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Underwater targets recognition is a difficult task due to the specific attributes of underwater target radiated noises, low 

signal to noise ratio and so on. In this paper, the input data optimization method and recognition model were researched. The 
underwater target radiated noise spectrum was chosen as the original feature. The t-distributed stochastic neighbor 
embedding (t-SNE) algorithm was used to reduce the dimensionality of the original spectrum segments divided by 
frequency. The optimal features can be obtained by analyzing the separability. Then the stacked nonnegative constrained 
denoising autoencoder (SNDAE) model was established to recognize the optimal features. The experimental signal spectra 
were processed by above methods. The results show that the recognition accuracy of SNDAE is higher than that of other 
contrastive methods. And the frequency of input band with the highest recognition accuracy is approximately the same as 
that with the best separability based on t-SNE, indicating that the above method can improve the recognition accuracy and 
efficiency. 

 
[Keywords: Feature optimize; Stacked nonnegative constrained denoising autoencoder; t-distributed stochastic neighbor 

embedding; Underwater target radiated noise] 

 
Introduction 

Underwater target recognition, as one of the key 
technologies to promote the intelligence of underwater 
acoustic equipment, is an important research direction 
of underwater acoustic signal processing. The core 
research contents of underwater target recognition are 
to extract and express the features of underwater target 
radiated noises. The traditional underwater target 
recognition is usually realized by separability feature 
extracting based on some signal processing methods 
and feature identifying based on classifier. Many 
scholars have researched underwater target recognition. 
Then a lot of separability feature extracting means and 
classifier design methods have been put forward1-5. 
However, the composition of underwater acoustic 
signals is very complex, and the features with obvious 
invariance and differentiation are often the 
comprehensive results of a variety of original features 
according to contribution and relevance. So the feature 
construction and selection need great skills. An 
important way to improve the utilization degree of 
target information hiding in signal is to increase the 
feature number or dimensions. But this will lead to the 
increase of information redundancy. Then the 

complexity of classifier calculation will increase and 
the recognition efficiency will decrease. If the 
nonlinear calculation capacity of the classifier is 
insufficient, the phenomenon of overfitting or 
underfitting may occur, and then the classifier 
performance will go down. Therefore, the underwater 
target radiated noise features for recognition should be 
optimized and classification model with strong 
computational performance needs to be built to realize 
underwater target recognition. 

The t-distributed Stochastic Neighbor Embedding 
(t-SNE) is a nonlinear dimensionality reduction 
method based on probability analysis, which can 
recover low dimensional manifold structure from 
high-dimensional sampling data and realize visual 
projection6. Compared with principal component 
analysis (PCA) and other traditional methods, it has 
stronger nonlinear data processing ability. At present, 
many researchers have applied t-SNE algorithm to 
data dimensionality reduction and visualization 
analysis in the field of computer vision, medical 
diagnosis and so on7,8,9. Therefore, it is a good choice 
to introduce this algorithm into separability analysis 
and optimization for underwater target signal features. 
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The deep learning is a hot research direction in 
artificial intelligence field now. It was first put 
forward by Hinton G10 in 2006. The structure of deep 
learning is based on the superposition of multiple 
hidden layers. The feature extraction ability is 
improved through layer by layer learning and the 
process is similar to human brain's cognition of 
things. Although each hidden layer usually only uses 
relatively simple nonlinear transformation, the 
combination of all hidden layers can produce very 
complex nonlinear transformation. So deep learning 
has very powerful computing ability. Since proposed, 
the deep learning has attracted wide attention. Not 
only new theoretical algorithms are continuing to be 
introduced11-15 but also the practical applications such 
as image recognition, behavior recognition, speech 
signal processing, human brain simulation and so on 
are increasing16-20. The applications of deep learning 
in the field of underwater target recognition were 
relatively few and only simple researches based on 
basic deep learning algorithms were conducted21,22,23. 
Compared with image and speech signals, the 
underwater target radiated signal usually has lower 
signal to noise ratio and the signal composition is 
more complex. So it is necessary to establish an 
appropriate deep learning model and optimize this 
model according to the signal features for the purpose 
of achieving better results. 

In this paper, the underwater target recognition 
method was studied based on t-SNE and deep 
learning algorithm. Firstly, the dimensionality of 
underwater target radiated signal spectrum was 
reduced based on t-SNE algorithm, and the features 
for recognition can be optimized by analyzing the 
separability of dimensionality reduction results. Then 
the stacked nonnegative constrained denoising 
autoencoder (SNDAE) was built according to the 
input signal characteristics, and the optimized features 
can be recognized by SNDAE. Finally, underwater 
target experimental signals were recognized by the 
proposed signal processing method, and the 
effectiveness is proved. 
 
Methods 
t-SNE algorithm 

t-SNE is a manifold learning algorithm improved 
by stochastic neighbor embedding (SNE)24. The SNE 
transforms high dimensional Euclidean distance into 
conditional probability which represents the similarity 
between data points. The closer the distance between 

data points, the higher the conditional probability. 
When the data are mapped to low-dimensional space, 
the data points should also reflect the same similarity. 
The conditional probability between the 
corresponding data points is also constructed in low-
dimensional space and the projection of high-
dimensional data to low-dimensional data is realized 
by reducing the similarity error between the high-
dimensional space condition probabilities and the 
low-dimensional space conditional probabilities. 

As the SNE algorithm establishes the similarity 
between high-dimensional data based on asymmetric 
conditional probabilities, the relationship between the 
data cannot be fully expressed and there also exists the 
phenomenon of data congestion caused by the small 
space volume. The t-SNE algorithm improves the 
above disadvantages. It adopts a symmetric model and 
the conditional probabilities between the data points in 
SNE model are replaced by joint probabilities. Set and 
conform to the Gaussian probability distribution 
centered on . Then the conditional probability can be 
respectively expressed as: 
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where i  is the variance of Gaussian function. The 
local symmetry joint probability distribution between 
high-dimensional data can be expressed as: 
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In the low-dimensional space, the t-SNE takes the 

t-distribution whose freedom is one degree as a kernel 
function to generate the joint probability distribution 
between the embedded data points. As a typical 
heavy-tailed distribution, t distribution can make the 
distance between the embedded data larger than that 
generated by Gaussian kernel function, especially for 
the distance between the non-similar data points, 
which can effectively alleviate disadvantages of low 
dimensional manifold extrusion caused by using 
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Gaussian kernel function to construct the random 
neighborhood probability. Set jy  and iy  as the data 

points in low-dimensional space corresponding to jx  

and ix  respectively, then the joint probability 

distribution ijq  can be expressed as: 
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The Kullback-Leibler divergence (KL divergence) 

is used as the cost function for difference measure 
between |j ip  and |j iq . The KL divergence of all points 

is minimized based on the gradient descent method to 
obtain the best embedded data. The objective cost 
function t-SNEJ  and the gradient C  can be 
respectively expressed as: 
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Stacked Nonnegative Constrained Denoising AutoEncoder 
Stacked Denoising AutoEncoder 

The autoencoder (AE) is a multi-layer feed forward 
network with structural symmetry for middle layer. 
The training objective is to reconstruct the input 
signal from the target expression. The AE can be used 
to learn identity mapping and extract unsupervised 
features. The structure of a single AE can be divided 
into encoder and decoder. 

The denoising autoencoder (DAE) has the same 
structure as the traditional AE, except that it adds a 
certain amount of noises to the input data, and its 
learning goal is to reconstruct a pure input from the 
contaminated input, thereby the robustness of output 
is increased. Set x  as original input without noise, 
the DAE adds noises to original input data through a 
random mapping transformation  ~ |Dq x x x . Then 

the partially corrupted data x  can be obtained, and 
D  is the data set. The encoder completes the mapping 
transformation from the input vector x  to the output 

representation y , and the process can be expressed as: 

   f s  y x Wx b   …(7) 

 
where   is the model parameter and  ,  W b , W  

is the weight matrix whose dimension is d d , b  is 
the offset vector whose dimension is d . 

The decoder maps the output representation y  
back into the input space and reconstructs the vector 
z . The process can be expressed as: 
 

   g s     z y W y b   …(8) 

 
where    is the model parameter and  ,    W b , 

W  is the weight matrix whose dimension is d d  , 
b  is the offset vector whose dimension is d .The 

objective function is to minimize the reconstruction 
error between z  and x , which can be expressed as: 
 

 ,arg min ,J   x z  … (9) 

 
where J  is a specific cost function, common with 
Mean Squared Error, Cross Entropy and so on. When 
some DAEs are overlapped layer by layer, that is, the 
output of last DAE is the input of the current DAE, 
the stacked denoising autoencoder (SDAE) can be 
obtained. Fig. 1 shows the block diagram of SDAE. 
The training of SDAE can be divided into two stages 
which are pre-training and fine-tuning. In the stage of 

 
 

Fig. 1 — Block diagram of SDAE 
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pre-training, the unsupervised training is conducted 
for SDAE so that the model structure parameters of 
SDAE can achieve approximate optimum in the 
whole. Then the supervised reverse fine-tuning is 
conducted based on data with label to further optimize 
the network of SDAE. 

In order to prevent over-fitting in the course of 
training, weight decay term  weightJ   can be added 

into the cost function, usually expressed as: 
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where   is the coefficient of weight decay term, ln  is 

the hidden layer number, ls  is the neuron node 

number of layer l ,  l
jiW  is the element value of the 

weight matrix W  with subscript of j  and i . 
At the same time, in order to further optimize the 

model performance, the sparse constrained term can 
be added into the cost function, usually expressed as: 
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where   is the coefficient of sparse constrained term, 

  is the sparse parameter, ˆ
j  is the average activity 

of hidden neuron node j , s  is the number of hidden 

neuron node number,  ˆKL || j   is the KL 

divergence between ˆ
j  and  , and it can be 

expressed as: 
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The final cost function of SDAE can be expressed as: 
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Stacked Nonnegative Constrained Denoising AutoEncoder 
As the input of deep learning model for target 

recognition is signal spectrum, and then the multi-
sample input data is a non-negative matrix. With 

reference to non-negative matrix factorization (NMF), 
when the dimensionality reduction is conducted for 
the input data matrix, the results should also be non-
negative. That is the overall performance of the 
results is superimposed by local features, then the 
nature of the input object can be better reflected. A 
viable option is to improve the weight decay term thus 
making the output data close to non-negative. The 
decay rate of negative numbers and nonnegative 
numbers in the weight matrix can be adjusted, and the 
weighting term is set to L2 regularization, then the 
following cost function can be obtained. 
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where 1 0  , 2 0  . When setting 1 2  , the effect 
of negative weight coefficient on the cost function is 
greater than that of positive weight coefficient. Unlike 
the nonnegative constraint in literature 25, the proposed 
method can adjust the decay rate of the weight decay 
term by changing negative weight coefficient 1  and 

positive weight coefficient 2 . Thus the nonnegativity 

of the weight matrix can be improved. If 1  and 2  are 
set appropriately, the iterative process of cost function 
can be effectively improved. 

Based on the gradient descent method to minimize 
the cost function, the following weight update method 
can be obtained.  
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In practice, the weight matrices are updated by 
applying batch gradient descent method. The process 

is as follows. Set  lW  as the weight matrix of  

layer l .  lW  is a matrix. The dimension of  lW  

is the same as that of  lW , and the initial values of all 
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layers are set to 0. The number of samples per  
batch is m . 

For all samples, the partial derivative of each node is 
calculated in turn using the back-propagation algorithm. 
The calculation method is can be expressed as:  
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where k  is the sample sequence number. Next 

  SNDAEl
kW

J  is added to  lW , that is: 
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Then the weight matrix can be updated, and the 

update result can be expressed as: 
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Fig. 2 shows the asymmetric weight decay curve 

when 1 1   and 2 0.5  . 
 
Signal processing flow 

When the above methods are comprehensively 
applied, the signal processing frame can be obtained, 
as shown in Fig. 3. Firstly, the underwater target 
radiated noises are pre-processed, and the purpose is 
to transform the signal into a processing domain in 
which the signal separability can appear. In this paper, 
the signal spectrum is generated in the pre-processed 
stage for further processing. The spectrum of the 
target signal is segmented by frequency. Then the t-
SNE algorithm is used to reduce the dimensionality of 

signal spectra of different frequency bands. The 
dimensionality reduction results are visualized and 
analyzed to obtain optimal signal band with the best 
separability. At last, the signal spectrum of the 
preferred frequency band is recognized based on 
SNDAE model and the final recognition result can be 
obtained. 
 
Results and Discussion 
Process for two types of underwater target experimental 
signals 
Spectrum characteristics of underwater target radiated signals 

Selecting the appropriate input data is one of the 
key factors to realize the effective learning and 
recognition. Usually, the signal to noise ratio of the 
time domain underwater acoustic data is low. Even 
through complex nonlinear transformation, it is 
difficult to extract feature with good separability. In 
frequency domain, the low frequency spectrum 
usually contains rich target characteristics and can be 
used as the input data of deep learning model. 

Two types of experimental underwater target 
radiated signal were analyzed. The sampling rate of 
the experiment was 5000 Hz. The number of sampling 
points was 32768 for each target sample, and the total 
number of samples were 5400. Fig. 4 shows partial 
signal fragments of every target with random 
selection. It can be seen that the signal to noise ratio 
of each type of target signal is very low and the signal 
composition is complex. Fig. 5 shows the spectrum of 
each target signal in Fig. 4. It can be seen that the 
spectra are also complex, but there are some 
differences from the above spectra, reflecting that the 
spectra contain separability information. 

The low frequency signal spectra of some bands 
were projected in two-dimension based on t-SNE 

 
 

Fig. 2 — Asymmetric weight decay curve

 
 

Fig. 3 — Signal processing frame 
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algorithm to realize visualization, and the principal 
component analysis (PCA), locality preserving 
projection (LPP) and stochastic neighbor embedding 
(SNE) were used as contrastive methods. The results 
are shown in Fig. 6. The components of target 1 have 
been almost overlapped on the components of target 2 
from the results of PCA and LPP. The results cannot 
reflect the separability of different targets. The 
projection results of t-SNE and SNE can reflect some 
separability between target 1 and target 2, but SNE 
results still have a certain coincidence degree among 
different targets and the t-SNE results have the best 
separability. 
 
Analysis of dimensionality reduction results of different 
frequency bands 

The separability characteristics of the spectrum on 
different frequencies were studied. The spectrum with 
frequency range from 10 to 1000 Hz was segmented 
by frequency. The dimensionality of each spectrum 
segment was reduced and the results were visualized 
based on t-SNE algorithm, as shown in Fig. 7. It can 

be seen that as the frequency increases, the 
separability of the spectral segments exhibits a 
downward trend in general. The spectrum segments 
with frequency range from 10 to 150 Hz have the best 
separability. There exists large class spacing between 
the various objectives on the whole. The spectrum 
bands of 150H-250 Hz also have relatively strong 
separability. However, the class spacing between 
different targets has been reduced. The overlap degree 
gradually increases when the frequency is more than 
250 Hz. For the spectrum bands whose initial 
frequency is higher than 500 Hz, the separability 
degree between different targets becomes very weak. 
Based on the above analysis, when the target signal is 
to be recognized, the spectrum whose end frequency 
is lower than 500 Hz can be mainly used. In 
particular, the components below 250 Hz may be 
important to consider. 
 
Analysis of recognition results of two types of targets 

The SNDAE model was used to recognize the 
above two types of underwater target radiated noises, 

 
 

Fig. 4 — Two types of underwater target radiated signals 
 

 
 

Fig. 5 — Two types of underwater target radiated signal spectra 
 

 

Fig. 6 — Projection results of different dimensionality reduction methods 
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and the recognition accuracy was analyzed. At the 
same time, SDAE and Support vector machine (SVM) 
were used for contrast recognition. 

The spectrum whose frequency is below 250 Hz 
has relatively good separability from the analysis 
results in above section. Then the low frequency 
bands should be contained in the spectrum to be 

recognized. Therefore, the initial frequency of every 
spectrum band was set as 10 Hz and the end 
frequency was gradually increased from 50 Hz to 
1000 Hz. Considering the low proportion of samples 
with label in actual underwater acoustic data, the 
number of samples with label was set as five percent 
of the total training samples. To a certain extent, it 

 

Fig. 7 —Spectrum dimensionality reduction results of two types of targets 
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can also reflect the advantages of unsupervised  
pre-training of autoencoder. 

The number of hidden layers of SNDAE as well as 
that of SDAE was set to 2 respectively. The reference 
nodes were all set to 500 and 50 respectively, and it can 
be changed according to the actual situation. The 
weight coefficient 1  and 2  were set as 1 and 0.5 
respectively, and the Softmax classifier was used as the 
top output layer. The Gaussian radial basis function 
(RBF) was used as the kernel function of SVM. 

Table 1 shows the recognition accuracy of different 
frequency bands based on above recognition methods. 
As the initial frequencies of all spectrum bands for 
recognition are the same, the end frequency is used as 
the abscissa, and the curve of recognition accuracy 
changed with end frequency can be obtained, as 
shown in Fig. 8. 

Then the recognition accuracy was analyzed. The 
recognition accuracy of each method shows a 
tendency to rise first and then decreases as the end 
frequency increases. 

For SNDAE and SDAE, when the end frequency is 
raised from 50 Hz to 100 Hz, the recognition accuracy 
increases substantially, and the recognition accuracy 
fluctuates within a wide range when the end 
frequency is between 100-500 Hz, but all above 
spectrum bands have high recognition accuracy. 
When the end frequency is between 150-250 Hz, the 
recognition accuracy is the best and the recognition 
accuracy of SNDAE is better than that of SDAE on 

the whole. According to the analysis results based on 
t-SNE, the separable components mainly exist in the 
underwater target signal spectrum band whose 
frequency is below 250 Hz. And some separable 
components also exist in the spectrum band whose 
frequency is between 250-500 Hz. These results  
are in good agreement with the frequency bands when 
the above deep learning models have the best 
recognition accuracy. In addition, the above model 
still has a relatively high recognition accuracy  
when the end frequency is high, indicating that the 
above deep learning models have strong data analysis 
ability and can extract the separable components  
from the highly redundant data to realize target 
recognition. So the deep learning models have good 
data tolerance. 

For SVM, the recognition accuracy is also greatly 
improved when the end frequency is increased from 
50 Hz to 100 Hz, and the best recognition accuracy 
appears when the end frequency is 150 Hz. This is 
due to the fact that SVM constructs the classification 
surface by mapping data from low dimensional space 
to high dimensional space, and its advantage is to 
solve the classification problem when the sample 
number is small and sample dimensions are low. 
Then, with the end frequency increasing, the 
recognition accuracy has a monotonically decreasing 
trend. When the end frequency is large, the 
recognition accuracy of SVM was significantly lower 
than that of SNDAE and SDAE. So the SVM cannot 
take full advantage of the spectrum band whose 
frequency is larger than 150 Hz and the data tolerance 
is lower than that of deep learning models. 

In general, the recognition accuracy of SNDAE is 
better than that of SDAE and SVM whether on the 
whole or for the best frequency bands. 
 
Process for multi types of underwater target experimental 
signals 
Signal feature analysis 

The experimental data are beam space signal of 
four types of ships. The sampling rate is also 5000 
Hz. The segments of the spectrum of the signal were 

Table 1 — Recognition accuracy of two types of targets 

Frequency/Hz Recognition accuracy/% Frequency/Hz Recognition accuracy/% 
SNDAE SDAE SVM SNDAE SDAE SVM 

10-50 82.46 80.93 83.08 10-300 92.52 92.81 88.50 
10-100 89.63 88.54 92.42 10-400 92.90 91.32 86.33 
10-150 93.24 92.41 93.92 10-500 91.94 88.37 85.58 
10-200 95.49 93.63 92.50 100-750 91.27 88.68 82.30 
10-250 94.90 93.50 91.58 10-1000 88.22 87.26 81.25 

 

 
 

Fig. 8 — Curves of recognition accuracy with end frequency
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processed based on t-SNE algorithm and the results 
were shown in Fig. 9. 

The spectra have relatively high separability when 
the frequency is below 200 Hz and the components 
whose frequency is higher than 500 Hz have little 
separability. So only two dimensionality reduction 
results whose initial frequency exceeds 500 Hz are 
listed. The results are similar to that of targets with 
two types in Fig. 7. 
 
Analysis of recognition results of four types of target 

The SNDAE, SDAE and SVM were applied to 
recognize the four types of targets. The model 

parameters were consistent with the previous settings 
in Section 3.1.3. A total of 4000 samples were used as 
training data and 2000 samples as test data. 

Table 2 shows the recognition accuracy and 
recognition program run time of different frequency 
bands. The recognition program runtime has been 
normalized for ease of comparison. Fig. 10 shows the 
curve of recognition accuracy changed with end 
frequency as well as the curve of recognition program 
run time changed with end frequency. 

The recognition accuracy was analyzed. As the end 
frequency increase, the recognition accuracy of each 
method increases first and then decreases. The best 

 
 

Fig. 9 —Spectrum dimensionality reduction results of multi types
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recognition accuracy is obtained when the end 
frequency is between 150-300 Hz. The recognition 
accuracy of SNDAE is the best overall. 

Then the recognition program efficiency was 
analyzed. The program run time of each method is 
gradually increased with the rise of the data 
dimension. Take SNDAE as an example, when it has 
the best recognition accuracy (frequency band of 10-
200 Hz), the program run time only accounts for 
13.67 % of that of broadband spectrum (frequency 
band of 10-1000 Hz). Therefore, the accuracy and 
efficiency of recognition can be effectively improved 
by selecting the optimal input data based on t-SNE 
algorithm and achieving target recognition based on 
SNDAE model. 
 
Conclusion 

The underwater target recognition was studied. The 
t-SNE was used to reduce the dimensionality of the 
target radiated noise spectrum segment divided by 
frequency for the purpose of analyzing separability. 
Then the SNDAE was established to recognize 
optimal data. The experimental data processing results 
show that the spectrum separability decreases with the 
increase of frequency. The recognition accuracy of 
SNDAE is higher than that of SDAE and SVM, and 

the optimal input data band approximately 
corresponds to the result of t-SNE. The program run 
time based on optimal data is significantly lower than 
that based on original data. 
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