Electrochemical Oxidation of Guaiacol at Platinum Electrode

S. JAYARAMA REDDY & V. R. KRISHNAN

Department of Chemistry, Sri Venkateswara University, Tirupati 517502

Received 19 October 1977; accepted 4 January 1978

The anodic oxidation of guaiacol at a platinum wire electrode in aqueous solutions by cyclic voltammetry and chronoamperometry has been studied. The data have been utilized in the evaluation of transfer and diffusion coefficients of the electroactive species under consideration. Mechanism of the oxidation process has been proposed and is consistent with the electrochemical data. The nature of the adsorption involved is discussed.

ITERATURE on the electrochemical oxidation of guaiacol is scanty. Papouchoudo *et al.*¹ have reported the cyclic voltammetric studies of the oxidation of guaiacol in a solution of pH 2.3and identified the product as *o*-benzoquinone, formed by the removal of two electrons. In the present investigation, an attempt is made to elucidate the nature and mechanism of the electrochemical oxidation of guaiacol at a platinum electrode in aqueous solutions of different pH values using cyclic voltammetric and chronoamperometric techniques. The data have also been utilized in the evaluation of transfer and diffusion coefficients of the electroactive species under consideration. The nature of the adsorption involved is discussed.

The theoretical principles and various applications of the cyclic voltammetric and chronoamperometric techniques have been described in detail in the literature^{2,3}.

Materials and Methods

Riedel grade sample of guaiacol was purified by distillation. The distillate collected at 204-5° was used for the preparation of solutions, first by dissolving the guaiacol in methanol and making up the solution with water.

Supporting electrolytes used were: (i) Clarks and Lubs buffer of pH 1·3, prepared by mixing 0·1N hydrochloric acid (200 ml) and 0·2N potassium chloride (250 ml) and diluting to 1000 ml; (ii) phosphate buffer of pH 6·6, prepared by mixing 0·1N sodium hydroxide (178 ml) and 0·1N potassium dihydrogen phosphate (500 ml) and making up the resulting solution up to 1000 ml. Other supporting electrolytes (0·1N sodium carbonate, 0·1N sodium hydroxide and 1N sulphuric acid) were prepared using BDH analar grade samples.

The details of the instrument used and the experimental procedure have been discussed elsewhere⁴.

Results and Discussion

Typical cyclic voltammograms of guaiacol in the different media studied are presented in Figs 1 and 2. In sulphuric acid and Clarks and Lubs buffer, a reduction peak is noticed at +0.30 V vs SCE. This is possibly due to the reduction of the oxidation product formed. This reduction peak is not noticed in other media in the potential range used. Table 1 presents the cyclic voltammetric data for guaiacol (peak potential values at different sweep rates). The variation of peak potential with sweep rate observed in the different media studied indicates the process to be irreversible. i_p vs $v^{1/2}$

Fig. 1 — Cyclic voltammograms of guaiacol (1.5 mM) in (a) H_1SO_4 (sweep rate = 0.05 V sec⁻¹, (b) Clarks and Lubs buffer (sweep rate = 0.04 V sec⁻¹)

Fig. 2—Cyclic voltammograms of guaiacol (1.5 mM) in (a) phosphate buffer (sweep rate = 0.05 V sec^{-1}), (b) Na₂CO₃ (sweep rate = 0.05 V sec^{-1}) (c) NaOH (sweep rate = 0.04 V sec^{-1})

plot (Fig. 3) for guaiacol suggests that the electrode process is diffusion-controlled.

The number of electrons involved in the oxidation of guaiacol is evaluated to be two. This is evaluated by assuming the diffusion coefficient of guaiacol to be same as that of *p*-methoxyphenol, and calculating $i_p/v^{1/2} c$ values and comparing these values with the values obtained for guaiacol experimentally (given in Table 2). αn_a values employed are calculated from the cyclic voltammetric data. A single two electron peak has been observed for its oxidation and the process involving the formation of *o*-benzoquinone may be represented by Eq. (1).

The chronoamperometric data for the electrochemical oxidation of guaiacol in the different media studied are given in Table 3. $it^{1/2}$ vs t plots of guaiacol (Fig. 4) show that in the media of higher pH, 0.1N sodium carbonate and 0.1N sodium hydroxide, $it^{1/2}$ values exhibit decreasing trend with time. This is indicative of the presence of adsorption, probably weak adsorption of the product which reduces the effective area of the electrode resulting in lower current values. The absence of pre- or post-peaks in the cyclic voltammograms of guaiacol in these media indicate the absence of any strong adsorption of guaiacol or the product of oxidation.

Fig. 3 — i_p vs $v^{1/2}$ plot for guaiacol (1.5 mM) in Clarks and Lubs buffer

Fig. $4 - it^{1/2}$ vs t plots of guaiacol (2.4 mM) in (a) H_2SO_4 , (b) Clarks and Lubs buffer, (c) phosphate buffer, (d) Na_2CO_3 and (e) NaOH

TABLE 1 - CYCLIC VOLTAMMETRIC DATA FOR GUAIACOL

Sl No.	Sulphuric acid		Clarks and Lubs		Phosphate buffer		Sodium carbonate		Sodium hydroxide	
	<i>v</i> /V sec ⁻¹	E_{p}/V	$\frac{\overline{v/V \text{ sec}^{-1} } E_p/V}{E_p/V}$	<i>v</i> /V sec ⁻¹	E_{p}/V	<i>v</i> /V sec ⁻¹	E_{p}/V	<i>v</i> /V sec ⁻¹	E_{p}/V	
1 2 3 4 5 6	0·05 0·16 0·34 0·41 0·58 0·62	+0.76 +0.78 +0.78 +0.79 +0.80 +0.80	0.04 0.15 0.33 0.38 0.57 0.83	+0.79 + 0.77 + 0.80 + 0.81 + 0.82	0.05 0.16 0.29 0.40 0.59 0.80	+0.72 +0.78 +0.80 +0.88 +0.98 +1.00	0.05 0.14 0.32 0.40 0.60 0.80	+0.28 +0.32 +0.35 +0.35 +0.35 +0.35	0.05 0.15 0.34 0.39 0.57 0.82	+0.33 +0.36 +0.37 +0.37 +0.40 +0.44

[Conc. of guaiacol = 1.5 mM]

TABLE 2 - CYCLIC VOLTAMMETRIC DATA FOR GUAIACOL AT DIFFERENT CONCENTRATIONS

Sl No.	Medium	рН	Sweep rate V sec ⁻¹	[Guaiacol] mM	Current (μA)	$i_p v^{1/2}c$
1	Sulphuric acid		0∙05	1·5 2·4 3 5	650 780 1355	1958 1471 1711
2	Clarks and Lubs buffer	1•3	0.05	1.5 2.4 3.5	450 540 800	1479 1111 1102
3	Phosphate buffer	6.6	0.02	1·5 2·4 3·5	320 520 750	964 981 947
4	Sodium carbonate	11-4	0.02	1·5 2·4 3·5	380 475 635	1181 924 827
5	Sodium hydroxide	13.0	0.02	1·5 2·4 3·5	393 440 620	1260 885 835

TABLE 3 - CHRONOAMPEROMETRIC DATA FOR GUAIACOL

[Conc. of guaiacol = 1.5 mM]

Time	$Current/\mu A$ in							
sec	Sulphuric acid	Clarks and Lubs buffer	Phosphate buffer	Sodium carbonate	Sodium hydroxide			
2 4 5 6 7 8 9 11 13 15 16 18 20	360 271 249 225 216 213 194 181 173 165 155 145 136	337 266 224 205 192 183 171 156 147 136 134 126 121	515 361 330 286 267 248 237 220 204 195 183 174	262 149 140 97 83 67 56 47 36 30 26 23 19	426 279 240 201 172 148 128 100 78 63 59 49 49			
Potentials employed/V	+0.80	+0.80	+0.90	+0.40	+0.20			

TABLE	4	DIFFUSION	COEFFICIENT	DATA	FOR	GUAIACOL
			AT 24°			

	[Conc. of guaiac	ol = 1	5 mM]		
Sl No.	Medium	ana	Diff. coeff. \times 10 ⁵ (cm ² sec ⁻¹)		
			Cyclic voltamme- tric	Chrono- ampero- metric	
1 2 3 4 5	1N sulphuric acid Clarks and Lubs buffer Phosphate buffer 0-1N sodium carbonate 0-1N sodium hydroxide	0.80 0.68 0.20 0.69 0.53	0·876 0·680 3·396 0·433 0·816	0·604 0·525 1·141 0·260 0·870	

 αn_a values and diffusion coefficient data for guaiacol are presented in Table 4. The low value of the transfer coefficient may be attributed to the drawn out wave obtained for guaiacol in the phosphate buffer (Fig. 2a). The diffusion coefficient

values obtained by chronoamperometric method are preferred to cyclic voltammetric values for the following reasons: (i) Cyclic voltammetric evaluation of the diffusion coefficient requires the knowledge of αn_a and $i_p/v^{1/2} c$ values. αn_a is extremely sensitive to the surface state of the electrode and $i_p/v^{1/2}c$ values are also influenced by adsorption. (ii) Chronoamperometric evaluation of the diffusion coefficient requires a knowledge of $(it^{1/2})_0$ values. Since these values are evaluated by extrapolation to zero time, diffusion coefficient values are not likely to be affected by adsorption.

References

- 1. PAPOUCHOUDO, L., BACON, J. & ADAMS, R. N., J. electroanal. Chem., 24 (1970), Appl. 1.
- ADAMS, R. N., Electrochemistry at solid electrodes (Marcel Dekker, New York), 1969, 123.
 BROWN, E. R. & LARGE, ROBERT F., Techniques of organic
 - BROWN, E. R. & LARGE, ROBERT F., Techniques of organic chemistry; Part IIA — Electrochemical methods, edited by Weissberger and Rossiter (Wiley, New York), 1971, Chapter VI. pp. 425.
- Chapter VI, pp. 425. 4. JAYARAMA REDDY, S. & KRISHNAN, V. R., Indian J. Chem., 15A (1977), 96.