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Titanium and its alloys are a few of the most suitable materials in medical applications due to their biocompatibility, 

anticorrosion and desirable mechanical properties compared to other materials like commercially pure Nb & Ta, Cr-Co 

alloys and stainless steels. High speed micro end milling is one of the favorable methods for accomplishing micro features 

on hard metals/alloys with better quality products delivering efficiently in shorter lead and production times. In this paper, 

experimental investigation of machining parameters influence on surface roughness in high speed micro end milling of  

Ti-6Al-4V using uncoated tungsten carbide tools under dry cutting conditions and prediction of surface roughness using 

adaptive neuro- fuzzy inference system (ANFIS) methodology has been presented. Using MATLAB tool box - ANFIS 

approach four membership functions - triangular, trapezoidal, gbell, gauss has been chosen during the training process in 

order to evaluate the prediction accuracy of surface roughness. The model’s predictions have been compared with 

experimental data for verifying the approach. From the comparison of four membership functions, the prediction accuracy of 

ANFIS has been reached 99.96% using general bell membership function. The most influential factor which influences the 

surface roughness has the feed rate followed by depth of cut. 

Keywords: Micro end milling, ANFIS, Ti-6Al-4V, Surface roughness 

1 Introduction 

Micro-end-milling process is one of the most 

widely used process in machining titanium and its 

alloys for aerospace, automotive, biomedical, marine, 

die and mold making functions because of its 

resistance to corrosion and high specific strength. 

Today in this competitive world of industry 4.0, 

industrial design and manufacturing of the products is 

done using advanced technologies and processes to 

meet the customer need, demand and satisfaction 

within a short span of time. High speed micro-end-

milling is one such process which delivers efficient 

and better-quality products with shorter lead and 

production times at low costs. Titanium and its alloys 

are excellent for their combination of relatively low 

densities, high strengths and facture toughness, low 

modulus of elasticity, better fatigue strength, high 

melting point, low thermal expansion coefficient and 

thermal conductivity, high electrical resistivity, high 

intrinsic shock resistance, high ballistic resistance-to-

density ratio, nonmagnetic, exceptional corrosion and 

erosion resistance to chlorides, sea water, sour and 

oxidizing media
1-3

. 

Product quality is one of the product output in 

which surface of desired material plays a major role. 

It may impact the wear resistance, friction, corrosion, 

light reflection, coating, lubrication, withstanding 

stresses and temperature and fatigue conditions on the 

machined surface. Surface roughness is measured 

using surface profilometers with contact stylus and by 

non-contact type like white light interferometry at 

fixed intervals. Micro-milling operation is a very 

important process for making slots, pockets, moulds, 

and dies in the industry. Micro end milling process is 

used for roughing and finishing operations. The 

challenge in machining titanium alloys was chiefly 

the high tool wear associated with the reactivity of 

titanium with tool materials and its low thermal 

conductivity. However, there were many challenges 

faced and are continuous during high speed 

machining operation because of many factors like 

cost, work materials, cutting tool materials, heat 

affected zones, work piece surface integrity, feed rate, 

spindle speed, depth of cut, tool breakage, tool wear, 

tool run-out, tool chatter, tool deflection, tool 

geometry, vibration of the work piece and tool 

material, machine motion errors, chip formation, 

material non-homogeneity of both the tool and work 
————— 
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piece
1-3

. Hardness, strength, microstructure and heat 

treatment affect the surface generated on work 

material in micro-end-milling process. To achieve the 

desired surface quality, it is tedious to choose the 

machining parameters because of uncontrollable 

factors comes into play while machining. In order to 

meet the product features performance and quality, 

particularly the machining area emphasizes on a large 

number of factors that were complex to deal and 

delivering it out successfully can be done by 

following and adopting the prediction methodologies 

recommended by researchers. 
 

Alauddin et al.
4 

investigated the effect of cutting 

parameters on the surface roughness using response 

surface methodology. Contours of the surface-

roughness outputs were constructed in planes 

containing two of the independent variables for higher 

material remove rate with compromising on surface 

roughness. They found that feed effect was very 

dominant in both the models. Chou et al.
5 

proposed 

the grey-fuzzy control scheme to control the turning 

process with constant cutting force under various 

cutting conditions. They found that the taguchi-

genetic method is a useful tool for searching for the 

optimal control parameters of the optimal grey-fuzzy 

control scheme in turning operations. Ozel et al.
6
 

investigated the functioning of CBN tools under 

different cutting conditions using neural network 

model. They found that with known forces, estimation 

of the flank wear is possible by algorithms. Benardos 

et al.
7 

using taguchi- design of experiments method 

presented a neural network modeling approach for 

estimation of surface roughness in face milling and 

they found that it can be implemented successfully. 

Balazinski et al.
8 

compared the usability of three 

artificial intelligence (AI) methods to predict tool 

wear by means of known cutting force components in 

turning. They found that the neuro-fuzzy system, the 

structure (number of rules) and the number of 

iterations do not have an important influence on 

system performance and the operator does not have to 

know the results of preliminary tests i.e. it is so short 

for the neuro- fuzzy system that it can be easily 

optimized and implemented on the factory floor. 
 

Achiche et al.
9 

applied fuzzy knowledge - genetic 

algorithm (FL-GA) method for tool wear monitoring 

application. They found that for shop floor control 

FL-GA method was the shortest among other methods 

proposed. Kwon et al.
10 

developed a fuzzy adaptive 

modeling technique to estimate surface roughness 

under process variations in CNC turning. They found 

that using fuzzy adaptive predictor i.e. fuzzy rule base 

enables the implementation of human expert 

knowledge into the inference mechanism; hence 

modifications to control rules can be made coherent to 

the process variations. Lo
11 

applied ANFIS technique 

to estimate the surface roughness considering the 

machining input parameters after the end milling 

process. They found 96 % accuracy rate for triangular 

membership function when compared to others. 

Huang et al.
12 

studied the estimation of surface 

roughness using input machining parameters by 

neural network associated with sensing technology. 

They found that it was suitable for fixed work 

material and fixed tool and they suggested further 

investigations with more input parameters should be 

done. Susanto et al.
13 

for tool wear scrutinizing 

proposed a fuzzy logic approach and found more than 

90% accuracy during a t-test at alpha value of 0.05. 

Brezocnik et al.
14 

based on input machining 

parameters proposed the integrated genetic 

programming and genetic algorithm approach for 

estimation of surface roughness in end-milling and 

found suitable accuracy. Benardos et al.
15 

presented a 

review on approaches based on artificial intelligence 

(AI), machining theory, designed experiments and 

experimental investigation for estimation of surface 

roughness and drawn advantages and disadvantages 

of individual approach. Sokolowski
16 

analyzed burr 

height modeling, thermal deformation monitoring and 

cutting tool wear using fuzzy logic (FL) application 

and practically implemented in machine monitoring 

and diagnostics which was fruitful. 
 

Jiao et al.
17 

developed fuzzy adaptive network 

(FAN) model to predict surface roughness in turning 

operations and compared the result with multiple 

regression analysis, depicting FAN model is best. 

Zuperl et al.
18 

developed an approach to study the 

effect of cutting forces in ball-end milling process 

using back propagation neural network model.  

Fu et al.
19

established an intelligent tool condition 

monitoring system by applying a unique fuzzy neural 

hybrid pattern recognition system for tool wear 

classification. They found that the developed hybrid 

neuro fuzzy networks have a simplified structure and 

produces better and more transparent models than a 

general fuzzy system. Oktem et al.
20 

for determining 

optimum cutting parameters to minimize surface 

roughness in end milling considered the feed forward 

neural network and genetic algorithm in MATLAB. 
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Ghosh et al.
21 

developed a neural network-based 

sensor fusion model for tool condition monitoring for 

prediction of tool wear in CNC milling. They found 

that for critical machining operations better power and 

force-based TCM can be used which is costly and for 

general machining industry low cost power-based 

TCM or SPL-current-based TCM can be used. Uros  

et al.
22 

proposed ANFIS model for prediction of flank 

wear from cutting force signals in end-milling process 

and found high accuracy at low computational time. 

Ho et al.
23 

proposed ANFIS model for estimation of 

surface roughness in end milling process using hybrid 

Taguchi-genetic learning algorithm (HTGLA). They 

found that HTGLA based analysis out performed than 

ANFIS approach. Samantha
24 

considered the ANFIS 

approach with genetic algorithms for surface 

roughness prediction in machining and in comparison, 

the ANFIS results outperformed than ANN model. 
 

Chandrasekaran et al.
25 

reviewed different soft 

computing techniques for predicting the performance 

and optimizing the different machining processes 

such as turning, milling, drilling and grinding 

machining processes. Pontes et al.
26 

reviewed 

different research papers on usage of artificial neural 

networks for modeling surface roughness in 

machining processes and concluded that how 

researchers define network architectures, error 

measures, training algorithms and results validation. 

Ratava et al.
27 

presented an adaptive fuzzy control 

system approach method to increase cutting efficiency 

for steel rough turning and avoid the onset of 

instability. Asilturket al.
28 

used multiple regression 

and artificial neural network approaches to predict the 

surface roughness in AISI 1040 steel. They found that 

ANN is a dominant tool than multiple regression 

because of its capacity of learning, speed and 

simplicity Zuperl et al.
29 

discussed the application of 

neural adaptive control strategy in high speed end 

milling operations to maintain material removal rate 

and prevent the tool breakage, excessive tool wear 

and the problem of controlling the cutting force. 

Natarajan et al.
30 

compared the ANFIS methodology 

and ANN- back propagation models for prediction of 

surface roughness in end milling and found ANFIS 

outperformed than ANN model. Suganthi et al.
31 

considered the ANFIS and back propagation (BP) of 

ANN models for estimation of multiple quality 

responses in micro-EDM operations. They found that 

ANFIS model outperforms BP-based ANN when 

compared with observed values. Aydin et al.
32 

considered ANFIS with particle swarm optimization 

(PSO) learning for modeling and prediction of both 

surface roughness and cutting zone temperature in 

turning of AISI304 austenitic stainless steel with 

coated tungsten carbide tools. Azmi et al.
33 

utilized 

multiple regression analysis (MRA) and neuro-fuzzy 

modelling for validating the estimation and 

monitoring of carbide tool wear during end milling of 

glass fibre-reinforced polymer composites. Huang  

et al.
34 

developed steps for an intelligent neural-fuzzy 

inference system, making the neural networks and 

fuzzy logic more efficient in developing the decision-

making IF-THEN and are much clearer in calculating 

the algorithm for an in-process surface roughness 

monitoring system in end milling operations. Jian Wei 

et al.
35 

investigated the importance of selection of 

spindle speed in high speed milling of titanium alloys 

of curved surface. Salman et al.
36 

evaluated the 

challenges lying in improving machinability of the 

titanium and nickel based alloys. Maher et al.
37 

used 

ANFIS methodology to predict surface roughness in 

correlation with cutting forces in end milling 

operation. Maher et al.
38 

utilized ANFIS methodology 

for prediction and comparison of surface roughness, 

cutting speed and heat affected zone values with 

measured values in order to improve the performance 

of wire EDM process. Wu
39  

utilized ANFIS and ANN 

methods to develop the standard relation between the 

effects of processing parameters and coating 

properties in plasma spraying process. Chakradhar  

et al.
40 

investigated estimation of surface roughness 

using artificial neural network (ANN), group method 

data handling (GMDH) and multiple regression 

analysis (MRA) in high speed micro end milling of 

titanium alloy (grade-5).  
 

A comparative study was made to know the 

influence of spindle speed, feed and depth of cut on 

surface roughness of Ti-6Al-4V-titanium alloy. They 

found that prediction accuracy of artificial neural 

network is higher than other techniques. Chakradhar
41

 

investigated the influence of machining parameters in 

high-speed micro-end milling of titanium alloy 

(grade-2) using uncoated tungsten carbide micro end 

mills to understand the cutting mechanism and surface 

roughness formation. They found that micro-milling 

at high spindle speeds, low depth of cut, and low feed 

rate ensures the high quality of surface finish and 

lower cutting forces. 
 

However, there is a need for an approach that will 

allow the evaluation of the surface roughness value 
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before the machining of the part and which, at the 

same time, can be easily used in the production-floor 

environment contributing to the minimization of 

required time and cost. Moreover, it could be used for 

the determination of the appropriate cutting 

conditions in order to achieve specific surface quality. 

From the efforts of researchers, new techniques have 

been developed and application of soft computing like 

mathematical models, statistical analysis tools, fuzzy 

logic and artificial neural network models in various 

disciplines resulted in estimation of desired outputs. 

To predict the surface roughness in high speed micro 

end milling of titanium and its alloys by membership 

functions (MF’s) approach is limited. This paper 

discusses the adaptive-network based fuzzy inference 

system (ANFIS) approach because of its simplicity, 

speed and capacity of learning to examine the 

prospect and effectiveness of predicting surface 

roughness. In construction of this model, machining 

output variable surface roughness and input variables 

such as cutting speed, feed and axial depth of cut were 

considered. In this model, four different MF’s. - 

triangular, trapezoidal, gbell & gauss was adopted 

during the training process of ANFIS using Matlab 

tool box in order to evaluate the prediction accuracy 

of surface roughness. The results signify that the gbell 

MF has a higher correct rate of surface roughness 

prediction rather than the triangular MF, trapezoidal 

MF & gauss MF. 
 

2 ANFIS Model 

ANFIS uses input data and output data set given by 

the end user for constructing fuzzy inference system 

(FIS) whose MF parameters are regulated using either 

a back propagation algorithm alone or in combination 

with a least squares type of method. ANFIS structural 

design is shown in Fig. 1. The design consists of five 

layers, namely, the fuzzy layer, product layer, 

normalized layer, de-fuzzy layer and total output 

layer. Adaptive nodes, denoted by squares represent 

the parameter sets that are adjustable in these nodes, 

whereas fixed nodes denoted by circles represent the 

parameter sets that are fixed in the 

system
10,11,17,22,23,25,34,40

. The flow chart of surface 

roughness prediction by ANFIS methodology is 

shown in Fig. 2. 

In fuzzy inference system, two inputs x and y and 

one output g were considered. For a first-order sugeno 

fuzzy model, a typical rule set with two fuzzy if–then 

rules can be expressed as: 
 

Rule 1: If (x is C1) and (y is D1)then  

  g1=a1x+b1y+k1 

 … (1) 

Rule 2: If (x is C2) and (y is D2)then  

  g2 = a2x + b2y +k2 

 … (2) 
 

where, a1, a2, b1, b2, k1 and k2 are linear parameters 

and C1, C2, D1 and D2 are nonlinear parameters. 
 

3 Experimental Details 

High-speed micro-end-milling was carried out on 

titanium alloy- Ti-6Al-4V-Grade-5 of dimensions  

60 mm X 40 mm X 4 mm with a two-flute uncoated 

tungsten carbide end mill cutter of diameter size  

500 µm with a helix angle of 30°. Experimental tests 

were conducted at high speed micromachining centre 

at Indian Institute of Technology Bombay (IIT-Bombay) 

as shown in Fig. 3. Spindle speeds were considered as 

30,000, 60,000 & 90,000 rpm i.e. a cutting speed range 

of 47, 94 and 141 m/min. Feed considered was 2, 4 & 6 

µm/tooth. The feed rate was 2, 4, 6, 8, 12 &18 mm/sec 

that results in the feed/tooth/rev or maximum 

undeformed chip thickness of 2, 4 & 6 µm. The depth 

 
 

Fig. 1 — ANFIS architecture 
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of cut consideration was 0.02, 0.04 & 0.06 mm. 

Design of experiments with 3 parameters (spindle 

speed, feed rate, depth of cut) varying on  

3 levels in all the possible combinations were 

considered. Total 54 experiments (27 x (2 -1) material 

and tool type) i.e. 2 repetitions were carried out after 

every 9 series of tests with new end mill for 

verification and observation of machining output 

parameters. Surface roughness of the micromilled 

slots was examined using non-contact type white light 

interferometry (WYKO NT 9100) as shown in Fig 4. 

The vertical measurement range of instrument is  

0.1 nm to 10 mm, optical resolution is 0.49µm min 

and RMS repeatability is 0.05 nm. The average of 

surface roughness values measured at 6 equidistant 

locations on each slot is used for the analysis. Surface 

roughness examined image of 2D & 3D was shown in 

Figs 5 & 6. The measured values of surface roughness 

were shown in Table1. 
 

4 Results & Discussion 

Spindle speed, feed rate and depth of cut were 

considered as input parameters, which affects the 

surface roughness in the high-speed micro end milling 

process. Four different MF’s - triangular, trapezoidal, 

gbell, gauss were implemented throughout the 

training process of ANFIS using the Matlab tool box 

to evaluate the estimation accuracy of surface 

roughness. Experimentally surface roughness 

observations were done and it was used as training 

data and testing data in ANFIS methodology to verify 

the estimated accuracy. In this approach 18 training 

and 9 testing data sets were used. Among the 9 testing 

 
 

Fig. 2 — Flow chart for prediction of surface roughness by 

ANFIS21 
 

 
 

Fig. 3 — Micro milling Machine. 
 

 
 

Fig. 4 — White light interferometry (WYKO NT 9100®) 
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data in ANFIS, for 30,000 rpm the testing data feed 

rate was different but for 60,000 rpm and 90,000 rpm 

the settings of the depth of cut and feed rate were 

same as those used in the training sets. Figs (7-18) 

show the fuzzy rule MF’s of triangular, trapezoidal, 

gbell and gauss in ANFIS.  

 
 

Fig. 5 — 2D Surface roughness at 90,000 rpm 

 

 
 

Fig. 6 — 3D Surface roughness at 90,000 rpm 
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In the course of aiming in ANFIS, 18 sets of 

experimental data were used to manage 30 cycles of 

learning. The compared experimental and estimated 

MF’s values of the surface roughness after training by 

ANFIS are shown in Table 2. The three machining 

parameters of any one of the 9 sets of test data has to 

be entered in ANFIS after training then an output 

value was obtained from the calculation results. This 

output value was the predicted value of surface 

roughness. Estimated surface roughness average error 

was around 9.74% for triangular MF, 1.46 % for 

trapezoidal MF, 0.04 % for general bell MF and 0.37 

% for gauss MF as shown in Table 2. When general 

MF was utilized accuracy of 99.96% obtained 

because of the wide range of machining parameter 

selection. When the gauss MF adopted the accuracy 

was 99.63%. When the triangular & trapezoidal MF’s 

adopted  the  accuracy  was  90.26 % and 98.54 %.  

These results indicate that the training of ANFIS with 

the general bell MF obtained a higher accuracy rate in 

the prediction of surface roughness than other MF’s 

used. The effect of input parameters on output 

parameter is shown in Figs 19 & 20. The fuzzy rule 

function architecture of ANFIS is shown in Fig. 21. 

Experimental values of surface roughness Ra plotted 

with input variables results were shown in Fig. 22. At 

30, 000 rpm machining conditions i.e. from 1 to 9 the 

Table 1— Experimental results of surface roughness. 

Spindle  

Speed (rpm) 

Feed (µm/ 

tooth) 

Feed Rate 

(mm/sec) 

Depth of cut 

(mm) 

Surface 

Roughness (nm) 

30000 2 2 0.02 126 

30000 2 2 0.04 178 

30000 2 2 0.06 192 

30000 4 4 0.02 209 

30000 4 4 0.04 227 

30000 4 4 0.06 272 

30000 6 6 0.02 406 

30000 6 6 0.04 493 

30000 6 6 0.06 545 

60000 2 4 0.02 115 

60000 2 4 0.04 121 

60000 2 4 0.06 135 

60000 4 8 0.02 225 

60000 4 8 0.04 313 

60000 4 8 0.06 474 

60000 6 12 0.02 493 

60000 6 12 0.04 532 

60000 6 12 0.06 620 

90000 2 6 0.02 144 

90000 2 6 0.04 153 

90000 2 6 0.06 188 

90000 4 12 0.02 270 

90000 4 12 0.04 520 

90000 4 12 0.06 746 

90000 6 18 0.02 808 

90000 6 18 0.04 842 

90000 6 18 0.06 862 

 
 

Fig. 7 — Triangular MF -spindlespeed 
 

 
 

Fig. 8 — Triangular MF - feedrate 
 

 
 

Fig. 9 —Triangular MF - depthof cut 
 

 
 

Fig. 10 — Trapezoidal MF - spindle speed 
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surface roughness was increased by 23 % as shown in 

Fig. 22. At 60, 000 rpm machining conditions i.e. 

from 1 to 9 the surface roughness was increased by 

18.52 % as shown in Fig. 22. At 90, 000 rpm 

machining conditions i.e. from 1 to 9 the surface 

roughness was increased by 16.6 % as shown in  

Fig. 22. It was observed that at particular depth of cut 

and feed rate comparisons among different spindle 

speeds i.e. from 30,000-90,000 rpm the surface 

roughness slightly decreased and there after surface 

roughness increased gradually. 3D–Area of  

the estimated and measured readings  of  nine  sets  of 

 
 

Fig. 11 — Trapezoidal MF -feedrate. 
 

 
 

Fig. 12 — Trapezoidal MF - depth ofcut. 
 

 
 

Fig. 13 — General bell MF -spindlespeed. 
 

 
 

Fig. 14— General bell MF - feedrate 
 

 
 

Fig. 15 — General bell MF - depthofcut 
 

 
 

Fig. 16 — Gauss MF - spindlespeed 
 

 
 

Fig. 17 — Gauss MF of feed rate 
 

 
 

Fig. 18 — Gauss MF - depth of cut 
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testing data after training by ANFIS for surface 

roughness at different MF’s is shown in Fig. 23. 

Estimated readings were equivalent to measured 

readings, i.e. error was very low between five MF’s as 

shown in Fig. 23. ANFIS achieved a good accuracy in 

the prediction of surface roughness at different type of 

MF’s utilized i.e. in agreement with experimental 

values. According to the experimental results, the 

adoption of general bell MF in ANFIS achieved 

higher prediction accuracy than other MF’s of 

considered cycles of learning for estimating the 

surface roughness. It was noted from the observations 

that surface roughness was increased if feed rate and 

depth of cut was varied for the mentioned spindle 

speeds. Similar kind of experimental observations 

were reported by Lo
11

, Zuperl
18

 and Ho
23

. 

 
 

Fig. 21 — ANFIS membership function architecture 

 

 
 

Fig. 22 — Surface roughness versus spindle speed, depth of cut  

& feed rate 

 

 
 

Fig. 19 — 3D view of surface roughness for inputs spindle speed 

and depth of cut 
 

 
 

Fig. 20 — 3D view of surface roughness for inputs spindle speed 

and feed rate 
 

Table 2 — Experimental and predicted values comparison for surface roughness. 

Exp.  

No 

Spindle  

Speed (rpm) 

Feed Rate 

(mm/sec) 

Depth of 

cut (mm) 

Surface 

Roughness 

(nm) 

Triangular MF  

Predicted  

Error (%) 

Trapezoidal MF 

Predicted  

Error (%) 

Gbell MF 

Predicted 

Error (%) 

Gauss MF  

Predicted  

Error (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

30000 

30000 

60000 

60000 

60000 

60000 

90000 

90000 

90000 

4 

4 

4 

8 

12 

12 

6 

12 

18 

0.04 

0.06 

0.04 

0.06 

0.02 

0.04 

0.06 

0.06 

0.04 

227 

272 

121 

474 

493 

532 

188 

746 

842 

248.13 9.30 

232.41 14.55 

138.95 14.83 

434.63 8.30 

540.85 9.70 

485.36 8.76 

174.11 7.38 

680.58 8.76 

892.98 6.05 

236.23 4.06 

278.44 2.36 

126.23 4.32 

474.87 0.18 

493.61 0.12 

532.32 0.06 

191.61 1.92 

746.21 0.02 

842.78 0.09 

226.73 0.11 

271.96 0.01 

120.96 0.03 

473.94 0.01 

492.89 0.02 

531.73 0.05 

187.91 0.04 

745.44 0.07 

841.51 0.05 

226.24 0.33 

270.63 0.50 

120.23 0.63 

473.02 0.20 

491.42 0.32 

530.62 0.25 

187.26 0.39 

742.98 0.40 

839.11 0.34 

Average Error 9.74 1.46 0.04 0.37  
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5 Conclusions 

In this research, ANFIS approach (from the Matlab 

tool box the four membership functions - triangular, 

trapezoidal, gbell, gauss) was used to evaluate the 

prediction accuracy of surface roughness in high 

speed micro end milling of titanium alloy- Ti-6Al-4V-

Grade-5. 
 

(i) Experimental data have shown optimum prediction 

error for general bell MF as 0.04 % with an 

accuracy of 99.96%, which surpasses optimum 

prediction errors of 9.74% with an accuracy of 

90.26 % for triangular, 1.46 % with an accuracy of 

98.54 % for trapezoidal and 0.37 % with an 

accuracy of 99.63% for gauss MF’s, respectively. 
 

(ii) The optimal experimental condition for surface 

roughness was obtained at 90,000 rpm, spindle 

speed, feed rate 6 mm/sec and depth of cut  

0.02-0.06 mm machining conditions. 
 

(iii) If the feed rate and depth of cut was maintained 

constant and only spindle speed was increased then 

surface roughness achieved a lower value, i.e. 

excellent milling quality. 

(iv) From the input machining process parameters i.e. 

spindle speed, feed rate and depth of cut, the most 

influential factor was the feed rate followed by 

depth of cut & finally by spindle speed on surface 

roughness. 
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