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Conductivity of ammonium nitrate-water system has been determined for the water/salt
mole ratio (R) varying between 1-2 to 3-0 and at temperature between 298 to 345 K. At a given
R, variation of conductivity (x) with temperature (T) could be expressed by an equation of the

type » = A + BT, where A and B are empirical constants.
ductivity has been interpreted in terms of free-volume model of liquid transport.

Temperature-dependence of con-
Conductivity-

composition isotherms exhibited concavity to composition axis, indicating weak ordering

tendency of the system.

RANSPORT properties of highly concentrated
I aqueous solutions of polyvalent cationic
electrolytes, where the water content is in-
sufficient to satisfy more than the first coordination
sheath around the cations, have been reportedbs.
Investigation in uni-univalent electrolytes, in similaz
concentration range, have received insufficient atten-
tion inspite of their importance from theoretical
considerationss.  Campbell ¢f al.® studied the
conductivity of dilute 1:1 electrolyte solutions,
particularly with a view to testing the validity of
modified Robinson and Stokes?® equation. Scat-
chard and Prentiss® reported conductivity of 6x 107
to 1-4 molal solutions of NH,NO, at 10°. Measure-
ments in concentrated NH,NO, solutions at limited
temperatures have also been reported by Dubeau
and Sisil®. Pelegll, on the basis of extensive asso-
ciation equilibria studies in highly concentrated
ammonium nitrate solutions, proposed an exten-
sion of the applicability of quasi-lattice model*? to
concentrated electrolyte solutions, taking into con-
sideration the anionic hydration. As a part of
extensive study of transport behaviour of highly
concentrated aqueous electrolyte solutions and
hydrated molten salts, in progress in our laboratory?
conductivity measurements of NHNO,-H,0 system
are presented in this paper.

Materials and Methods

A Beckman conductivity bridge (model RC-18A)
based on Wheatstone bridge principle, provided with
a Wagner ground and CRT null detector, was
employed. A decade capacitance (Cp) box (Radart,
type 745-A) was connected in parallel with the
resistance (R,) in the balancing arm of the bridge
and resistances of the ratio arms were matched.
Considering the cell as a series combination of a
resistance (R;) and a capacitance (C,)1%15, it follows
from ac theory that at balance, cell resistance?® is

R=R,[1—(2nfR,C;)%+...] .. (1)
where f is the ac frequency in Hz. All measure-
ments were made at ac frequency of 1 kHz.

*To whom correspondence should be addressed.
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Other details have been given in an earlier publica-
tion??.

A dip-capillary type cell, made of pyrex glass,
was used. Cell constant was determined using
1-:0 and 0-1N KCl solutions at 25° using ccnduc-
tivity data of Jones and Prendergast!®. For the
small temperature range employed, the dilation
correction to cell constant was negligible.

Ammonium nitrate (Analar, BDH), was vacuum
desiccated for several days. To a kncwn ameunt
of salt in the cell, calculated vclume of triply distil-
led water {conductivityt 1-0x 1078 S cm™) was added
and the vessel was kept in a thermostat at 50° for
4-5 hr during which a clear solution was cbtained.
Concentration unit used is moles of water per mole
of ammonium nitrate (R). At a given composition,
several sets of data were taken at different tem-
peratures, both in heating and cooling cycles.

Results and Discussion

Temperaturs-conductivity data — Conductivity of
NH,NO, H,0O system at R varying between 1-2
to 3:0 in the temperature range, limited by solu-
bility and rapid loss of water, were obtained.
Representative data at different compositions are
presented in Table 1. At a given composition,
variation of conductivity with temperature was
least square fitted into a linear equation
w=A+BT ...(2)
using IBM 360/44 data processing system. The
empirical constants A and B, characteristics of a
given composition, are given in Table 2. The
temperature coefficient of conductivity, B, is seen
toincrease with R. At all compositicns, the Arrhe-
nius plots of conductivity (Fig. 1) were nonlinear;
the activation energy Ey (also Table 2) increased with
decrease in temperature, indicating the inadequacy
of Arrhenius type equation to the system. At a
given temperature Ex decreased with increase in R.

Equivalent conductivity (A) of NHNO,-H,0
system were evaluated using available density
datal3; values for representative data are also listed

t Conductance is in SI unit.
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TABLE 1 — CONDUCTIVITY DATA OF AMMONIUM NITRATE-WATER SYSTEM

Temp. Conductivity Molar volume*  Equiv. cond. Temp. Conductivity Molar volume* Equiv. cond.
(T, K) S cm™ cm? S cm? equiv.? (T, °K) S cm™ cm? S cm? equiv.™?
R=12 R =20
3232 0-3574 73-81 2638 298-2 0-3402 87-34 29-71
3282 0-3800 74-02 28:13 303-2 0-3666 87-56 3210
3332 0-4032 74-20 29-92 308-2 0-3908 87-78 34-30
3382 0-4253 74-39 31-64 313-2 0-4163 87:96 3662
343-2 0-4482 74-56 3342 3182 0-4410 8817 38-88

R = 14 3232 0-4667 88-41 41-29/
3282 04927 88-64 436
3132 0-3430 77-09 2644 333-2 0-5174 88-87 45-98
318-2 8-%38(7) Z;ig %gg-;* 3382 0-5433 89-11 48-41
3232 : i ¢ X : ’ .
3533 0-4131 7769 3209 343-2 0-5680 89-35 5075
3332 0-4370 7787 3403 R =245
. -460 78- :
gig% 8233% 7827 37-86 298-2 0-3721 95-98 35-71
303-2 0-3987 96-24 38-37
R=16 308-2 04250 96-50 41-01
; : 80-40 25-95 313-2 0-4515 96:73 43-67
303.2 0.3227 8061 27-90 318-2 0-4775 96-96 46-30
308-2 0-3461 6
: : 0-81 29-92 3232 0-5041 97-22 49-01
3132 0-3703 80-8
! : 1-01 31-98 3282 0-5307 97-49 51-74
3182 0-3948 8
. . 81-22 34-04 3332 0-5575 97-76 54-50
3232 0-4191
3282 0-4427 81-44 36-05 3382 0-5831 98-01 57-15
333-2 0-4667 81-65 40-18 3432 0-6094 98-27 59-89
343-2 0-5144 82-08 42-22 R = 30
it L 2982 0-3897 104-80 40-84
3032 0-3486 84-01 29-29 3032 0-4170 105-10 43-83
308-2 0-3730 84-21 3141 308-2 0-4439 105-38 4678
313:2 0-3977 84-44 33-58 3132 0-4710 105-64 49-76
3182 0-4221 84-64 3573 3182 0-4978 105-91 52-72
3232 0-4466 84-87 37-90 3232 0-5250 106-21 55-76
328-2 0-4715 85-10 40-12 3282 0-5525 106-48 58-83
3332 0-4955 85-32 42:28 3332 0-5788 106-76 61-79
3382 0-5209 85-54 44-56 3382 0-6058 107-06 64-86
343-2 0-5438 8574 46°63 343-2 0-6315 107-32 67-77
*From density data (ref. 13).

—0sor in Table 1. Temperature-dependence of equivalent
conductivity also showed inadequacy of Arrhenius
type equation. On the other hand, the data can
be adequately fitted into a three-parameter Vogel-
Tammann-Fulcher (VTF) equation!® which has

—060 B’

A=A'T —jexp|— e (3

dexp | =7 (3)

A been proposed using free volume model2® and also
5 the cooperative rearrangment theory? of liquid
transport. A’ and B’ are empircal constants and

—~0.80 T, is the temperature at which free volume of the
system ceases or where configurational entropy of
the system becomes zero. This equation has been
successfully used for systems with glass-forming
tendency and which show considerable supercooling.
NHNO;-H,0O system has feeble tendency to super-

—1.00 cool and the measurements at temperatures well
below room temperature were not possible. For
such a system, precise evaluation of T, by graphical

- method was not possible. Computer calculation
| ! | | of Ty were made by least square fitting of A—T data

29 30 3. 32 33
1000
W

Fig. 1 — Arrhenius plots of conductivity [Water/ammonium
nitrate mole ratio (R) for curve (1) 1-2; (2) 1-4; (3) 16;
4) 1-8; (5) 2:0; (6) 2-5; (7) 30

in Eq. 3. The computer was programmed to select
the Ty values at an interval of 1° over a specified
temperature range (50-300°K). For each value
of Ty, a least square fitted value of A’, B’ and
standard deviation were printed out. T, for best
fit was adopted. Alternatively, T, was evaluated
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TABLE 2 — EMPIRICAL PARAMETERS OF THE LEAST SQUARE Fi1T EQUATIONS FOR THE SPECIFIC CONDUCTANCE OF
AMMONIUM NITRATE-WATER SYSTEM

Water/salt mole Temp. Data A Bx10 Std dev. Activation
ratio range points S cm™! S cm 1K1 energy
(R) (T, K) (k] mole™)
1-2 320-345 13 —1-1114 0-4544 0-0012 10-88-9-96
1-4 310-345 19 —1-1262 0-4691 0-0008 11-18-9-50
1-6 300-345 25 —1-1327 0-4801 0-0011 11-39-9-13
1-8 300-345 25 —1-1363 0-4900 0-0007 10-76-8-83
20 295-345 28 —1-1724 0-5072 0-0008 10-05-8-75
2-5 295-345 28 —1-1984 0-5267 0-0005 10-51-8-54
3-0 295-345 29 —1-2166 0-5388 0-0005 10-26-8-33
065
TABLE 3 — ZERO FREE VOLUME TEMPERATURE OF THE
- AMMONIUM NITRATE-WATER SYSTEM
ol R Zero free volume temperature (T,)(°K)
05 using
b A—T fitting  Ecorr —(T/T—T,)? fitting
B 1-2 138 144
053 1-4 130 134
16 126 129
18 122 122
2:0 119 117
| 2-5 115 113
Ot 30 110 108
osl - rate of change of » with R, (9x/0R)r, decreasing
with increase in R, tending to a limiting value at
R>3. Peleg, from association equilibria studies
suggested that at R<1, only cationic hydration
035 occurred; at R>1, anionic hydration, first suggested
by Keenan??, would be predominant. Since the
R energy required for hydration of anion is small
relative to that for the cations, it is reasonable to
Fig. 2 — Composition-conductivity isotherms [Tempera-

tures for curve (@) 323-2; (A) 328-2; (x) 333:2; (A)338:2;
(©) 343-2K]

by considering equivalent ‘activation energy’
equation of the free volume model, in the form
T
Eeon=P+Q [T_To] ()
E¢orr being related to the experimentally determin-
able parameters Ey and «, the mean expansion co-
efficient, by the relation (5)
Econn=FEx+aRT*+3RT +:(5)
For the applicability of free volume model, Ecorr

2

should be a linear function of , Ppassing
T—T,

through origin. Computer calculation of T, using

Eq. 4 was also made. Ty’s (Table 3), by both

methods, agreed within +45°. It may also be seen

that T, decreased with ‘mean cationic potential®3

( N, %5

—=, N;, mole fraction; z;, ionic charge and
7;, radius of species i), as predicted by the free

£

volume model. .
Composition-conductivity data — At a given tem-
perature, x is seen to increase with R, (Fig. 2). The
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consider an equilibrium between hydrated and
unhydrated anions,

NO,+ nH,0<—NO,(H,0)5
With increase in R, formation of weak field anions
would be favoured. This will result in a decrease

in Coulombic interactions and consequently in-
crease in %, as observed.
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