Kinetics of Os(VIII)-catalysed Oxidation of Benzaldehyde & Substituted Benzaldehydes by Chloramine-T

P. S. RADHAKRISHNAMURTI & B. SAHU

Department of Chemistry, Berhampur University, Berhampur 760007

Received 25 November 1976; accepted 7 February 1977

The kinetics of OsO_4 -catalysed oxidation of benzaldehyde and substituted benzaldehydes by chloramine-T in aqueous and aqueous *t*-butanol under alkaline conditions has been investigated. The order with respect to CAT and OsO_4 is one each. The dependence on $[OH^-]$ is inverse first order. The reactions are zero order in substrate. The complete absence of substituent effect is a novel feature of these oxidations. A suitable mechanism involving a radical intermediate is postulated.

[Substrate] 103M

M USHRAN and coworkers¹ have made extensive investigations on chloramine-T (CAT) oxidation of organic molecules. Non-enolizable aldehydes like benzaldehyde are inert to CAT, but reactions are facile in the presence of OsO_4 . Since no work has been done regarding structure and reactivity correlation in benzaldehyde oxidation by CAT, it was thought worthwhile to study the kinetics of OsO_4 -catalysed oxidation of benzaldehyde and substituted benzaldehydes by CAT in aqueous and aqueous *t*-butanol systems under alkaline conditions.

Materials and Methods

All the aldehydes used were of AR grade and were redistilled or recrystallized before use. CAT and OsO_4 were also of AR grade. Kinetic runs were followed by estimating CAT by standard iodometric method. All the runs were made in duplicate and the results are reproducible within $\pm 3\%$. Variation of ionic strength by adding salts like KCl did not have any significant effect on the reaction rate.

Results and Discussion

Dependence on [substrate] — Rate constants at varying [substrate] recorded in Table 1 show the zero-order dependence on the substrate.

Dependence on [CAT] — The order with respect to CAT is one as seen from the linearity of log [CAT] versus time plots. All the rate constants computed are first order rate constants with respect to CAT.

Dependence on $[OsO_4]$ — The plots of log k_1 versus log $[OsO_4]$ are linear with the slope of unity, confirming first order dependence on $[OsO_4]$ (Table 2).

Dependence on [alkali] — The plots of k_1 versus $1/[OH^-]$ are linear with the slope of unity, indicating that the reaction has inverse first order dependence on [OH⁻] (Table 3). The rate can be expressed by the relation (1).

$$-d[CAT]/dt = k[CAT][OsO_4][OH^-]^{-1} \qquad \dots (1)$$

Structure and reactivity — All the aldehydes with both electron-releasing and electron-withdrawing groups are oxidized essentially at the same rate at TABLE 1 — EFFECT OF VARYING [SUBSTRATE] ON THE REACTION RATE

{[NaOH]=0.108M; [OsO₄]= $1.17 \times 10^{-5}M$; [CAT]=0.0005M; temp.= 60° }

 $10^{3}k_{1}$ (min⁻¹) Benzaldehyde

$2 \cdot 0$ $5 \cdot 0$ $7 \cdot 0$		5·23 5·40 5·53
	o-Chlorobenzaldehyde	
$1.0 \\ 2.0 \\ 3.0$		5·00 4·70 5·20
	p-Nitrobenzaldehyde	
0.8 1.6 2.0		5·20 5·42 5·34

TABLE 2 — EFFECT OF VARYING [OSO4] IN THE CAT OXIDATION OF AROMATIC ALDEHYDES

(Substrate: $0.002M$;	CAT = 0.0005M;	NaOH = 0.025M
	temp.:60°C)	

OsO_4] $ imes 10^5 M$		$10^{3}k_{1} (\min^{-1})$
	p-Nitrobenzaldehyde	
0.780		9.2
0.975		12.2
1.170		18.0
1.365		19.0
1.560		21.0
	m-BROMOBENZALDEHYDE	
0.780		8.6
0.975		11.4
1.170		17.8
1.560		21.0
	o-Chlorobenzaldehyde	
0.780		8.4
0.975		11.3
1.170		18.0
1.560		20.0

t-1

TABLE 3 — DEPENDENCE ON [OH-] IN THE CAT OXIDATION OF AROMATIC ALDEHYDES						
{[Substrate] = $0.002M$; [CAT] = $0.0005M$; [OsO ₄] = $1.17 \times 10^{-5}M$; temp.: 60° }						
$[OH^{-}](M)$	$10^{3}k_{1} (min^{-1})$	$[OH^-](M)$	10 ³ k ₁ (min ⁻¹)			
Benzaldehyde		<i>p</i> -Bromobenzaldehyde				
0.256	2.8	0.180	3.1			
0.182	3.1	0.108	5.2			
0.108	5.2	0.055	8.4			
0.055	8.3					
		<i>m</i> -Nitrob	ENZALDEHYDE			
O-CHLOROBEN	ZALDEHYDE					
		0.180	3.0			
0.180	3.3	0.108	5.2			
0.108	4.7	0.055	8.5			
0.055	8.4					
		m-Bromoe	BENZALDEHYDE			
p-Nitroben	ZALDEHYDE					
1		0.220	3.0			
0.180	3.1	0.180	3.2			
0.108	5.3	0.108	5.7			
0.055	8.3	0.055	8.1			
p-Chlorobenzaldehyde		m-Chlorobenzaldehyde				
0.180	3.1	0.180	3.2			
0.108	5.8	0.108	5.2			
0.055	8.3	0.055	8.3			

various [substrate]. This shows that it is a perfect zero order reaction with respect to substrate.

Effect of added EDTA - Addition of EDTA retards the rate of oxidation of aldehydes up to 0.001M[EDTA]. Above this concentration of EDTA, the oxidation of benzaldehyde is completely inhibited. It seems that at [EDTA] > 0.001M the aldehydes form an unreactive complex with EDTA. In the case of p-nitrobenzaldehyde, rate constants (k_1) are calculated to be 3.6 and 2.8×10^{-3} min⁻¹ respectively at [EDTA] = 0.55, and $0.70 \times 10^{-3} M$.

Effect of added salt — The first order rate constants $(k_1 \text{ min}^{-1})$ without KCl and with KCl (0.011-0.02M)for p-nitrobenzaldehyde are 0.0083, 0.00765 and 0.0075 respectively.

Solvent effect --- Addition of t-butanol to aqueous system in these reactions perceptibly retards the oxidation (Table 4). This seems to be quite in consonance with dipole-dipole reactions. The plots of log k_1 versus 1/D are linear.

Mechanism — The inverse dependence on alkalihas been rationalized earlier² on the finding that it is not the sodium salt of CAT but CAT itself that takes part in the reaction. Hence, reaction (2) was postulated

Na salt of CAT + water
$$\approx$$
CAT+NaOH ...(2)
to account for the inverse dependence on [OH⁻]. But
we feel that a more rational explanation would be
that OsO₄ molecules probably are able to form
complex with CAT acquiring octahedral geometry
whereas the species like [OsO₄(OH)(H₂O)]¹⁻ or
[OsO₄(OH₂)]²⁻ (equilibria 3 and 4) possessing already
octahedral geometry may not be able to form
complex effectively with CAT. Perhaps it is more
realistic to postulate OsO₄ as the active species

$$OsO_{4} + [OH^{-}] + H_{2}O \rightleftharpoons [OsO_{4}(OH)H_{2}O]^{1-} \dots (3)$$

$$[OsO_{4}(OH)H_{2}O]^{1-} + (OH^{-}] \rightleftharpoons [OsO_{4}(OH)_{2}]^{2-} + H_{2}O \dots (4)$$

TABLE 4 --- SOLVENT EFFECT ON CAT OXIDATION OF AROMATIC ALDEHYDES

 $\{[Substrate] = 0.002M; [CAT] = 0.0005M; [NaOH] = 0.05M; \}$ $[OsO_4] = 1.17 \times 10^{-5}M$; temp.: 60°

t-Butanol (%, v/v)		10 ³ k ₁ (min ⁻¹)
(70) 1717	0-Chlorobenzaldehyde	
0		8.4
20		5.0
30		3.7
	<i>m</i> -Chlorobenzaldehyde	
20		4.9
30		3.6
	m-Bromobenzaldehyde	
20		4.9
30		3.6

The concentration of free OsO₄ which is postulated to be the reacting species decreases with increasing [OH-]. Hence the inverse first order dependence with respect to [OH-].

The reaction sequence as shown in Scheme 1 is envisaged on analogy with the work of Mushran and coworkers on aliphatic aldehydes².

Though we are in general agreement with the Scheme 1 it is doubtful whether the loss of the hydrogen as H⁻ is plausible, since loss of H⁻ should have been reflected in the substituent effect in the present oxidation process, for the reason that benzaldehyde and p-nitrobenzaldehyde have different capacity for liberating a H⁻ even though it is taken up in a fast step. In the oxidation of aldehydes by Cr(VI)³ and Mn(VII)⁴, there is first order dependence on [substrate], and H- loss has been invoked which appears likely. However, the complete absence of substituent effect in the present oxidation reactions indicates that the loss of hydrogen as H. by a single electron transfer rather than as H⁻ in the transition state is more likely. The products are the corresponding carboxylic acids.

References

- 1. MUSHRAN, S. P., SANEHI, R. & BOSE, A. K., Acta chem. hung., 84 (1975), 135 and references cited therein. 2. SANEHI, R., AGRAWAL, M. C. & MUSHRAN, S. P., Indian
- J. Chem., 12 (1974), 311. 3. WIBERG, K. B. & STEWART, R., J. Am. chem. Soc., 77
- (1955), 1786.
- 4. WIBERG, K. B. & RICHARDSON, W. H., J. Am. chem. Soc., 84 (1962), 2800.