
Indian Journal of Geo Marine Sciences 
Vol. 48 (12), December 2019, pp. 1957-1962 
 
 
 
 
 
 

Significant wave height forecasting based on the hybrid EMD-SVM method 

Kaixin Zhao & Jichao Wang ∗ 

College of Science, China University of Petroleum, Qingdao 266580, China. 

 ∗[E-mail: wangjc@upc.edu.cn] 

Received 15 May 2018; revised 24 July 2018 

Prediction of significant wave height (SWH) is considered an effective method in marine engineering and prevention of 
marine disasters. Support vector machine (SVM) model has limitations in processing nonlinear and non-stationary SWH 
time series. Fortunately, empirical mode decomposition (EMD) can effectively deal with the complicated series. So, the 
SWH prediction method based on EMD and SVM is proposed by combining the advantages of both methods. A statistical 
analysis was carried out to compare the results of two models i.e., between the hybrid EMD-SVM and SVM. In addition, 
two models are used for forecasting SWH with 3, 6, 12 and 24 hours lead times, respectively. A high R value of different 
prediction times for the hybrid model. Results indicate that SWH prediction of the hybrid EMD-SVM model is superior to 
the SVM model.  
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Introduction 
Prediction of significant wave height is essential for 

planning and operation of maritime activities and 
coastal engineering. Observation data of SWH can be 
obtained from satellites, radars and buoys1 . And buoys 
are considered the main reliable tool for acquiring 
wave height data2. According to the different theories, 
these methods of wave prediction are classified  
into three types of approaches3-5 empirical-based, 
numerical-based and soft-computing-based. Significant 
wave height series obtained from buoy located in the 
coastal region of China was used to train and test the 
proposed approaches. 

Nowadays, in time series forecasting, different 
approaches based on soft computing have been widely 
used, and time taken for prediction is shorter than 
other conventional methods . Researchers have been 
using a nonlinear model based on soft computing 
technology, such as the artificial neural networks 
(ANN) method was tested by Makarynskyy6 through 
hourly observations of SWH in order to improve the 
accuracy of shortdated SWH forecast. Genetic 
algorithm for the prediction of SWH at three locations 
in the Bay of Bengal and the Arabian Sea, which 
compared with persistence forecasts and results 
indicate that the genetic algorithm prediction is 
superior to persistence forecast7 . This model has been 
used to predict the SWH by Cañellas et.al8 They 
employed the genetic algorithm forecasting wave 

height with other numerical models combined to 
improve forecast accuracy. Kazeminezhad et.al9 has 
predicted wave height using fuzzy inference system 
methods based on adaptive network and the accuracy 
of SWH predicted by the method has been improved. 

Recently, a combination of different models has 
been observed for the increasing trend of SWH 
prediction. In this study, a hybrid approach, which 
combines the EMD and the SVM is proposed to 
improve the quality of SWH forecasting. Duan et.al10 
mentioned that if the SWH is a stationary time series, 
the recurrence map is evenly distributed. Otherwise, it 
is a non-uniform distribution. We know that the SWH 
is a nonlinear and non-stationary time series. So, 
SVM, as a linear model11, has limitations in dealing 
with SWH. EMD, as a novel soft-computing-based 
method, was proposed by Huang et.al12 and has been 
used widely through signal decomposition without 
any basis function. The key to this method is 
empirical mode decomposition13, which decomposes 
complex signals into finite intrinsic mode function 
(IMF). Local original signals at different time scales 
have been included in the decomposition of each IMF 
component. This method shows great effectiveness 
for the forecasting of SWH. 
 
Materials and methods 

The study area is located in the semi closed Bohai 
Sea. Bohai, is a shallow sea enclosed by Liaodong 
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and Shandong peninsula, lies in the northernmost tip 
of the eastern part of the mainland of China, which 
faces the sea on the side and surrounds the land on 
three sides.  

In this area, every hour wave height data was 
collected from Dec., 15, 2012 to Feb., 15, 2013 by a 
buoy at 121° 40'48'' E and 38° 9'31'' N (Fig. 1) totaling 
1290 records. In order to predict SWH for short-term, 
we divided the buoy data set from Bohai into training 
and testing data. The data of 810 records are selected 
as the training set and the remaining 480 data are 
utilized as the test set. It is worth mentioning that the 
data sets were missing between Dec.28, 2012 and Jan. 
2013. 
 

Support vector machine 
SVM as a new soft-computing method has gained a 

reputation . Based on the vc dimension theory, the 
method was first proposed by Vapnik13,14. The SVM 
model has many unique advantages in solving the 
problems of pattern recognition, classification and 
regression analysis1. Regional training error was 
minimized by the traditional method, whereas the 
SVM model focused on minimizing of the 
generalization errors13,14.  

In the regression problem, the appropriate function 
had to be found which can approximate predicted 
value in the given data. Due to the convexity of the 
problem, the unique solution is given1. The basic idea 
of SVM is tantamount to map the training data into a 
high dimensional space of kernel function, which can 
make the training data linearization. 

Optimization problems with support vector 
machines: 

Original space: 𝑇 = {(𝑥ଵ, 𝑦ଵ), ⋯ , (𝑥௟ , 𝑦௟)} 
 

Get the Hilbert H space corresponding to the new 
training set:  
 

𝑇෨ = {(𝑥ଵ, 𝑦ଵ), ⋯ , (𝑥௟ , 𝑦௟)} = {(𝜙(𝑥ଵ), 𝑦ଵ), ⋯ , (𝜙(𝑥௟), 𝑦௟)} 
 

The hyperplane (𝜔 ⋅ 𝑥) + 𝑏 = 0 in the H space. 
This space can be divided into corresponding training 
set, and the training set for the super plane geometric 
interval reaches maximum.  

min
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where (𝑥௜, 𝑦௜), 𝑖 = 1, ⋯ , 𝑙 by the formula given, 𝑐 ≥ 0 
and 𝑐 represents the error penalty factor. 

The dual problem can ben obtained by using 
Lagrange multiplier algorithm. Now introduce the 
Lagrange multiplier 𝑎:  
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where 𝐾(𝑥௜, 𝑥௝) = 𝜙(𝑥௜)𝜙(𝑦௜) and 𝐾(𝑥௜ , 𝑥௝) is the 
kernel function, which is obtained from the two inner 
vectors 𝑥௜ and 𝑥௝ in the feature spaces 𝜙(𝑥௜) and 
𝜙(𝑦௜), respectively. The kernel function technique 
can transform the nonlinear operation of low 
dimensional space into high dimensional space and 
simplify the operation. 

Four basic kernel functions provided by the SVM 
model are polynomial, sigmoid, linear and radial. 
Among them, the radial basis function (RBF)15 kernel 
function is most beneficial and has less numerical 
difficulties. Therefore, this study adopts RBF, which 
can be represented as: 
 

𝐾(𝑥௜, 𝑥௝) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥௜ − 𝑥௝ ∥ଶ) 
 

where 𝑥 ∈ 𝑅௡, variables 𝑥௜ and 𝑥௝ are input space 
vectors and 𝛾 is the parameter of RBF kernel 
function. The prediction accuracy of the RBF kernel 
is determined by these parameters ( 𝛾 and 𝐶 ). For 
optimizing the parameters 𝛾 and 𝐶 , the cross 

 
 

Fig. 1 — The location of the buoy. 
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validation strategy16, as a common technique, was 
used to select the best matched parameters to evaluate 
learning algorithms. Cross validation was satisfied as 
far as possible: 1) the proportion of the training set 
should be enough, generally more than half; 2) the 
training set and testing set should be sampled evenly.  
 
Hybrid EMD-SVM model 

As is known to all, the EMD can effectively deal 
with non-stationary and nonlinear signals13 such as 
wave height data. EMD has been based on the SWH 
data of the characteristic time scale for signal 
decomposition without any basis function. SWH 
signal can be decomposed by the EMD into several 
stationary IMFs with different frequencies, according 
to its intrinsic characteristics.  

Figure 2 shows the original signal characteristic of 
experimental data (contain 1290 records). This model 
is feasible for the analysis of signal sequences which 
is nonlinear and non-stationary. The purpose of the 
EMD model is to decompose the signal into the 
superposition of multiple IMFs, and the IMFs must 
match with the following criterias12: (1) the number of 
local extreme points and zero crossings in the whole 
time range must be equal or differ to one; (2) at any 
moment, the upper envelope and the mean envelope 
must be zero on average. 

Suppose the wave height time sequence 𝑥(𝑡), the 
algorithm shown as follows17: 
(1) The upper and lower extremes of the 𝑥(𝑡) are 
found, and the upper and lower envelopes are formed 
by using the three spline interpolation respectively. 
Then, the initial value 𝑚଴(𝑡) is calculated. 
(2) The mean value of the upper and lower envelope 
is calculated as 𝑚ଵ(𝑡), and the original data sequence 
𝑥(𝑡) minus the mean can be obtained by removing the 
new data sequence ℎଵ(𝑡): 𝑥(𝑡) − 𝑚ଵ(𝑡) = ℎଵ(𝑡). 
(3) Generally, ℎଵ(𝑡) is not a IMF component sequence, 
it is necessary to repeat this process 𝑘 times until the 

mean value tends to zero, so that we get first IMF 
components 𝑐ଵ(𝑡). 
(4)The 𝑐ଵ(𝑡) is separated from the 𝑥(𝑡) to get a 
different signal to remove the high frequency 
component: 𝑟ଵ(𝑡) = 𝑥(𝑡) − 𝑐ଵ(𝑡). 
(5) Using 𝑟ଵ(𝑡) as the original data, repeat steps (1), 
(2), and (3) to get second IMF components 𝑐ଶ(𝑡). 
Then repeat n times and get n IMF components 
(𝑖𝑚𝑓௜(𝑡) = 𝑐௜(𝑡)): 𝑟௡ିଵ(𝑡) = 𝑥(𝑡) − 𝑐௡(𝑡). 

When 𝑐௡(𝑡) or 𝑟௡(𝑡) satisfies the termination 
condition (usually 𝑟௡(𝑡) becomes a monotone 
function), the end of the cycle, can be obtained from 
the above formula:  
 

𝑥(𝑡) = ∑  ௡
௜ୀଵ 𝑖𝑚𝑓௜(𝑡) + 𝑟௡(𝑡). 

 

The 𝑟௡(𝑡) is called the residual function (also 
known as the trend term), which represents the 
average trend of the signal.  
 

Hybrid EMD-SVM model establishment steps: 
(1) The EMD model method is used to decompose the 
SWH signal to obtain the IMFs component of the 
finite stationary signal. 
(2) Normalize each component and the processed 
sequence can be divided into training set and testing set; 
(3) SVM prediction models are established 
respectively for the training set of each component, 
the testing sets are predicted with the new model. And 
the prediction set is reversely normalized. 
(4) The final prediction results are achieved through 
the optimal weighted combination of the each 
component predicted values.   
 

Evaluating accuracy of proposed models 
It is the primary problem to determine which 

prediction model is superior to other model. The 
performance of the prediction model is usually 
evaluated by statistical standards: the root mean 
square error18-20 (RMSE), coefficient of correlation19 
(R) and agreement of index (IA) can compare the 
performance of the models. Meanwhile, the RMSE 
and R respectively represent the deviation and 
interconnection between the observed and predicted 
SWH. These statistics are defined as: 
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Fig. 2 — Original signal. 
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𝐼𝐴 = 1 −
∑  ௡

௜ୀଵ (𝑦௜ − 𝑥௜)ଶ

∑  ௡
௜ୀଵ (|𝑦௜ − 𝑥̅௜| + |𝑥௜ − 𝑥̅௜|)ଶ

 

 

where 𝑥௜ (𝑦௜) is the observed (predicted) result with 
the mean value of 𝑥̅௜ (𝑦ത௜). n represents the total 
number of data points used in the test. 
 
Results 

Historically SWH at buoy of the hybrid EMD-SVM 
and single SVM models with lead times of 3, 6, 12 
and 24 hours are shown, respectively, in Figures 3, 4, 
5 and 6 by the way of a representative sample.  

And the forecasting results of the hybrid EMD-
SVM model are compared with the SVM model by 
the error statistics, including RMSE, R and IA. The 

error statistics of the two models for testing data are 
given in Table 1. As can be seen, the prediction 
results of the hybrid EMD-SVM model are superior to 
the single SVM model, regardless of RMSE, R or IA. 

 
 

Fig. 3 — 3 hours prediction of SWH by the SVM and EMD-SVM. 
 

 
 

 
 

Fig. 4 — 6 hours prediction of SWH by the SVM and 
EMD-SVM. 

 
 

 
 

Fig. 5 ― 12 hours prediction of SWH by the SVM and 
EMD-SVM. 
 

 

 

Fig. 6 — 24 hours prediction of SWH by the SVM and 
EMD-SVM. 
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Table 1 — Compare between the SVM model and the  
EMD-SVM model 

 SVM EMD-SVM  

TIME RMSE R IA RMSE R IA 

3H 0.2900 0.8872 0.9376 0.1583 0.9727 0.9813 

6H 0.4628 0.6821 0.8076 0.2814 0.9228 0.9343 

12H 0.6178 0.3021 0.5199 0.3718 0.9031 0.8517 

24H 0.6773 -0.0485 0.2742 0.4499 0.9007 0.7920 
 
Discussion 

Using the hybrid SVM-EMD and single SVM 
models to prediction the significant wave height, 
respectively. This section provides the predicted SWH 
results from the EMD-SVM and SVM model. Fig. 3 
shows the EMD-SVM model for predicting SWH  
is almost completely coincident with the actual 
observations within a lead time of 3 hours. In 
comparison, there is a certain difference between the 
prediction and the obsercation of the SVM model.  
It is worth noting that the predictions of the two 
models in a short lead of time (3 hours) can indicate 
the trend of the observed values, both of them are 
underestimated in the peaks10. Meanwhile, the RMSE 
parameters for the SWH by the SVM and hybrid 
EMD-SVM models were 0.2900 and 0.1583, while 
the same for the R values were 0.8872 and 0.9727 
(Table 1) in the prediction of lead times with 3 hours. 
Further, the IA values of 0.9376 and 0.9813 were 
obtained for the EMD-SVM and SVM model 
predictions, respectively (Table 1). 

As presented in Fig. 3 and 4, for one thing, the 
observed values were well predicted by the EMD-
SVM model in the forecasting time history of 400-
480h. For another thing, with the increase of forecast 
time, the prediction results of the SVM model have 
obvious hysteresis. These shortcomings were clearly 
improved by using EMD-SVM model in forecasting 
SWH. Taking errors statistics in Table 1, RMSE, R 
and IA of 6-h predictions by the SVM model were 
0.4628, 0.6821 and 0.8076, while those by the EMD-
SVM model were 0.2814, 0.9228 and 0.9343, 
respectively. With the increase of forecasting horizon 
times, the R and IA parameters decrease as the RMSE 
values increase. However, the rate of deterioration of 
the hybrid EMD-SVM model is slower than the single 
SVM model. 

Fig. 5 and 6 implied that the prediction effects of 
SVM model for 12 and 24 hours significant wave 
height were obviously unsatisfactory, which can also 
be apparent from Table 1. However, the EMD-SVM 

model still forecasting the changes of peaks and 
troughs of SWH in the same prediction time. 
Particularly, the R value of -0.0485 for 24 hours 
prediction by the SVM model was terrible, while the 
same error statistic of the EMD-SVM model was 
0.9007. When the output parameters of the SVM and 
EMD-SVM models were 24 forecasting hours SWH, 
the RMSE was 0.6773 and 0.4499, IA was 0.2742 and 
0.7920, respectively. As can be seen by compared, the 
predicted results using the hybrid EMD-SVM are 
closer to the observed SWH than those using the 
SVM model for forecasting. 
 
Conclusion 

Results from this study indicate that the hybrid 
EMD-SVM model prediction can be proved superior 
to the SVM model. With the increase of forecast time, 
the prediction results of the SVM model have obvious 
hysteresis. These shortcomings were clearly improved 
by using EMD-SVM model in the prediction of SWH. 
In addition, peak predictions of the two models 
become more and more unsatisfactory with the 
increase of prediction time in advance. However, the 
rate of deterioration of the hybrid EMD-SVM model 
is slower than the single SVM model. It was found 
that a higher R value of different prediction times for 
the hybrid model, especially the 24 forecasting hours. 
However, the same error statistic R of the SVM model 
was a negative value, that is -0.0485.  
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