Тавц	Е 3.		Determination	OF	Cd(II)	IN	THE	PRESENCE
OF Hg(II)								

Hg(II)	Cd	Error	
(mg)	Taken (mg)	Found (mg)	(%)
10-030 10-030 30-088 50-148 50-148	2·754 4·406 5·508 5·508 8·262	2·751 4·406 5·508 5·498 8·262	$- \begin{array}{c} - 0.072 \\ 0.000 \\ 0.000 \\ - 0.183 \\ 0.000 \end{array}$

The authors are grateful to Prof. W. Rahman for facilities, and to the CSIR, New Delhi, for financial assistance to one of them (D.K.S.).

References

- 1. BETLSTEIN, F. & JAWEIN, L., Berichte der Busengesellschaft fur Kalische Chemie, 12 (1879), 759.
- 2. DUVAL, C., Inorganic thermogravimetric analysis (Elsevier, Amsterdam), 1953.
- 3. TANANAEV, I. V. & KOZLOV, A. S., Zhur. anal. Khim., **6** (1951), 149.
- 4. DESHMUKH, G. S. & VENUGOPALAN, M., J. Indian chem. \$oc., 33 (1956), 222.
 5. BELCHER, R. A., NUTTEN, J. & STEPHEN, W. I., J. chem.
- \$oc., (1951), 3444.
- 6. THOMSON, T. L., Ind. engng Chem. analyt. edn, 13 (1941), 164.
- 7. BILLOMO, A., DEMARCO, D. & CASTLE, A., Talanta, 19 (1972), 1236.
- 8. SAUDBERG, B., Svensk Chem. Tidskr., 58 (1946), 197. 9. Foulk, C. W. & Bowden, A. T., J. Am. chem. Soc., 48 (1926), 2045.
- 10. REILLEY, C. N., SCHMID, R. W. & SADEK, FAWZYS, J. chem. Educ., 36 (1959), 555.
- 11. KOLTHOFF, I. M., SANDELL, E. B., MEEHAN, E. J. & BRUCKENSTEIN, S., Quantitative chemical analysis (The Macmillan Co., London), IV edn, 1969, 800, 824.

Potentiometric Study of Complex Formation between Thiovanol & Th(IV), $Zr(IV) \& UO_2(VI)$

K. M. KANTH*, K. B. PANDEYA[†] & H. L. NIGAM Department of Chemistry, University of Allahabad Allahabad

Received 13 May 1975; revised 5 March 1976; accepted 22 May 1976

Complex formation between thiovanol (1-thioglycerol) and Zr(IV), Th(IV) and UO₂(VI) has been studied potentiometrically. Formation of 1:2 (metal-ligand) complex has been observed in each case. The log $K_{\rm H}^{\rm H}$ for thiovanol comes out to be 8.75. Stability constants of the metal complexes follow the order $Th^{4+} > Zr^{4+} >$ UO2+.

 $\mathbf{W}^{\mathbf{E}}$ have recently reported¹⁻⁶ preparation and characterization of some transition metal complexes of thiovanol. The present note describes the results of pH-metric studies on complex formation of $UO_2(VI)$, Zr(IV) and Th(IV) with thiovanol in solution.

TABLE 1 — METAL-LIGAND STABILITY CONSTANTS OF THE COMPLEXES									
Metal ion	\log_{K_1}	\log_{K_2}	β₂	ΔF° (kcal/mole)					
Zr4+	6.60	2.25	8.85	-12.10					
Th4+	6.25	2.85	9.10						
UO_2^{2+}	5.95	2.20	8.15	-7.12					

8.15

-7.12

Thiovanol (Evans Chemetics, New York) was used as such. Its fresh solutions were prepared in doubly distilled water and estimated iodometrically. Stock solutions of metal ions were prepared from analytical grade reagents and standardized by usual methods (Th was precipitated as $[Th(C_2O_4)_2]$ and weighed as ThO_2 ; Zr, as $[ZrH_2(PO_4)_2]$ and weighed as ZrP_2O and UO_2 as $[UO_2(C_0H_6ON)_2-C_0H_7ON]$ and weighed as U_3O_8)? A Leeds Northrup pH-meter fitted with a general purpose glass electrode was used for pH-measurements. All measurements were carried out at 25° in a nitrogen atmosphere. The following solutions were titrated against 0.1M NaOH solution: (i) 5 ml of 0.01M $HClO_4 + 2.5$ ml of 0.04M NaClO₄ + 42.5 ml water, (ii) 5 ml of 0.01M HClO₄+2.5 ml of 0.04M NaClO₄ +2.5 ml of 0.009M thiovanol+17.5 ml water, (iii) 5 ml of 0.01M HClO₄+2.5 ml of 0.04M NaClO₄ + 25 ml of 0.009M thiovanol+2.5 ml of 0.01Mmetal ion $(UO_2^{2+}, Th^{4+} \text{ or } Zr^{4+})+15 \text{ ml water.}$

The plots of pH versus the volume of alkali added gave S-shaped curves. Values of $\bar{n}_{\rm H}$, \bar{n} and pL at different \hat{p} H values were calculated using standard relationships⁸⁻¹⁰. All calculations were made below pH 5.0. Absence of hydrolytic side reactions was also confirmed. A \bar{n}_H versus ρH curve was obtained, which yielded the pK_{1H} value for thiovanol as 8.75. The values of log K_1 were directly read from the \bar{n} -pL formation curves and those of log K_2 were calculated using the method of Bjerrum¹¹ as modified by Irving and Rossotti¹² and Rossotti and Rossotti¹⁰. The results are presented in Table 1. The stabilities of thorium(IV) and zirconium(IV) complexes obey the Mellor and Maley order¹¹ (Th⁴⁺>Zr⁴⁺).

Thanks are due to Messrs Evans Chemetics Inc., New York, for supplying thiovanol as a gift sample.

References

- 1. NIGAM, H. L. & PANDEYA, K. B., Indian J. Chem., 8 (1970), 454.
- 2. NIGAM, H. L., MATHUR, V. K. & PANDEYA, K. B., Indian J. Chem., 9 (1971), 1292. 3. NIGAM, H. L. & PANDEYA, K. B., Curr. Sci., 41 (1972),
- 449.
- 4. NIGAM, H. L. & PANDEYA, K. B., Proceedings, chemistry symposium, Chandigarh, Part 2, 1961, 147.
- 5. KANTH, K. M., PANDEYA, K. B. & NIGAM, H. L., Indian J. Chem., 11 (1973), 103.
- 6. KANTH, K. M., PANDEYA, K. B. & NIGAM, H. L., Indian J. Chem., 11 (1973), 1034.
- 7. VOGEL, A. I., Quantitative inorganic analysis (Longmans, Green, London), 1968, 539.
- 8. BJERRUM, J., Metal-ammine formation in aqueous solutions (Haase, Copenhagen), 1941, 152.
- 9. IRVING, H. M. & ROSSOTTI, H. S., J. chem. Soc., (1954), 2904.
- ROSSOTTI, H. S. & ROSSOTTI, F. J. C., Determination of stability constants (McGraw-Hill, New York), 1961, 107.
 MELLOR, J. W. & MALEY, G. F., Nature, Lond., 159 (1947), 370; 161 (1948), 436.

^{*}Present address: Department of Chemistry, R.D. & D.J. College, Monghyr, Bhagalpur University, Bihar. †Present address: Department of Chemistry, University

of Delhi, Delhi 110007.