neutral ligand produces stronger electrical field around the $\mathrm{Cu}(\mathrm{II})$ ion, during the formation of $\left[\mathrm{Cu}(\right.$ dipy $)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$. The distorted octahedron $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$ gets somwhat more strongly distorted towards square planar structure by the coordination of dipyridyl, thus creatin? the right geometry for coordination of secondary ligand and resulting in increase in the value of $K_{\mathrm{M}}^{\mathrm{M}(d i p y)}$ (diy) (ref. 11).
The higher value of $K_{M(d i p y) L}^{M(d i p y)}$ compared with $K_{\mathbb{M}}^{M}(o-$ phen $)(\mathbb{L})$ in case of $\mathrm{Ni}(\mathrm{II})$ complexes may be due to the bigger size of 0 -phenanthroline molecule which offers increased steric hindrance. Besides, the metal ligand π-interaction is less in $[\mathrm{Ni}(0 \text {-phen })]^{2+}$ and hence its tendency to bind with the secondary ligand will be less than that of $[\mathrm{Ni}(\mathrm{dipy})]^{2+}$.

Thus the behaviour of present ligands is similar to that reported for other bidentate ligands ${ }^{8}$. If the ligand was tridentate, a lowering in the value of $K_{\text {cu.A.L. }}^{\text {cu.A. }}$. would have been observed, in the case of $\mathrm{Cu}(\mathrm{IL})$ mixed ligand complex, dipyridyl already occupies two positions on the equatorial plane. The tridentate ligand with a double bond cannot occupy two positions in the equatorial and one in the axial direction ${ }^{12,13}$. The tridentate ligand can occuoy one position in the equatorial and two in the axial direction forming trigonal bypyramidal structure. Due to Jahn-Tellor effect in $\mathrm{Cu}(\mathrm{II})$ complexes, the ligand will be put to strain in occupying two axial positions ${ }^{14}$. The strain would cause $K_{\text {Cu.A. }}^{\mathrm{Cu} . \mathrm{A}}$ to decrease considerably as compared with $K_{\text {cu.L }}^{\mathrm{Cu}}$. However, $K_{\mathcal{C}_{u . A} . \mathrm{A}}^{\mathrm{C}_{\mathrm{L}}} \mathrm{i}$ is nearly equal to $K_{\mathrm{C}_{\mathrm{u} . \mathrm{L}} .}^{\mathrm{C}_{\mathrm{u}}}$. Hence it can be concluded that the OH group does not get coordinated and the Schiff base behaves as a bidentate ligand.
Thanks are due to Prof. K. N. Trivedi, Head, Department of Chemistry, M.S. University of Baroda, Baroda 2, for providing necessary laboratory facilities and to the UGC for providing iunior research fellowship to one of the authors (U.D.).

References

1. Doraswamy, Uma \& Bhattacharya, P. K., J. Indian chem. Soc. (communicated).
2. Mehta, R. K., Kaul, K. N. \& Gupta, R. K., J. Indian chem. Soc., 51 (1974), 1028.
3. Chidambaram, M. V. \& Bhattacharya, P. K., J. inorg. nucl. Chem., 32 (1970), 3271.
4. Rossotti, F. J. C. \& Rossotti, H. S., Acta chem. scand., 9 (1955), 1166.
5. Parikh, P. C. \& Bhattacharya, P. K., Indian J. Chem., 12 (1974), 402.
6. Van Uitert, L. G. \& Haas, L. G., J. Am. chem. Soc., 75 (1953), 451.
7. Hearon, J. \& Gilbert, J. B., J. Am. chem. Soc., 77 (1955), 2594.
8. Doraswamy, Uma \& Bhattacharya, P. K., Indian J. Chem., 13 (1975), 1069.
9. Martin, D. F., Janusonis, G. A. \& Martin, B. B., J. Am. chem. Soc., 83 (1961), 73.
10. Heureux, G. A. L. \& Martell, A. E., J. inorg, nucl. Chem., 28 (1966), 481.
11. Greisser, R. \& Sigel, H., Inorg. Chem., 9 (1970), 1233.
12. Cotton, F. A., Progress in inorganic chemistry, Vol. 7, edited by Cotton (Interscience Publishers, New York), 1966, 108.
13. Carlin, R. L., Transition metal chemistry, Vol. 4 (1968), 289.
14. Mavani, I. P., Jejurkar, C. R. \& Bhattacharya, P. K., Indian J. Chem., 10 (1972), 742.

Spectrophotometric Studies of 2-Methylol-4-tert-butylphenol-Fe(III) Complex

B. Siva Rami Reddy*, S. Rajadurai \& M. Santappa
Central Leather Research Institute, Madras 20

Received 27 January 1976; accepted 28 August 1976
2-Methylol-4-tert-butylphenol (2M4TBP) forms 1:3 (metal : ligand) complex with $\mathrm{Fe}(\mathrm{III})$ at pH 4 , showing maximum absorbance at 600 nm . The complex obeys Beer's law in the range $1.0 \times 10^{-6}-1.0 \times 10^{-2} \mathrm{M}$.

W ITH a view to developing a suitable analytical technique for the estimation of reactants in phenol-formaldehyde reaction, the complex formation of phenol/phenolmethylol with Fe(III) was investigated by Dakshinamurthy and Santappa ${ }^{1}$ and Dejong et al.2. The present note deals with the spectrophotometric method of estimating 4 -tertbutylohenol (4TBP)/2-methylol-4-tert-butylphenol (2M4TBP). A probable structure is proposed for the 2 -methyilol-4-tert-butylphenol-Fe(III) complex.

Stock solutions $(0.2 M)$ of 2 -methylol-4-tert-butylphenol (2M4TBP) ${ }^{3}$ and 2,6-dimethylol-4-teri-butylphenol ($2,6 \mathrm{M} 4 \mathrm{TBP}$) were prepared both in 50 and 80% dioxane-water. Suitable dilution of the stock solution with the same solvent system gave solution of lower concentration. Dioxane (AR, BDH) was purified using the procedure described by Baliah and Chandrasekharan ${ }^{4}$.
Ferric chloride solution was prepared by dissolving hydrated ferric chloride (AR, BDH) in sufficient water and hydrochloric acid (AR, BDH) to make up exactly $N / 2$ solution. The exact normality of the solution was determined by titrating ferric content by the usual iodometric method.
Preparation of 2-methylol-4-tgrt-butylphenol-Fe(III) complex - To 30 ml of 2 -methylol-4-tert-butylphenol were added 10 ml of ferric chloride of equal concentration. The resultant solution was green in colour. It was then made up to 50 ml for optical density measurements employing 50 and 80% dioxane-water as blank.
The method of Vosburgh and Cooper ${ }^{5}$ was employed to determine the nature of the complexes. Mixtures containing 1:1, 1:2 and 1:3 mole ratios of Fe (IIL) to 2 M 4 TBP were prepared. Absorbance measurements were carried out between 400 and 700 nm . All the mixtures showed maximum absorbance at 600 nm , thus indicating the formation of a single complex. All the subsequent measurements were therefore carried out at 600 nm .

The complex was found to give constant maximum absorbance in the $p \mathrm{H}$ range $3 \cdot 5 \cdot 4 \cdot 5$. Therefore $p \mathrm{H} 4$ was selected for all further studies and it was maintained using 41 ml of $M / 5$ acetic acid and 9 ml of $M / 5$ sodium acetate.

The composition of the complex was determined using mole ratio method ${ }^{6}$, keeping $\left[\mathrm{Fe}^{3+}\right]=2.0 \times 10^{-3}$ M and varying $4 \mathrm{TBP} / 2 \mathrm{M} 4 \mathrm{TBP}$ concentrations in the range $0.5-8.0 \times 10^{-3} \mathrm{M}$. There was a rapid increase in the absorbance at 600 nm up to $\left[\mathrm{Fe}^{3+}\right] /$ [2M4TBP] ratio $1: 3$ and thereafter it became constant thereby indicating a $1: 3$ stoichiometry of the complex. The above results were supported by the method of continuous variation ${ }^{7,8}$.

A linear relationship was observed between concentration and optical density over the range $1 \cdot 0 \times 10^{-4}$ to $1 \cdot 0 \times 10^{-2} M$ at 600 nm .

The suppression of colour formation with increase in dioxane content (50 to 80% dioxane-water) indicated that the complex might be a non-electrolyte. The formation of coloured complexes were noticed only in the case of 2 M 4 TBP where formation of chelate rings are possible and 4 -methylol-2,6-ditertbutylphenol did not form coloured complex with $\mathrm{Fe}(\mathrm{III})$. Evidence for the ionization of only one hydrogen of phenolic hydroxyl group obviously, was provided by the potentiometric titrations. All these observations can be explained by assigning structure (I) to 2-methylol-4-tert-butylphenol-Fe(III) complex.
We are thankful to Dr V. V. Ramanujam, Professor of Inorganic Chemistry, A.C. College of Technology, University of Madras, for his valuable suggestions.

References

1. Daks申inamurthy, H. \& Santappa, M., J. org. Chem., 27 (1962), 1842.
2. Dejong, R. I., Dejonge, R. I. \& Dejkstra, R., Recl. Trdv. Chim., 75 (1956), 1289.
3. Siva Rami Reddy, B., Rajadurai, S. \& Santappa, M., Leather Sci. India, 22 (1975), 180.
4. Baliah, V. \& Chandrasekharan, V., Indian J. Chem., 10 (1972), 159.
5. Vosbyrgh, W. C. \& Cooper, G. R., J. Am. chem. Soc., 63 (1941), 437.
6. Yoe, J. H. \& Jones, A. L., Ind. Engng Chem., Anal. Ed. 16 (1944), 111.
7. Јов, P., Ann. Chim., 9 (1928), 113.
8. Јов, Ғ., Ann. Chim., 16 (1936), 97.

Complexometric Determination of $\mathrm{Co}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II}) \& \mathrm{Cu}(\mathrm{II})$ Using 1-(2-Amino-3-hyḋroxy-4-pyridylazo)-, 1-(2,3-dihydroxy-4-pyridylazo)-
\& 1-(5-Chloro-4-pyridylazo-2,2-diol)-4-
sulphonic Acids
J. P. Gupta, Y. L. Mehta, B. S. Garg \& R. P. Singh

Department of Chemistry, University of Delhi, Delhi 110007
Received 3 May 1976; accepted 15 July 1976
1-(2-Amino-3-hydroxy-4-pyridylazo)- (AHP-4S), 1-(2,3-dihydroxy-4-pyridylazo)-(DHP-4S) and 1(5-chloro-4-pyridylazo-2,3-diol)-(CPD-4S)-4-sulphonic acids have been employed as visual indicators for the complexometric determination of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ at 27°. There is a fairly wide $p H$ range available for the determination of each metal ion. Effect of diverse ions has been studied and the accuracy and sensitivity of the method is comparable with the other complexometric methods known for $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$.

IN continuation of our earlier work ${ }^{1,2}$, the usefulress of the title indicators for the complexcmetric titration of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ ard $\mathrm{Cu}(\mathrm{II})$ has been studied and the results are reported in this note.

Standard solutions of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ ard $\mathrm{Cu}(\mathrm{II})$ were prepared by dissolvirg requisite amourt of analytical grade $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ respectively in acidulated doubly distilled water ard stardardized by the usual gravimetric and volumetric methods. Stardard EDTA solution was prepared by dissolvirg the appropriate quantity of its disodium salt (BDH, AR) in doubly distilled water and was used as such in the present study.

Solutions $(0.25 \%, \mathrm{w} / \mathrm{v})$ of the dyes, viz. 1-(2-amino-3-hydroxy-4-pyridylazo)-4-sulphonic acid (AHP-4S), 1-(2,3-dihydroxy-4-pyridylazo)4-sulphonic acid (DHP-4S), 1-(5-chloro-4-pyridylazo-2,3-diol)-4sulphonic acid (CPD-4S) were prepared as described earlier ${ }^{1}$.
Sodium acetate/acetic acid buffers were prepared by mixing 0.2 M sodium acetate and 0.2 N acetic acid in different proportions. $\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{NaOH}$ buffers were prepared by mixing $0.2 N \mathrm{KH}_{2} \mathrm{PO}_{4}$ and $0 \cdot 2 \mathrm{~N} \mathrm{NaOH}$ in different ratios. $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ buffer of $p \mathrm{H} 10.0$ was prepared by adding 57 ml

Table 1 - Optimum Conditions for Titrations

Variables	Co (II) titrations			$\mathrm{Ni}(\mathrm{II})$ titrations			$\mathrm{Cu}(\mathrm{II})$ titrations		
	AHP-4S	DHP-4S	CPD-4S	AHP-4S	DHP-4S	CPD-4S	AHP-4S	DHP-4S	CPD-4S
Colour change at the end point	Red to orange	Magenta to orange	Magenta to orange	Red to orange	Magenta to orange				
Useful $p \mathrm{~F}$-range	7.0-9.8	$8 \cdot 0-10 \cdot 0$	8•0-10.9	4.5-7.0	7.0-10.0	6-2-10.0	3.9-10.9	9.0-10.5	9.0-10.5
Buffer	$\begin{gathered} \mathrm{KH}_{2} \mathrm{PO}_{4} / \\ \mathrm{NaOH} \\ (p \mathrm{H} 8.0) \end{gathered}$	$\begin{aligned} & \mathrm{NH}_{4} \mathrm{Cl} / \\ & \mathrm{NH}_{4} \mathrm{OH} \\ & (p \mathrm{H} 9.5) \end{aligned}$	$\begin{aligned} & \mathrm{KH}_{2} \mathrm{PO}_{d} / \\ & \underset{\mathrm{NaOH}}{(p \mathrm{H}} 10.5) \end{aligned}$	$\begin{gathered} \mathrm{KH}_{2} \mathrm{PO}_{4} / \\ \underset{\mathrm{NaOH}}{ }(\mathrm{pH} 6.2 \end{gathered}$	$\begin{aligned} & \mathrm{NH}_{4} \mathrm{Cl} / \\ & \mathrm{NH}_{4} \mathrm{OH} \\ & (p \mathrm{H} 9 \cdot 5) \end{aligned}$	$\mathrm{NH}_{4} \mathrm{Cl} / 7$ $\mathrm{NH}_{4} \mathrm{OH}$ ($\mathrm{pH} 9 \cdot 5$)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{COONa} / \\ \mathrm{CH}_{3} \mathrm{COOH} \\ (p \mathrm{H} 5.0) \end{gathered}$	$\begin{gathered} \mathrm{NH}_{4} \mathrm{Cl} /[\\ \mathrm{NH}_{4} \mathrm{OH} \\ (\mathrm{pH} 10.0) \end{gathered}$	$\begin{gathered} \mathrm{NH}_{4} \mathrm{Cl} / \\ \mathrm{NH}_{4} \mathrm{OH} \\ (p \mathrm{H} 10.0) \end{gathered}$
Temp. range (${ }^{\circ} \mathrm{C}$)	10-60 ${ }^{\circ}$	$5-80^{\circ}$	$10-80^{\circ}$	20-80 ${ }^{\circ}$	$25-80^{\circ}$	$20-80^{\circ}$	5-80 ${ }^{\circ}$	$20-80^{\circ}$	$20-80^{\circ}$
Std dev.	0.0103	0.0136	0.0094	0.010	0.010	0.0083	0.004	0.007	$0 \cdot 0083$

