the Ti(IV) and Zr(IV) complexes of benzoylisonicotinic acid hydrazide (BINH), we report here the results of our studies on VO(II), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of BINH.

Materials and Methods

Preparation and analysis of the chelates — Chelates were prepared by mixing together hot aqueous solutions of the metal nitrates or sulphates and BINH¹ in $\sim 1:2$ molar ratio and adding NH₄Cl-NH₄OH buffer (except for Cu(II) complex till a slight turbidity appeared. The precipitation of the chelates was aided by digestion on a water-bath for about one hr. The chelates were suction filtered, washed successively with water, ethanol and ether and dried at room temperature.

Chelates were analysed for metal contents employing standard literature procedures, after destroying the organic part with a mixture of nitric and hydrochloric acids and then with concentrated sulphuric acid. Nitrogen was estimated by microanalysis. Hydrazine was estimated volumetrically using KIO_3^2 after subjecting the chelates to acid hydrolysis for ~ 2 hr. The water content was estimated by finding out the loss in weight suffered by the chelates on heating at $\sim 160^{\circ}$ for 2-3 hr. The analytical data are given in Table 1.

Physical measurements -- Magnetic susceptibility of the chelates was measured using a Cahn Faraday Electrobalance employing $Hg[(Co(CNS)_4]$ as calibrant. Diamagnetic corrections were estimated by the procedure of Figgis and Lewis³. The effective magnetic moments of the chelates are included in Table 1.

Electronic spectra (nujol) of the ligand and the chelates were recorded on a Cary-14 recording spectrophotometer. The values of the spectral parameters like 10 D_q , B', β and β° were calculated as described by Lever4.

	TABLE 1 — ANALYTICAL DA	ATA, COLOUR A	AND MAGNETIC N	IOMENTS OF THE	e Complexes	
Complex	Colour	Analysis, calc. (Found)				
		Metal	Nitrogen	N_2H_4	H ₂ O	(1)(1)
VO(BINH-H)2	Light brown	9·30 (9·0)	15.35 (14.90)	11.70 (11.60)	_	1.63
$Mn(BINH-H)_2.2H_2$	D Light yellow	9-62 (10-01)	14.71 (15.07)	(11.21) (11.50)	6·31 (6·52)	6.20
Co(BINH-H) ₂ .2H ₂ C	Yellowish red	10.25 (10.70)	14.61 (14.80)	11.13 (11.50)	6·26 (6·40)	4.73
Ni(BINH-H)2.2H2C	Green	10·21 (10·50)	14.61 (15.00)	11.13 (11.00)	6·26 (6·10)	2.92
Cu(BINH-H) ₂ .2H ₂ C	Deep green	10.96	14·50 (14·70)		6·21 (6·30)	2.13
Zn(BINH-H) ₂ .2H ₂ C	Yellowish white	(11.00) (11.00)	(14.44) (14.60)	11·00 (11·20)	6·19 (6·20)	Diamag.

	1.000	NOT DO		Second Contract of	Pag. 10-9			2-522
TABLE 1 ANALYTICAL	DATA,	COLOUR	AND	MAGNETIC	Moments	OF	THE	COMPLEXES

Infrared spectra (nujol) of the complexes and the ligand were recorded on a Perkin-Elmer spectro-photometer model 621.

Results and Discussion

The formation of neutral complexes of 1:2 stoichiometry (Table 1) suggests that the ligand coordinates in the enolic form. The probable bonding sites in the chelates are the enolic oxygen arising from the enolization of the keto group attached to the pyridine ring and N^2 of the -NH group.

The chelates are insoluble in common organic solvents like benzene, chloroform, carbon tetrachloride, ethanol, acetone, THF, DMF and DMSO etc. and have high decomposition temperature (>250°). The formation of anhydrous chelates from the hydrated chelates with change in colour at relatively high temperatures ($\sim 160^\circ$) indicates that the water molecules are coordinated. The coordination of water molecules is further confirmed by a comparison of the infrared spectra of the hydrated and anhydrous chelates discussed later.

The corrected magnetic moments of Mn(II), Co(II), Ni(II) and Cu(II) chelates lie well within the range expected for complexes of these metal ions possessing octahedral geometry⁸ (Table 1) The magnetic moment of VO(BINH-H)₂ is also normal, being close to the spin only value expected for one unpaired electron in vanadyl complexes⁵.

Ultraviolet spectrum of BINH in nujol shows three bands at 33300, 34800 and 35700 cm⁻¹, the last band being similar to that obtained for isonicotinamide and isonicotinic acid⁶.

The UV spectra of all the chelates (Table 2) show one or two bands in the range $34500-37700 \text{ cm}^{-1}$ which correspond to the ligand bands occurring in the same region. Since no *d*-*d* transition is expected for Zn²⁺ having a *d*¹⁰ configuration, the 28570 cm⁻¹ band in the Zn(II) chelate corresponds probably to 33300 cm⁻¹ band observed in the ligand. The red shift in this band is presumably due to a

greater degree of conjugation in the ligand on coordination. Likewise, the above ligand band in Mn(II), Co(II), Ni(II) and Cu(II) chelates also is red shifted and is observed in the range 28600-30700 cm⁻¹.

The position of the bands in $VO(BINH-H)_2$ and their assignment suggest a distorted square pyramidal geometry (C_{2v} symmetry) for the chelate⁷.

The visible region spectra (Table 2) of Co(II) and Ni(II) chelates show bands characteristic of octahedral coordination around the central metal ions^{8,9}. Also, the v_2/v_1 ratio (= 1.61) for the nickel chelate lies in the range reported for octahedral Ni(II) complexes¹⁰. The values of 10 D_q and B' (Table 2) in the Co(II) and Ni(II) chelates suggest a place between water and ammonia for the ligand in the spectrochemical series. Further, the values of B' show that the metal-ligand orbital overlap is quite appreciable in the two chelates.

A broad band at 14100 cm⁻¹ in Cu(II)-BINH chelate may be due to the merging of three transitions (Table 2) in a D_{4k} symmetry¹¹. The lowering of the symmetry from O_k to D_{4k} may be due to Jahn-Teller distortion so common in hexacoordinated Cu(II) complexes.

The bonding sites in the BINH complexes have been established by a careful comparison of their infrared spectra with that of the parent ligand.

BINH shows prominent IR bands at 3270 (vNH), 1680, 1660 (vC=O) and 900 cm⁻¹ (vN-N). In the spectra of the complexes, the disappearance of one of the two v(C=O) bands of the ligand, a negative shift in v(NH) (55-120 cm⁻¹), appearance¹² of v(C-O) in the range 1230-1204; v(NCO)¹³ in the range 1520-1490; v(C=N)¹⁴ in the range 1640-1605, v(M-O)¹⁵ in the range 265-240 and v(M (M)¹⁶ in the range 370-325 cm⁻¹ and a positive shift of 25-35 cm⁻¹ in v(N-N)^{17,18} taken together show that BINH acts as a bidentate ligand in all the present chelates, the bonding sites being the enolic oxygen of the isonicotinyl group and N² of the -NH group.

	~	-	1				
TABLE 2 - ELECTRONIC	SPECTRAL	BANDS	(IN	NUJOL)	AND	THEIR	ASSIGNMENTS

Compounds	Bands (cm ⁻¹)	Assignment	Ligand field parameters				
BINH VO(BINH-H)2	33300, 34800, 35700 12000, 16600, 22200 36360	$\begin{array}{c} L \\ d_{xy} \rightarrow d_{yz}; \ d_{xz}; \ d_{x^{*}-y^{*}} \\ L \end{array}$					
Mn(BINH-H) ₂ .2H ₂ O Co(BINH-H) ₂ .2H ₂ O	28570, 35100, 37700 8500, 18500, 28600, 34250	${}^{4}T_{1g} \rightarrow {}^{4}T_{2g} \stackrel{L}{(F)}; \; {}^{4}T_{1g} (P)$	10 $D_q = 9590$ cm ⁻¹ ; $B' = 740$ cm ⁻¹ ; $\beta = 0.763$; $\beta^\circ = 23.71\%$; LFSE = 21.81 kcs/lmale				
Ni(BINH-H) ₃ .2H ₃ O	10100, 16300, 28990, 37700	$^{3}A_{2g} \rightarrow ^{2}T_{2g}$ (F); $^{3}T_{1g}$ (F)	10 $D_q = 10100 \text{ cm}^{-1}$; $B' = 860 \text{ cm}^{-1}$; $\beta = 0.814$; $\beta^\circ = 18.6\%$; LFSE = 34.56 kcal/mole				
Cu(BINH-H) ₂ .2H ₂ O	14100, 30770, 34480	Envelope of three transitions, ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}; {}^{2}B_{2g}; {}^{2}E_{g}$	10 $D_q = 14100$ cm ⁻¹ ; LFSE = 24.1 kcal/mole				
Zn(BINH-H) ₂ .2H ₂ O	28570, 35100	Ĺ					
L = intraligand transition.							

<u>.</u>

The bands observed in the regions 3450-3315 and 720-660 cm⁻¹ in the present chelates are absent in $\sqrt{5}$. SELBIN, J., Chem. Rev., 65 (1965), 153 720-660 cm⁻¹ in the present chelates are absent in $\sqrt{5}$. SELBIN, J., Chem. Rev., 65 (1965), 153 6 STEPHENSON, H. P. & SPONER, H., J. Am. chem. Soc., the spectra of ligand and the anhydrous compounds. These may therefore be assigned to coordinated water¹⁹.

Acknowledgement

Authors are thankful to Prof. G. B. Singh, Head of the Chemistry Department, Bananras Hindu University, for providing laboratory facilities and one of them (L.P.) is thankful to ICMR. New Delhi. 195. 10. SACCONI, L., Transition metal Chem., 4 (1969), 199. 11. PAOLETTI, P., FABBRIZZI, L. & BARBUCCI, R., Inorg. chim. Acta Rev., 7 (1973), 43. 12. HAMADA, H., Bull. chem. Soc. (Japan), 32 (1959), 105. one of them (L.P.) is thankful to ICMR, New Delhi, also for the award of a junior research fellowship.

References

- 1. AGGARWAL, R. C., PRASAD, T. & YADAVA, B. N., J. inorg. nucl. Chem., 37 (1975), 899.
- 2. VOGEL, A. I., A text-book of quantitative inorganic analysis (Longmans, Green, London), 1961, 380.
- 3. FIGGIS, B. N. & LEWIS, J., in Modern coordination chemistry, edited by J. Lewis & R. G. Wilkins (Interscience, New York), 1960, 403.

- 4. LEVER, A. B. P., J. chem. Educ., 45 (1968), 711.
- 79 (1957), 2050.
 7. STOCKLOSA, H. J., WASSON, J. R. & MCCORMIK, S., Inorg. Chem., 13 (1974), 592.
 8. CARLIN, R. L., Transition metal Chem., 1 (1965), 9.

- 9. MANCH, W. & FERNILIUS, W. C., J. chem. Educ., 38 (1961), 195.

- 1051.

- MASHIMA, M., Bull. chem. Soc. (Japan), 35 (1962), 338.
 FREDRICKSON, L. D., Analyt. Chem., 36 (1964), 1349.
 NAKAMOTO, K., UDOVICH, C. & TAKEMOTO, J., J. Am. chem. Soc., 92 (1970), 3922.
- 16. LEVER, A. B. P. & MANTOVANI, E., Inorg. Chem., 10 (1971), 817.
- NICHOLLS, D., ROWLEY, M. & SWINDELLS, R., J. chem. Soc. (A), (1966), 950.
 BRAIBANTI, A., DALLAVALLE, F., PELLINGHELLI, M. A. & LEOPORATI, E., Inorg. Chem., 7 (1968), 1430.
 GAMO, I., Bull. chem. Soc. (Japan), 34 (1961), 760; 765;
- 1430.