
Indian Journal of Geo Marine Sciences 
Vol. 48 (12), December 2019, pp. 1949-1956 
 
 
 
 
 
 

Voltage stability maximization based optimal network reconfiguration in 
distribution networks using integrated particle swarm optimization for marine 

power applications 
Mahiraj Singh Rawat1* & Shelly Vadhera2 

1,2Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana, India 
*[E-mail: rawat.ms85@gmail.com] 

Received 22 May 2018; revised 06 August 2018 

This paper addresses a novel method to optimize network reconfiguration problem in radial distribution network 
considering voltage stability maximization and power loss reduction without violating the system constraints. In nature 
inspired population based standard particle swarm optimization (PSO) technique, the flight path of current particle depends 
upon global best and particle best position. However, if the particle flies nearby to either of these positions, the guiding rule 
highly decreases and even vanishes. To resolve this problem and to find the global best position, integrated particle swarm 
optimization (IPSO) is utilized for finding the optimal reconfiguration in the radial distribution network. The performance 
and effectiveness of the method are validated through IEEE 33 and 69 buses distribution networks and is compared with 
other optimization techniques published in recent literature for optimizing network reconfiguration problem. The simulated 
results simulate the fact that to attain the global optima, IPSO requires less numbers of iterations as compared to the simple 
PSO.  The present method facilitates the optimization of modern electric power systems by empowering them with voltage 
stability.  

[Keywords: Distribution network; Integrated particle swarm optimization; Marine electric power system; Network 
reconfiguration; Voltage stability]  

Introduction 
Ship electric power system, offshore oil and gas 

vessel operating in ultra-deep water requires large 
independent electric power system. Because of 
electric propulsion technology adopted by modern 
marines, the voltage stability becomes an important 
issue for proper operation of electric system1-2. Ship 
electric system is analogous to the electrical 
distribution system where one large power source is 
connected to different types of loads. Due to stressed 
system operations and rapid expansion of the radial 
distribution network (RDN), the network voltage 
stability has become an important issue. To reduce 
the power losses and to improve the voltage stability 
various efforts have been taken by power engineers 
and researchers. A typical electrical distribution 
network consists of two types of feeder switches. 
The one, which are normally open, and others are 
normally closed. By changing the status of these 
switches (i.e. Open to close and vice-versa), the 
topology of the network can be changed and also 
called feeder reconfiguration operation. The network 
reconfiguration is considered as non-linear, mixed 
integer, non-differentiable, multi objective constraint 

optimization problem. The network reconfiguration 
with the objective of power loss minimization was 
first proposed by Marlin and back in 1975. The 
knowledge based heuristic approach was applied in 
system reconfiguration problem for transformer 
overload reductions and feeder constraint problems 
in distribution network3.  Artificial neural network 
(ANN) strategies were developed to solve feeder 
reconfiguration problem with an objective to reduce 
power losses in the RDN4. In recent years, various 
nature inspired population-based optimization 
methods are applied to obtain optimal 
reconfiguration in the distribution network. The 
metaheuristic  global optimization methods such as 
simulated annealing (SA)5 and genetic algorithm 
(GA)6-7 are applied to optimize the reconfiguration  
in the distribution network.  Recently developed 
optimization technique, e.g.  enhanced gravitational 
search algorithm (EGSA)8 is applied in 
reconfiguration problem with simultaneous 
consideration of reliability, operating cost and power 
losses. Honeybee mating optimization (HBMO) 
algorithm9-10 is applied to optimize network 
reconfiguration in order to reduce the power losses 
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and voltage deviation at nodes. The algorithms based 
on PSO and its alternatives are applied to feeder 
reconfiguration and marine applications11-16. Power 
loss minimization is achieved in reconfiguration with 
ant colony optimization (ACO)17-19. Hybrid 
optimization based on ACO-PSO20 is applied to 
feeder reconfiguration to improve the voltage profile 
and power loss minimization. A new hybrid 
optimization based on fuzzy adaptive PSO and 
Nelder-Mead (NM) simplex search method is 
applied to network reconfiguration problem21. 
Hybrid optimization based on fuzzy-firefly 
algorithm22 is applied to feeder reconfiguration and 
compared with GA, artificial bee colony (ABC) 
algorithm, GA-PSO. Other optimization techniques 
such as modified bacterial foraging optimization 
algorithm (BFOA)23, runner root algorithm24 are 
used for feeder reconfiguration problem. Kennedy 
and Eberhart25 proposed PSO in 1995.  In standard 
PSO technique, the flight path of current particle 
depends upon global best and particle best position. 
However, if the particle flies nearby to either of 
these positions, the guiding rule highly decreases 
and even vanishes. To overcome this condition and 
finding the global best reconfiguration, integrated 
particle swarm optimization (IPSO)26 is utilized in 
this paper to feeder reconfiguration problem with 
objectives to minimize power loss and voltage 
stability enhancement. The simulated results are 
compared with optimization techniques i.e., Simple 
PSO, adaptive cuckoo search algorithm (ACSA)27, 
harmony search algorithm (HSA)28 and Fireworks 
algorithm (FWA)29. 

Objective Function 
The total active power loss (PTloss) could be 

calculated by adding the losses of all the feeders in 
the given distribution network (Fig. 1) and formulated 
as follows: 
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Where, Rm is the resistance of feeder connected 
between node ‘m’ and ‘m+1’. Pm, Qm and Vm are the 
output active power and reactive power flows and 
voltage magnitude respectively at node ‘m’. Nbr 
represents the total number of feeders in the network.   

In literature, many researchers have solved network 
reconfiguration problem with the objective to minimize 
power loss. Very few researchers have focused on 
voltage stability of distribution network while solving 
the reconfiguration problem. The power loss reduction  
in the distribution system can be calculated by Eq. (2).  
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Where, REC
lossP and 0

lossP  are active power loss with 
and without reconfiguration. In this paper, voltage 
stability index (VSI)30 is used to represent the status 
of network voltage stability. Critical values of this 
index lie between 0 and 1. The node having a 
minimum value of VSI is the most vulnerable node 
from the stability point of view. Higher values of VSI 
indicate higher stability in the network. The 
formulation of considered VSI is given by Eq. (3). 

 

 
 

Fig. 1 — A schematic diagram of distribution network28 
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Where, Pm+1 and Qm+1 are the total real and reactive 

power fed from node ‘m+1’. The deviation in VSI is 
given by Eq. (4) 
 

 1 mVSI VSI      for  m=1,2,3……,Nbr … (4) 
 

Where, Nbr is the total number of feeders in  
the distribution network. The combined objective  
to power loss reduction and voltage stability 
enhancement can be formulated as follows: 
 

 min R
obj lossF P VSI     … (5) 

 

Integrated Particle Swarm Optimization 
PSO is nature inspired population based 

optimization method invented by Eberhart and 
Kennedy in 1995. The algorithm simulates the social 
behavior of bird flock or fish school by taking initial 
solution candidates (called particles) which flight over 
a large search space. The flight path is governed by 
mathematical formulation over the particle’s position 
and velocity. Each particle flight path depends upon 
local best known position (Pbest), which is updated if 
better position is found by particle and best position in 
entire search space also called global best (Gbest). 
However, the main drawback of the algorithm appears 
when the particles fly nearby to either of these positions 
and guiding path for flights decreases. Under this 
condition, there are chances to trap into local minima. 
To counter this problem, a third particle called 
weighted particle (Xw) was introduced into the 
velocity updating formulation23. The vector 
representation of the velocity and position updating of 
IPSO compared with PSO are shown in Figure 226. 

Weighted particle (Xw) can be defined as follows: 
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Where, NP represents the population of particles; 
wX  is the position vector of weighted particles; ˆw

ic  is 
the weighted constant of each particle. The function  
f (.) represents the fitness of the particle, while  
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maximum and minimum fitness values in the Pbest. 
Finally, ϵ specifies a small positive number (0.0001) 
to prevent the condition of division by zero. In IPSO 
particle position vector with weighted particle are 
updated as follows 
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    (i)                                           (ii)                                        (ii) 
 

Fig. 2 — (i) Simple PSO (ii) IPSO for rand0i ≤ α (ii) IPSO for rand0i > α 
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Where, superscripts ‘t’ and ‘t+1’ denotes present  
and next iteration respectively; t

iv  and 1t
iv  are  

the present and updated velocity of particles;  
iw  represents an inertia factor for present velocity, 

which is a random number chosen from [0.5, 0.55] in 
each iteration. 
 

IPSO Implementation in Reconfiguration Problem 
Determine primary loops in the distribution 

network using the algorithm given in Figure 3. 
Determine the lower and upper limits of each tie 

line depending upon fundamental loop. 
Set population size of particles and generate the 

initial particle represented by Xi. 
 

Xi= [Tsw1, Tsw2,………,TswNO] 
 

Where, Tsw1, Tsw2,………,TswNO are tie switches 
in primary loops PL1 to PLNO. NO is the number of tie 
lines in given distribution network. 

Calculate the fitness function value for each 
particle and obtain global best (Gbest) and personal 
best (Pbest) positions of particles. 

Set maximum number of iterations and start the 
counter (Iter=1). 
Calculate weighted particle Xw using Eq. (6)-(8). 

If rand0i > =0.4, update velocity ( 1t
iv ) vector and 

Xi using Eq. (9) - (11). 
Else rand0i < 0.4, update velocity vector ( 1t

iv ) and 
Xi using Eq. (12)- (16). Where, rand0i is random 
number selected from interval [0 1]. 
Evaluate the fitness function for current particle f(Xi) 
and also for weighted particle f(Xw) 

IF (min(f(Xi), f(Xw)) < f(XPbest) 
Update Pbest 
IF (min(f(Xi), f(Xw)) < f(XGbest) 
SET Gbest=Xi or Xw 

End IF 
Where, XPbest is the previous best position of the 

current particle. Replace XPbest and XGbest with Xi or Xw 
whichever has better fitness value. 

Increment iteration number [Iter=Iter+1] 
Stop the process when a termination criterion reaches. 
 
Results and Analysis 

The proposed method is implemented on IEEE 33 
and 69 bus radial distribution networks.  The 
simulation is performed on MATLAB software in 
computer with Intel i7 processor (2.4 GHz) and 8GB 
RAM.  
 

IEEE 33 bus test system 
The 33-bus distribution test system includes 37 

branches, 32 sectionalize switch and 5 tie switches31. 
Figure 4 shows the IEEE 33 bus test system. Total 

 

 

Fig. 3 — Pseudocode for finding fundamental loop 
 

 

 
 

Fig. 4 — IEEE 33 bus test system 
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active and reactive load of test system are 3.72 MW 
and 2.3 MVAr respectively. Primary loops for 33-bus 
system are shown in Table 1, which are obtained by 
the algorithm given in Figure 3.  

Two test cases are considered. No reconfiguration 
is taken in case –I. The system has total 202.77 kW 
active power loss whereas minimum voltage and VSI 
of the system are 0.9131 and 0.6951 respectively. In 
case-II, the feeder reconfiguration problem is solved 
using standard PSO and IPSO techniques and results 
are compared with ACSA24, FWA25 and HSA26. The 
parameters used in IPSO algorithm are population 
size Npop =30, maximum iteration =500, wi is 
considered as a random number selected from an 
interval of [0.5 0.55] in each iteration and α =0.4, The 
coefficient of acceleration factors considered are C1=-
(φ2i+φ3i), C2 =2, C3=1 and C4=2 are considered, randki 
is random number selected from an interval [0 1], 
where k=0, 1, 2, 3, 4.  The tie switches [7, 14, 9, 32, 
28] are considered as an optimal solution after  
500 iterations. After reconfiguration, total power  
loss reduces to 139.98 kW whereas a minimum 
voltage and VSI value is improved to 0.9413 p.u. and 
0.7850, respectively.  

It is observed from Table 2 that the results obtained 
from PSO and IPSO are comparable with previously 
published optimization techniques. From Figure 5, it 
is observed that IPSO has converged to the optimal 
solution in 50 iterations, whereas standard PSO takes 
240 iterations to converge. The voltage profile and 
VSI values have been improved after reconfiguration 
of the distribution network (Figs. 6 & 7).   

 

Table 2 — Result analysis of IPSO with 33 bus distribution network 
 Item Integrated PSO Standard PSO ACSA24 FWA25 HSA26 

C
as

e 
I Tie switch (Open) 33,34,35,36,37 33, 34,35,36,37 33,34,35,36,37 - - 

Power loss (kW) 202.77 202.77 202.68 - - 
Minimum voltage (p.u.) 0.9131 0.9131 0.9108 - - 
Minimum VSI 0.6951 0.6951 0.6978 - - 

C
as

e 
II Tie switch (Open) 7,9,14,28,32 7,14,9,32,28 7,14,9,32,28 7,14,9,32,28 7,14,9,32,37 

Power loss (kW) 139.98 139.98 139.98 139.98 138.06 
% Loss reduction 30.93 30.93 30.93 30.93 31.88 
Minimum voltage (p.u.) 0.9413 0.9413 0.9413 0.9413 0.9342 
Minimum VSI 0.7850 0.7850 0.7878 - - 

 
 

 

Table 1 — Primary loops for 33 bus test system 
Primary Loop Tie Lines 
PL -1 2, 3, 4, 5, 6, 7, 18, 19, 20, 33 
PL- 2 9, 10, 11, 12, 13, 14, 15 
PL- 3 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35 
PL- 4 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 

26, 27, 28, 29, 30, 31, 32, 36 
PL-5 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37 
 

 

 

Fig. 5 — Fitness function vs iterations for 33 bus test system 
 

 
 

 

Fig. 6 — Voltage profile for 33 bus test system 
 

 
 

 

Fig. 7 — VSI values for 33 bus test system 
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IEEE 69 bus test system 
To examine the applicability of the method in the 

medium size distribution network, IEEE 69 bus test 
system has been considered for the study. Test system 
includes 73 branches, 68 sectionalize switches and 5 
tie switches. The test system has 3.802 MW and 2.695 
MVAr of active and reactive loads respectively. The 
test system is shown in Figure. 8. 

Primary loops are obtained by the algorithm  
given in Figure 3 for 69 bus system and are shown in 
Table 3. Similar to 33 bus test system, two cases are 
considered. No reconfiguration is taken in case –I and 
is considered as the base case. The system has 224.99 
kW active power loss. The minimum value of voltage 
and VSI are 0.9092 p.u.  and 0.6833 respectively. In 
case-II, the feeder reconfiguration problem is solved 
using standard PSO and IPSO techniques and results 
are compared with ACSA, FWA and HSA. 

The tie switches [69,70,14,55,61] are considered as 
an optimal solution after 1000 iterations. After the 
reconfiguration, total power loss is 99.59 kW, 
whereby the minimum voltage and VSI values are 

improved to 0.9428 p.u. and 0.7898 respectively. 
Simulation results are shown in Table 4. It is observed 
from Table 4 that the results obtained from PSO and 
IPSO are comparable with previously published 
optimization techniques. From Figure 9, it is observed 
that IPSO has converged to the optimal solution in 
180 iterations, whereas standard PSO takes 238 
iterations to converge. The voltage profile and VSI 
values have been improved after reconfiguration of 
the distribution network (Figs. 10 & 11).  Power loss 
reduction after reconfiguration for IEEE 33 and 69 
bus system is shown in Figure 12. 

 

 
 

Fig. 8 — Single line diagram of IEEE 69 bus test system 
 

Table 3 — Result analysis of IPSO with 69 bus distribution network 
 Items Integrated PSO Standard PSO ACSA24 FWA25 HSA26 

C
as

e 
I Tie switch (Open) 69,70,71,72,73 69,70,71,72,73 69,70,71,72,73 - - 

Power loss (kW) 224.99 224.99 224.89 - - 
Minimum voltage (p.u.) 0.9092 0.9092 0.9092 - - 
Minimum VSI 0.6833 0.6833 0.6859 - - 

C
as

e 
II Tie switch (Open) 69,70,14,55,61 69,70,14,56,61 69,70,14,57,61 69,70,14,56,61 69,18,13,56,61 

Power loss (kW) 99.59 99.59 98.59 98.59 99.35 
% Loss reduction 55.73 55.73 56.16 56.16 55.85 
Minimum voltage (p.u.) 0.9428 0.9428 0.9495 0.9495 0.9428 
Minimum VSI 0.7898 0.7898 0.8414 - - 

  

Table 4 — Primary loops for 69 bus test system 
Primary 
Loop 

Tie Lines 

PL - 1 3, 4, 5, 6 ,7, 8, 9, 10, 35, 36, 37, 38, 39, 40, 41, 42, 69 
PL- 2 13, 14, 15, 16, 17, 18, 19, 20, 70 
PL- 3 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 

40, 41, 42, 43, 44, 45, 71 
PL- 4 4, 5, 6,7, 8, 46, 47,48, 49, 52, 53, 54, 55, 56, 57, 58, 72 
PL -5 9, 10, 11, 12, 13, 14, 15, 16 ,17, 18, 19 ,20, 21, 22, 23, 

24, 25, 26, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 
64, 73 
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Conclusion 
In this paper, IPSO technique is implemented in the 

feeder reconfiguration problem with an objective to 
minimize the power loss along with maximization of 
system voltage stability of the radial distribution 
network. The optimization method is implemented on 
IEEE 33 and 69 buses distribution test networks and 
compared with ACSA, FWA and HSA methods. 
From the results, it has been observed that the 
standard PSO and IPSO both converge to the same 
optimal solution. Howsoever, the convergence rate of 
IPSO algorithm is much faster than standard PSO 
method. In order to reduce the power losses and to 
improve the voltage stability in ship electric network, 
offshore oil and gas extraction area in deep water the 
proposed method is most suitable to the find optimal 
reconfiguration of the electric distribution network.  
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