Oscillatory Chemical Reactions – Mechanism of Belousov-Zhabotinskii Reaction

R. P. RASTOGI, PRASHANT RASTOGI & ASHWINI KUMAR Chemistry Department, University of Gorakhpur, Gorakhpur 273001

Received 12 July 1976; accepted 27 August 1976

Complexity of the oscillating reaction in Belousov-Zhabotinskii reaction has been discussed in detail. The data on time of initiation, time-period and lifetime of oscillations for (i) malonic acid/KBrO₃/Mn¹⁺/H₂SO₄, (ii) malonic acid/KBrO₃/Ce¹⁺/H₂SO₄, (iii) malic acid/KBrO₃/Ce⁴⁺/H₂SO₄, (iv) acetylacetone/KBrO₃/Mn¹⁺/H₂SO₄ and (v) citric acid/KBrO₃/Mn¹⁺/H₂SO₄ systems have been examined in detail to elucidate the mechanism of oscillations. The results show that key role in the reaction is played by Br⁻ and further the oscillations are produced on account of delayed activation of (a) reactions leading to the production of Br⁻ and (b) the reactions leading to the consumption of Br⁻.

Organic

substrate

Malonic acid7

Malic acid18

TELOUSOV-ZHABOTINSKII reaction^{1,2} involving an organic substrate (containing a reactive methylene group or a β -keto group), potassium bromate and a redox couple (Ce⁴⁺/Ce³⁺, Mn³⁺/Mn²⁺ or [Ru(bipy)₃]³⁺[Ru(bipy)₃]²⁺ in sulphuric acid has been investigated by several group of workers in view of considerable current interest. Efforts have been made by one group of workers to elucidate the mechanism on the basis of kinetic evidence³⁻⁹ and redox potentials of the couples, while the other group has investigated the oscillatory features of several reactions in great detail¹⁰⁻¹⁵. Both the approaches are complementary as far as elucidation of the mechanism is concerned. In spite of the unusually complicated nature of the reactions, the broad features of the mechanism are clearer^{7,8}. In this paper we shall review and analyse the oscillatory characteristics of the reactions in order to understand the mechanism of oscillations.

Salient Features of the Reactions

(1) Products of the reaction — For each organic substrate, a number of organic products are formed. In no case these have been completely characterized. Some of the products are given in Table 1.

(2) Stoichiometry of the reaction — Stoichiometry of the reaction is not known. Stoichiometry of Ce^{4+} oxidation of malonic acid has been investigated by Noyes and coworkers? but an unambiguous picture has not emerged.

(3) Possible intermediate species — A number of organic and inorganic intermediates are expected to be present in the system. These are summarized in Table 2.

(4) Types of reaction — Belousov-Zhabotinskii reaction is essentially an oxidation-reduction reaction involving electron transfer. However, it is complicated by free radical reactions and bromination reaction which proceeds by enolization mechanism which is facilitated by β -keto group in the organic substrate.

(5) Inhibitors — Oscillations are inhibited⁷ by alcohol, Cl⁻ and excess of Br⁻.

(6) Influence of light - Oscillatory reaction is sensitive to UV16 variations particularly with light at a wavelength of <3000 Å. By increasing the intensity of irradiation, it is possible to modify and finally to suppress completely the oscillations. It has been postulated that this is due to photo-decomposition of bromo-derivatives to produce Br. However, this is still open to question although it has been found that a solution of bromomalonic acid produces Br when exposed to UV light of wavelength < 3000 Å. There is a further possibility of photo-reaction with inorganic ions. Ouite recently the photo-redox chemistry of iron(III) chloride and iron(III) perchlorate in aqueous media has been investigated¹⁷. The primary photo-reaction is postulated to be $Fe^{3+}.OH^{-}\rightarrow Fe^{2+}+OH^{-}$. Further, the flash photolysis of aqueous ceric

TABLE 1 --- PRODUCTS OF OSCILLATORY REACTIONS

Products detected

CO₂, monobromoacetic acid, monobromo

malonic acid, acetic acid, formic acid

CO₂, bromooxalacetic acid

CO₂, some organic bromo-derivatives Citric acid15 bromo-derivatives, no CO2, acetic acid Acetylacetone¹⁴ TABLE 2 - INTERMEDIATES OF OSCILLATORY REACTIONS Organic intermediates Organic Inorganic substrate intermediates ·CH2COOH Malonic acid BrO₂, HBrO', COOH HBrO2, Br BrO', OBrO', BrOO', CH₂ and BrO; CO0. CH₂(COOH) CH₂COO. Malic acid do со-соон, со-соон Citric acid do Acetylacetone do

sulphate suggests the following processes¹⁸:

$$Ce(IV)_{aq} \longrightarrow Ce(III) + OH + H^{\bullet}$$

OH + HSO₄ $\longrightarrow OH^{-} + HSO_{4}$

Suppression of oscillations on exposure of reaction medium to UV light can be understood as follows. Photochemical decarboxylation of malonic acid is known to occur at a wavelength <2500 Å to give acetic acid and CO₂; acetic acid produced can reduce the bromide ion concentration by subsequent bromination.

Another possibility which needs to be examined is that effective E° for RCOO⁻/ROO[•] system or RCOO⁻/R[•] system may change since on exposure to UV light, the excited states may have a different E° .

(7) Complexity of the reactions — Taking the case of acetylacetone, it turns out that during oscillations 24 species may be present in the reaction mixture amongst which 15 reactions may be possible. These are well illustrated by a graph in Fig. 1. Similarly in the case of malonic acid 15 species can exist in the system. It can be seen that graph in Fig. 1 is disconnected and that it can be factorized¹⁹. The factors relating to electron-transfer reactions and bromnation reactions are indicated in Figs. 2a and 2b.

The reaction involves a delicate balance of (i) series of electron-transfer reactions, (ii) freeradical reactions and (iii) bromination reactions. We shall comment on these one by one.

(i) Electron-transfer reactions — There are two strong oxidizing agents BrO_3^- and Ce^{4+} (or Mn^{3+}) in the system. The course of reaction would be governed by their potential diagrams. BrO_3^- undergoes reduction in the manner⁷ shown in Scheme 1

(the values of E_A are given). E_A values of one-electron reduction of Ce⁴⁺ to Ce³⁺ in 1*M* HCl, 1*M* H₂SO₄, 1*M* HNO₃ and 1*M* HClO₄ are 1.28, 1.44, 1.61 and 1.70 respectively.

Permanganate ion is reduced in the following manner:

$$\operatorname{MnO}_{4}^{\bullet} \xrightarrow{0:564} \operatorname{MnO}_{4}^{2^{-}} \xrightarrow{2:26} \operatorname{MnO}_{2} \xrightarrow{0:95} \operatorname{Mn}^{3^{+}} \xrightarrow{1:51} \operatorname{Mn}^{2^{+}} \xrightarrow{-1:1} \operatorname{Mn}^{0}$$

Bromate can follow another path for its reduction as well.

$$\operatorname{BrO}_{3}^{\bullet} \xrightarrow{1\cdot 24} \operatorname{BrO}_{2}^{\bullet} \xrightarrow{1\cdot 24} \operatorname{HBrO}_{2}^{\bullet} \xrightarrow{1\cdot 74} \operatorname{HOBr} \xrightarrow{1\cdot 57} \operatorname{HOBr} \xrightarrow{1\cdot 57} \operatorname{1}_{2} \operatorname{Br}_{2}$$
$$\xrightarrow{1\cdot 09} \operatorname{Br}^{\bullet}$$

It is obvious from the above data that the redox potentials of the couples BrO_5/Br , $\text{Ce}^{4+}/\text{Ce}^{3+}$ and $\text{Mn}^{3+}/\text{Mn}^{2+}$ are similar and differ by small amounts. The values of potentials quoted correspond to standard state. The actual values of electrode

Fig. 1 — Graph of the possible reaction pathways in the reaction system consisting of acetylacetone, potassium bromate, and manganous sulphate in dilute sulphuric acid medium. The direction of the arrow A→B indicates that A oxidizes B. In case of arrows emanating from centre 11, the direction of bromination reaction is indicated [1, CH₂COCH₃COCH₃; 2, CH₃COCH₂COOH; 3, CH₃COOH; 4, CH₂COCOH; 5, BrO₃; 6, HBrO₂; 7, HOBr; 8, BrO₃; 9, BrO'; 10, Br'; 11, Br₅; 12, Br'; 13, CHBr₂COCH₃; 2, CH₃COCH₃COOH; 16, CH₂BrCOCH; 17, CH₃BrCOCH; 18, CH₂COCH₃COCH; 19, BrCH₃-COCH₃COCH₃COCH; 20, BrCH₂COCH₃COCH; 22, CH₃COCH₃COCH₃; 23, Mn³⁺; 24, Mn²⁺]

Fig. 2(a)—Graph of the possible bromination reactions in the reaction system containing acetylacetone, potassium bromate and manganous sulphate in sulphuric acid medium

Fig. 2(b)— Graph of the possible electron transfer reactions in the reaction system containing acetylacetone, potassium bromate and manganous sulphate in sulphuric acid medium

Reaction Ti	ime taken for the formation of free radicals
1. Malic acid + BrO32 h2. Malic acid + Ce4+Ins3. BrO3+Ce3+Slot4. Ce4+ BrO3+malic acidIns5. Citric acid + BrO3Slot6. Citric acid + Ce4+Ins7. Ce3+ BrO3+citric acid8. Malonic acid + Ce4+9. Malonic acid + Ce3+ BrO310. Ce4+ BrO310. Ce4+ BrO3Slot11. Mn3+ acetylacetoneNo12. KBrO3+Mn3+1/213. KBrO3+Mn3+1 h	ar stantaneous w tantaneous do do do w free radicals formed hr

TABLE 3 - FREE RADICAL PARTICIPATION IN **REACTION SYSTEMS**

potentials pertinent for the present studies are given by

$$E = E^{\circ} + \frac{RT}{nF} \log \frac{\text{[oxidized species]}}{\text{[reduced species]}}$$

where n is the number of electrons transferred and F is the faraday.

It is observed in oscillating chemical reaction that in one part of the cycle a particular reaction is favoured while in other part of the cycle the reaction stops and other reaction starts. It seems that the free energy of such reactions oscillates around zero so that a particular reaction occurs in that part of the cycle when free energy change is negative. In switching on and switching off, thermodynamic considerations are still important. If E_1 and E_2 are the effective electrode potentials If E_1 and E_2 are the enective electrone potentials of BrO_3/Br^- and $\text{Ce}^{4+}/\text{Ce}^{3+}$ couples, then if $E_1 > E_2$, BrO_3^- will oxidxize Ce^{3+} but when $E_1 < E_2$, this will not happen. This is likely when Br^- concentration is in excess since $[\text{BrO}_3]/[\text{Br}^-]$ will have a lower value and effective E_1 in some stage of the cycle may be less than E_2 . The concentrations of Br and Ce4+ ion are controlled by organic substrate through bromination reaction and oxidation reaction so that a delay in switching the different reactions is introduced.

It further follows that Ce4+/Ce3+ potential is so low in HCl medium and so high in HNO₃ and HClO₄, that the reactions would proceed in only one direction with no possibility of oscillations as is experi-mentally found to be the case. Recently oscillations have been observed²⁰ in HNO₃ with malonic acid and citric acid systems with Mn^{3+}/Mn^{2+} couple. Oscillations are also reported²¹ in the system malonic acid/KBrO₃/Mn²⁺/H₃PO₄. Further it has been observed²⁰ that malic acid, acetylacetone and citric acid give oscillations in Mn³⁺/Mn²⁺ and Ce⁴⁺/Ce³⁺ in H₃PO₄ medium.

(ii) Free radical reactions - In order to test whether free radicals are formed in the reaction system, acrylonitrite was added. Polymerization indicated the presence of free radicals. The results of such experiments¹³⁻¹⁵ are given in Table 3.

Ceric ions can generate free radicals¹⁸ if exposed to light as follows:

$$(Ce^{4+})_{aq} \rightarrow Ce^{3+} + OH^{\bullet} + H^{\bullet}$$

However, this does not appear to be true in our case since reaction (10 in Table 3) generates free radicals only after a long time. Presumably, decarboxylation of organic acids occurs via free radical mechanism by any of the following routes:

(A)
$$RCOO^- - e^- \longrightarrow RCOO^- \longrightarrow R^{\bullet} 2R^{\bullet} \longrightarrow RR$$

(B) $RCOO^+ - e^- \longrightarrow R^{\bullet} + CO_2$
(C) $RCOO^- + e^- \longrightarrow R^{\bullet} \longrightarrow R^{\bullet} \longrightarrow R^{+} \longrightarrow \text{ products}$

(iii) Bromination reaction — The enolization of keto group in an acid medium involves first oxoniumsalt formation and second removal of an α -proton with water or other proton acceptors. Subsequently, the enol or the enolate ion can combine rapidly with bromine to give bromo-derivatives. Thus for bromination it is essential that Br₂ should be available. This is easily generated in the system by the oxidation of Br^- by BrO_3^- in the system.

The key role is played by electron-transfer reactions in oscillations. Free-radical reactions and bromination reactions merely play a secondary role.

(8) Oscillatory character of the reactions - Following quantities oscillate with time in course of oscillatory reaction: (i) concentration of Br; (ii) instantaneous redox potential of the system; (iii) rate of production of bromomalonic acid, with time; (iv) rate of increase of partial pressure of carbon dioxide with time; and (v) rate of temperature rise with time.

In order to have a composite picture, time variation of all the above quantities have been plotted in Fig. 3. We shall now discuss some of the oscillatory characteristics of the system.

(i) Time of initiation - If the rate of variation of the concentration of particular species depends on the concentration of n the other species such that

$$\frac{dc_1}{dt} = F(c_1, c_2, \ldots, c_n)$$

Fig. 3 — Simultaneous change in the concentration of bromide ion^{7,26}, bromomalonic acid²⁶, cerous/ceric ratio^{5,7}, pressure of carbon dioxide⁵ and temperature¹³ in Belousov-Zhabotinskii reaction with time

	{[C=catalyst	; (Ce ³⁺); O=organic subst	trate]}	
System		Time of initiation of		Lifetime*
	$\overline{[O+BrO_3]+C}$	$(O+C]+BrO_3^{-}$	$[C + BrO_3] + O$	
Malonic acid/Ce ⁴⁺ Malonic acid/Mn ²⁺ Maliq acid/Ce ⁴⁺ Citric acid/Ce ⁴⁺ Acetylacetone/Mn ²⁺	9 min >1 min ~0 min 7 min No oscillations	$9\frac{1}{2}$ min >1 min ~1-2 min $7\frac{1}{2}$ min ~10-40 sec	10 min ~30 sec 6 min ~100 sec	3-7 hr 1-3 hr 40 min 5 hr 15 min

INDIAN J. CHEM., VOL. 15A, MARCH 1977

TABLE 5 - DEPENDENCE OF TIME OF INITIATION ON CONCENTRATION OF COMPONENTS

Component			System		
	A	В	С	D	E
Potassium bromate	$t_{\rm in} = 8.08 \times [{\rm KBrO_3}]^{1/2}$	Decreases with increasing [KBrO ₂]	$t_{in} = 0.47 \times [KBrO_3]^{-0.296}$	Increases with decreasing [KBrO ₂]	$t_{\rm in} = 27.61 [{\rm KBrO_3}]^{-0.427}$
Organic substrate	$t_{in} = 0.37 \times [MA]^{-1/2}$	Minima in t _{in} vs [MA] curve	$t_{in} = 0.18 \times [MA]^{-0.35}$	Increases with increasing [acetyl- acetone]	$t_{in} = 0.92 [citric acid]^{-1.315}$
Redox couple	$t_{in} = 2.07 \times e^{-0.011} [MnSO_4]^{1/2}$	Decreases with increasing Ce ³⁺	$t_{in} = 512.5 \times [Ce^{4+}] + 0.66$	Increases with decreasing (Mn ²⁺]	$t_{\rm in} = 0.53 [Mn^{2+}]^{-1.816}$
H_2SO_4	Independent	Independent	$t_{in} = 2.22 \times [H_{2}SO_{4}]^{-0.7653}$	$t_{in} = -7.08[H_2SO_4] + 44$	
Temperature	Decreases with increase in T	Decreases with increase in T	$t_{in} = -0.057 T + 18.8$	Increases with decreasing T	$t_{in} = 1.213 \times 10^{82} [T]^{-82.2}$
	(A) (B) (C) (D) (E)	Malonic acid/MnS Malonic acid/Ce ³⁺ , Malic acid/Ce ³⁺ /K Acetylacetone/Mn Citric acid/Mn ²⁺ /F	$O_4/KBrO_3/H_2SO_4$ $/KBrO_3/H_2SO_4$ (ref. BrO_3/H_2SO_4 (ref. $^{2+}/KBrO_3/H_2SO_4$ (ref. $\Omega BrO_3/H_2SO_4$ (ref.	(ref. 11, 23). ef. 10, 24). 13, 25). (ref. 14). . 15).	
	(A) (B) (C) (D) (E)	Malonic acid/MnS Malonic acid/Ce ³⁺ Malic acid/Ce ⁴⁺ /K Acetylacetone/Mn Citric acid/Mn ²⁺ /F	O ₄ /KBrO ₃ /H ₂ SO ₄ /KBrO ₃ /H ₂ SO ₄ (ref. BrO ₃ /H ₂ SO ₄ (ref. ²⁺ /KBrO ₃ /H ₂ SO ₄ (ref. KBrO ₃ /H ₂ SO ₄ (ref.	(ref. 11, 23). ef. 10, 24). 13, 25). (ref. 14). . 15).	

The steady state would then be defined by $dc_1/dt=0$ when $c_1=c_1^0$, the steady state concentration and so on. The time of initiation is the time which the system takes to reach the neighbourhood of the steady state. If this interpretation is correct, the time of initiation should not depend on the nature of pace-makers as has been confirmed experimentally²².

The time of initiation depends on the order of addition of reagents as shown in Table 4. Column 2 shows how the reagents were added. The species in the first bracket were taken first and the third species was added afterwards.

Following conclusions can be drawn on the basis of the above results:

(a) When $[O+BrO_3^-]$ and $[C+BrO_3^-]$ are the starting mixtures, the time of initiation is always shorter. These mixtures would generate Br⁻ or Br₂. From this it follows that it is necessary to build up the requisite concentration of Br⁻ or Br₂ before oscillations can start.

(b) Acetylacetone is an exception since it is rapidly oxidized by BrO_3^- and bromination of the decomposition products also occurs quickly so that addition of catalyst to the mixture of $[O+BrO_3^-]$ the requisite concentration of Br^- is rapidly built up, but acetylacetone remains no more in the system and hence no oscillations are expected, as experimentally found to be the case. The lifetime is also shortest on account of rapid consumption of Br^- or Br_2 during the bromination of acetylacetone and its decomposition products.

Time of initiation depends on the concentration of reactants. The results are summarized in Table 5.

The analysis of the above results shows that the reaction sequence up to the start of oscillation is similar in case of $Mn^{\sharp+}$ ion and Ce^{3+} catalysed reaction. It is perhaps little different when malic acid is used instead of malonic acid. In all the cases, time of initiation decreases with increase in temperature.

The time of initiation is independent of the concentration of H_2SO_4 in case of malonic acid showing thereby that the reactions are independent of H^+ whereas perhaps this is not so in the case of malic acid and acetylacetone. In the case of malonic acid, citric acid and acetylacetone time of initiation decreases with increase in the concentration of redox couple. With acetylacetone time of initiation increases with increase in acetylacetone concentration while in other cases time of initiation decreases with increase in organic substrate concentration.

(ii) Time period of oscillations — Different organic substrates give different potentiometric traces. The time period depends on the concentration of the

RASTOGI et al.:	MECHANISM (ΟF	OSCILLATORY	CHEMICAL	REACTION
-----------------	-------------	----	-------------	----------	----------

Component	System				
	A	В	С	D	E
Potassium bromate	$= Ae^{e/T}[\mathbf{MA}]^{-1/2} \times [\mathbf{KBrO}_3]^{-1/3}[\mathbf{H}_2\mathbf{SO}_4]^{-1/3}$	$t = K_1 [MA]^{-0.8} \times [KBrO_3]^{-0.94} \times [H_0 SO_4)]^{-1.28}$	$t = K_2 [KBrO_3]^{-0.95}$ [MA]^{-0.3 × [H_2SO_4]^{-1.12}	$t = 0.6 [\text{KBrO}_3]^{-0.98}$	t=2.5[KBrO ₈] ^{-0.885}
Organic substrate		L 2 . WJ	LAY	Decreases with decrease in [acetylacetone]	$t = 10.64 \times [\text{citric}]$ acid] ^{-0.34}
H ₂ SO ₄				$t = 60.26 \times [\text{H}_{\text{s}}\text{SO}_{\text{c}}]^{-1.33}$	$t = 55.68 \times [\text{H}_2\text{SO}_4]^{-1.86}$
Redox couple	Independent	Independent	$t=3.5\times[Ce^{4+}]^{2}\times$ $\times10^{5}+0.2$	Decrease with decrease in [Mn ²⁺]	$t = 6.34 [Mn^{2+}]^{-0.28}$
Temperature	Increase with de- creases in tem- perature	Decreases with increase in temperature	$t = 1.22 \times 10^{61} \times T^{-34.66}$	$ \begin{array}{c} t = 1.23 \times 10^7 \\ \times T^{-3.77} \end{array} $	$t = 1.36 \times 10^{85} \times T^{-33.56}$

.(C)

TABLE 6 - DEPENDENCE OF TIME PERIOD OF OSCILLATIONS ON COMPONENTS

reactants and the temperature. The analytical equations which fit the data are given in Table 6.

Thus, time period = f(T), concentration of reactants).

From the potentiometric traces (Fig. 3) following conclusions can be drawn.

(a) In a cycle, there is a period of Ce^{4+} (or Mn^{3+}) consumption followed by a period of rapid production of Ce^{4+} (or Mn^{3+}). During the former Br⁻ is consumed while it is produced in the latter. It is understandable that when Ce^{3+} and BrO_3^- are present simultaneously, both ceric ion and bromide ion would be produced.

(b) Rapid production of CO_2 occurs during the consumption of Ce^{4+} ion indicating the occurrence of the following reactions during this period:

$$BrCH(COOH)_{2} + 4Ce^{44} + 2H_{2}O \rightarrow Br^{-} + 4Ce^{34} + HCOOH + 2CO_{2} + H^{+} \dots (A)$$

 $\begin{array}{c} 6\mathrm{Ce}^{4*} + \mathrm{CH}_2(\mathrm{COOH})_2 + 2\mathrm{H}_2\mathrm{O} \xrightarrow{} 6\mathrm{Ce}^{3*} + \mathrm{HCOOH} + \mathrm{CO}_2 \\ + 6\mathrm{H}^{*} \qquad \dots (\mathrm{B}) \end{array}$

These reactions have been postulated by Noyes et al. but the stoichiometry is not unambiguous.

(c) The rapid temperature rise occurs in the period when Ce^{4+} is being produced showing thereby that in the particular part of the cycle, the following reaction (C) takes place:

$4Ce^{3+}+BrO_{3}^{-}+5H^{+}+CH_{2}(COOH)_{2} \xrightarrow{autocatalytic}{Br^{-} inhibite}$	÷ ≯ d	
$4Ce^{4+}+3H_{2}O+BrCH(COOH)_{2}$		•

4

This is substantiated by the thermochemical studies of the reaction by Rastogi and coworkers¹², the results of which are reproduced below:

Reactant	Temp. rise in first 15 min (°C)	$(dT/dt)_{t=0}$
Bromide/bromate	0.60	0.550
Bromide/bromate/malonic acid	2.20	0.275
Cerous/bromate/malonic acid	0.98	0.085

Out of a number of component reactions of the overall oscillatory reaction, only the above three are highly exothermic. TABLE 7 - FOURIER ANALYSIS OF CHEMICAL OSCILLATIONS

Reaction system	Fourier series	No. of signi- ficant harmo- nics	Frequencies present
$\begin{array}{l} \text{Malonic acid} \\ + \text{Mn}^{2+} \\ + \text{KBrO}_3 \\ + \text{H}_2\text{SO}_4 \end{array}$	$y=4\cdot8+1\cdot16 \sin wt -5\cdot6 \sin 2wt + 3\cdot7 \sin 3wt + +4\cdot2 \cos wt -0.5 \cos 2wt - 1\cdot04 \cos 3wt +$	3	w, 2w, 3w
Malonic acid +Ce ⁴⁺ +KBrO ₃ +H ₂ SO ₄	$y = 6.09 - 2.1 \sin wt -5.5 \sin 2wt + 0.2 \sin 3wt + 0.7 \sin 4wt + 6.14 \cos wt - 0.5 \cos 2wt 0.2 \cos 3wt - 0.3 \cos 4w + 1.0 \cos 5wt$	4 + t	w, 2w, 4w, 5w
$\begin{array}{l} \text{Malic acid} \\ + \text{KBrO}_3 \\ + \text{Mn}^{2+} \\ + \text{H}_3 \text{SO}_4 \end{array}$	$y=6.5-8.3 \sin wt -2.76 \sin 2wt - 1.65 \sin 5wt - 1.2 \sin 7wt$	4	w, 3w, 5w, 7w
Citric acid +Mn ²⁺ KBrO ₂ +H ₂ SO ₄	$y=6.5+7.6 \sin wt +3.8 \sin 2wt +2.5 \sin 3wt +1.9 \sin 4wt + 1.5 \sin 5wt 7.0 \cos wt +1.76 \cos 2wt + 0.78 \cos 3t +0.44 \cos 4wt +0.28 \cos 5wt$	5 + wt	w, 2w, 3w, 4w, 5w
Acetylacetone + Mn ²⁺ + KBrO ₃ + H ₂ SO ₄	$y = 5 \cdot 7 + 2 \cdot 4 \sin wt + 0 \cdot 14 \sin 2wt + 1 \cdot 5 \sin 5wt - 1 \cdot 8 \sin 3wt - 0 \cdot 6 \sin 4wt + 3 \cdot 7 \sin 6wt - 0 \cdot 6 \sin 7wt 0 \cdot 5 \cos wt - 9 \cdot 9 \cos 2wt - 2 \cdot 6 \cos 3wt + 2 \cdot 5 \cos 4wt - 4 \cdot 3 \cos 5w +$	5	w, 2w, 3w, 4w, 5w

(d) Results obtained by $K\ddot{o}r\ddot{o}s^{26}$ show that BrMA accumulates in the system and that its production is more rapid when Br⁻ concentration increases more rapidly which further confirms the occurrence of reaction (C) in this period. What happens in the system is that more BrMA is produced by

TABLE 8 — DEPENDENCE OF LIFE-TIME ON THE CONCENTRATION OF THE REACTANTS AND TEMPERATURE

Component			System		
	A	В	С	D	E
Pot ass ium bromate	Maxima is obtained when the ratio [KBrO ₃]: [MA] is 1:1	Maxima is ob- tained when the ratio of [KBrO ₃]: [MA] is 1:1	Maxima is ob- tained when the ratio of [KBrO ₃]: [MA] is 1.2:1	$t_1 = 1.67 [\text{KBrO}_3]^{-1.76}$	- .
Organic substrate	Maxima is ob taine d	Independent	$t_1 = 80.18$ [MA] + 52.91	Maxima is ob- tained	Independent
Redox couple	Maxima at 0.0004 <i>M</i>	Decreases with increase in [Ce ³⁺]	$t = 0.9 [Ce^{4+}]^{-0.54}$	Maxima is ob- tained	$t_1 = 75.61 [Mn^{2+}]^{0.55}$
H ₁ SO	Maxima at $1M$	Maxima at 1M	Maxima at $1.25M$	$t_1 = 4093 \times [H_2SO_4]^{-2.4}$	$t_1 = 2580 [H_2 SO_4]^{-1.1}$
Temperature	$t = 1.45 \times 10^{9} e^{-0.0253T}$	Decreases with increase in tem perature	$t_1 = 7.6 \times 10^9 e^{-0.0028T}$	$t_1 = 1.24 \times 10^{9} \mathrm{T}^{-2.9}$	$t_1 = 8.82 \times 10^{84} \times T^{-24.79}$

Fig. 4 + e.m.f. vs time trace for reaction mixture containing malonic acid/KBrO₃/Mn²⁺/H₂SO₄(Trace 1); malonic acid/KBrO₃/Ce⁴⁺/H₂SO₄ (Trace 2); malic acid/KBrO₃/Mn²⁺/H₂SO₄ (Trace 3); citric acid/KBrO₃/Mn²⁺/H₂SO₄ (Trace 4); and acetylacetone/KBrO₃/Mn²⁺/H₂SO₄ (Trace 5)

reaction (C) than is consumed by reaction (A) so that net accumulation of BrMA takes place and d(BrMA)/dt oscillates.

(e) The oscillations are represented by a Fourier series² given by

 $F_{\text{red}x} = A_0 + A_1 \sin wt + A_2 \sin 2wt + \cdots + B_1 \cos wt + B_2 \cos 2wt + \cdots$

The number of harmonics obtained in the case of different organic substrates are recorded in

Fig. 5 - Square waves obtained in the case of malic acid

Table 7 and the potentiometric traces are recorded in Fig. 4.

(f) Oscillations in the system do not belong to the class of limit cycle type of oscillations since damped oscillations are observed.

(iii) Lifetime of oscillations — The time after which the oscillations die out depends on the concentration of the reactants as well as the temperature. The results are summarized in Table 8.

Mechanism of the reaction — We recall the square waves (Fig. 5) which are obtained in the case of malic acid and we shall use it for illustrating the mechanism.

Let us consider one cycle CDEFG of the oscillation. There is an induction period t_2 thereafter there is rapid increase in [Mn³⁺], which is obviously catalytic in nature. Again after an induction period equal to t_1 there is a rapid fall in [Mn³⁺] ion which also is obviously catalytic. We can identify the two reactions on the basis of data presented in the paper. Thus, in the sub-cycle DE, reaction (1) must be taking place,

	CH(OH) COOH	autocatalytic
4Mn ²⁺ +BrO ₃ +5H+-+	 -CH₄(COOH)	Br- inhibited
$4Mn^{3+}+3H_{0}O+brom$	o-derivative	(1)

Similarly, reactions (2) and (3) which consume Mn^{2+} ions must be occurring in sub-cycle FG.

bromo-derivative+
$$4Mn^{3+}+2H_2O \rightarrow Br^{\bullet}+2CO_2+5H^{+}$$

+ $4Mn^{2+}+$ other products ...(2)
CH(OH) COOH

$$6Mn^{3+}+\dot{C}H_2(COOH)+2H_2O\rightarrow 6Mn^{2+}+CO_2+6H^{*}$$

+other products(3)

Following the concepts suggested by Franck²⁸, it seems that the key reactions are:

Both the consumption reaction and the production reaction of Br⁻ and Mn^{3+} are autocatalysed. The oscillations arise on account of delayed activation of both the processes²⁸.

Acknowledgement

Authors are thankful to the CSIR and UGC, New Delhi, for supporting the investigation.

References

- 1. BELOUSOV, B. P., Ref. radiats Med., 1958 (Medgiz, Moscow), 1959, 145.
- 2. ZHABOTINSKII, A. M., Dokl. Akad. Nauk SSSR, 157 (1964), 392.
- 3. ZHABOTINSKII, A. M., Biofizika, 9 (1964), 306.
- VAVILIN, V. A. & ZHABOTINSKII, A. M., Kinet. Katal., 10 (1969), 83, 657.
- 5. DEGN, H., Nature, Lond., 213 (1967), 589.
- 6. KASPEREK, G. J. & BRUICE, T. C., Inorg. Chem., 10 (1971), 382.
- NOVES, R. M., FIELD, R. J. & KÖRÖS, E., J. Am. chem. Soc., 94 (1972), 1394: 94 (1972), 8649.

- 8. JINGJER JOW & NOYES, R. M., J. Am. chem. Soc., 97 (1975), 5431.
- 9. EDELSON, D., FIELD, R. J. & NOYES, R. M., Int. J. chem. Kinetics, 7 (1975), 417. 10. RASTOGI, R. P. & YADAVA, K. D. S., Indian J. Chem.,
- 12 (1974), 687.
- 11. RASTOGI, R. P., YADAVA, K. D. S. & PRASSAD, K.,
- Indian J. Chem., 12 (1974), 974.
 RASTOGI, R. P., YADAVA, K. D. S. & ASHWINI KUMAR, Indian J. Chem., 12 (1974), 1280.
 P. D. D. D. D. A. ANDRES J. Comparison of the second sec
- 13. RASTOGI, R. P. & ASHWINI KUMAR, J. phys. Chem., 80 (1976), 2549.
- 14. RASTOGI, P., unpublished results.
- RAI, R. B., unpublished results.
 VAVILIN, V. A., ZHABOTINSKII, A. M. & ZAIKIN, A. M.,
- Russian J. phys. Chem., 42 (1968), 1649. 17. DAVID, F. & DAVID, P. G., J. phys. Chem., 80 (1976), 579. 18. Cox, A. & KAMP, T. J., Introductory photochemistry (MC row Hill Londer) 1071 (McGraw-Hill, London), 1971, 43.
- 19. HARARY, F., Graph theory (Addison-Wesley, Philippines), 1972.
- 20. RASTOGI, P. & RAI, R. B., unpublished results.
- PRASSAD, K., Indian J. Chem., (1976), communicated.
 RASTOGI, R. P., SINGH, K., RASTOGI, P. & RAI, R. B., Indian J. Chem., (1976), communicated.
- 23. PRASSAD, KALANAND, Ph.D. thesis submitted to Gorakh-
- PARSHO, HARMAN, H.D. H.D. HESS Submitted to Column pur University, Gorakhpur, 1975.
 YADAVA, K. D. S., Ph.D. thesis submitted to Gorakhpur University, Gorakhpur, 1974.
 RASTOGI, ASHWINI KUMAR, Ph.D. thesis submitted to Corakhpur University Gorakhpur, 1976
- Gorakhpur University, Gorakhpur, 1976. Körös, E., Orbain, M. & Nagy, Zs., Nature, Phys. Sci., 242 (1973), 30. 26.
- 27. RASTOGI, P. & ASHWINI KUMAR, unpublished results.
- 28. FRANCK, U. F., Faraday symposium on physical chemistry of oscillatory phenomena, 1974.