Single-crystal X-ray diffraction study of novel pyrazole chalcone derived from 1 -phenyl-3-p-tolyl-1 H-pyrazole-4-carbaldehyde

Anita R Banpurkar**, Sachin S Wazalwar ${ }^{\text {a }}$ \& Franc Perdih ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Rajiv Gandhi College of Engineering, Research and Technology, Chandrapur 442 403, India
${ }^{\mathrm{b}}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
E-mail: anitabanpurkar1@gmail.com; sacheein@gmail.com; franc.perdih@fkkt.unilj.si

Received 1 August 2018; accepted (revised) 31 July 2019

Abstract

Novel pyrazole chalcone has been synthesized by reaction of phenyl-3-p-tolyl-1 H -pyrazole-4-carbaldehyde and acetophenone by Claisen-Schmidt reaction in ethanol by microwave assisted method. It has been characterized by elemental analysis and spectroscopic (FTIR, ${ }^{1} \mathrm{H}$ NMR and MS) studies. Crystal structure of the compound has been determined using single-crystal X-ray diffraction. Hydrogen-bonded chain is formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding enhanced by $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. Adjacent chains are connected through the $\pi \cdots \pi$ interactions.

Keywords: Microwave assisted pyrazole carbaldehyde, chalcone, acetophenone, single-crystal study

Chalcones represent an important class of molecules. It shows presence of an electron donor and electron acceptor group. Phenyl substituents are electron donors, whereas carbonyl groups act as electron acceptors. The aromatic ketone group and enone group in chalcones makes it more active. Chalcones are useful for the preparation of biologically and industrially important compounds ${ }^{1}$. They are found abundantly in edible plants of species Leguminosae, Asteraceae, Moraceae, etc. ${ }^{2}$ Chalcones comprise of a class of compounds with important therapeutic and pharmacological potential. It's easy preparation and great potential of oral administration ${ }^{3}$ support the feasibility of chalcone-based compounds as therapeutic agents. Chalcone and its derivatives show diverse medicinal properties including antiinflammatory ${ }^{4}$, immunomodulatory ${ }^{5}$, anticancer ${ }^{6}$, antiHIV^{7}, antiproliferative ${ }^{8}$, and α-glucosidase inhibitory activities ${ }^{9}$. Some pyrazole derivatives show antiviral activity against Herpes infections ${ }^{10}$. Chalcones are also used as precursors in the biosynthesis of flavonoids ${ }^{11}$ and isoflavonoids ${ }^{12}$.

Experimental Section

Material and Method

All the starting materials and solvents were purchased from commercial sources and were used without further purification. Microwave oven of SAMSUNG, 800 W output with digital timer and clock was used for synthesis. Melting points were
determined in open capillaries using Electro thermal melting point apparatus and are uncorrected. Progress of reactions was monitored by TLC. Infrared (IR) spectra ($4000-600 \mathrm{~cm}^{-1}$) of the samples were recorded using a Perkin-Elmer Spectrum 100, equipped with a Specac Golden Gate Diamond ATR as a solid sample support. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a BrukerAvance III 500 NMR spectrometer with TMS as internal reference. MS spectra were recorded with an Agilent 6624 Accurate Mass TOF LC/MS instrument (ESI ionization). Elemental (C, H, N) analyses were obtained using Perkin-Elmer 2400 Series II CHNS/O Elemental Analyzer.

Synthesis of 1-phenyl-3-p-tolyl-1H-pyrazole-4-carbaldehyde, 3 :

A mixture of 4-methylacetophenone $\mathbf{1}(1.34 \mathrm{~g}$, $10.0 \mathrm{mmol})$, phenylhydrazine ($1.08 \mathrm{~g}, 10.0 \mathrm{mmol}$), 1 drop of conc. HCl and ethanol as a solvent was taken in a 100 mL conical flask and irradiated in microwave oven for $10-20 \mathrm{~s}$ at 450 watt at an interval of 5 second each. The resultant dry solid 2 was dissolved in excess of DMF, followed by addition of 15 mmol of POCl_{3} with continuous stirring in cold condition at about 8° to $10^{\circ} \mathrm{C}$. The reaction mixture was allowed to attain RT and heated at about $80^{\circ} \mathrm{C}$ for 1 h conventionally. On hydrolysis it gave off white colored solid. The solid obtained was washed with water to remove excess of HCl , filtered, dried and recrystallized using ethanol. The recrystallized
compound was kept for crystal growth by slow evaporation of saturated solution of compound in mixture of ethanol and chloroform $(1: 1 \mathrm{v} / \mathrm{v})$ in a dark chamber at low temperature ${ }^{13}$. Yield 89%. m.p. $100^{\circ} \mathrm{C}$. IR: 3125 ($\mathrm{Ar}-\mathrm{CH}$), 2838 ($\mathrm{C}-\mathrm{H}$ in CHO), $1673(\mathrm{C}=\mathrm{O})$, $1518(\mathrm{C}=\mathrm{N}), 1450 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 7.23-7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 7.30-7.33$ (t, 1H, Ar-H), 7.42-7.45 (t, 2H, Ar-H), 7.62-7.63 (d, 2H, Ar-H), 7.71-7.73 (d, 2H, Ar-H), $8.46(\mathrm{~s}, 1 \mathrm{H}$, pyrazole-CH), $9.98(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO})$.

Synthesis of 1-phenyl-3-(1-phenyl-3-p-tolyl-1H-pyrazole-4-yl)prop-2-en-1-one, 4 :
A mixture of phenyl-3-p-tolyl-1 H-pyrazole-4carbaldehyde ($2.62 \mathrm{~g}, 10 \mathrm{mmol}$), acetophenone (1.20 g , 10 mmol) and $2-3$ drops of saturated NaOH solution was subjected to microwave irradiation in presence of ethanol as a solvent for $1-2 \mathrm{~min}$ at 450 watt at an interval of 5 second each. The dark yellow solid so obtained was added to crushed ice followed by acidification using 0.1 M HCl to give pale yellow solid. The product obtained was filtered, dried and recrystallized using ethanol. The recrystallized compound was allowed for crystal growth by slow evaporation of its saturated solution with mixture of ethanol and chloroform $(1: 1 \mathrm{v} / \mathrm{v})$ in a dark chamber at low temperature. Yield 79%. m.p. $140^{\circ} \mathrm{C}$. IR: 3117 $(\mathrm{CH}=\mathrm{CH}), 3066(\mathrm{Ar}-\mathrm{CH}), 1643(\mathrm{C}=\mathrm{O}), 1539(\mathrm{C}=\mathrm{N})$, $1448(\mathrm{C}=\mathrm{C}), 831 \mathrm{~cm}^{-1}\left(\mathrm{Ar}^{2}-\mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 7.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.23 (d, 2H, Ar-H), 7.30 (s, Ar-H), 7.40-7.44 (m, 4H, Ar-H), $7.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.27$ (s, 1 H , pyrazolic CH); MS (ESI+): m/z $365\left(\mathrm{MH}^{+}\right)$; HRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: 365.1648$. Found: 365.1648. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(364.43 \mathrm{~g} / \mathrm{mol})$: C, 82.39; H, 5.53; N, 7.69. Found: C, 81.69; H, 5.31; N, 7.35\%.

X-ray crystallographic study

Single-crystal X-ray diffraction data was collected on an Agilent Technologies SuperNova Dual diffractometer with an Atlas detector using monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$ at RT . The data was processed using CrysAlis Pro ${ }^{14}$. Structure was solved by charge-flipping methods implemented in Superflip ${ }^{15}$ and refined on F^{2} using full-matrix least-squares procedures using SHELX2014 ${ }^{16}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were readily located in a difference Fourier maps and were subsequently treated as riding atoms in geometrically
idealized positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic and alkenyl) or $0.96 \AA$ (methyl) with $U_{\text {iso }}(\mathrm{H})=k U_{\text {eq }}(\mathrm{C})$, where $k=1.5$ for methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. CCDC 1848478 contains the supplementary crystallographic data for this paper. This data is provided free of charge by The Cambridge Crystallographic Data Centre. Crystallographic data is listed in Table I.

Results and Discussion

The compound 1-phenyl-3-(1-phenyl-3-p-tolyl-1H-pyrazole-4-yl)prop-2-en-1-one 4 was obtained by microwave assisted Claisen-Schmidt reaction between acetophenone and 1-phenyl-3-p-tolyl-1H-pyrazole-4carbaldehyde 3 (Scheme I). The IR spectrum of compounds 3 showed characteristic $v(-\mathrm{CH}=\mathrm{O})$ absorption band in the region $1660-1677 \mathrm{~cm}^{-1}$, and $v(-C=N)$ band in the region $1513-1522 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 3 in CDCl_{3} exhibit characteristic singlet at $9.95-9.99 \mathrm{ppm}$ attributed to $-\mathrm{CH}=\mathrm{O}$ protons, singlet at $8.46-9.28 \mathrm{ppm}$ is

Table I - Crystallographic data for 4	
Compd code	4
CCDC number	1848478
Molecular formula	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Molecular weight	364.43
Crystal System	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$
$a(\AA)$	12.7305(4)
$b(\AA)$	15.5517(5)
$c(\AA)$	10.9948(4)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	110.267(4)
$\gamma\left({ }^{\circ}\right)$	90
Z	4
$V\left(\AA^{3}\right)$	2041.99(13)
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.185
$\mu\left(\mathrm{mm}^{-1}\right)$	0.570
$F(000)$	768
Reflections collected	7919
Independent reflections	3874
$R_{\text {int }}$	0.0216
Parameters	255
$R_{1}, w R_{2}[I>2 \sigma(I)]^{a}$	0.0463, 0.1300
$R_{1}, w R_{2}\left(\right.$ all data) ${ }^{a}$	0.0575, 0.1442
$\mathrm{GOF}^{\text {b }}$	1.036
$\Delta \rho_{\text {min }}, \Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.174, -0.136
${ }^{a} R=\sum\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| \sum \mid F_{\mathrm{o}} ; ; w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \sum\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$. ${ }^{b} S=\left\{\sum\left[\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n / p)\right\}^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.	

i EtOH, HCl, MW, 10-20 s
ii $\mathrm{POCl}_{3} / \mathrm{DMF}, \sim 80^{\circ} \mathrm{C}$, Reflux 1 h
iii Acetophenone, aq. $\mathrm{NaOH}, \mathrm{MW}$

Scheme I — Synthesis of 1-phenyl-3-(1-phenyl-3-p-tolyl-1H-pyrazole-4-yl)prop-2-en-1-one
attributed to pyrazolic -CH protons. The IR spectrum of compounds 4 shows characteristic absorption band at $3117 \mathrm{~cm}^{-1}$ representing olefinic stretching and at $1643 \mathrm{~cm}^{-1}$ attributed to ketonic $\mathrm{C}=\mathrm{O}$ group. Absorption band in the region $1539 \mathrm{~cm}^{-1}$ represents pyrazolic $\mathrm{N}-\mathrm{N}$ bond. The ${ }^{1} \mathrm{H}$ NMR of compound 4 exhibit characteristic singlet at 2.36 ppm attributed to three protons of CH_{3} in tolyl ring, singlet at 8.27 ppm attributed to pyrazolic CH , doublet at 7.48 ppm and 7.81 ppm , respectively, representing $\mathrm{CH}=\mathrm{CH}$ of chalcone moiety. Furthermore, the mass spectra and elemental analysis support the structure of compound 4.

Single crystal structure of compound $\mathbf{4}$ shows that all the bond lengths are within normal ranges (Figure 1) ${ }^{17}$. In the compound the pyrazole ring $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 10-\mathrm{C} 12$ is essentially planar with the maximum deviation from planarity of -0.003 (2) for atom C 11. Also, the pyrazolylphenylpropenone backbone is almost planar with the dihedral angle between pyrazole ring and the phenyl ring C4-C9 of $7.63(10)^{\circ}$. Similar small dihedral angle of $7.54(11)^{\circ}$ is present also between the pyrazole ring and the phenyl ring C13-C18. On the other hand, the dihedral angle between pyrazole and tolyl ring C19-C24 is much larger being $32.95(9)^{\circ}$.

Supramolecular structure of the studied compound is achieved through a hydrogen-bonded chain formed by $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1$ bonding between the pyrazole CH

Figure 1 - Molecular structures and atom numbering scheme for 4. Probability ellipsoids are drawn at the 50% level
moiety as a hydrogen-bond donor and the carbonyl O atom as a hydrogen-bond acceptor forming a $\mathrm{C}(7)$ graph set motif ${ }^{18}$. (Table II, Figure 2). This chain is further enhanced by a $\mathrm{C} 23-\mathrm{H} 23 \cdots \pi$ interaction between the tolyl CH moiety and pyrazole ring. Adjacent chains are connected through the $\pi \cdots \pi$ interactions between pyrazole ring and phenyl ring C13-C18 with centroid-to-centroid distance of 3.9714 (12) \AA, and dihedral angle between the rings of 7.54 $(11)^{\circ}$ and this 2 D motif is further enhanced by C21-H21 π interactions between the tolyl CH moiety and the phenyl $\mathrm{C} 4-\mathrm{C} 9$ ring.

Table II — Hydrogen bond geometry of $\mathbf{4}$					
$\mathrm{D}-\mathrm{H} \cdot \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdot \mathrm{A}(\AA)$	$\mathrm{D} \cdot \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdot \mathrm{A}\left({ }^{\circ}\right)$	Symmetry code
$\mathrm{C} 12-\mathrm{H} 12 \cdot \mathrm{O} 1$	0.93	2.38	$3.308(2)$	174	$x, 3 / 2-y, 1 / 2+z$
$\mathrm{C} 21-\mathrm{H} 21 \cdot C g 2$	0.93	3.00	$3.775(2)$	142	$-x, 1 / 2+y, 1 / 2-z$
$\mathrm{C} 23-\mathrm{H} 23 \cdot C g 1$	0.93	2.83	$3.593(2)$	140	$x, 3 / 2-y,-1 / 2+z$
$C g 1$ and $C g 2$ are $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 10-\mathrm{C} 12$ and $\mathrm{C} 4-\mathrm{C} 9$ ring centroids, respectively.					

Figure 2 - (a) Chain formation generated by $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1$ hydrogen bonding (blue dashed lines) and C23-H23 $\cdots \pi$ interactions (black dashed lines). Hydrogen atoms not involved in the motif shown have been omitted for clarity. (b) $\pi \cdots \pi$ interactions between pyrazole and phenyl rings (black dashed lines). (c) Packing of hydrogen-bonded chains along c-axis.

Conclusion

Novel pyrazole chalcone was synthesized by microwave assisted Claisen-Schimdt condensation reaction with good yield. Spectroscopic analysis and single crystal study proves the formation of desired compound. In the crystal structure hydrogen-bonded chain is formed by $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1$ bonding enhanced
by a C23-H23 $\cdots \pi$ interaction. Adjacent chains are connected through the $\pi \cdots \pi$ interactions.

Acknowledgments

Financial support from the Slovenian Research Agency (ARRS) through project P1-0175 is gratefully acknowledged. The authors thank the EN-FIST Centre of Excellence, Ljubljana, Slovenia, for using Super Nova diffractometer.

References

1 Arshad M N, Al-Dies A M, Abdullah M, Asiri A M, Khalid M, Birinji A S, Khalid A, Ataualpa A A \& Braga A C,$J \mathrm{Mol}$ Struct, 1141 (2017) 142.
2 Modzelewska A, Pettit C, Achanta G, Davidson N E, Huang P \& Khan S R, Bioorg Med Chem, 14 (2006) 3491.
3 Wattenberg L W, Coccia J B \& Galbraith A R, Cancer Lett, 83 (1994) 165.
4 Hsieh H K, Lee T H, Wang J P, Wang J J \& Lin C N, Pharm Res, 15 (1998) 39.
5 Barfod L, Kemp K, Hansen M \& Kharazmi A, Int Immunopharmacol, 2 (2000) 545.
6 Kumar S K, Hager E, Pettit C, Gurulingappa H, Davidson N E, \& Khan S R, J Med Chem, 46 (2003) 2813.
7 Artico M, Santo R D, Costi R, Novellino E, Greco G, Massa S, Tramontano M E, Marongiu E, Montis A D \& Colla P L, J Med Chem, 41 (1998) 3948.
8 Liu X L \& Go M L, Bioorg Med Chem, 15 (2007) 7021.
9 Seo W D, Kim J H, Kang J E, Ryu H W, Long M J C, Lee H S, Yang M S \& Park K H, Bioorg Med Chem Lett, 15 (2005) 5514.

10 Katade S, Phalgune U, Biswas S, Wakharkar R \& Deshpande N, Indian J Chem, 47B (2008) 927.
11 Czemmel S, Heppel S C \& Bogs J, Protoplasma, 249 (2012) 109.
12 Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham, Hiraka H, Tabata S, Sato S, Paquette S, Wang T L, Martin C \& Bailey P, Plant Physiol, 159 (2012) 2.
13 Wazalwar S, Banpurkar A \& Perdih F, J Mol Struct, 1150 (2017) 258.

14 CrysAlis PRO, Agilent Technologies, Yarnton, England (2013).

15 Palatinus L \& Chapuis G, J Appl Crystallogr, 40 (2007) 786.
16 Sheldrick G M, Acta Cryst, C71 (2015) 3.
17 Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G \& Taylor R, J Chem Soc Perkin Trans 2, 12 (1987).
18 Bernstein J, Davis R E, Shimoni L \& Chang N L, Angew Chem Int Ed, 34 (1995) 1555.

