Kinetics of Acid-catalysed Hydrolysis of Hexanohydroxamic Acid

B. S. MANE & M. H. JAGDALE

Department of Chemistry, Shivaji University, Kolhapur 416004

Received 4 October 1976; revised 2 May 1977; accepted 12 August 1977

Kinetics of the acid-catalysed hydrolysis of hexanohydroxamic acid has been investigated in hydrochloric, perchloric and sulphuric acids. The effect of catalysts, temperature, ionic strength and solvent isotope effect have been investigated and the results show that the hydrolysis occurs by an A_{AC^2} mechanism giving hexanoic acid and hydroxylamine. The variation of reaction rate with [acid] has been satisfactorily explained by a two-parameter equation.

THE acid-catalysed hydrolysis of some aromatic¹⁻⁶ and few aliphatic⁷⁻⁹ hydroxamic acids have been studied. Though the hydrolysis of hexanohydroxamic acid was studied¹⁰ in dil. aq. HNO₃, no kinetic study of the reaction has been studied. A detailed kinetic study of hydrolysis of hexanohydroxamic acid in aq. mineral acids has now been undertaken and a mechanism consistent with the results has been proposed.

Materials and Methods

Hexanohydroxamic acid (K & K Labs, USA) was recrystallized from benzene, m.p. 62° (lit.¹⁰ $61 \cdot 5 - 63 \cdot 5^{\circ}$). HCl, HClO₄, H₂SO₄ used were of AR quality. A 1% solution of FeCl₃.6H₂O (BDH, AR) was prepared in distilled water containing 0·1*M* HCl.D₂O (isotopic purity 99·4%) was precured from BARC, Bombay. All other chemicals used were of AR grade.

Kinetic measurement — All kinetic measurements were carried out at $40^{\circ} \pm 0.05^{\circ}$. The hydrolysis rates were determined from the rate of disappearance of the hydroxamic acid. Aliquots of the reaction mixture were withdrawn at regular time intervals and the concentration of hexanohydroxamic acid determined colorimetrically¹ at 520 nm. The rate constants were calculated using the integrated rate equation for first order reactions. Initial concentration of hexanohydroxamic acid in all kinetic run was 0.012M.

Results and Discussion

The hydrolysis was found to be first order with respect to both substrate and HCl. But in the presence of excess hydronium ions, pseudo-first order rates were ensured.

Effect of varying [acid] on reaction rate — The hydrolysis rates were studied in aq. HCl, HClO₄ and H_2SO_4 at 40° in the range 1 to 8*M*. The rates were found to increase with increase in [acid] and attained optimum value at 5*M* HCl, 3*M* HClO₄ and 3*M* H_2SO_4 and then tended to decrease (Table 1). Rate maxima is also observed for acid-catalysed hydrolysis of benzohydroxamic acid and its derivatives^{2,3}. It can be presumed in analogy with amides¹¹ that the protonation of hexanohydroxamic

is complete at 5*M* HCl, 3*M* HClO₄ and 3*M* H₂SO₄. Activity of water goes on decreasing with increase in [acid]. Above the optimum rate, decrease in activity of water outweighs the protonated species and so the rate of hydrolysis goes on decreasing at higher acid concentration.

Effect of varying temperature on reaction rate — The.. hydrolysis of hexanohydroxamic acid was studied in 1.0M HCl in the temperature range 35-55° (Table 2). The rate constants $(k \times 10^4)$: 0.45, 0.71, 1.13 and 1.77 sec⁻¹ at 35°, 40°, 45° and 50° respectively are average of duplicate runs and the average deviation from the mean is less than 3%. The values of activation parameters fall in the range typical of a reaction proceeding by A_2 -mechanism. The entropy of activation is negative and falls in the range -15 to -30 e.u., characteristic of bimolecular mechanism¹². The values of ΔE_{\pm}^{*} , ΔH_{\pm}^{*} and frequency factor A are 18.3 ± 0.3 kcal mol⁻¹, 17.5 ± 0.1 kcal mol⁻¹ and 3.1×10^8 sec⁻¹ respectively.

Zucker and Hammett¹³ treated quantitatively acidity dependence rates and grouped reactions into two categories depending on whether the logarithm of the pseudo-first order rate constants were linear either with H_0 (A_1 -mechanism; rate determining unimolecular decomposition of protonated species) or with log $C_{\rm H^+}$ (A_2 -mechanism; rate determining attack on protonated substrate by a water molecule). We observed that plot of log k_1 against $-H_0$ was not linear. However the plot of log k_1 against log ($C_{\rm H^+}$) was linear up to 4M HCl with approximate unit slope (0.92) indicating that a bimolecular mechanism operates.

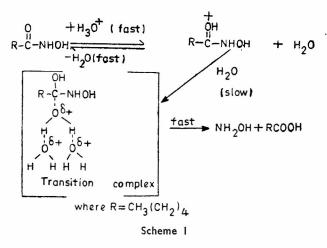
Bunnett¹⁴ found empirically that for a large number of reactions, plots of $(\log k_1+H_0)$ versus the logarithm of the activity of water $(\log a_{H_20})$ were linear or very nearly linear and classified the reactions into three categories according to slopes (w values) of the above plots. The present data gave a value of w = 7.3 in HCl. This value suggested that water played the role of a proton transfer agent (w > +3.3). From w value we can say that the transition state is more polar than the substrate¹⁴. The large +ve value of w have been observed (+6.1 in

TABLE	1 — Effect of Var Rate Cons		N THE
$\begin{bmatrix} Acid \end{bmatrix}$	k ₁ 10) ⁴ sec ⁻¹ in	
(14)	HCl*	HClO ₄	H_2SO_4
1.0	0.71 (0.69)	0.68	0.77
2.0	1.41 (1.28)	1.10	1.46
3.0	1.90 (1.74)	1.30	2.17
4 ·0	2.02(2.04)	1.10	1.67
5.0	2.16 (2.12)	0.90	1.46
6.0	1.97 (1.90)	0.62	1.05
7.0	1.74(1.81)	0.47	0.61
8.0	1.31 (1.49)	0.22	0.28

*Values calculated with the help of Eq. 2 are given in parentheses.

Table 2 — Variation of Rate Constant at Different [HCl] and Ionic Strengths

[Ionic strength maintained by adding NaCl; temp. 40°]


	ml	$1 \cdot 0M$	$2 \cdot 0M$	$3 \cdot 0M$
0.10	0.07	0.09		
0.25	0.18	0.21	0.23	
0.50	0.36	0.41	0.45	0.50
0.75	0.51	0.58	0.62	0.69
1.00	0.71		0.81	0.90
1.00	1.28*			
1.50	1.11		1.19	1.23
1.70	1.29		—	1.43
2.00	1.41			1.62
3.00	1.90			

HCl and +8.9 in HClO₄) for acid-catalysed hydrolysis of N-phenyl-*n*-butyrohydroxamic acid⁶.

Bunnett and Olsen¹⁵ suggested that the slopes (ϕ) of the plot of (log k_1+H_0) versus (H_0 +log H⁺) can be used as a criterion postulating for a reaction mechanism. The (ϕ) values obtained for hydrolysis of hexanohydroxamic acid are 1.35 in HCl, 1.25 in HClO₄ and 1.2 in H₂SO₄ which fall clearly in the third category implying that water acts as proton transfer agent ($\phi > 0.56$). The ϕ value observed for benzohydroxamic acid and its some *p*-substituted derivatives have been reported² to lie in the range 0.84 to 1.1.

Bunnett and coworkers¹⁶ suggested that for A_1 reactions the catalytic effect of added acids followed the order: $HClO_4 > HCl > H_2SO_4$, while for A_2 -reactions the order was $H_2SO_4 > HCl > HClO_4$. Thus higher rate in H_2SO_4 (> HCl > HClO_4) provides support for a bimolecular mechanism.

Solvent isotope effect — The hydrolysis of hexanohydroxamic acid in H_2O and D_2O using 1.0*M* HCl at 40° showed that the hydrolysis occurs 1.8 times faster in D_2O than in H_2O (Table 2). Higher rate in D_2O is suggestive of a rapid transfer of proton to the substrate in the reaction and pre-equilibrium step therefore is not the rate determining step¹⁷. As suggested for amide hydrolysis^{18,19} seat of protonation in hydroxamic acids may be assumed to be the oxygen atom².

Effect of ionic strength — The hydrolysis of hexanohydroxamic acid studied at varying [HCl] and ionic strengths [1.0, 2.0, 3.0M (NaCl)], showed only slight increase in the rate constant (15-20%) with increasing ionic strength (Table 2). From the plots of rate constants against acidity at different ionic strengths, it can be concluded that: (i) at each ionic strength the reaction can be represented by Eq. (1) $k = k_{\rm H^+}.C_{\rm H^+}$ (1)

where k and $K_{\rm H^+}$ are the observed and specific rate constants respectively; (ii) since the slopes $(k_{\rm H^+})$ of the curves increase with increase in ionic strength, the reaction is presumed to exhibit positive salt effect. The linearity of the plots with positive slopes indicates an acid-catalysed reaction²⁰; (iii) the reaction due to neutral species is absent as the plots pass through the origin²¹.

These results favour the reaction proceeding via the protonated species only. The rate data may be represented by a modified form of the Bronsted-Bjerrum equation²².

$$k = k_{\mathrm{H}_{0}^{+}} C_{\mathrm{H}^{+}} e^{b \cdot \mu} (a_{\mathrm{H}_{2}0})^{n} \qquad \dots (2)$$

where a_{H_2O} is the activity of water²³, *n* is the number of water molecules and μ the ionic strength.

The values of $k_{\rm H^+}$ at $\mu = 1.0$, 2.0 and 3.0 are 0.72, 0.77 and 0.81 respectively. The values $k_{\rm H^+_0}$ and b are obtained from the linear plot of log $k_{\rm H^+}$ versus μ . The gradient gives b while the intercept at zero ionic strength, gives $k_{\rm H^+_0}$. The value of b is found to be 0.015 and that of $k_{\rm H^+_0}$ is 0.72×10⁴M⁻¹ sec⁻¹. Mechanism of hydrolysis — The above results

Mechanism of hydrolysis — The above results indicate that water molecules are involved in the rate determining step. The number of water molecules actually involved can be obtained by the method proposed by Yates and McClelland²⁴.

The new acidity function H_s (= MH_0) can be obtained from protonation of some *p*-substituted benzohydroxamic acids². The value of M was in the range 0.58 to 0.68. The average value of Mis taken as 0.60.

The plot of $(\log k_1 + H_s)$ versus $\log a_{H_so}$ was linear with slope = 3.1, indicating that 3 water molecules are involved in the formation of transition complex during the hydrolysis of hexanohydroxamic acid. On the basis of above results the probable mechanism (Scheme 1) appears to involve reversible rapid protonation of hexanohydroxamic acid followed by a slow reaction of water with the protonated form, leading to the transition complex²⁵ and subsequent hydrolysis giving the products, hexanoic acid and hydroxylamine.

Acknowledgement

One of the authors (B.S.M.) is grateful to the UGC, New Delhi, for the award of a junior research fellowship. The authors are indebted to Dr D. C. Berndt and Dr J. G. Tillet for valuable suggestions.

References

- 1. BERNDT, D. C. & FULLER, R. L., J. org. Chem., 31 (1966), 3312.
- 2. BUGLASS, A. J., HUDSON, K. & TILLET, J. G., J. chem. Soc., (1971), 123. 3. Ahamad, A., Socha, J. & Vecera, M., Colln Czech. chem.
- Commun., 39 (1974), 3293.
- 4. BERNDT, D. C. & WARD, I. E., J. org. Chem., 39 (1974), 840, 841.
- 5. BERNDT, D. C. & WARD, I. E., J. org. Chem., 41 (1976), 3297.
- 6. SUBBARAO, C. & TANDON, S. G., Indian J. Chem., 14A (1976), 765.
- 7. MUNSON, J. W. & CONNORS, K. A., J. Am. chem. Soc., 24 (1973), 1979.
- 8. BERNDT, D. C. & SHARP, J. K., J. org. Chem., 38 (1973), 396.

- 9. MANE, B. S. & JAGDALE, M. H., J. Indian chem. Soc., in press.
- 10. OBUKHOVA, M. E., VODEN, V. G. & PUSHLENKOV, M. F., Radiokhimiya, 12 (6) (1970), 900.
- 11. EDWARD, J. T. & MEACOCK, S. C. R., J. chem. Soc., (1957). 2000.
- 12. SCHLEGER, L. L. & LONG, F. A., Adv. phys. org. Chem., 1 (1963), 24.
- 13. ZUCKER, L. & HAMMETT, L. P., J. Am. chem. Soc., 61 (1939), 2791.
- DUNNETT, J. F., J. Am. chem. Soc., 83 (1961), 4956, 4968, 4973, 4978. 14. BUNNETT, J. F.,
- 15. BUNNETT, J. F. & OLSEN, F. D., Can. J. Chem., 44 (1966), 1899.
- BUNTON, C. A., CRABTREE, J. H. & ROBINSON, L., J. Am. chem. Soc., 90 (1968), 1258.
 BUNTON, C. A. & SHINNER, V. J., J. Am. chem. Soc., 83
- (1961), 42, 3207.
- 18. YATES, K. & STEVENS, J. B., Can. J. Chem., 43 (1965), 529.
- CHARMINA O'CONNOR, Q. Rev., 24 (1970), 553.
 BUNTON, C. A., MHALA, M. M., OLDHAM, K. G. & VERNON,
- LONION, C. A., MHALA, M. M., OLDHAM, K. G. & VERNON, C. A., J. chem. Soc., (1960), 3293.
 MHALA, M. M. & JAGDALE, M. H., Indian J. Chem., 8 (1970), 147.
 LONION, C. A., MARANA, M. M., M., OLDHAM, K. G. & VERNON, C. A., J. chem., Soc., (1960), 3293.
- 22. LONG, F. A. & MCDEVIT, W. F., Chem. Rev., 51 (1952), 119.
- 23. LEFFLER, J. E. & GRUNWALD, E., Rates and equilibria of organic reactions (John Wiley, New York), 1963, 286.
- 24. YATES, K. & MCCLELLAND, R. A., J. Am. chem. Soc., 89 (1967), 2686.
- 25. KEITH YATES, Acc. chem. Res., 4 (1971), 136.