References

1. Cleare, M. J. \& Griffith, W. P., J. chem. Soc., A (1970), 1117.
2. Griffith, W. P., Coordination chem. Rev., 8 (4) (1972), 379.
3. Johrson, N. P., J. chem. Soc., (1969), 1843.

4, Chatt, J., Garforth, J. D., Johnson, N. P. \& Rowe, G. A., J. chem. Soc., (1964), 1012
5. Saha, H. K. \& Banerjee, A. K., J. inorg. nucl. Chem., 34 (1972), 697.
6. Paul, R. C., Madan, Hameet \& Chadha, S. L., Indian I. Chem., 13 (1975), 1188
7. Johyson, N. P., Lock, C. J. L. \& Wilkinson, G., J. chem. Soc., (1964), 1054.

Preparation \& Characterization of Dimethylformamidyl Substituted Titanium(IV) Compounds

R. C. Phul, B. N. Anand, S. K. Vasisht \& Ramesh Kapoor

Department of Chemistry, Panjab University Chandigarh 160014

Reqcived 5 February 1977; accepted 11 March 1977
Dimethylformamidyl substituted titanium(IV) chlorides $; \mathrm{TiCl}_{3}\left[\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right] \cdot 2 \mathrm{DMF}, \mathrm{TiCl}_{2}\left[\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$.DMF $\mathrm{TiCl}_{2}\left[\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, TiCl[CON $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$ and $\mathrm{Ti}[\mathrm{CON}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]_{4}$ have been prepared by the reaction of titanium(IV) chloride and dimethylformamidyl sodium. These compounds have been characterized by their elemental analyses, infrared, molar conductance and thermal studies.

IN continuation of our studies on the preparation - of dimethylformamidyl substituted metal halides ${ }^{1}$, we now report the results of our investigations on the reactions between titanium(IV) chloride and dimethylformamidyl sodium. Solvolytic reactions of metal halides in dimethylformamide are completely lacking. Only in case of formamide a few partially solvolysed products involving titanium(IV) chloride ${ }^{2}$, tin(IV) chloride and iron(III) chloride ${ }^{3}$ have been reported.

Dimethylformamide (J. T. Baker analysed) was purified as reported in literature ${ }^{4}$. Dimethylformamidyl sodium was prepared as reported earlier ${ }^{5}$. Titanium(IV) chloride (Riedel) was used after distillation in dry nitrogen atmosphere.
Preparation of compounds -- Titanium(IV) chloride when stirred with the suspeasion of dimethylformamidyl sodium, $\mathrm{NaCON}\left(\mathrm{CH}_{3}\right)_{2}$ in carbon tetrachloride in different molar ratios (Table 1) for a period ranging between 4 to 24 hr gave yellow voluminous precipitates at 0°. The compounds were filtered and washed with carbon tetrachlo ide to remove unreacted titanium(IV) chloride. Sodium chloride and any unused dimethylformamidyl sodium were removed by treating the yellow mass with pure DMF. The DMF solution on evacuation yielded solid compounds. The last traces of dissolved sodium chloride were removed by successive treatments with fresh DMF till their solutions gave negative test for chloride ions. Generally three to four such treatments yielded pure products. Finally, the compounds were obtained by repeated washiigs with carbon tetrachloride and dried by keeping under vacuum (10^{-2} torr) for several hours.

The completely substituted product, Ti[CON$\left.\left(\mathrm{CH}_{3}\right)_{2}\right]_{4}$ was obtained in small yields by refluxing the mixture in mole ratio $1: 6$ in methylene chloride for 3-4 days. The mixture was filtered and the filtrate was evacuated to get a white solid. It was purified by recrystallization from carbon tetra-chloride-pet. ether. It was then sublimed at 40° at 10^{-4} torr to get colourless crystals.

Complexes of some of these compounds with quinoline (Q) and ethylen ediamine (en) were prepared by stirring their suspe:sion in carbon tetrachloride with excess of base at 0°. The compounds were filered under dry conditions, washed with petroleum ether and dried in vacuo.

Titatium was estimated gravimetrically as TiO_{2}. Chloride was determined as AgCl after fusing the compou d d with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and KOH . Carbon, hydrogen

	Table 1 - Analytical data of Compounds						
	Product	Molar conductance in DMF	Found (\%) Calc.**				
			Ti	Cl	C	H	N
$\mathrm{TiCl}_{3} \mathrm{CO}$		49.7	$13 \cdot 1$	28.2	28.6	$5 \cdot 1$	11.5
			(12.9	$28 \cdot 6$	29.0	$5 \cdot 4$	11.3)
$\mathrm{TiCl}_{3} \mathrm{C}$	OON $\left.\left(\mathrm{CH}_{3}\right)_{2}\right]$].DMF.Q (2)	48.2	11.4	$24 \cdot 3$	$42 \cdot 2$	$4 \cdot 6$	$9 \cdot 5$
			(11.2	24.9	42.0	4.7	$9.8)$
$\mathrm{TiCl}_{3}[\mathrm{C}$	$\left.\mathrm{ON}\left(\mathrm{CH}_{3}\right)_{2}\right]^{\text {] }}$ 3en (3)	-	11.3	26.0	26.1	$7 \cdot 2$	24.0
			(11.8	26.2	26.6	$7 \cdot 4$	24-1)
$\mathrm{TiCl}_{2}[\mathrm{C}$	CON($\left.\left.\mathrm{CH}_{3}\right)_{2}\right]_{2}$. DMF (4) \dagger	35.7	14.0	$21 \cdot 3$	31.7	$5 \cdot 4$	12.7
				21.1	$32 \cdot 1$	$5 \cdot 7$	12.5)
$\mathrm{TiCl}_{2} \mathrm{C}$	$\left.\mathrm{ON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$ (5)	$32 \cdot 1$	18.5	26.8	27.3	$4 \cdot 6$	$10 \cdot 2$
			(18.2	27.0	$27 \cdot 4$	$4 \cdot 6$	$10 \cdot 6$
TiCl[CO	$\left.\mathrm{ON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}(6) \ddagger$	24.5	15.7	11.5	35.7	6.0	14.3
			(16.0	$11 \cdot 9$	$36 \cdot 1$	6.0	14.0)
Ti[CON	$\left.\left.\mathrm{N}^{(} \mathrm{CH}_{3}\right)_{2}\right]_{4}(\mathrm{Z}) \ddagger$	0.2§	13.5		$44 \cdot 0$	7.3	17.3
			(13.9	-	42.9	$7 \cdot 1$	16.6)
*Reactants in the molar ratio $1: 1.5$ (TiCl_{4}-sodium dimethylformamidyl). \dagger Reactants in the molar ratio 1:3. \ddagger Reactants in the molar ratio $1: 6$. §In nitrobenzene. **Calculated values are given in the parentheses.							

and nitrogen were estimated microanalytically. The analytical results are given in Table 1.
Infrared spectra of the compounds were recorded on Perkin-Elmer 621 grating spectrophotometer using KBr pellets. Thermal analysis was carried out by means of a MOM Budapest derivatograph (type Paulik, Paulik and Erdey) at a rate of $10^{\circ} / \mathrm{min}$ and working temperature range between 20° and 1000°.

All these compounds are extremely sensitive to moisture.

Dimethylformamide is known to undergo autoionization according to the equilibrium ${ }^{4}$ (1).
$2 \mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2} \rightleftharpoons\left[\mathrm{H}_{2} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}+\left[\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]^{-}$
Therefore, the solvolytic reactions of metal halides in dimethylformamide are likely to yield the corresponding metal dimethylformamidyls. But owing to the very poor acceptor nature of dimethylformamide, solvolytic reactions are slow and products of definite compositions are difficult to obtain. Instead alkali metal dimethylformamidyls have been found to be very specific in substitution reactions. These reactions of titanium(IV) chloride with dimethylformamidyl sodium may be visualized to proceed as shown in Eq. (2).
$\mathrm{TiCl}_{4}+n \mathrm{NaCON}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow \mathrm{TiCl}_{4}\left[-\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{n}$
$+n \mathrm{NaCl}$
In the compounds $\mathrm{TiCl}_{4-n}\left[\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{n}$, the value of n varies between 1 and 4 (Table 1).
Compound (1) combines with quinoline (Q) and ethylenediamine (en) to give compounds (2) and (3) respectively. However, compounds (4) and (6) do not form any addition compounds with quinoline even on warming. Molar conductances of their millimolar solutions in DMF or nitrobenzene exclude $a \cdot y$ appreciable ionic dissociation ${ }^{6}$. The insolubility of these compounds, except that of Ti[$\left.\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{4}$, in common organic solvents suggests that these compounds may be polymeric in nature. Presumably both the oxygen and nitrogen atoms are taking part i_{1} intramolecular and in termolecular association. Compound (4) on heating at $110^{\circ} / 10^{-2}$ torr gave the desolvated product (5). Dimethylformamide was also distilled over by,heating (1) at $100^{\circ} / 10^{-2}$ torr, but the residue did not correspond to any defigite composition. It is significant to note that compounds (1 and 4) on heating do not lose CO unlike the alkali metal dimethylformamidyls which readily lose CO on heating at $40-50^{\circ}$ (ref. 5). This has been confirmed by analysing the residue and also by their infrared spectra which always showed a strong absorption band at $1640 \mathrm{~cm}^{-1}$ generally attributed to $\mathrm{VC}=\mathrm{O}$ absorption. This further suggest that the oxygen atom in formamidyl anion is not free and is tied up by being bonded to titranium atom.
Further evidence on the nature of these compous ds have been obtained by studying other physical measurements. The infrared spectra of these compounds are quite complex. All these compounds show a very intense and broad absorption at $1640-1645 \mathrm{~cm}^{-1}$ arising due to $\mathrm{VC}=0$ band of the formamidyl group. The low value of this band from that in pure DMF suggests coordination through

Fig. 1-TG curves of dimethylformamidyl titanium(IV) compounds
the carbonyl oxygen. The broad nature of this band may arise as a result of the polymeric nature of these compounds. In the far IR region bands around $550-510 \quad 430-420$ and $360-340 \mathrm{~cm}^{-1}$ are observed. The absorption around $430-420 \mathrm{~cm}^{-1}$ is neither present in $\mathrm{NaCON}\left(\mathrm{CH}_{3}\right)_{2}$ nor in the fully substituted product. Therefore, we assign this band to the $v \mathrm{Ti}-\mathrm{Cl}$ absorption.

The thermal decomposition (TG and DTG curves) of these compounds when heated in air is a process coisisting of several steps (Fig. 1). By projecting the DTG minima on the TG curves, we could easily find out the various inflexion points. All these compounds are thermally unstable above 50°. However, their main decomposition begins only above $100-110^{\circ}$. Compound (1) loses a molecule of DMF between 50° and 240°. On heating beyond 240° the entire organic mass is lost and an intermediate corresponding to the formation of OTi $(\mathrm{OH})_{2}$ is formed at 420°. Above this temperature, a molecule of water is lost and TiO_{2} is obtained as the final residue at 520°. Compound (2) loses a molecule of quinoline as a first step between 75° and 240° and above this temperature the entire volatile component is lost with the formation of $\mathrm{OTi}(\mathrm{OH})_{2}$. The final residue again corresponds to the formation of TiO_{2}. Compound (3) undergoes decomposition in three distinct steps. The first step between 80° and 225° corresponds to the loss of 1.5 molecules of ethylenediamine. The last but one step between 225 aind 380° cannot be interpreted is spite of the fact that it is reproducible. It is, however, clear that $\mathrm{OTi}(\mathrm{OH})_{2}$ is not formed as one of the intermediates. Compounds (4) and (6) lose weight in two steps corresponding to the formation of $\mathrm{Oti}(\mathrm{OH})_{2}$ and TiO_{2}.

References

1. Paul, R. C., Anand, B. N. \& Kapoor, R., Indian J. Chem., 15A (1977), 52.
2. Anchambault, J. \& Rivest, R., Can. J. Chem., 36 (1958), 1461.
3. Patul, R. C., Malhotra, K. C. \& Vaidya, O. C., Indian J. Chem., 4 (1966), 198.
4. Paul, R. C., Guraya, P. S. \& Sreenathan, B. R., Indian J. Chem., 1 (1963), 335.
5. Paul, R. C., Anand, B. N. \& Kapoor, R., Indian J. Chem., 13 (1975), 1338.
6. Gqary, W. J., Coord. chem. Rev., 7 (1971), 81.

Insertion Reactions of Nickel Alkoxides with Phenyl \& Naphthyl Isocyanates

R. C. Mehrotra, P. C. Bharara \& B. P. Baranwal Chemical Laboratories, University of Delhi, Delhi 110007

Received 11 November 1976; accepted 24 February 1977
Nidkel alkoxides, $\mathrm{Ni}(\mathrm{OR})_{2} \quad\left(\mathrm{R}=\mathrm{Me}\right.$ and $\left.\mathrm{Pr}^{i}\right)$ add readity to isocy anates, $\mathbf{R}^{\prime} \mathbf{N C O}^{\prime}\left(\mathbf{R}^{\prime}=\mathbf{P h}\right.$ and $\left.\alpha-\mathrm{Naph}\right)$ giving the addition p roducts of the general formula, (OR) $\boldsymbol{q}_{-n} \mathrm{Ni}\left[\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR}\right]_{n}$. These products on hydrolysis give urethanes. Reaction of the addition products with parent alcohols yield the alkoxides and urethanes.

INSERTION of a number of ligands like isocyanates, isothiocyanates, carbodiimides, ketenes, sulphur dioxide, carbon disulphide, etc. into M-O bond in the alkoxides of the non-transition elements has been reported ${ }^{1}$. However, such reactions are scarcely known in the case of transition elements except with the alkoxides of titanium ${ }^{2}$, zirconium ${ }^{3}$ and niobium ${ }^{4}$. Because of the utility of these alkoxides as catalysts in the formation of urethanes ${ }^{5}$, the reaction of nickel methoxide ${ }^{6}$ and isopropoxide ${ }^{7}$ with isocyanates has now been studied.

Ni九kel alkoxides, $\mathrm{Ni}(\mathrm{OR})_{2} \quad\left(\mathrm{R}=\mathrm{Me}\right.$ and $\left.\mathrm{Pr}^{1}\right)$ react exothermally with isocyanates, $R^{\prime} \mathrm{NCO}\left(R^{\prime}=\right.$ Ph and α-Naph) in benzene to give the addition products $(\mathrm{OR})_{2-n} \mathrm{Ni}\left[\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR}\right]_{n}(n=1$ or 2$)$. These reactions are completed (monitored by IR, absence of $\mathrm{N}\left(\mathrm{O}\right.$ band at $2250 \mathrm{~cm}^{-1}$ in the products and appearance of VCO at $1700 \mathrm{~cm}^{-1}$ in the products) after refluxing the reactants in benzene for $\sim 2 \mathrm{hr}$. Coloured products obtained were analysed after drying. The experimental cos ditions and the products obtai ed are listed in Table 1. In th e case of bi-insertion products, $\mathrm{Ni}\left[\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR}\right]_{2}$ the band around $600-400 \mathrm{cmi}^{-1}$ due to $\mathrm{vNi}-\mathrm{O}$ was also absent.

These products are highly sensitive towards moisture. These addition products on treatment
with water in_{1} dioxane give urethanes $\mathrm{HN}\left(\mathrm{K}^{\prime}\right) \mathrm{COOR}$ $\left(\mathrm{R}=\mathrm{Me}\right.$ and $\mathrm{Pr}^{i} ; \mathrm{R}^{\prime}=\mathrm{Ph}$ and $\left.\alpha-\mathrm{Naph}\right)$ and nickel hydroxide which was inltered off. The results are presented in Table 2.

Further these insertion products on treatment with parent alcohols yield the nickel alkoxides and urethanes (Eq. 1).
$\mathrm{Ni}\left[\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR}\right]_{2}+2 \mathrm{ROH} \rightarrow \mathrm{Ni}(\mathrm{OR})_{2}+$
$2 \mathrm{HN}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR} \ldots(1)$
$\left(\mathrm{R}=\mathrm{Me}\right.$ and Pr^{i} and $\mathrm{R}^{\prime}=\mathrm{Ph}$ and α-Naph $)$

Table 1 - Insertion Products of Nickel Alkoxides with Phenyl and α-Naphthyl Isocyanates in Different Molar Ratios

Product	$\mathrm{Ni}(\%)$		N (\%)	
	Found	Calc.	Found	Calc.
$\mathrm{Ni}(\mathrm{OMe})_{2}: \mathrm{PhNCO}(1: 1)$ Light green solid (OMe)Ni[N(Ph)COOMe]	24.6	24.5	$5 \cdot 83$	5.84
Molar ratio 1:2 Light green solid $\mathrm{Ni}[\mathrm{N}(\mathrm{Ph}) \mathrm{COOMe}]_{2}$	16.5	16.4	7.76	$7 \cdot 80$
$\mathrm{Ni}(\mathrm{OMe})_{2}$: Nap hNCO (1:1) Light yellow solid (OMe)Ni[N(Naph)COOMe]	$20 \cdot 32$	20.25	$4 \cdot 82$	$4 \cdot 83$
Molar ratio 1:2 Yellowish green solid $\mathrm{Ni}\left[\mathrm{N}(\mathrm{Naph}) \mathrm{COOMM}_{2}\right.$	$12 \cdot 85$	12.79	$6 \cdot 10$	$6 \cdot 10$
$\begin{aligned} & \mathrm{Ni}(\mathrm{OPri})_{2}: \mathrm{PhNCO}(1: 1) \\ & \text { Brown solid } \\ & \text { (OPri) } \mathrm{Ni}[\mathrm{~N}(\mathrm{Ph}) \mathrm{COOPr} \mathrm{CO} \end{aligned}$	19.96	19.84	$4 \cdot 66$	4.73
Molar ratio 1:2 Reddish brown solid $\mathrm{Ni}\left[\mathrm{N}(\mathrm{Ph}) \mathrm{COOPr}^{\mathrm{i}}\right]_{2}$	$14 \cdot 20$	$14 \cdot 14$	$6 \cdot 68$	6.75
$\mathrm{Ni}(\mathrm{OPr})_{2}:$ NaphNCO (1:1) Brown solid (OPri)Ni[N(Naph)COOPri]	17.06	16.97	$3 \cdot 97$	4.05
Molar ratio 1:2 Brown solid $\mathrm{Ni}\left[\mathrm{N}(\mathrm{Naph}) \mathrm{COOPr}^{\mathrm{i}}\right]_{2}$	11.48	11.40	$5 \cdot 39$	$5 \cdot 44$

Table. 2 -Hydrolysis of $\mathrm{N}_{\mathrm{i}}\left[\mathrm{N}\left(\mathrm{R}^{\prime}\right) \mathrm{COOR}\right]_{2}$ Starting compound Urethane product ${ }^{\circ} \mathrm{C} . \mathrm{C} . \quad \mathrm{N}(\%)$

Starting Compoand	Urethane	${ }^{\circ} \mathrm{C} . \mathrm{C}$.		(\%)
			Found Reqd	
$\mathrm{Ni}[\mathrm{N}(\mathrm{Ph}) \mathrm{COOMe}]_{2}$	$\mathrm{HN}(\mathrm{Ph}) \mathrm{COOMe}$	-	8.92	9.26
$\mathrm{Ni}[\mathrm{N}(\mathrm{Ph}) \mathrm{COOPri}]_{2}$	$\mathrm{HN}(\mathrm{Ph}) \mathrm{COOPr}{ }^{\text {a }}$	88	7.70	7.81
$\mathrm{Ni}[\mathrm{N}(\mathrm{Naph}) \mathrm{COOMe}]_{2}$	HN(Naph) COOMe	122	$6 \cdot 90$	6.96
Ni[$\mathrm{N}(\mathrm{Naph}) \mathrm{COOPri}]_{2}$	HN(Naph) $\mathrm{COOPr}^{\text {i }}$	106	6.08	$6 \cdot 10$

Table 3 - Reaction of Ni[N(R')COOR] $]_{2}$ with Parent Alcohols

Reactants	Products	Found (\%) (calc.) alkoxides		$\begin{aligned} & \text { Found (\%) } \\ & \text { (calc.) } \\ & \text { urethanes } \\ & \mathrm{N} \end{aligned}$
		Ni	Alkoxy	
$\mathrm{Ni}[\mathrm{N}(\mathrm{Ph}) \mathrm{COOMe}]_{2}+\mathrm{MeOH}$	$\begin{aligned} & \mathrm{Ni}(\mathrm{OMe})_{2} \text { and } \\ & \mathrm{HN}(\mathrm{Ph}) \mathrm{COOM} \end{aligned}$	48.2 (48.6)	51.9 (51.4)	$9 \cdot 3$ (9-26)
$\mathrm{Ni}[\mathrm{N}(\mathrm{Ph}) \mathrm{COOPri}]_{2}+\mathrm{PriOH}$	$\mathrm{Ni}\left(\mathrm{OPr}^{\text {i }}\right)_{2}$ and	33.5 (33.2)	66.6 (66.8)	-85
	HN(Ph) COOPri			7.85 (7.81)
$\mathrm{Ni}[\mathrm{N}(\mathrm{Naph}) \mathrm{COOMe}]_{2}+\mathrm{MeOH}$	$\mathrm{Ni}(\mathrm{OMe})_{2}$ and	47.5 (48.6)	51.2 (51.4)	-
	HN(Naph) COOMe			7.0 (6.96)
$\mathrm{Ni}[\mathrm{N}(\mathrm{Naph}) \mathrm{COOPr}]_{2}+\mathrm{Pr}^{\text {iOHH}}$	$\begin{aligned} & \mathrm{Ni}(\mathrm{OPr})_{2} \text { and } \\ & \mathrm{HN}(\mathrm{Naph}) \mathrm{COOPr}{ }^{1} \end{aligned}$	$32 \cdot 8$ (33.2)	$66 \cdot 5(66 \cdot 8)$	$6.08-(6 \cdot 10)$

