Synthesis, characterization and photophysical properties of novel thiazole substituted pyridine derivatives

Manjusha Suryawanshi^a, Varsha Gujar^b, Divya Ottoor^b & Vivek Bobade^{*a}

^a Department of Chemistry, H.P.T Arts & R. Y. K. Science College, Nashik 422 005, India

^b Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, India

E-mail: v_bobade31@rediffmail.com

Received 3 July 2018; accepted (revised) 11 June 2019

Three series of isomeric 2-pyridyl 4-aryl thiazoles have been synthesized by reacting 2/3/4-pyridine thioamides derived from the corresponding nitriles with various 4-substituted phenacyl bromides using Hantzsch thiazole synthesis. Amongst the three isomeric series, 2-pyridyl and 4-pyridyl isomers are found to exhibit better photophysical properties than 3-pyridyl series. 4-Pyridyl isomer with methoxy substituent on phenyl ring is found to exhibit high luminescence quantum yield. The relationship between the structure and the photophysical properties have been studied using DFT calculations.

Keywords: Hantzsch synthesis, photo physical properties, quantum yield, DFT

Fluorescent dyes are widely used for detection and monitoring in the fields of chemistry, biochemistry, molecular biology, medicine and material sciences. Due to sensitive and selective detection methods and un-problematic toxicology, they have almost completely replaced radioactive tags. Widely used representatives include dansyl chloride, fluoresceins, rhodamines and boron-dipyrromethenes (BODIPYs)¹. Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labelling of proteins and other biomacro-molecules. A successful class of fluorophores used for probing in life science comprises the heterocyclic thiazoles. This structural element can be found in commercial products, such as thiazole orange, SYBR® Green I or TOTO®, which are used for DNA labelling. In these compounds the thiazole ring is part of a benzothiazole. Based on the luminescent properties of pyridyl-thiazoles, the BPT (4-(3-azidopropoxy)-5-(4synthesis of bromophenyl)-2-(pyridin-2-yl)thiazole) with superior fluorescence properties have been reported².

1,3-Azoles are an important scaffold for providing fluorescent molecules due to presence of acceptor

imine linkage and dative heteroatom that can be used in chemosensors^{3,4}. Recently, these π -functional materials⁵ are of increasing interest for the studies of organic electronics, such as organic photovoltaic's (OPVs), organic field effect transistors (OFETs) and organic light-emitting diodes (OLEDs). Symmetrical / asymmetrical thiazole based heterocyclic aromatic fluorescent compounds with high thermal stability and good solubility, where various electron donating and electron-withdrawing terminal groups have been reported⁶. Incorporation of electron-donating and withdrawing groups at appropriate positions of monocyclic hetero-aromatic compounds provides D-A molecules⁷. Increasing attention has been paid to fluorescent 1,3-imidazoles⁸, oxazoles⁹ and thiazoles¹⁰.

The literature revealed that the pyridine containing thiazole derivatives showing fluorescent properties are mainly 2,5-diaryl / heteroaryl substituted, where the conjugation effect is clearly observed due to linear structure. We report herein the synthesis and characterization of 2-pyridyl, 4-aryl-thiazole, where such conjugation is partly observed due to nonlinearity in the structure and relative findings of the effect of change in position from 5 to 4 of the thiazole ring on photo physical properties.

Experimental Section

General Remarks

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected.

Abbreviations: BODIPYs: Boron-dipyrromethenes; BPT: 4-(3-Azidopropoxy)-5-(4-bromophenyl)-2-(pyridin-2-yl)thiazole; ICT: Intramolecular charge transfer; OFETs: Organic Field Effect Transistors; OLEDs: Organic Light-Emitting Diodes; OPVs: Organic Photovoltaics; Q-TOF: Quadrupole Time Of Flight.

All the reactions were monitored by thin layer chromatography (TLC) on pre-coated silica gel 60 F254 (mesh); spots were visualized with UV light. Merck silica gel (60-120 mesh) was used for column chromatography. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance II 400 MHz NMR spectrometer in CDCl₃/DMSO-*d*₆ solution using tetramethylsilane as an internal standard. All chemical shifts were recorded in δ (ppm) and the following abbreviations are used: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. The mass spectra were recorded on Waters, Q-TOF Micromass /ESI-MS at 70eV.

Spectrophotometric measurements

UV–Vis absorbance measurements were performed using UVPC-39 Shimadzu spectrophotometer. Fluorescence and relative fluorescence quantum yield data were obtained on JASCO FP 8300 spectrofluorometer, equipped with a xenon lamp (150 W) as the source. Scan speed of 1000 nm s⁻¹ was maintained for all measurements. The slit width for both excitation and emission was kept at 5 nm. Concentrations of samples were kept constant at 2.5×10^{-6} M for all the experiments.

General procedure for the synthesis of isomeric pyridine thioamides 2,3,4

A solution of pyridine carbonitrile **1** (Scheme I) (5 g/5 mL) in pyridine (15 mL) and triethyl amine (3 mL) was stirred for 15 min. H_2S gas was then passed into the reaction mixture. The reaction was monitored on TLC. After stirring for about 2 h the solution turned into a greenish yellow solid. On

completion of the reaction, the mixture was poured into crushed ice, the crude product was filtered and washed extensively with water. The product was recrystallized from ethanol to obtain pure product. Yield: 80-90%.

General procedure for the synthesis of isomeric 4phenylthiazol-2-pyridyl derivatives 2a-h/3a-h/4a-h

To a solution of pyridine thioamide **2/3/4** (1 g,7.2 mmol) in ethyl alcohol (4 mL), 4-substituted phenacyl bromide (7.2 mmol) was added and the reaction was refluxed for 3 h. After the completion of the reaction, as monitored on TLC, the reaction mixture was poured in cold water. The solid product obtained was filtered, washed with water, dried and purified by column chromatography using hexane: ethyl acetate as eluent.

4-Phenyl-2-(pyridin-2-yl) thiazole, 2a: Yield 87%. Yellowish green, m.p.198°C. ¹H NMR (400 MHz, CDCl₃): δ 7.07-7.09 (m, 1H, phenyl), 7.10-7.12 (dd, J = 8.0 and 7.6 Hz, 2H, phenyl), 7.33-7.34 (ddd, J = 7.8, 4.6 and 1.0 Hz, 1H, pyridine), 7.42 (s, 1H, thiazole), 7.76-7.79 (dt, J = 1.0 and 7.8 Hz, 1H, pyridine), 7.85-7.86 (dd, J = 8.0 and 2.3 Hz, 2H, phenyl), 8.10-8.20 (dd, J = 7.8 and 1.0 Hz, 1H, pyridine), 8.33-8.34 (dd, J = 4.6 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 116.80, 117.29, 117.40, 121.90, 125.60, 129.02, 129.12, 139.06, 146.36, 151.43, 157.70, 164.20.

4-(4-Fluorophenyl)-2-(pyridin-2-yl) thiazole, 2b: Yield 89%. Green, m.p.114°C. ¹H NMR (400 MHz, CDCl₃): δ 7.12-7.16 (dd, *J* = 10.6 and 8.0 Hz, 2H, phenyl), 7.32-7.36 (dd, *J* = 7.6, 4.8 and 1.0 Hz, 1H,

Scheme I — Synthesis of 2-pyridyl-4-phenyl thiazoles

pyridine), 7.53 (s, 1H, thiazole), 7.80-7.85 (dt, J = 1.0 and 7.6 Hz, 1H, pyridine), 7.95-7.99 (dd, J = 8.0 and 7.4 Hz, 2H, phenyl), 8.30-8.32 (dd, J = 7.9 and 1.0 Hz, 1H, pyridine), 8.62-8.63 (dd, J = 4.8 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 114.86, 115.58, 115.66, 115.79, 119.86, 124.59, 128.06, 128.14, 128.35, 137.07, 149.48, 155.67, 158.12; ESI-MS: m/z (70 eV): 257.0612 [M+1].

4-(4-Chlorophenyl)-2-(pyridin-2-yl) thiazole, 2c: Yield 81%. Light Brown, m.p.136°C. ¹H NMR (400 MHz, CDCl₃): δ 7.14-7.16 (d, J = 7.8 Hz, 2H, phenyl), 7.42-7.45 (ddd, J = 7.6, 4.4 and 1.0 Hz, 1H, pyridine), 7.59 (s, 1H, thiazole), 7.86-7.87 (dt, J = 1.0and 7.6 Hz, 1H, pyridine), 7.91-7.94 (d, J = 7.8 Hz, 2H, phenyl), 8.33-8.34 (dd, J = 7.6 and 1.0 Hz, 1H, pyridine), 8.65-8.66 (dd, J = 4.4 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 114.86, 117.29, 118.35, 122.29, 126.77, 130.45, 132.39, 140.87, 149.38, 152.24, 158.43, 165.16.

4-(4-Bromophenyl)-2-(pyridin-2-yl) thiazole, 2d: Yield 52%. Cream, m.p. 132°C. ¹H NMR (400 MHz, CDCl₃): δ 7.13-7.17 (d, *J* = 7.7 Hz, 2H, phenyl), 7.46-7.47 (ddd, *J* = 7.5, 4.2 and 1.0 Hz, 1H, pyridine), 7.60 (s, 1H, thiazole), 7.87-7.88 (dt, *J* = 1.0 and 7.5 Hz, 1H, pyridine), 7.9-7.92 (d, *J* = 7.7 Hz, 2H, phenyl), 8.34-8.35 (dd, *J* = 7.5 and 1.0 Hz, 1H, pyridine), 8.64-8.65 (dd, *J* = 4.2 and *J* = 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 114.72, 117.08, 118.14, 121.18, 125.60, 129.39, 131.28, 138.26, 148.23, 150.00, 157.22, 164.05.

2-(Pyridin-2-yl)-4-(p-tolyl) thiazole, 2e: Yield 73%. Yellow, m.p. 110°C. ¹H NMR (400 MHz, CDCl₃): δ 6.98-7.0 (d, J = 8.4 Hz, 2H, phenyl), 7.30-7.31 (ddd, J = 7.0, 4.4 and 1.0 Hz, 1H, pyridine), 7.56 (s, 1H, thiazole), 7.79-7.83 (dt, J = 1.0 and 7.9 Hz, 1H, pyridine), 7.92-7.94 (d, J = 8.4 Hz, 2H, phenyl), 8.31-8.33 (dd, J = 7.9 and 1.0 Hz, 1H, pyridine), 8.62-8.64 (dd, J = 4.4 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 21.32 (-CH₃), 113.50, 114.20, 119.80, 124.31, 125.51, 125.61, 135.82, 148.30, 150.40, 155.39, 158.20, 166.90.

4-(4-Methoxyphenyl)-2-(pyridin-2-yl) thiazole, **2f**: Yield 90%. Dark yellow, m.p. 108°C. ¹H NMR (400MHz, CDCl₃): δ 6.96-6.99 (d, J = 8.8 Hz, 2H, phenyl), 7.29-7.32 (ddd, J = 7.7, 4.8 and 1.1 Hz, 1H, pyridine), 7.45 (s, 1H, thiazole), 7.78-7.82 (dt, J = 1.1and 7.7 Hz, 1H, pyridine), 7.91-7.93 (d, J = 8.8 Hz, 2H, phenyl), 8.30-8.32 (dd, J = 7.7 and 1.1 Hz, 1H, pyridine), 8.60-8.62 (dd, J = 4.8 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 55.10 (-OMe), 113.60, 114.14, 119.85, 124.43, 127.51, 127.66, 136.99, 149.44, 151.55, 156.50, 159.72, 168.61; ESI-MS: *m/z* (70 eV): 269.0817 [M+1].

4-(2-(Pyridin-2-yl) thiazol-4-yl) benzonitrile, 2g: Yield 93%. White, m.p. 168°C. ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.22 (d, *J* = 7.9 Hz, 2H, phenyl), 7.43-7.44 (ddd, *J* = 7.2, 4.3 and 1.0 Hz, 1H, pyridine), 7.86 (s, 1H, thiazole), 7.78-7.79 (dt, *J* = 1.0 and 7.2 Hz, 1H, pyridine), 8.00-8.10 (d, *J* = 7.9 Hz, 2H, phenyl), 8.20-8.21 (dd, *J* = 7.2 and 1.0 Hz, 1H, pyridine), 8.65-8.66 (dd, *J* = 4.3 and 1.0 Hz, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 114.02, 114.25, 115.27, 118.70 (-CN), 124.07, 129.12, 129.24, 138.17, 146.2, 151.25, 157.06, 164.23.

4-Phenyl-2-(pyridin-3-yl) thiazole, 3a: Yield 98%. Buff white, m.p. 270°C. ¹H NMR (400 MHz, CDCl₃): δ 7.90-8.00 (m, 1H, pyridine), 8.00-8.10 (d, J = 8.0 Hz, 2H, phenyl), 8.00-8.40 (m, 1H, pyridine), 8.00-8.90(d, J = 8.0 Hz, 2H, phenyl), 8.27(s, 1H, Thiazole), 8.50-8.80 (m, 1H, phenyl), 8.97(m, 1H, pyridine), 9.51(m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 115.00, 122.00, 128.00, 128.00, 131.50, 132.00, 139.00, 142.10, 144.10, 155.10, 157.10, 161.10.

4-(4-Fluorophenyl)-2-(pyridin-3-yl) thiazole, 3b: Yield 82%. White, m.p. 120°C. ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.74 (m, 1H, pyridine), 8.30-8.50 (m, J = 8.0 Hz, 2H, phenyl), 8.40 (m, 1H, pyridine), 8.70 (s, 1H, Thiazole), 7.90-8.00 (m, J = 8.0 Hz, 2H, phenyl), 8.70-8.80 (m, 1H, pyridine), 9.10 (m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 117.00, 120.78, 121.00, 127.10, 128.10, 130.92, 131.00, 132.10, 139.70, 140.10, 144.40, 155.10, 156.40, 162.00, 164.45.

4-(4-Chlorophenyl)-2-(pyridin-3-yl) thiazole, 3c: Yield 69%. Light yellow, m.p.244°C. ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.50 (d, J = 8.0 Hz, 2H, phenyl), 8.20-8.40 (d, J = 8.0 Hz, 2H, phenyl), 8.30 (s, 1H, thiazole), 8.03 (m, 1H, pyridine), 8.00-8.10 (m, 1H, pyridine), 8.40-8.80 (m, 1H, pyridine), 9.30 (m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 116.00, 120.00, 128.00, 129.80, 131.00, 133.40, 138.10, 142.00, 143.50, 154.94, 156.10, 161.00.

4-(4-Bromophenyl)-2-(pyridin-3-yl) thiazole, 3d: Yield 48%. Light Brown, m.p. 226°C. ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.62 (d, J = 8.5 Hz, 2H, phenyl), 8.00-8.05 (d, J = 8.5 Hz, 2H, phenyl), 8.06-8.09 (m, 1H, pyridine), 8.27(s, 1H, thiazole), 8.928.94 (m, 1H, pyridine), 8.97 (m, 1H, pyridine), 9.51(m, 1H, pyridine); 13 C NMR (100MHz, CDCl₃): δ 117.20, 121.88, 127.00, 128.00, 131.51, 132.36, 139.98, 141.32, 144.50, 154.94, 156.00, 160.98; ESI-MS: *m/z* (70 eV): 316.9769 [M+1] and 318.9743 [M+2].

2-(Pyridin-3-yl)-4-(p-tolyl) thiazole, 3e: Yield 81%. Light Yellow, m.p. 280°C. ¹H NMR (400 MHz, CDCl₃): δ 7.10-7.15 (m, 1H, pyridine), 7.50 (s, 1H, thiazole), 7.71-7.79 (d, *J* = 8.0 Hz, 2H, phenyl), 7.90-8.00 (d, *J* = 8.0 Hz, 2H, phenyl), 8.00-8.09 (m, 1H, pyridine), 8.10-8.19 (m, 1H, pyridine), 9.20 (m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 21.32 (CH₃), 117.00, 124.10, 125.10, 128.01, 130.01, 134.01, 141.02, 148.40, 152.10, 155.10, 157.00, 164.90.

4-(4-Methoxyphenyl)-2-(pyridin-3-yl) thiazole, **3f**: Yield 97%. Dark yellow, m.p.204°C. ¹H NMR (400 MHz,CDCl₃): δ 7.40-7.42 (m, 1H, pyridine), 7.43-7.46 (s, 1H, thiazole), 7.72-7.92 (d, *J* = 8.3 Hz, 2H, phenyl), 7.90-8.00(d, *J* = 8.3 Hz, 2H, phenyl), 8.34-8.36 (m, 1H, pyridine), 8.71 (m, 1H, pyridine), 9.25 (m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 55.10 (OMe), 116.57, 122.00, 124.10, 127.00, 129.30, 132.50, 138.50, 148.00, 151.20, 153.90, 157.00, 166.00.

4-(2-(Pyridin-3-yl)thiazol-4-yl) benzonitrile, 3g: Yield 75%. White, m.p. 260°C. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, 1H, pyridine), 7.73 (s, 1H, thiazole), 8.02-8.04 (d, *J* = 8.2 Hz, 2H, phenyl), 8.10-8.20 (d, *J* = 8.2 Hz, 2H, phenyl), 8.32-8.52 (m, 1H, pyridine), 8.50 (m, 1H, pyridine), 9.25 (m, 1H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 116.57, 118.10(CN), 122.87, 123.90, 127.00, 129.00, 132.50, 139.84, 147.10, 152.00, 154.00, 156.05, 166.35.

4-Phenyl-2-(pyridin-4-yl) thiazole, 4a: Yield 87%. Yellowish green, m.p.198°C. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.40 (m, 1H, phenyl), 7.45-7.48 (d, J = 8.8 Hz, 2H, phenyl), 7.60 (s, 1H, thiazole), 7.89-7.90 (d, J = 5.0 Hz, 2H, pyridine), 7.97-8.00 (d, J = 8.8 Hz, 2H, phenyl), 8.72-8.73 (d, J = 5.0 Hz, 2H, pyridine); ¹³C NMR(100 MHz, CDCl₃): δ 110.81, 121.32, 127.13, 128.17, 129.42, 133.40, 143.75, 149.81, 152.35, 154.92.

4-(4-Fluorophenyl)-2-(pyridin-4-yl) thiazole, 4b: Yield 89%. Green, m.p. 114°C. ¹H NMR (400 MHz, CDCl₃): δ 7.11-7.15 (d, *J* = 8.0 Hz, 2H, phenyl), 7.52 (s, 1H, thiazole), 7.85-7.86 (d, 2H, *J* = 4.0 Hz, pyridine), 7.87-7.95 (dd, *J* = 4.0 Hz, J = 8.0 Hz, 2H, phenyl), 8.70-8.71 (d, J = 4.0 Hz, 2H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 110.85, 116.36, 116.57, 121.34, 128.67, 130.61, 130.70, 143.74, 149.83, 152.34, 154.94, 160.53, 162.98.

4-(4-Chlorophenyl)-2-(pyridin-4-yl) thiazole, 4c: Yield 81%. Light Brown, m.p. 136°C. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.45 (d, J = 8.5 Hz, 2H, phenyl), 7.58 (s, 1H, thiazole), 7.87-7.88 (d, J = 6.1 Hz, 2H, pyridine), 7.90-7.94 (d, J = 8.5 Hz, 2H, phenyl), 8.72-8.74 (d, J = 6.1 Hz, 2H, pyridine); ¹³C NMR (100MHz, CDCl₃): δ 110.85, 121.30, 128.95, 129.37, 131.15, 134.34, 143.76, 149.86, 152.37, 154.94.

4-(4-Bromophenyl)-2-(pyridin-4-yl) thiazole, 4d: Yield 52%. Cream, m.p.132°C. ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.58 (d, J = 9.0 Hz, 2H, phenyl), 7.59 (s, 1H, thiazole), 7.85-7.86 (d, J = 6.2 Hz, 2H, pyridine), 7.87-7.89 (d, J = 9.0 Hz, 2H, phenyl), 8.72-8.74 (d, J = 6.2 Hz, 2H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 110.81, 121.20, 123.15, 128.34, 132.08, 132.15, 143.74, 149.87, 152.34, 154.56.

2-(Pyridin-4-yl)4-(p-tolyl) thiazole, 4e: Yield 73%. Yellow, m.p.110°C. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.27 (d, J = 5.8 Hz, 2H, pyridine), 7.52 (s, 1H, thiazole), 7.86-7.87 (d, J = 8.2 Hz, 2H, phenyl), 7.87-7.88 (d, J = 8.2 Hz, 2H, phenyl), 8.70-8.72 (d, J = 6.2 Hz, 2H, pyridine); ¹³C NMR(CDCl₃): δ 110.86, 121.00, 123.02, 128.22, 131.08, 132.05, 143.44, 149.57, 152.44, 154.38, 21.33(-CH₃). ESI-MS: m/z (70 eV) 253.0790 [M+1].

4-(4-Methoxyphenyl)-2-(pyridin-4-yl) thiazole, **4f**: Yield 90%. Dark yellow, m.p. 108°C. ¹H NMR (400 MHz, CDCl₃): δ 6.97-6.99 (d, J = 8.8 Hz, 2H phenyl), 7.45 (s, 1H, thiazole), 7.87-7.88 (d, J = 6.1 Hz, 2H, pyridine), 7.90-7.93 (d, J = 8.8 Hz, 2H, phenyl), 8.70-8.72 (d, J = 6.1 Hz, 2H, pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 55.37 (OMe), 112.61, 114.21, 120.34, 126.93, 127.82, 140.47, 150.64, 157.00, 159.97, 164.67; ESI-MS: m/z (70 eV) 269.0733 [M+1].

4-(2-(Pyridin-4yl)thiazole-4-yl) benzonitrile, 4g: Yield 93%. White, m.p.168°C. ¹H NMR (400 MHz, CDCl₃): δ 7.74-7.77 (d, J = 8.4 Hz, 2H, phenyl), 7.76 (s, 1H, thiazole), 7.88-7.90 (d, J = 6.1 Hz, 2H, pyridine), 8.10-8.12 (d, J = 8.4 Hz, 2H, phenyl), 8.75-8.76 (d, J = 6.1 Hz, 2H pyridine); ¹³C NMR (100 MHz, CDCl₃): δ 110.11, 112.66, 118.66 (CN), 121.23, 126.05, 132.41, 137.63, 143.47, 149.58, 152.43, 154.95.

1364

Quantum yield measurements

Naphthalene was selected as a standard for quantum yield measurements as the compounds under investigation have absorbance in the same region. In ethanol, naphthalene was found to have a quantum yield of 12% (Ref: Page no. 267, C. A. Parkar, Photoluminescence of solutions, Elsevier, Amsterdam, 1968). It shows maximum absorbance at 254 nm and maximum emission at 330 nm in ethanol. To measure the quantum yield, the samples were dissolved in ethanol and further dilutions were performed carefully to match the absorbance value close to 0.1. Further, the fluorescence spectra for all samples were taken by keeping excitation wavelength at 254 nm with a bandwidth of 5 nm. The area under the curve was calculated for all samples and using Equation.1 quantum yields of samples were calculated.

$$\phi_{z} = \phi_{std} \times \frac{I_{x}}{I_{std}} \times \frac{A_{std}}{A_{z}} \times \frac{\eta_{x}^{2}}{\eta_{std}^{2}} \quad \text{Equation (1)}$$

where ϕ denotes quantum yield, I is the integrated area under the peak, A denotes absorbance and η is the refractive index of solvent. Subscript 'x' denotes the sample and 'std' denotes naphthalene.

Results and Discussion

Synthesis and characterization

We have synthesized thiazole, attached at all the three positions of pyridine that is not only the reactive C-2 and C-4 but also the non reactive C-3, without using any metal catalyst. Three new series of 2-pyridyl-4-phenyl-thiazole were synthesized by the reaction of thioamides and 4-substituted phenacyl bromides as shown in the Scheme I. Three series resulted in the formation of 21 derivatives, **2a-g**, **3a-g** and **4a-g** which were subjected to fluorescence studies to evaluate the effect of change in position of pyridine on the photo-physical properties and placing different electron donating and withdrawing groups at 4-position of the phenyl ring. The structures of the title compounds were confirmed by ¹H NMR, ¹³C NMR spectroscopy and HRMS.

The representative ¹H NMR of 2-pyridyl series, compound **2f** showed singlet at δ 8.71 for thiazole proton, while the aromatic protons of phenyl and pyridine ring showed multiplet between δ 7.40-9.25. The methoxy protons appeared as singlet at δ 3.85. The aromatic carbons of compound **2f** showed 12 signals between δ 113.60-168.61 while, the methoxy

carbon appeared at δ 55.36 in its ¹³C NMR spectrum. The structure was further confirmed by its ESI-MS which showed molecular ion peak at 269 (m/z). Similarly, the ¹H NMR of the representative compound 4f, of 4-pyridyl series showed a singlet at δ 7.45 for thiazole proton. The pyridine C-2 and C-3 protons appeared as doublet at δ 8.70-8.72 and δ 7.87-7.88 respectively, with a coupling constant of 6.12 Hz. The phenyl protons appeared as two sets of doublets at δ 7.90-7.93 and δ 6.97-6.99 with coupling constant of 8.84 Hz, while the methoxy protons resonated at δ 3.86. The ¹³C NMR clearly showed a signal at δ 55.37 for methoxy carbon and 12 lines for the aromatic carbons between δ 112.61-164.67. The structure was further confirmed from its HRMS which showed molecular ion peak at 269.

The representative ¹H NMR of compound **3d**, of 3-pyridyl series, showed singlet at δ 8.27 for thiazole proton, while the other aromatic protons of phenyl and pyridine ring showed multiplet between δ 7.60-9.51. The aromatic carbons of the **3d** showed 12 signals between δ 114.86-164.12. The molecular ion peak at 316 and M+2 peak at 318 for the molecular formula C₁₄H₉N₂SBr confirmed the structure. Structures of all the synthesized compounds were similarly confirmed.

Absorption and emission properties

As shown in the Table I, Table II and Table III, all the synthesized compounds showed characteristic absorption bands from 277-341nm in their electronic spectra depending on the 4-substituents of the C-4phenyl ring and C-2-pyridyl isomer of the thiazole ring. It was noted that the some of the synthesized thiazole molecules have a very high molar absorption coefficient ($\approx 80000 \text{ M}^{-1}\text{cm}^{-1}$). In general, larger stokes shifts (> 9500 cm^{-1}) was observed for compounds with strong electron donating methoxy substituent and strong electron withdrawing cyano substituent, in all three series (compounds 2f, 2g, 3f, 3g, 4f, 4g). 2-pyridyl and 4-pyridyl isomers showed high absorption than the corresponding 3-pyridyl isomers. Thus the isomeric change at carbon 2 of the thiazole from 3-pyridine to 2-pyridine and 4-pyridine showed bathochromic shift. Electron donating substituent at the *para* position of the 4-phenyl ring of the thiazole shifted the absorption and emission to longer wavelength bathochromic shift and on the contrary electron withdrawing substituent on the same position showed hypsochromic shift (entry 2f, 3f, 4f vs 2g, 3g, 4g).

		Table	I — Spectr	al details (7	λ _{abs} , absorl	bance, ε, λ _e	em and stoke	es shift)of 2	2a-g in vari	ous solver	its		
Compd	Spectral details	Hexane	Benzene	2- propanol	THF	CHCl ₃	Ethyl acetate	Dioxane	Methanol	Ethanol	Acetonitrile	DMSO	Water
2-pyrid	yl												
2a	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \end{array}$ Stokes shift/cm ⁻¹	324 (0.156) 62280 377 4338	323 (0.188) 75200 386 5053	324 (0.158) 63200 391 5288	322 (0.151) 60720 388 5282	324 (0.181) 72560 390 5223	320 (0.151) 60600 387 5410	323 (0.162) 64880 387 5119	322 (0.151) 60320 396 5803	322 (0.163) 65480 394 5675	322 (0.156) 62360 393 5610	324 (0.166) 66360 398 5738	322 (0.133) 53320 416 7017
2b	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \end{array}$ Stokes shift/cm ⁻¹	322 (0.144) 57560 385 5081	322 (0.164) 65760 394 5675	323 (0.160) 63840 400 5959	322 (0.176) 70200 395 5739	322 (0.246) 98400 398 5930	323 (0.162) 64920 395 5643	324 (0.157) 62720 396 5611	322 (0.157) 62880 404 6303	324 (0.190) 76080 402 5988	322 (0.166) 66320 401 6118	320 (0.199) 79760 407 6679	324 (0.049) 19720 421 7111
2c	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \end{array}$ Stokes shift/cm ⁻¹	323 (0.216) 86480 383 4850	324 (0.237) 94800 393 5418	322 (0.244) 97560 398 5930	323 (0.228) 91240 394 5579	324 (0.214) 85680 396 5611	323 (0.242) 96640 393 5514	324 (0.238) 95200 394 5483	322 (0.224) 89720 402 6180	324 (0.237) 94880 399 5801	322 (0.228) 91164 398 5930	323 (0.239) 95600 404 6207	321 (0.091) 36280 386 5245
2d	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \end{array}$ Stokes shift/cm ⁻¹	323 (0.234) 93560 383 4850	323 (0.231) 92400 392 5449	323 (0.226) 90400 397 5770	323 (0.238) 95160 394 5579	323 (0.225) 90000 395 5643	324 (0.245) 99960 392 5353	324 (0.248) 99360 395 5547	323 (0.239) 95600 402 6084	324 (0.230) 92160 398 5738	320 (0.246) 98400 399 6187	324 (0.249) 99600 404 6111	320 (0.124) 49760 394 5869
2e	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \end{array}$ Stokes shift/cm ⁻¹	326 (0.136) 54480 396 5422	326 (0.170) 68120 409 6224	324 (0.149) 59760 415 6767	324 (0.162) 64920 412 6592	325 (0.159) 63520 420 6959	324 (0.131) 52400 411 6533	328 (0.138) 55280 411 6156	325 (0.154) 61760 424 7184	326 (0.135) 53800 420 6865	325 (0.138) 55280 420 6959	326 (0.143) 57040 425 7145	324 (0.073) 29120 434 7822
2f	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	331 (0.106) 42320 403 5397	333 (0.129) 51400 414 5875	331 (0.103) 41360 437 7328	335 (0.115) 46160 423 6210	331 (0.123) 49160 427 6792	335 (0.106) 42280 424 6265	334 (0.110) 44120 424 6355	331 (0.101) 40560 451 8038	334 (0.111) 44280 442 7315	333 (0.104) 41520 443 7456	336 (0.1194) 47760 446 7340	331 (0.042) 16640 483 9507
2g	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	290 (0.052) 20772 375 7816	291 (0.056) 22432 383 8254	291 (0.058) 23116 384 8322	277 (0.334) 23338 382 9923	301 (0.053) 21064 382 7044	290 (0.057) 22828 382 8304	291 (0.057) 22640 384 8322	292 (0.052) 20788 387 8406	297 (0.053) 21224 385 7696	296 (0.055) 22052 386 7877	291 (0.058) 23040 391 8788	293 (0.042) 16960 391 8554

This family of isomeric pyridyl-thiazoles are fluorescent-active from blue to yellow (400-490 nm). Bathochromic shifts have been observed in the fluorescence emission spectra of these compounds for the isomeric change at carbon 2 of thiazole from 3-pyridine to 2 and 4-pyridine and also presence of electron donating substituent at phenyl ring (3f = 468 nm, 2f = 483 nm, 4f = 490 nm). The opposite trend of hypsochromic shift for the fluorescence emission is also observed for electron withdrawing substituent (3g = 386 nm, 2g = 391 nm, 4g = 404 nm).

The thiazole derivatives containing halogens (F, Cl, Br) showed both absorbance and emission in an intermediate range between that of donating and withdrawing substituents due to-I effect with the similar trend of isomeric change of pyridine like 4-pyridine > 2-pyridine > 3-pyridine.

Solvatochromism

Most of the thiazole derivatives are colored in solution and solid state. To assess the solvatochromic behavior, the absorption and emission profile of the thiazole derivatives were determined in a series of solvents with increasing polarity, *i.e.* hexane < toluene < 2-propanol < tetrahydrofuran < chloroform < ethyl acetate < dioxane < methanol < ethanol < acetonitrile < dimethyl sulphoxide < water (Table I, Table II and Table III). The influence of the solvent on the photo physical properties of synthesized thiazoles was elucidated. The synthesized thiazole compounds did not exhibit solvatochromism in absorbance, the absorption maxima of compounds are almost same with increasing solvent polarity from hexane to water. Fluorescence emission spectra of these compounds are found to be strongly dependent

1366

		Table	II — Spe	ctral details	s (λ _{abs} , abs	orbance,	ε , λ_{em} and	stokes shi	ft) of 3a-g	in various	solvents		
Compd	Spectral details	Hexane	Benzene	2- propanol	THF	CHCl ₃	Ethyl acetate	Dioxane	Methanol	Ethanol	Acetonitrile	DMSO	Water
3-pyridy	/1												
3a	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1} cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	318 (0.133) 53080 385 5472	324 (0.181) 72560 385 4890	315 (0.119) 47520 374 5008	315 (0.147) 58920 387 5906	313 (0.143) 57200 388 6175	322 (0.155) 61840 384 5014	320 (0.142) 56880 386 5343	318 (0.134) 53560 397 6257	312 (0.163) 65120 393 6605	323 (0.188) 75200 392 5449	318 (0.135) 54040 397 6257	311 (0.116) 46520 407 7584
3b	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1}cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	324 (0.156) 62280 396 5611	323 (0.189) 75200 397 5770	320 (0.142) 56880 390 5608	315 (0.147) 58920 390 6105	318 (0.120) 48000 395 6130	313 (0.143) 57200 376 5353	318 (0.135) 54040 393 6001	322 (0.151) 60320 387 5216	318 (0.133) 53080 399 6383	318 (0.134) 53560 386 5539	312 (0.163) 65120 387 6211	311 (0.116) 46520 416 8115
3с	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1}cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	318 (0.146) 58240 374 4708	318 (0.143) 57000 385 5472	318 (0.164) 65400 391 5871	314 (0.151) 60240 386 5940	315 (0.136) 54560 388 5972	314 (0.136) 54200 384 5805	318 (0.144) 57520 385 5472	318 (0.152) 60840 395 6130	313 (0.172) 63680 393 6503	318 (0.192) 76720 392 5936	318 (0.140) 56080 396 6194	318 (0.064) 25640 407 6876
3d	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1}cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	317 (0.163) 65000 375 4879	318 (0.234) 93480 385 5472	318 (0.169) 67640 390 5805	313 (0.187) 74800 385 5974	318 (0.164) 65480 387 5606	313 (0.176) 70200 384 5907	316 (0.170) 68120 384 5603	319 (0.197) 78800 396 6095	319 (0.176) 70320 393 5902	316 (0.161) 64200 392 6135	315 (0.208) 83160 396 6493	318 (0.038) 15240 416 7408
3e	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1}cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	318 (0.199) 79600 381 5199	322 (0.215) 85880 392 5545	323 (0.223) 89320 400 5959	318 (0.217) 86680 396 6194	320 (0.241) 96400 397 6061	318 (0.215) 85800 395 6130	319 (0.221) 88240 396 6095	323 (0.218) 87280 408 6449	322 (0.226) 90360 405 6364	318 (0.217) 86680 396 6194	324 (0.405) 162040 406 6233	314 (0.192) 76960 423 8206
3f	$\lambda abs(nm)$ Absorbance $\epsilon M^{-1} cm^{-1}$ $\lambda em (nm)$ Stokes shift/cm ⁻¹	323 (0.090) 36120 393 5514	329 (0.095) 38080 408 5885	328 (0.108) 43280 432 7339	325 (0.112) 44840 413 6556	328 (0.114) 45560 418 6564	324 (0.123) 49080 418 6940	326 (0.111) 44200 412 6403	324 (0.107) 42680 443 8290	322 (0.11) 44000 468 9688	328 (0.105) 42160 435 7499	328 (0.116) 46240 440 7760	316 (0.112) 44760 439 8866
3g	$\begin{array}{l} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \\ shift/cm^{-1} \end{array}$	284 (0.140) 56040 366 7888	296 (0.235) 94000 373 6974	277 (0.245) 98000 378 9646	282 (0.249) 99600 371 8506	283 (0.243) 97200 373 8526	290 (0.244) 97600 373 7673	288 (0.248) 99200 374 7984	281 (0.247) 98800 381 9340	282 (0.240) 96000 379 9075	284 (0.241) 96400 377 8686	288 (0.238) 95200 384 8680	282 (0.239) 95600 386 9545

on the polarity of the solvent: the emission wavelength of compound **2f** and **4f** showed strong bathochromic shift of ≈ 80 nm; from 403 nm (hexane) to 483 nm (water) for **2f** and from 412 nm (hexane) to 490 nm (water) for **4f**. The emission wavelength of compound **3f** was found to increase from 393 nm (hexane) to 468 nm (ethanol). This fluorosolvatochromic behavior which results from the stabilization of the highly polar emitting state by polar solvents, is typical for compounds exhibiting an intramolecular charge transfer (ICT) upon excitation and has been fully documented with donor-acceptor flurophores, typically for the 2,5-diaryl / heteroaryl 1,3-azoles. This same fluoro-solvatochromic behavior is observed for the 2-pyridyl, 4-phenyl thiazole derivatives **2a-g / 3a-g** and **4a-g** as shown in Table I, Table II and Table III. The notable results are found for the electron donating methoxy containing

INDIAN J. CHEM., SEC B, DECEMBER 2019

		Table	III — Spect	ral details (λ_{abs} , absor	bance, ε, λ	em and stoke	es shift)of	4a-g in var	ious solve	ents		
Compd	Spectral details	Hexane	Benzene	2- propanol	THF	CHCl ₃	Ethyl acetate	Dioxane	Methanol	Ethanol	Acetonitrile	DMSO	Water
4-pyridy	'l												
4a	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \; M^{-1}cm^{-1} \\ \lambda em\;(nm) \\ Stokes\; shift/cm^{-1} \end{array}$	324 (0.156) 62280 377 4338	323 (0.188) 75200 386 5053	324 (0.158) 63200 391 5288	322 (0.151) 60720 388 5282	324 (0.181) 72560 390 5223	320 (0.151) 60600 387 5410	323 (0.162) 64880 387 5119	322 (0.151) 60320 396 5803	322 (0.164) 65480 394 5675	322 (0.156) 62360 393 5610	324 (0.166) 66360 398 5738	322 (0.133) 53320 416 7017
4b	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	320 (0.174) 69440 385 5275	320 (0.203) 81400 400 6250	324 (0.202) 80760 410 6473	319 (0.188) 75040 403 6534	322 (0.196) 78320 398 5930	319 (0.211) 84440 397 6159	323 (0.201) 80320 397 5770	325 (0.215) 86040 415 6672	318 (0.073) 29240 411 7115	320 (0.195) 78000 410 6859	320 (0.201) 80280 412 6978	318 (0.078) 31120 432 8298
4c	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	318 (0.162) 64760 383 5336	322 (0.201) 80440 394 5675	325 (0.201) 80560 404 6016	318 (0.184) 73480 398 6320	324 (0.212) 84840 408 6354	320 (0.185) 74000 396 5997	320 (0.242) 96760 393 5804	324 (0.197) 78680 411 6533	325 (0.198) 79320 409 6319	319 (0.291) 116240 404 6595	318 (0.207) 82920 408 6936	324 (0.044) 17600 423 7223
4d	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	320 (0.244) 97600 381 5003	320 (0.237) 94800 393 5804	324 (0.248) 99200 403 6050	321 (0.246) 98400 397 5963	324 (0.241) 96400 399 5801	321 (0.222) 88800 395 5836	321 (0.249) 99600 396 5900	324 (0.242) 96800 413 6651	326 (0.239) 95600 409 6224	320 (0.229) 91600 406 6619	324 (0.225) 90000 410 6473	328 (0.215) 86000 413 6274
4e	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	319 (0.249) 99600 389 5641	328 (0.174) 69560 405 5796	329 (0.165) 65960 420 6585	323 (0.172) 68760 409 6509	328 (0.163) 65240 414 6333	324 (0.175) 69840 406 6233	326 (0.178) 71040 407 6104	331 (0.189) 75560 427 6792	330 (0.194) 77720 422 6606	324 (0.204) 81720 419 6997	314 (0.248) 116220 425 8317	325 (0.126) 50360 452 8645
4f	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	335 (0.188) 75000 412 5578	339 (0.197) 78760 427 6079	339 (0.212) 84600 455 7520	338 (0.193) 77080 443 7012	337 (0.186) 74360 436 6737	335 (0.190) 75840 438 7019	335 (0.203) 81240 432 6702	340 (0.226) 90520 472 8225	341 (0.208) 83160 460 7586	333 (0.236) 94440 461 8338	341 (0.212) 84640 463 7727	330 (0.1122) 44880 490 9803
4g	$\begin{array}{c} \lambda abs(nm) \\ Absorbance \\ \epsilon \ M^{-1}cm^{-1} \\ \lambda em \ (nm) \\ Stokes \ shift/cm^{-1} \end{array}$	288 (0.239) 95600 377 8197	289 (0.248) 99200 383 8492	290 (0.242) 96800 389 8775	281 (0.248) 99200 385 9613	292 (0.241) 96400 382 8068	289 (0.246) 98400 384 8560	291 (0.245) 98000 385 8390	289 (0.244) 97600 394 9221	291 (0.247) 98800 391 8788	289 (0.243) 37200 390 8961	294 (0.249) 99600 395 8697	288 (0.239) 95600 404 9969

Long wavelength absorption maximum, in nm; c= 2.5μ M; ϵ = molar absorption coefficient M⁻¹cm⁻¹; Fluorescence maximum in nm; c= 2.5μ M; Stokes shift¹cm⁻¹

substituent in compound **2f**, **3f** and **4f** as shown in Figure 1, Figure 2 and Figure 3.

Photophysical data of isomeric 2-pyridyl,4-phenyl thiazole derivatives 2a-g, 3a-g, 4a-g

Correlation of solvatochromic shifts with various solvent polarity scales

Solvent dependent spectral shifts are often interpretated in terms of the Lippert equation, which describes Stokes' shift in terms of the change in dipole moment of the fluorophore upon excitation and the dependence of energy of the dipole on the dielectric constant and refractive index of the solvent and is given as,

$$\boldsymbol{\nu}_{F} \cdot \boldsymbol{\nu}_{A} = \frac{2}{hc} \left(\left(\frac{\varepsilon - 1}{2\varepsilon - 1} - \frac{\eta^{2} - 1}{2\eta^{2} + 1} \right) \frac{\left(\mu_{F} - \mu_{G} \right)^{2}}{a^{3}} + \mathbf{C} \text{ Equation (2)} \right)$$

where \mathbf{v}_A and \mathbf{v}_F are the wavenumbers (cm⁻¹) of the absorption and emission, \mathbf{h} is Planck's constant, \mathbf{c} is the speed of light, $\boldsymbol{\alpha}$ is the radius of the cavity in which the fluorophore resides, $\boldsymbol{\varepsilon}$ is the dielectric constant of the medium, $\boldsymbol{\eta}$ is the refractive index of the solvent and the term $\Delta \mathbf{f} = (\frac{\boldsymbol{\varepsilon}-1}{2\boldsymbol{\varepsilon}+1} - \frac{\boldsymbol{\eta}^2-1}{2\boldsymbol{\eta}^2+1})$ is the orientation polarisability, the resultant effect of both the mobility of electrons in the solvent and the dipole moment of the solvent. A Lippert Mataga plot, which is a plot of Stokes' shift *versus* orientation polarisability $\Delta \mathbf{f}$ of the solvent, provides a valuable framework for the consideration of the solvent dependent spectral shifts. Figure 4 represents the Lippert

Figure 1 — Absorption and emission spectra of compound **2f** in different solvents; absorption $c=2.5\mu$ M; emission $c=2.5\mu$ M

Figure 2 — Absorption and emission spectra of compound **3f** in different solvents; absorption $c=2.5\mu$ M; emission $c=2.5\mu$ M

Figure 3 — Absorption and emission spectra of compound **4f** in different solvents; absorption $c=2.5\mu$ M; emission $c=2.5\mu$ M

Figure 4 — Lippert-Mattaga plot for **2f**, **3f** and **4f** in different solvents showing the variation of Stokes' shift as a function of orientation polarization of the solvents

Mataga plot for methoxy containing compounds (**2f, 3f, 4f**) in different solvents. Except water, dioxane and ethanol, rest of the solvents showed almost linear correlation. As is evident from Figure 4, there is a good linear relationship of the Stokes shift *versus* Δf for the twelve solvents of Table I, Table II and Table III [for compound **2f** correlation coefficient r = 0.79, slope = 7092.04 cm⁻¹, intercept= 5602.15, for compound **3f** correlation coefficient r = 0.8292, slope = 8212.72 cm⁻¹, intercept = 5668.37, for compound **4f** correlation coefficient r = 0.8543, slope = 7702.91⁻¹, intercept = 5853.29cm].

A linear correlation was observed, which indicated a solvent effect in the excited state, although the standard deviation for **3f** was greater than those of the isomeric compound **2f** and **4f**. A large change in the dipole moment indicates a more pronounced intramolecular charge transfer for these molecules in the excited state. For fluorescent molecules that show intramolecular charge transfer, these are generally planar in the ground state and twisted in the excited state. Solvatochromism was observed for fluorescence spectra. In this regard, the relationship between solvent polarity and Stokes shifts was elucidated on the basis of Lippert-Mataga plots. The change in the dipole moments of the representative derivatives **2f**, **3f** and **4f** between the ground and excited states showed that these compounds were more polarized in the excited state.

Acidochromic properties

Application of fluorescent compounds in monitoring pH change has attracted considerable attention. The presence of pyridine ring in the synthesized compounds prompted us to study the possibility of protonation of this compound in

ethanol. The optical properties of 4f and 4g in ethanol solution was studied with the electron donating methoxy and electron withdrawing cyano substituent at three different pH (Acidic, Neutral and Alkaline). The change in the fluoroscence emission spectra of 4f and 4g upon addition of acid and base is illustrated in Figure 5. Upon addition of hydrochloric acid to a solution of 4g in ethanol at pH 2, showed a significant (404 nm to 470 nm) bathochromic shift (70 nm) in emission spectra which may be explained by initial protonation of the pyridine ring and CN substituent at 4-position that leads to an increased donor-acceptor interplay as shown in Scheme II. Upon addition of NaOH to a solution of 4f in ethanol at pH 8, showed only small (490 nm to 500 nm) bathochromic shift (10 nm) in fluoroscence emission while at acidic pH 2 there is intense hypsochromic shift.

Quantum yield

Considering the significant change in the absorption and emission spectra 4-pyridyl series and

fluorosolvatochromism, we calculated the quantum yields of these compounds. The results are shown in Table IV. Compound **4f** shows an extraordinarily high luminescence quantum yield (Φ) of 66.35% compared to standard naphthalene 12.00%. Positional isomeric change is also observed for the quantum yield in the order 4-pyridyl > 2-pyridyl > 3-pyridyl.

DFT calculations

We have performed the DFT calculation based on the Gaussian 03 program. The functional is B3LYP

Table IV — Fluorescence quantum yield (Φ) relative to naphthalene in ethanol										
Compd	φin %	Compd	φin %	Compd	φin %					
2a	6.27	3a	1.35	4a	7.33					
2b	6.091	3b	3.84	4 b	10.66					
2c	7.66	3c	5.78	4 c	9.355					
2d	8.25	3d	5.07	4d	9.874					
2e	5.786	3e	3.34	4e	12.21					
2f	17.19	3f	6.56	4f	66.35					
2g	14.82	3g	6.80	4g	15.84					

Figure 5 — Emission spectra of compound 4f and 4g at different pH and c = 2.5uM

Scheme II — Prototropic equilibria of 4g

Compd	НОМО	LUMO	Compd	НОМО	LUMO	Compd	НОМО	LUMO
2a	and the second s		3a	N⁹⁹1 3.	2	4a	CORO SA	
2b	NOOSA		3b			4b	-69 ⁰⁹ 94	
2c	. CHAP _{ES}		3c	0680913		4c	. CVCP _{2,1}	
2d	olives,		3d	and the second s		4d	ON PROPERTY	
2e	18800.j.		3e	-00 ⁰⁹ /:		4e	1.2.000 sta	
2f	SUPPra		3f			4f		
2g	~ (V ⁰³ 7)		3g	- 47 ⁰⁹ 73	5:883	4g		

Figure 6 — Frontier orbitals HOMO and LUMO for thiazoles 2a-g / 3a-g / 4a-g

with 6–31G basis sets. Figure 4 shows their charge density distribution of the frontier molecular orbitals. For electron donating substituents on the phenyl ring (**2f**, **3f**, **4f**) the energy of both HOMO and LUMO increases compared to **2a**, **3a** and **4a**, while electron withdrawing substituent on phenyl ring (**2g**, **3g**, **4g**) decreases the energy of this frontier orbital's. For the isomeric change of pyridine the energy of both HOMO and LUMO decreases from 2-pyridyl to 3-pyridyl to 4-pyridyl. The energy of HOMO in **2f** =-0.29647 eV, **3f** =-0.29848 eV and **3f** =-0.31128 eV, while the LUMO energy is **2f** = 0.0667 eV, **3f** = 0.0661 eV, **4f** = 0.0454 eV (Figure 6). This same trend is observed for the electron withdrawing substituent in **2g**, **3g** and **4g** as shown in Table V.

For the reactant orbital HOMO, the electron cloud density is concentrated on all three rings pyridine, thiazole and phenyl, in 2-pyridyl and 3-pyridyl isomers but for the 4-pyridyl derivatives the electron cloud density lies on middle thiazole ring and the phenyl ring only, due to certain symmetry as shown in Figure 4. Substituent change on phenyl ring

Table V — HOMO's and LUMO's calculated with B3LYP/6- 31G*									
Compound		R	HOMO (eV)	LUMO (eV)	$\Delta E (eV)$				
2-Pyridyl	2-Pyridyl 2a		-0.30265	0.06746	0.37011				
	2b	F	-0.30725	0.06342	0.37067				
	2c	Cl	-0.33343	-0.04530	0.28813				
	2d	Br	-0.30593	0.06256	0.36849				
	2e	Me	-0.29609	0.06897	0.36506				
	2f	OMe	-0.29647	0.06676	0.36323				
	2g	CN	-0.32115	0.05473	0.37588				
3-Pyridyl	3a	Н	-0.30531	0.07111	0.37642				
	3b	F	-0.30897	0.06257	0.37154				
	3c	Cl	-0.31206	0.06023	0.37229				
	3d	Br	-0.30776	0.06163	0.36939				
	3e	Me	-0.29849	0.06818	0.36667				
	3f	OMe	-0.29848	0.06614	0.36462				
	3g	CN	-0.32197	0.05298	0.37495				
4-Pyridyl	4a	Н	-0.33528	-0.04427	0.29101				
	4b	F	-0.31281	0.05876	0.37157				
	4c	Cl	-0.33782	-0.04923	0.28859				
	4d	Br	-0.31102	0.05788	0.3689				
	4e	Me	-0.30363	0.06545	0.36908				
	4f	OMe	-0.31128	0.04549	0.35677				
	4g	CN	-0.33388	0.03139	0.36527				

does not show any notable change on the electron density. In LUMO of **2f** and **3f** the electron density cloud lies on the heterocyclic rings pyridine and thiazole whereas in **4f** the electron density cloud is concentrated only on middle thiazole due to two opposing effect of the methoxy substituent and pyridine ring as shown in Figure 4. Thus the isomeric change and substituent effect is notable.

Conclusion

Three series of isomeric pyridyl thiazole derivatives were successfully synthesized by simple method. Photo physical properties of the compounds were studied. The longest wavelengths in their UV-Vis spectra were within the range from 277 to 341 nm, whereas their emissions ranged from 375 to 490 nm. Amongst these three isomeric series 2-pyridyl and 4-pyridyl isomers are exhibiting better photo physical activities than 3-pyridyl series. 4-pyridyl isomer with methoxy substituent on phenyl ring was found to have high luminescence quantum yield. Bathochromic shift of the emission band was observed with increasing solvent polarity, fluoro solvatochromism was observed for all the compounds but no solvatochromism was found with respect to absorption. The absorption of 2f, 3f and 4f arises due to the intramolecular charge transfer (ICT) transition with high molar extinction coefficients. Lippert-Mataga analysis on the solvatochromic data implies that these molecules are more polar in the excited state, which is additional support for ICT. 4-pyridyl isomer with electron withdrawing CN as substituent at 4-position (compound 4g) showed a strong acidochromic behavior. DFT calculations showed that electron donating substituent increases and electron withdrawing substituent decreases the energy of frontier orbitals. Position isomeric change also affected the energy of the frontier orbitals. We have succesfully synthesized, characterized and concluded that the nonplanar 2-pyridyl, 4-aryl thiazoles possess similar behavior in photophysical properties like that of planar 2,5-diaryl/heteroaryl thiazoles.

These results thus warrant the need for synthesis of similar libraries with other substituents to ascertain the trend described in this work.

Supplementary Information

Supplementary information is available in the website http://nopr.niscair.res.in/handle/123456789/60.

Acknowledgements

Authors are thankful to BCUD, SPPU, Pune and DST, New Delhi for the financial support. Authors would like to acknowledge SAIF, Punjab University, Chandigarh for the spectral analysis.

References

- 1 Sadaghiani A M, Verhelst S H L & Bogyo M, Curr Opin Chem Biol, 11 (2007) 20.
- 2 Wolfram S, Würfel H, Habenicht S, Lembke C, Richter P, Birckner E, Beckert R & Pohnert G, *Beilstein J Org Chem*, 10 (2014) 2470.
- 3 (a) Mukherjee S & Thilagar P, *Dyes Pigm*, 110 (2014) 2;
 (b) Jeong H, Shin H, Lee J, Kim B, Park Y I, Yook K S, An B K & Park J, *J Photonics Energy*, 5 (2015) 057608;
 (c) Jou J H, Kumar S, Singh M, Chen Y H, Chen C C & Lee M T, *Molecules*, 20 (2015) 13005.
- 4 (a) Yang Z, Cao J, He Y, Yang J H, Kim T, Peng X & Kim J S, *Chem Soc Rev*, 43 (2014) 4563; (b) Pradhan T, Jung H S, Jang J H, Kim T W, Kang C & Kim J S, *Chem Soc Rev*, 43 (2014) 4684; (c) Zhou Y, Zhang J F & Yoon J, *Chem Rev*, 114 (2014) 5511; (d) Kaur P & Singh K, *RSC Adv*, 4 (2014) 11980; (e) Ghale W & Nau M, *Acc Chem Res*, 47 (2014) 2150; (f) Terenzi A, Lauria A, Almerico A M & Barone G, *Dalton Trans*, 44 (2015) 3527; (g) Zhou X, Lee S, Xu Z & Yoon J, *Chem Rev*, 115 (2015) 7944.
- 5 (a) Otsubo T, Aso Y & Takimiya K, J Mater Chem, 12 (2002) 2565; (b) Bocstaller M R, Mickiewicz R A & Thomas E L, Adv Mater, 17 (2005) 1331; (c) Gonzalez-Rodriguez D & Schenning A P, J Chem Mater, 23 (2011) 310; (d) Beaujuge P M & Frechet J M, J Am Chem Soc, 133 (2011) 200099; (e) Li H G, Choi J Y & Nakanishi T, Langmuir, 29 (2013) 5394; (f) Mahuteau Betzer F & Piguel S, Tetrahedron Lett, 54 (2013) 3188.
- 6 Tao T, Ma B-B, Peng Y-X, Wang X-X, Huang W & You X-Z, *J Org Chem*, 78 (2013) 8669.
- 7 (a) Schwartz P O, Biniek L, Zaborova E, Heinrich B, Brinkmann M, Leclerc N & Méry S, J Am Chem Soc, 136 (2014) 5981; (b) Li T, Gao J, Cui Y, Zhong C & Ye Q, Han L, J. Photochem Photobiol A, 91 (2015) 303-304; (c) Nakagawa T, Yamaji M, Maki S, Niwa H & Hirano T, Photochem Photobiol, 91 (2015) 807.
- 8 (a) Martorana A, Pace A, Buscemi S & Piccionello A P, Org Lett, 14 (2012) 3240; (b) Chen C Y, Hu W P, Yan P C, Senadi G C & Wang J, Org Lett, 15 (2013) 6116; (c) Leitl M J, Krylova V A, Djurovich P I, Thompson M E & Yersin H, J Am Chem Soc, 136 (2014) 16032; (d) Mutoh K, Nakagawa Y, Sakamoto A & Kobayashi Y, Abe J, J Am Chem Soc, 137 (2015) 5674; (e) Yamashita H, Ikezawa T, Kobayashi Y & Abe J, J Am Chem Soc, 137 (2015) 4952.
- 9 (a) Charier S, Ruel O, Baudin J B, Alcor D, Allemand J F, Meglio A & Jullien L, Angew Chem Int Ed, 43 (2004) 4785;
 (b) Iliashenko R Y, Zozulia O S, Cent Doroshenko A O, Eur J Chem, 9 (2011) 962; (c) Iliashenko R Y, Gorobets N Y & Doroshenko A O, Tetrahedron Lett, 52 (2011) 5086; (d) Mahuteau-Betzer F & Piguel S, Tetrahedron Lett, 54 (2013) 3188; (e) Kwon J E & Park S, J Am Chem Soc, 135 (2013) 11239; (f) Borodin O O, Il'yashenko R, & Doroshenko A O, Chem Heterocycl Compd, 50 (2014) 379.

(a) Helal A, Kim H G, Ghosh M K, Choi C H, Kim S H & Kim H S, *Tetrahedron*, 69 (2013) 9600; (b) Nagura K, Saito S, Yusa, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y & Yamaguchi S, *J Am Chem Soc*, 135 (2013) 10322; (c) Mishra B, Shekar K P C, Kumar A, Phukan S, Mitra S & Kumar D, *J Heterocycl Chem*, 50 (2013) 125; (d) Zheng M H, Sun W, Jin J Y & Yan C H, *J Fluoresc*, 24 (2014) 1169;

(e) Wolfram S, Würfel H, Habenicht S H, Lembke C, Richter P, Birckner E, Beckert R, Pohnert & Beilstein G, *J Org Chem*, 10 (2014) 2470; (f) Gautam D & Chaudhary R P, *Spectrochim Acta Part A*, 143 (2015) 256; (g) Zhang X, Jing S Y, Huang S Y, Zhou X W, Bai J M & Zhao B X, *Sens Actuators*, *B*, 206 (2015) 663; (h) Tanaka S, Ashida K, Tatsuta G & Mori A, *Synlett*, 26 (2015) 1496.