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Normal mode analysis has been used to investigate the life time of oscillations for Lotka
scheme. Solutions have been obtained for the case when three variables oscillate with time
and in space for the reaction system. Analysis shows that oscillations in temperature are not
possible in the system. If a side reaction step or a fresh reaction step is added to Lotka scheme,
osctljasory solutions for differential equations are obtained under limited conditions. Both time
and space oscillations have been examined.

OSCILLATORY phenomena in chemical systems
have aroused considerable current interest
and a number of laboratories are engaged

in the study of such phenomenal, 2. Amongst the
chemical reactions Belousov-Zhabotinskii reaction
has been intensively investigated+". Noyes et al.6
have recently proposed a mechanism for time oscil-
lation and space oscillation in Belousov-Zhabotinskii
reaction. Although it has been shown by Clarke?
that the mechanism does not lead to instability,
the proposed mechanism is still the one which
explains all the broad features of oscillating r~actio~.
Quite recently, Rastogi and cowo~k~rs8,9have.lUve~h-
gated the oscillatory characteristics of cenum IOn
and manganese ion catalysed reaction between
potassium bromate and malonic acid in sulphuric
acid medium. Reactions with malic acid and
citric acid as the reactants in place of malonic acid
have also been studied in detail by Rastogi et at.lO
Oscillations occur in these systems although a few
reaction steps are added or subtracted in addition
to those expected in the case of cerium ion catalysed
reaction with malonic acid. It has also been found
that the rate of temperature rise oscillates in the
reaction medium rather than temperature".

Lotka= suggested the following hypothetical set
of chemical reactions:

A+X--+2X
X+Y---+2Y

Y---+E
Net reaction

A---+E
The above scheme does lead to sustained oscillations
in the concentration of intermediates X and Y and
a close trajectory in the X, Y plane is obtained.
However, this does not lead to limit cycle behaviour.
A chemical scheme proposed by Prigogine and
coworkers=

A---+X
B+X--+Y+D
2X+Y---+3X

X---+E
Net reaction

A+B---+D+E
does show a limit cycle behaviour with only two
intermediate species. A lot of activity on the theory
of oscillating reaction has been stimulated by the
work of Prigogine's group in Brussels. Some of the
unanswered questions are the following. Whether it
is necessary for the reaction intermediates to oscillate
with the same frequency for the occurrence of
oscillatory reaction? What would be the life
time of the reactions? In what way the oscillatory
characteristics of the reactions are expected to be
modified if a side reaction is added to the Lotka
scheme? The purpose of the present paper is to
answer these related questions. The stability ana-
lysis when three intermediates are oscillating is
known to be difficult14,15. A procedure for the
same has been discussed in the present paper.
In spite of the several techniques available=-'", we
shall use normal mode analysis-" on account of
simplicity and elegance.

Normal Mode Analysis
The Lotka scheme has been subjected to normal

mode analysis in order to determine the life-time
of the oscillations. The variation in the concen-
tration of X and Y under conditions of very efficient
stirring would be given by

dX = klAX-k2XY ... (1)
dt
dY
- = k2XY -kaY ... (2)
dt

Since at the steady state (dXldt) and (dYldt) would
be zero, we have,

k3 k1Ax, = k-; Yo = -k-
2 2

where the subscript 0 denotes the' steady state.
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Let us suppose that in the neighbourhood of the
steady state, X and Yare given by
X = Xo+xew1 (3)
Y = Yo+YC','1 (4)
where t is the time and w'= nw, n being any positive
integer. In the conventional treatment wand w'
are assumed to be identical and, therefore, we make
a departure here. Accordingly we have,
dX-- = wxeWI ... (5)
dt

dY- = nwye"WI
dt

... (6)

(3), (4), (5) and (6) with Eqs. (1)Combining Eqs.
and (2), we get
wxeWI= kIA(Xo+xewt) -k2(XO+xew1) (Yo+ye"WI)

... (7)
nwyewt = k2(XO+xe,tI) (Yo+ye"wt) -ka(Yo+ye"wt)

... (8)
equation on simpli-which yield following secular

fication.
'I w k e(n-l)wt I
-kiA ~e("-l)wt i = 0
From Eq. (9) we obtain

w = ±iyk1kaA/n and w'= ±i yk1kaAn ... (10)
which shows that both X and Y would oscillate
with time. The overall frequency of oscillation
has to be a combination of wand w' in order that
the system may conform to phase plane analysis.

For examining the conditions for the occurrence
of space oscillations, we have also to consider the
concentration change due to diffusion under condi-
tion of no stirring by using Fick's law of diffusion
so that,
ax d2X
-d = k1AX-k2XY+Dx-t dr2
dY d2Y- = k2XY-kaY+Dy-
dt . dr2

where Dx and Dy are the diffusion coefficient of
the species X and Y. vVe assume that X and Y
in the neighbourhood of steady state are given
by
X = Xo+xe(wl+P,) (13)
Y = Yo+ye(WI+P') (14)

w~ere t i~ the tiJ?e, p is any positive integer and
r IS the distance 1ll space from a point of reference.
We, thus, arrive at Eqs. (14a-14d).
dX- = wxe(wt+p,)
dt-

... (9)

... (11)

... (12)

... (14a)

... (14b)

... (Hc)

... (Hd)
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Therefore Eqs. (11) and (12) can be written as
wxe(WI+pr)= k1A[Xo+xe(wt+pr)] -k2[XO+xe(Ult+P')]

X [Yo+ye(wt+p,,]+P2Dxxs(wt+p,) ••• (15)
wye(wl+P,) = k2[XO+xe(wl+Pr)][Yo+ye(wt+Pr)]

-ks[Yo+ye(WI+Prl] +p2D~ ye(wt+pr) ... (16)
Simplification of the Eqs. (15) and (16) yields the
secular Eq. (17).

I (wk;.~) (w'2b) 1= 0 ... (17)

where a = p2Dx; b = p2Dy. From Eq. (17), we
obtain the following condition for oscillations,
4k1kaA> (a-b)2 ... (18a)
If Dx = Dy, then
4k1kaA> 0 ... (18b)
Temperature Oscillations

If m is the average mass of the system, C; is the
average specific heat and HI' H2 and Ha are the
enthalpy changes of the reactions (1), (2) and (3)
respectively, we have

dTmCvTt = kIAXHI+k2XYH2+kaYHs ... (19) _

and
d2T . ..

mC. dt2 = kIAXHI+kIAXHl+k2XYH2

+k2XYH2+k2XYH2+kaHaY +kaYHa ... (20)
where dot denotes time derivative and (d2T/dt2)
is the rate of temperature rise. Our object is now
to determine the conditions under which tempe-
rature or (dT/dt) would oscillate. Combining Eqs.
(1), (2) and (19) and putting

T = TO+t1ewt
X = Xo+xewt
Y = Yo+yewt

where To is the mean value of temperature, we
get the following relation which obviously does not
lead to an imaginary value of w.
wmCvt1ewt = kIAhl(XO+xewt)(To+tlewt)

+k2h2(To+tlewt) (Xo+xewt) (Yo+yewt)
+k3ha(Yo+yewt)(To+tlewt) ... (21)

or
tl(kIAhIXO+k2h2XO Yo+kaha Yo-wmCv)

+X(kIAhITo+ k2h2TOYO)+Y(k2h2XoTo+
+kaToh3) = 0 ... (22)

Therefore, according to Eq. (22) temperature
oscillations are not possible in Lotka's scheme.
Yang and GrayI8 have shown that during cool
flame combustion of hydrocarbon, interplay of
thern~al conduction and enthalpy change during
chemical reaction occurs. Accordingly taking into
account the conductive heat loss L, Eq. (19) can
be written as

dT
mCv dt = kIAXHl+k2XYH2+kaYHa-L ... (23)

where L = 'rA/d2(T -To); 'r = heat exchange of
coefficient; To= bath temperature; T = average
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temperature of the mixture in the vessel; )...=
conductivity of the mixture; and d = diameter of
the vessel.

On solving Eqs: (1), (2) and (23), we get

l
-klA(H1+H2) -ka(H2+H3) Le=w' I

w ka 0
-klA w 0

t1= ---------------------------------------\-k1!(H1+H2)

I -klA
On simplification of Eq.

Le=r't1=--
w

-ka(H2+H3)
k3
W

(24), we get

w
o
o ... (24)

(24a)

Since w is imaginary, the above solution is not
admissible and the obvious conclusion is that the
temperature does not oscillate with a frequency
similar to that for the concentration of the other
oscillating species for Lotka's reaction ~odel. Same
is true about the possibility of oscillation of (dTfdt).

Effects on Modification of Lotka Scheme
on the Oscillatory Behaviour

We shall now modify the Lotka scheme by adding
a side reaction and a reaction step as follows:

k' k"A--l_B A--l_B
k' k"

A+X-2 2X B+X-z 2X
k~ I k;

X+Y-2Y X+Y---2Y
k' k"B+ y--4-E y_4 E

(I) (II)
We shall first consider the oscillatory characteristics
of scheme (I). At the steady state

_ k~A . k{k~ k~
Xo - k' ' Bo = -k'k' and Xo = ---,

3 2 4 k2
Using normal mode analysis and putting

X = Xo+xewt

Y = Yo+yewl

B = Bo+bewt

where t is the time and X, y and b are the real values.
We obtain the following condition for the real values
of X, y by following the procedure adopted in the
previous sections:

[
k' k' ]w+ ~~4A

k; 5A
k'3

k; k~
-k;

On solving Eq. (25) we get
k' k'

3 , ~~A ,2+k'A(k' k/)' "'.w., k~ w J 3+ 4 W-kjk2k4A- =-" 0 ... (26)

This leads to the following condition for oscillation
(see Appendix)

4bi +27ci+4(l~Cl <aibi+ 18a1b1c]

o

o

w

... (25)

... (27)

where

k~k~ A' b k'A(k' k') d k' , 'A2=:« ,1= 1 3- 4 an c1= lk2k4
3

Similarly for the space oscillations, the normal mode
analysis yields the following condition:

4b~+27ci+4a~c2<aib~+ 18a2bzc2 ••• (28)

where

[
k~k~A I I I ]az = - k~'- - (m +n +d) ;

= [nld' +klA(k;-k~)-(n' +d') {k~:4. - m'}]

c- A[k' k' n'-k'k'm'+k'k'k'A+ k;k~n'd']
2- 14 13 124 k~

-m'n'd'

where
m'= pZDb; n'= p2D" and d'= p2Dy

Scheme (II) can also exhibit the time oscillations
under certain conditions. The normal mode ana-
lysis yields the following condition (Eq. 29)

4b~+27c~+4a~c3<a~b~+ 18aab3c3 ..• (29)

where
kz kX .as = --.-, b3 = klA(kz+k3) and c3 = klkzMA

k3
Similarly for space oscillations, the normal mode
analysis yields the following condition (Eq. 30)

4b:+27c~+4a~c4 <a~b~+ 18a4b4c4 •.. (30)

where.

a4 = [~~~:- (mw+n"+d") ]

i, = [n"d"+krA(k~+k3)-(n"+d") t~::+m"}]
C4 = A [k~~~ - ki (k~d"+m"k3)] +n"d" (ki~X _mw ]

where
m",- P2Db; n= p2D" and d"= p2Dy

P is any positive integer and Db, D" and D; are
the diffusion coefficients of the corresponding species
B, X and Y.

Discussion
The results obtained are summarized in Tables 1

and 2. Several conclusions follow from the above
analysis.

According to Eq. (10), frequency of oscillation
for Lotka's reaction model is proportional to the
square root of the concentration of A. Since A
will steadily be consumed in the reaction, w will
decrease with time but oscillation would continue
indefinitely till A disappears. Thus,

(a) If the temperature is kept constant and the
concentration of A is maintained constant, sus-
tained oscillations for indefinite time would be
obtained.
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TABLE 1- CONDITIONS FOR TIME OSCILLATION FOR
DIFFERENT REACTION MODELS

Model Condition

k'A+X+_I_-+2X w = ± i.yk,k3Ajn; w' = ± i.yk,k3An

X + Y~2Y where n is any positive integer

Y~E

A~-+B 4bi + 274 + 4ai CI < a~ b~ + 18a,b,c,
k'

A + X_2_-+2X where ~ = Ak~k~!k3; bl = kfA(k~-k~);
k'X + y_S -+2Y c, =k{k;k~A2
k'B + y_4 -+ E

k"
A~B 4b~ + 27c; + 4a~cs < a~b~+ 18a3b3c3

k"
B + X_2_-+2X where a3 = k;'k:jk;; b3= k; A (k~ +k;);

X + Y k~ -+2Y c3 = k~k~k~'A

Y~-+E

(b) If A goes on being consumed, the time period
would go on changing with time and would be
inversely proportional to the square root of con-
centration of A. Similar behaviour is obtained
in the case of Belousov-Zhabotinskii reactionvw.

Since kl and k3 would be temperature dependent
log w is expected to be proportional to the tempe-
rature.

When step A--'?B is added to the Latka reaction
model, time oscillations would occur under certain
conditions given in Table 1. Space oscillations
can also occur under certain condition given in
Table 2. Minor modifications in Latka scheme
do not rule out the possibility of time and space
oscillations.

It is obvious from the above results that when
a = b i.e. D" = Dy, space oscillations would always
occur so long as A is present. .

Eq. (10) gives the solution when stirring is effi-
cient so that the space derivatives of concentration
gradient are zero. However, Eq. (18) corresponds
to the situation when stirring is negligible.

Detailed data on oscillatory characteristics of
(1) malonic acid+KBr03+Ce3++H2S04 system;
(2) malonic acid +KBr03+Mn2++H2S04 system;
(3) malic acid +KBr03+Ce4++H2S04 system; and
(4) citric acid +KBr03+Ce4++H2S04 system are
now available+w. In system (4), a few more re-
action steps as compared to that for (1) are added
and yet oscillations are observed. This is not
unexpected as shown by above analysis. Time
period is found to be strongly temperature dependent
and depends on concentration of the reacting species
as we observe in the above cases.
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TABLE 2 - CONDITIONS FOR SPACE OSCILLATION FOR
DIFFERENT REACTION MODELS

Model

A + X~-+2X

X+Y~42Y

Y~->-E

k'A_I~B
k'

A + X_2-+2X

k,
X + y__3 ->-2Y

k'B + Y-...!-+E

kH
A_'_-+B

B+X~2X

k"X + Y_3_-+2Y

Y-~~-+E

Condition

4kIk3A>(a-b)2 where a = p2D:/;
b = p2Dy

if D" = Dy

4k,k3A > 0

b2= [n'd'+k~A(k~-k~)

(k'k' )]- (n' + d') ~3 'A -m'

c2 = A [klk~n' -klkam' +klk;k~A

k2k~n'd'] "d'+ --k-
3
- -mn

m, = p2 Db; n' = p2D,,;
d' = p2Dy
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APPENDIX

In order to determine the condition for obtaining
imaginary roots-? from Eq. (26), we write Eq. (26)
as follows:
w3+aIw2+b1W+c1 = 0 ... (26.1)
where

a = k;kJ A
1 k;

bl = k~A (k3+k~)
c1 = Mk~k~A2
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x = [w+ a3l]

W=[X-t]
On putting the value of w in Eq. (26.1) we get

[ al]~ [ a1]2 [ allx- 3 +al x- 3 +bl x- 3" +A= 0
... (26.2)

On simplification we get
X3+plX+Ql = 0
where

[ ail [albl 2a~JPI = bl- 3" ; ql = - 3 -c1- 27

Let us assume
X = rt/3+s~/3

putting the value of X in Eq. (26.3)

[ri/3+si/3]3+Pl[ri/3 +5i/3] +ql = 0
On simplification we get

r1+sl =-ql
r1s1=-pU27

p~r1=- --27s1

putting the value of S1 in Eq. (26.5) we get

pi
r1- 2ii =-ql

1

2+ q p~ 0r1 r11- 27 =

On simplifying Eq. (26.7) we get

r = ~ +J~+P~
1 2 - 4 27

The value of rl will be imaginary only when
2 p3~+ _1<04 27

On account of the above solutions SI and X will
also be imaginary. Hence the value of w will be
imaginary. By putting the value of PI and ql>
we get

4b~+27ci+4a~c1<aibi+ 18a1blc1

The above procedure can be used for normal
mode analysis where three intermediates are present
whose concentration is oscillating.

... (26.3)

we get
... (26.4)

... (26.5)
... (26.6)

... (26.7)

Nomenclature
A concentration of A.
X = concentration of X
Y = concentration of Y
B = concentration of B
Xo = steady state concentration of X
Yo = steady state concentration of Y
Bo = steady state concentration of B
x small perturbation in the concentration of X
y = small perturbation in the concentration of Y

b = small perturbation in the concentration of B
tl small perturbation in the temperature of the reaction

system
T = temperature of the reaction system
To steady state temperature of the reaction system
hl Arbitrary constant
h2 do
h3 do
h'l = do
h'2 = do
h'3 = do
k'. = do
h"t = do
hR2 = do
kR

• = do
k"4 = do
w frequency of the oscillating species
t time
n any positive integer
p do
r distance in space
D" = diffusion coefficient of X
Dy = diffusion coefficient of Y
Db = diffusion coefficient of B
Hl = heat of reaction
H2 = do
H. = do
't' heat exchange coefficient
T~ bath temperature
T Average temperature of the mixture in the vessel
A conductivity of the mixture
d diameter of the vessel
n' p2D"
m' p2Dy
d' = P2Db
Cv specific heat at constant volume
h, arbitrary constant
h2 do
h. do
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