Mössbauer, Infrared & Magnetic Studies on Hexacarboxylatoferrate(III) Complexes

A N GARG* D V PARWATE

Department of Chemistry, Nagpur University, Nagpur 440 010

and

D RAJ

Department of Physics, Punjab Agricultural University, Ludhiana 141 004

Received 27 May 1986; revised 29 September 1986; accepted 3 November 1986

Mössbauer and infrared spectroscopic studies of some trisodium hexacarboxylatoferrate(III) complexes, Na₃[Fe(OCOR)₆], (R = -H, -CH₃, -C₂H₅, *n*- and *i*-C₃H₇, -C₆H₅, -C₆H₅CH₂, -(C₆H₅)₂CH, -C₁₀H₇CH₂, ϕ - and *m*-CH₃C₆H₄, ϕ , *m*- and *p*-NH₂C₆H₄, ϕ - and *p*-ClC₆'H₄, -2,4 and -2,6 Cl₂C₆H₃ and -2,3 and 2,4-(CH₃)₂C₆H₃ have been carried out at room temperature. Unidentate coordination of the carboxylate group is supported by the difference in v_s(OCO) and v_a(OCO) modes. All the complexes exhibit isomer shift (δ) values in the range of 0.60-1.01 mms⁻¹ (with respect to sodium nitroprusside) and a quadrupole doublet with ΔE_0 in the range of 0.22 to 0.94 mms⁻¹. For aliphatic carboxylato complexes, δ varies in a very narrow range of 0.69-0.88 mms⁻¹ but it varies in a large range for substituted benzoato complexes. Variation in ΔE_0 values has been attributed to distortion in octahedral geometry and restriction in free rotation around C₆H₅-C bond as a result of substitution in the benzene ring. Magnetic moments indicate all the complexes to be of high spin.

Carboxylate ion $(-C - O^{-})$ acts as a unidentate, bidentate or a bridging ligand, depending on the nature of metal ion, carboxylic acid and the reaction conditions¹⁻³. Iron is known to form simple and some basic salts with formic and acetic $acids^{4-8}$. Formation of hexaformato complexes has also been reported^{4,9}. A recent review has described the polynuclear nature of some metal carboxylates¹⁰. In some compounds with M-M quadrupole bonds, syn-syn bridging RCOO⁻ ligand is extremely common¹¹. All these unusual features prompted us to undertake the study of hexacarboxylates of higher fatty acids¹². Recently Brar et al.¹³ have studied hexaformato complexes, M_3 [Fe(OCOH)₆].xH₂O (M = Li, Na, K and Cs). We have presently synthesized complexes with the general formula $Na_3[Fe(OCOR)_6]$ where $R = -H_1 - CH_3$, $-C_2H_5$, *n*- and *i*- C_3H_7 , $-C_6H_5$, $-C_6H_5CH_2$, $-(C_6H_5)_2CH$, $-C_{10}H_7CH_2$, o- and m-CH₃C₆H₄, o-, m- and p-NH₂C₆H₄, o- and p-ClC₆H₄, 2,4- and 2,6-Cl₂C₆H₃ and 2,3- and 2,4-(CH₃)₂C₆H₃ and studied their Mössbauer and infrared spectra with a view to throw light on the effect of nature of ligand and the substitution of higher alkyl or substituted benzyl groups on the octahedral geometry of these hexacarboxylato complexes.

Materials and Methods

Preparation of complexes

All the chemicals used were of AR or high purity

grade. Sodium salts of the acids were prepared by treating equimolar amounts of the acids with sodium hydroxide or sodium metal in dry benzene.

The complexes were prepared by mixing (0.1 M) ferric nitrate with a slight excess of the calculated amount of the corresponding sodium carboxylate in aqueous medium.

$$Fe(NO_3)_3 + 6 \operatorname{RCOONa} \rightarrow Na_3[Fe(OCOR)_6] + 3NaNO_3$$

In most cases coloured complexes separated out immediately but in some cases the mixture had to be cooled in a freezing mixture for 3-4 days; e.g. complexes of *n*- and *i*-butyric acids were oily liquids which solidified on cooling in a freezing mixture. All complexes were dried *in vacuo* over fused CaCl₂. Analytical data were found to be in good agreement with the proposed formula (Table 1) and no water molecules were found to be associated in any case.

Mössbauer, infrared and magnetic measurements

Mössbauer spectra were recorded on a constant acceleration driven Mössbauer spectrometer employing a 25 mCi ⁵⁷Co(Rh) source. Natural iron was used as a calibrant while sodium nitroprusside (SNP) was used as standard. All measurements were carried out at room temperature only and all spectra were fitted with Lorentzian line equation visually. Infrared spectra were recorded in KBr on a Perkin-Elmer model 580 spectrophotometer. Magnetic

Table $1 - A$	Analytical Data of V	arious Cai	rboxylato	Complex	$xes, Na_3 F$	e(OCOI	() ₆
R	Colour	Fe	(%)	C	(%)	H (%)	
		Calc.	Found	Calc.	Found	Calc.	Found
Н	Middle buff	14.43	13.38	18.23	18.58	1.52	1.20
CH ₃	Middle buff	11.66	10.96	30.07	30.25	3.76	3.57
C_2H_5	Middle buff	9.92	9.81	38.38	36.76	5.33	5.15
$n-C_3H_7$	Brick red	8.63	8.78	44.52	42.18	6.49	5.59
i-C ₃ H ₇	Pale rose	8.63	7.95	44.52	43.41	6.49	6.69
C ₆ H ₅ CH ₂	Golden brown	5.97	5.69	61.61	59.62	4.49	4.47
$(C_6H_5)_2CH$	Middle buff	4.02	3.94	72.47	68.70	4.74	4.05
$C_{10}H_{7}CH_{2}$	Golden brown	4.52	4.10	69.97	66.62	4.33	4.51
C ₆ H ₅	Pale rose	6.56	7.20	59.23	59.77	3.53	3.87
o-CH ₃ C ₆ H ₄	Pale cream	5.97	5.94	61.61	60.67	4.49	4.47
m-CH ₃ C ₆ H ₄	Middle buff	5.97	6.32	61.61	61.25	4.49	4.79
o-NH ₂ C ₆ H ₄	Black	5.94	5.63	53.57	49.74	3.83	4.02
$m-NH_2C_6H_4$	Portland grey	5.94	6.27	53.57	52.90	3.83	4.26
$p-NH_2C_6H_4$	Brown	5.94	5.76	53.57	53.40	3.83	3.88
o-ClC ₆ H ₄	Portland grey	5.28	5.29	47.62	50.62	2.27	1.98
p-ClC ₆ H ₄	New ivory	5.28	4.95	47.62	50.20	2.27	2.40
$(2,3)(CH_3)_2C_6H_3$	Golden yellow	5.48	5.67	63.60	60.86	5.30	5.20
$(2,4)(CH_3)_2C_6H_3$	Golden yellow	5.48	5.01	63.60	60.56	5.30	4.95
$(2,4)Cl_2C_6H_3$	New ivory	4.42	4.57	39.84	40.15	1.42	1.40
$(2,6)Cl_2C_6H_3$	Pale cream	4.42	4.28	39.84	39.58	1.42	1.18

Table 2 – Magnetic and Mössbauer Spectral Data of Various Hexacarboxylato Complexes, Na₃[Fe(OCOR)₆] at Room Temperature

R	Mössbauer	parameters	μ _{eff} Β Μ
	Isomer shift* δ (mms ⁻¹)	Quadrupole splitting $\Delta E_Q (\text{mms}^{-1})$	D.M.
Н	0.70	0.22	5.60
CH ₃	0.88	0.36	5.10
C_2H_5	0.60	0.69	6.15
$n-C_3H_7$	0.69	0.66	5.27
i-C ₃ H ₇	0.69	0.44	5.51
$C_6H_5CH_2$	0.72	0.54	6.03
$(C_6H_5)_2CH$	0.60	0.50	5.49
$C_{10}H_7CH_2$	0.66	0.53	5.35
C_6H_5	0.64	0.43	6.25
o-CH ₃ C ₆ H ₄	0.66	0.94	5.28
m-CH ₃ C ₆ H ₄	0.66	0.63	5.80
$o-NH_2C_6H_4$	0.72	0.53	5.90
$m-NH_2C_6H_4$	0.66	0.63	5.27
$p-NH_2C_6H_4$	0.64	0.65	5.25
o-ClC ₆ H ₄	0.69	0.56	5.26
$p-ClC_6H_4$	0.71	0.60	5.28
$(2,3)(CH_3)_2C_6H_3$	0.88	0.65	5.10
$(2,4)(CH_3)_2C_6H_3$	1.01	0.69	6.30
$(2,4) Cl_2 C_6 H_3$	0.69	0.50	5.10
$(2,6) \operatorname{Cl}_2 \operatorname{C}_6 \operatorname{H}_3$	0.98	0.48	6.07
*0 1' '. '.			

*Sodium nitroprusside as standard.

moments were calculated from magnetic susceptibility measurements using Guoy balance¹⁴ and $Hg[Co(SCN)_4]$ as the standard.

Results and Discussion

All the complexes are coloured solids and stable but decompose on storage for long periods. The Fe³⁺ is in an octahedral environment with six carboxylates surrounding central iron atom having an electronic configuration $t_{2g}^3 e_g^2$, where all five 3delectrons remain unpaired. Although a regular octahedron is expected but due to large size of the carboxylate ions and the alkyl groups attached to it a distorted geometry may be formed. In the complexes studied here alkyl groups are widely different and hence distortions may be correlated with the nature of alkyl group attached to the carboxylates. If phenyl group is the substituent, then rotation around local $C_6H_5 - C$ bond may get restricted, thus affecting the local symmetry.

Mössbauer spectra of all the complexes exhibit a well-resolved quadrupole doublet and the values of the parameters, δ and ΔE_0 are given in Table 2. The line-widths are found to be in the range of 0.21-0.50 mms⁻¹ but most of them are around 0.40 mms⁻¹, which is as expected for Fe³⁺ complexes¹⁵. Some unusually large line-widths may be due to electronicspin relaxation effects¹⁶. Mössbauer spectrum of phenylacetato complex at room temperature is shown in Fig. 1 as a typical case.

Magnetic moments

Magnetic moments of the carboxylato complexes lie in the range of 5.10-6.30 B.M. indicating five unpaired electrons and high spin state of Fe(III). High

Table 3 — Infrared Data of Various Hexacarboxylatoferrate(III) Complexes, Na ₃ [Fe(OCOR) ₆]												
R		v _{as} OCO	v _s OCO	vC = O	δΟCΟ	vC-C	vFe – O	vC-H	$\Delta \gamma_{max}^{\bullet}$	Direction of shift*		Other bands
										v _{as} OCO	v,OCO	-
Н		1580Ь	1400m	1070m	740sh	920w	420m	2880w	180	ae	1	780m
CH ₃		1580m	1370m	1010m	720w	_	420w	2900m	210	ae	1	
C_2H_5		1580m	1380m	1070m	660w	810w	410m	2960w	260	ae	1	340w
$n-C_3H_7$		1580m	1375w	1095w	665w	890w	400s	2960m	205	ae	1	340w
i-C ₃ H ₇		1580m	1380w	1100s	660w	930w	400s	2960w	200	ae	1	770m, 840m
C ₆ H ₅ CH ₂		1600w	1330w	1070m	660w	950m	395w	3020w	270	h	1	320w, 840m,
												1170w
$(C_6H_5)_2CH$		1595m	1400w	1075w	665w	870w	420s	3040w	195	h	1	325m
$C_{10}H_7CH_2$		1590m	1380w	1070w	660w	870w	430m	3040w	210	h	1	315w
C ₆ H ₅		1595m	1380w	1070s	670s	935m	420w	3060w	215	h	1	325s, 1170s
o-CH ₃ C ₆ H ₄		1600m	1400w	1080w	660s	920w	420m	2960w	200	h	1	860s, 1155s
m-CH ₃ C ₆ H ₄		1570w	1380w	1080s	660m	930w	410w	2920w	190	ae	1	840m, 1160w
o-NH ₂ C ₆ H ₄		1600w	1380w	1125w	660m	855w	400vw		220	h	1	320m, 1160s,
												3460w
$m-NH_2C_6H_4$		1565m	1380m	1060w	660s	_	420vw		185	ae	1	320w, 790s,
												3400w
$p-NH_2C_6H_4$		1600w	1380w	1125m	660w	850m	400w	-	220	h	1	330w, 1170s,
												3460w
o-ClC ₆ H ₄		1590m	1400s	1040s	645s	850w	420m	2980w	190	h	1	320m, 1160m
p-ClC ₆ H ₄		1590s	1400m	1090s	680s	850s	410s	2940w	190	h	1	1170m
$(2,3)(CH_3)_2C_6$	H_3	1570s	1385s	1110b	685w	850w	490s	2940w	185	ae	1	1175b, 2725w
$(2,4)(CH_3)_2C_6$	H_3	1580m	1380s	1110w	780s	880w	430m	2920b	200	ae	1	600s, 1150s
$(2,4)Cl_2C_6H_3$		1580m	1400s	1100s	760w	860m	420s	2920w	180	ae	1	330m, 1160w
$(2,6) Cl_2 C_6 H_3$		1565b	1375w	1080b	760w		450b	2920w	190	ae	1	1195w
Na(OCOCH ₃)	1578	1414						164			

*Compared with ionic carboxylate such as sodium formate or sodium acetate, s-strong, m-medium, w-weak, vw-very weak, sh-shoulder.

ae = almost equal, l = lower, h = higher.

Fig. 1 – Mössbauer spectrum of phenylacetato complex at room temperature

 μ_{eff} values in some cases may be attributed to (i) some contribution from the alkyl or aryl part of the ligands¹⁴ or (ii) non-quenching of orbital contribution or (iii) from some other magnetic interactions including magnetically non-equivalent sites in a unit cell¹⁷. However, the possibility of multiple-centre bonds cannot be ruled out altogether eventhough there is no direct evidence for it.

Infrared spectra

Infrared spectra of a wide variety of carboxylates of different metal ions have been recorded and discussed^{2,16-22}. Most important vibrational modes affected by coordination are $v_{as}(OCO)$, $v_s(OCO)$ and $\delta(OCO)$ which are observed in the regions 1600-1565, 1400-1330 and 740-645 cm⁻¹ respectively (Table 3). It has been suggested that the magnitude of separation, $\Delta v [= v_s(OCO) - v_{as}(OCO)]$ should be higher for unidentate carboxylate ligands as compared to those for simple ionic carboxylates $^{20-24}$. In Table 3 are given Δv values and the direction of shifts in $v_{as}(OCO)$ and $v_{s}(OCO)$ for individual carboxylate complexes. It is observed that in all carboxvlate complexes studied here Δv values (180-270 cm^{-1}) are always higher than that for sodium acetate (164 cm^{-1}) which is purely ionic carboxylate. This indicates unidentate nature of the carboxylate ligand.

It has also been shown that the shift of $v_{as}(OCO)$ modes of coordinated unidentate carboxylate ligand should be almost equal or higher whereas that of $v_{c}(OCO)$ should be lower as compared to the corresponding modes in simple ionic carboxylate^{2,22}. In all the cases studied here it is observed that $v_{as}(OCO)$ modes appear either at higher wavenumber or at the same wavenumber with respect to sodium acetate as reference. Similarly, $v_{c}(OCO)$ modes appear at lower wavenumber in all the hexacarboxylato complexes as compared to that of sodium acetate. Therefore, the criterion of direction of shifts also indicates a unidentate nature of the carboxylate ligands^{21,23}. Though, the two criteria of the magnitude of separation (Δv) and the direction of shift in vO-CO modes are basically qualitative in nature, these are definitely indicative of the coordinating nature of the carboxylate ligands.

The vFe-O modes in the compounds studied presently appear in the region 490-395 cm⁻¹. Except for 2,3-dimethylbenzoato and 2,6-dichlorobenzoato complexes in which vFe – O modes appear at 490 and 450 cm⁻¹ respectively, in most of the other complexes vFe-O modes appear ~400 cm⁻¹. It is also observed that in aliphatic carboxylates (from formato to phenylacetato) there is a continuous decrease in vFe – O modes, probably due to the bulk effect. The vC=O, vC-C and vC-H modes observed in the range 1125-1010, 950-810 and 3060-2880 cm⁻¹ respectively, are in agreement with those reported in the literature^{18,19}.

Mössbauer parameters

All the complexes give well-resolved doublet with isomer shift values (δ) in the range 0.60-1.01 mms⁻¹ (sodium nitroprusside as the reference) indicating Fe(III) in high spin state. For aliphatic carboxylate complexes δ varies in a narrow range of 0.60-0.88 mms⁻¹ and increases in the order $C_2H_5 < n$ - $C_3H_7 \le H \le CH_3$. For any substituted acetato com- $Na_3[Fe(OCOCH_2C_6H_5)_6],$ plexes Na₃[Fe{O- $COCH(C_6H_5)_2$ and $Na_3[Fe(OCOCH_2C_{10}H_7)_6]$, δ values are found to be 0.72, 0.60 and 0.66 mms⁻¹ respectively. The small change in s-electron density at the iron nucleus may be attributed to π -resonance in benzene ring as a result of which some electronic charge may be donated to the *d*-orbitals of the iron atom resulting in variation in isomer shift values. For benzoato complex, $\delta = 0.64$ mms⁻¹ is observed which is the lowest amongst benzene substituted complexes. For monosubstituted benzoic acid complexes, δ varies in the range of 0.64-0.72 mms⁻¹. Substitution at o-position with $-CH_3$, $-NH_2$ and - Cl groups leads to δ values of 0.66, 0.72 and 0.69 mms⁻¹ respectively. For disubstituted complexes δ values are comparatively higher indicating that selectron density at the iron nucleus is affected by disubstitution. Incidentally, disubstituted phenylcarboxylato complexes not only give higher δ values but also their vFe-O modes appear at higher wavenumbers. Presumably, disubstitution in benzene ring may be affecting the nature of Fe-O bond to some extent. Inoue et al.26 have also observed similar variations in alkyl phosphine and phosphite substituted pentacyanoferrates and explained their observations due to Hammett substituent constants. This mechanism could not be invoked here because substituents are not directly linked to the metal ion. However, the isomer shift values and metal-ligand stretching vibrations are equally affected by the substitution of heavier alkyl groups in ligands irrespective of low or high spin nature of iron(III) complexes²⁶.

In the case of point charges surrounding Fe(III) ion in an octahedral geometry, no quadrupole splitting is expected because all the five electrons are equally populated. However, carboxylate ligands are large enough to cause distortions and hence a net electric field gradient (EFG) is generated due to ligand contribution giving rise to quadrupole splitting. In the presently studied complexes, ΔE_{Q} is in the range of 0.22 to 0.94 mms⁻¹ indicating distortions in the octahedral geometry varying with the nature of alkyl group attached to the carboxylate²⁶. Some workers^{13,27} have attributed variations in ΔE_0 values due to change in outer cations in similar type of complexes. In the present studies, variations have been affected in the ligands attached to the central ion. A minimum value of $\triangle E_0 = 0.22 \text{ mms}^{-1}$ was observed for formato complex and a maximum $\Delta E_{\rm O} = 0.94$ mms⁻¹ for *o*-toluato complex. Similar variations have been observed by Inoue et al.26 and attributed to the nature of alkyl group attached to the ligand. In a series of aliphatic carboxylato complexes, ΔE_0 values increase in the order $H < CH_3 < i-C_3H_7 < n-C_3H_7 < C_2H_5$. The difference in ΔE_{Ω} value for *i*-butyrato and *n*-butyrato complexes may be due to the effect of branching in the chain which is expected to cause large distortions. complexes For the substituted acetato $[\mathbf{R} = \mathbf{C}_6 \mathbf{H}_5 \mathbf{C} \mathbf{H}_2, (\mathbf{C}_6 \mathbf{H}_5)_2 \mathbf{C} \mathbf{H} \text{ and } \mathbf{C}_{10} \mathbf{H}_7 \mathbf{C} \mathbf{H}_2], \Delta E_0$ values are found to be almost the same (0.54, 0.50)and 0.53 mms^{-1}). It seems that the substitution in the phenyl nucleus with heavier groups distort the geometry changing local symmetry only to a certain extent after which it remains unaffected. Also the distortion does not seem to be in a regular manner. Gupta et al.8 and Manesh et al.28 have also made similar observations in a series of chloro substituted Fe(III) acetato complexes.

For benzoato complex $\Delta E_Q = 0.43 \text{ mms}^{-1}$ which is comparatively small for large size of the carboxylato group. Presumably π -electrons in benzene ring may be interacting with $p\pi$ -orbitals of the carbon atom OCO⁻, thus restricting the free rotation of the C₆H₅-C bond.

It would also keep the aryl group planar with respect to carbon atom of the carboxylate ligand. When o-position is substituted with CH₃, NH₂ and Cl groups ΔE_0 values are 0.94, 0.53 and 0.56 mms⁻¹ respectively. The largest value for CH₃-substituted complex may be attributed to its bulky nature and the fact that rotation around C_6H_5-C bond may become free which may not be the case with NH₂ and Cl substituents. It is interesting to see that $\Delta E_{\rm O}$ values for *m*-substituted benzoato complexes having CH₃ and NH₂ substituents are the same. It means that in *m*-position, CH₃ group no longer influences the ΔE_Q due to its bulky character. The $\triangle E_0$ of 2,3- or 2,4-dimethylbenzoato and of 2,6-dichlorobenzoato complexes are comparatively small, suggesting that the distortion in the geometry of the complexes is not affected by further substitution in the phenyl ring.

Acknowledgement

Grateful thanks are due to the CSIR, New Delhi for financial support and to Prof. P R Singh, IIT, Kanpur, for the infrared spectra.

References

- Oldham C, in *Progress in inorganic chemistry*, Vol 10, edited by F A Cotton (Interscience, New York) 1968, pp 223.
- 2 Alcock N W, Tracy V M & Waddington T C, J chem Soc (1976) 2243.
- 3 Mehrotra R C & Bohra R, *Metal carboxylates* (Academic Press, London) 1983, pp 396.
- 4 Jorgenson C K, Inorganic complexes (Academic Press, London) 1963, pp 94.
- 5 Hoy G R & Barrows F de S, Phys Rev, 139 (1965) 929.
- 6 Bancroft G M, Maddock A G & Randl R P, J chem Soc (A) (1968) 338.

- 7 Duncan J F, Kanekar C R & Mok K F, J chem Soc(A)(1969) 480.
- 8 Gupta D C, Sharma N D, Puri D M & Saini M S, Indian J Chem, 16A (1978) 526.
- 9 Weinland R F & Reihlen H, Ber, 46 (1913) 3144.
- 10 Catterick J & Thornton P, Adv Inorg Chem Radiochem, 20 (1977) 291.
- 11 Cotton F A, Chem Soc Rev, 4 (1975) 27.
- 12 Parwate D V, Kulkarni S P & Garg A N, Proc Int Conf appl Mössbauer Effect, Jaipur (India) 1982, pp 751; Parwate D V & Garg A N, 187th ACS National Meeting, Div Nucl Chem & Tech, St. Louis, USA, Apr. 8-13, 1984, Abst. No. 49.
- 13 Brar A S, Brar S & Sandhu S S, Radiochem Radioanal Lett, 49 (1981) 207.
- 14(a) Selwood P W, Magnetochemistry (Wiley-Interscience, New York) 1956.
 - (b) Barefield E K, Busch D H & Nelson S M, *Quart Rev*, 22 (1968) 457.
- 15 Wignall J W G, J chem phys, 44 (1966) 2462.
- 16 Blume M, Phys Rev Lett, 14 (1965) 96.
- 17 Dutta R L & Syamal A, *Elements of magnetochemistry* (S Chand, New Delhi) 1982, pp 139.
- 18 Nakamoto K, Infrared spectra of inorganic and coordination compounds (Wiley-Interscience, New York) 1963, pp 222.
- 19 Rao C N R, Chemical applications of infrared spectroscopy, (Academic Press, New York) 1963, pp. 357.
- 20 Baylis B R W & Bailar J C, Inorg Chem, 9 (1970) 641.
- 21 Nakamoto K, Morimoto Y & Martell A E, J Am chem Soc, 83 (1961) 4528.
- 22 Manhas B S & Trikha A K, J Indian chem Soc, 59 (1982) 315.
- 23 Deacon G B & Philips R J, Aust J Chem, 31 (1978) 1709.
- 24 Tyagi A S & Srivastava C P, J Indian chem Soc, 58 (1981)
 284; Kumar A & Srivastava C P, J Indian chem Soc, 62 (1985) 563.
- 25 Cotton F A & Wilkinson G, *Advanced inorganic chemistry*, (John Wiley, New York) 1980, pp 172.
- 26 Inoue H, Sasagawa M, Fluck E & Shirai T, Bull chem Soc Japan, 56 (1983) 3434.
- 27 Manoharan P T, Kaliraman S S, Jadhao V G & Singru R M, Chem Phys Lett, 13 (1972) 585.
- 28 Mahesh K, Sharma R D & Puri D M, Indian J Chem, 14A (1976) 338.