Gamma Radiolysis of Binary Aqueous Systems : Bromate, Periodate, Permanganate & Dichromate Ions

S. K. PATNAIK*

Department of Chemistry, Berhampur University, Berhampur 760 007

and

H. J. ARNIKAR & M. R. SARKHAWAS Department of Chemistry, University of Poona, Pune 411 007

Received 12 November 1979; revised and accepted 14 April 1980

Gamma radiolysis of neutral aqueous solutions of bromate, periodate, permanganate and dichromate ions both in pure as well as in the presence of various organic solutes, viz. formate, acetate, succinate and ethyl alcohol have been investigated over a wide range of reactant concentrations. It is observed that in each mixed system, the decomposition yield is higher than that in the pure system. Appropriate mechanisms are suggested for the radiolytic reactions on the basis of the observed yields and the participation of primary radiolytic products of water.

THE pulse and steady state radiolysis of pure aqueous solutions of a large number of oxidising and reducing agents have been reported in the past^{1,2}. However, the radiation chemical behaviour of these systems under steady irradiations needs further investigation especially in the presence of various scavengers. In continuation of our earlier³⁻⁵ work on radiation-induced redox reactions, we report in this paper results of a comparative study on the steady state radiolysis of BrO_3^- , IO_4^- , MnO_4^- and $Cr_2O_7^{2-}$ alone and in the presence of different organic solutes at neutral *p*H.

Materials and Methods

All the chemicals used were of AR grade and their solutions in conductivity water were irradiated with γ -rays from a ⁶⁰Co source at a dose rate of 5.2 krad min⁻¹. Br⁻ was estimated micropotentiometrically, IO₄ iodometrically in the presence of sodium bicarbonate and permanganate and dichromate ions were determined spectrophotometrically at 545 and 440 nm respectively after centrifuging the irradiated solution.

Results and Discussion

The reduction yields in terms of G values for the different systems studied, are given in Tables 1-4.

I. Bromate/(a) acetate and (b) succinate — The data are recorded in Table 1. The radiolysis of $BrO_{\overline{s}}$ ions in pure aqueous solutions has been reported by earlier workers^{6,7} and also by us^{1'8'9} with a saturation value of $G(Br^-) = 0.6$ at 100 mM $BrO_{\overline{s}}$. The radiolysis of bromate ions, however proceeds by different pathways in the presence of acetate and succinate ions react mainly with the OH and the BrO_2 species [Br (IV)]^{7,8}. The reactivities of these organic ions with the reducing species^{4'5} $e_{\overline{sq}}$ and H are much lower compared to $BrO_{\overline{s}}$ and $e_{\overline{sq}}$ reaction.

$k (acetate + e_{aq})$		$10^{6} M^{-1} \text{ sec}^{-1}$
k (succinate + e_{aq}^{-})	=	$1.2 \times 10^8 M^{-1} { m sec^{-1}}$
$k (\mathrm{BrO}_{3}^{-} + \mathbf{e}_{\mathbf{aq}}^{-})$	==	$2.1 \times 10^9 M^{-1} \text{ sec}^{-1}$

Based on the above data mechanisms shown in Schemes 1 and 2 are proposed for the radiolytic decom position of BrO_3^{-1} ions in the presence of acetate and succinate ions.

The observed yield of 1.3 for $G(Br^{-})$ suggests that 40% of BrO₂ species are reduced to Br⁻ via reaction (8) and the remaining 60% are involved in back reaction⁶: BrO₂ + BrO₂ \rightarrow Products

It has been reported that the formate radical ion $\cdot COO^{-1}$ is formed in the radiolysis of disodium succinate¹⁰. In this redox system almost 100% of BrO₂

TABLE 1 — RADIATION CHEMICAL YIELD G (BI⁻) IN THE RADIOLYSIS OF (i) BROMATE/ACETATE AND (ii) BROMATE/SUCCI-NATE IONS

Conc. of BrO ₃ - (mM)	Conc. of acetate (mM)	Conc. of succinate (mM)	G(Br−)
10	10	<u> </u>	0.5 1.0 1.7
50	50	50	1.3 2.0
100	100 200		0.6 1.3 1.3
	500	100	1.3 2.3
	-	200 500	2.8 3.4

TABLE 2 — RADIATION CHEMICAL YIELD $G(-IO_4^-)$ in the Radiolysis of $IO_4^-/HCOO^-$ System			
[Conc. of $IO_4^- = 10.0 \text{ mM}$]			
Conc. of HCOO- mM	G(— IO ₄ -)	Conc. of HCOO mM	$G(-\mathrm{IO}_4^-)$
0.1	7.5 9.0	1.0 10.0	12.0 221.0

TABLE 3 RADIATION	CHEMICAL YIELD,	$G(-MnO_4)$ in the
RADIOLYSIS OF MnO4	-/CH ₃ COO- AND	MnO ₄ -/Br- Systems

Conc. of MnO₄ [−] mM	Conc. of CH ₃ COO- mM	Conc. of Br ⁻ mM	G(MnO₄)
0.5	100.0 1.0 10.0	1.0 10.0 100.0 — — — 1.0	0.8 0.4 0.4 4.2 1.1 1.2 0.6 2.8
10.0	100.0	10.0 100.0	0.6 4.7 0.6 6.4

Table 4 — Radiation Chemical Yield, G[—Cr(VI)] in the Radiolysis of $Cr_2O_7^2$ –/C₂H₅OH System

Conc. of $Cr_2O_7^{2-}$ mM	Conc. of EtOH mM	<i>G</i> [Cr(VI)]
1.0	5.0	0.54 1.0
	10.0	1.0
	25.0	1.0
2.5	<u> </u>	0.52
	5.0	1.32
	10.0	1.32
	25.0	1.32
5.0		0.4
	5.0	2.1
	10.0	2.1
	25.0	2.1

 $\begin{array}{cccc} BrO_2 + COO^- & \longrightarrow Br^- + CO_2 + O_2 & ..(10) \\ BrOt + | & & \longrightarrow Br^- + Products & (11) \\ CH_2COO^- & & & & \end{array}$

Scheme 2

species are reduced to Br⁻ by the reactions (10) and (11) such that $G(Br^-) = G(e_{aq}^- + H) = 3.4$

In both the redox mixtures $G(Br^{-})$ is much higher than the value for the radiolysis of pure bromate solution (Table 1). The low G (Br⁻) for the radiolysis of pure bromate solution was explained earlier^{8,9}.

Periodate/formate system — The data are presented in Table 2. On radiolysis periodate decomposes quantitatively to iodate and oxygen. A plot of the variation of the amount of IO_{4}^{-} consumed versus dose at $10^{-2}M$ is found to be linear with $G[-IO_{4}^{-}]$ = 7.5, which is in agreement with the reported value¹². The reduction yield increases with increase in formate ions concentration.

The radiolytic reduction of periodate ion has been reported by Bhattacharya and Bardhan¹¹. In order to explain the high reduction yield, they suggested that OH acts as a reducing agent. However, Hassan and Heitz¹² rejected this idea. The high decomposition yield obtained in the redox mixture suggests that a chain reaction is involved (see Scheme 3).

IO,-	$+ e_{ao}$	$\rightarrow IO_3^- + O^-$ (12)
10,-	+ H	$\rightarrow \rightarrow IO_3^- + OH$ (13)
IO₄-	$+ H_2O_2$	$\rightarrow \rightarrow IO_3^- + H_2O + O_2(14)$
HCOO-	+ OH	$\longrightarrow \cdot COO^- + H_2O^{14}$ (15)
·C00-	$+ IO_4^-$	$\rightarrow \rightarrow CO_2 + IO_3^- + O^- \dots (16)$
0-	$+ H_2O$	$\rightarrow \rightarrow OH + OH^{-}$ (17)
		Scheme 3

The regeneration of OH by the step (17) would produce a high concentration of \cdot COO⁻, thus initiating the chain propogation. The chain is terminated by steps (18) and (19).

$$\begin{array}{ccccccc} COO^- &+ O_{\mathbf{3}} & & \xrightarrow{- \longrightarrow} CO_{\mathbf{3}} &+ O_{\mathbf{3}}^- & ...(18) \\ 2 O_{\mathbf{3}}^- &+ 2 H_{\mathbf{3}}O & & \xrightarrow{- \longrightarrow} H_{\mathbf{2}}O_{\mathbf{3}} + 2 OH^- + O_{\mathbf{3}} ...(19) \end{array}$$

 H_2O_2 reacts with IO_4 in a rapid thermal reaction (14)

Permanganate/ (a) acetate and (b) bromide — Our recent study on the radiolysis of pure permanganate solutions¹⁵ shows that the maximum $G[-MnO_{4}]$ is 1.2 at 5 mM. In the presence of acetate, a much higher decomposition yield (6.4) is observed (Table 3).

While the primary radiolysis products e_{sq} , H, H_2O_2 reduce MnO_4 ions in steps (20-22) OH is involved in back reactions¹⁵. In the presence of acetate ion the back reaction is suppressed as OH reacts with acetate ion ($k = 4.6 \times 10^7 \ M^{-1} \ sc^{-1}$).

$$\begin{array}{rcl} MnO_{aq}^{-} &+ e_{aq}^{-} & \longrightarrow MnO_4^{2-} & \dots \end{array} (20) \\ MnO_4^{-} &+ H & \longrightarrow MnO_4^{2-} &+ H^+ & \dots (21) \\ MnO_4^{-} &+ H_2O_4 & \longrightarrow HMnO_3 &+ O_2 &+ OH^- \dots (22) \end{array}$$

The products of acetate radiolysis¹⁶, are $\cdot CH_3$, CH_4 , C_2H_6 etc. The hydrocarbons (CH_4 , C_2H_6) are not oxidised by KMnO₄ under normal conditions. Therefore the CH_3 radical alone reacts by step (23).

$$MnO_4^- + CH_3 \longrightarrow MnO_2 + HCHO + OH^-$$
 (23)

The formaldehyde formed is readily oxidised by MnO_{4}^{-} to formic acid which further reduces permanganate¹⁷. The manganate ion being unstable in neutral medium, in the presence of CO₂ yields MnO_{2} (ref. 15). Thus, the overall mechanism of reduction appears to be complicated.

However, for the radiolysis in the presence of Br⁻ ions the following explanation is advanced.

It is well known that Br⁻ ions are efficient scavengers of OH with a high rate constant ($k = 1.1 \times 10^9$ M^{-1} sec⁻¹)^{4'5}. Thus one should expect G ($-MnO_{4}$) to be higher in the presence of Br⁻. However, the low yield (0.6) actually observed suggests that the Br species formed is again attacked by e_{aq} to yield Br⁻. It is of interest to observe that the value 0.6 observed for G ($-MnO_4^-$) is independent of both MnO_4^- and Br^- ions.

This explanation for the low observed $G (-MnO_4)$ is not satisfactory. The competition of Br with electrons seems unlikely as MnO₄ has a high rate constant with e_{aq} (10¹⁰ M^{-1} sec⁻¹)¹⁸. The fate of Br species may be decided from the consideration of the reactions (24-30).

 $\rightarrow Br_2$ + Br Br ..(24) ..(25) ..(26) ..(27) . .(28) $\xrightarrow{} HBr + HO_2$ $\xrightarrow{} HBr + O_3$ $+ H_2O_2$. . (29) Br $+ HO_3$ Br ..(30)

It may be mentioned that the irradiated mixtures do not contain a trace of Br₂. The formation of HBr under present conditions is unlikely, because the yield is low, otherwise a high $G(-MnO_4)$ could be obtained since HBr readily reduces MnO₄ ions. Therefore, this explanation is also not valid. As the redox yield in mixtures is comparatively lower (0.6) than that of pure solutiont (1.2), itappears that permanganate reduction is inhibited by the presence of Br⁻. So it is plausible to assume that the initial reduced product is possibly smoothly oxidised again leading to the reformation of MnO_4 . Br species only can satisfy this condition, because this is a powerful electron acceptor. This is explained if one considers the reactions (20) and (31).

$$\begin{array}{ccc} MnO_4^{-} + e_{aq}^{-} & \longrightarrow & MnO_4^{2-} & & ..(20) \\ MnO_4^{2-} + & Br & \longrightarrow & MnO_4^{-} + & Br^{-} & & ..(31) \end{array}$$

Thus the radiation decomposition of permanganate is exclusively due to H and H_2O_2 .

The reduction yield corresponds to

 $G[-MnO_4^-] = \frac{1}{3} [G_{e_{aq}} - G_{OH} + G_H + G_{H_{2}O_2}] = 0.5$ which is close to the experimental value observed.

Dichromate/ethyl alcohol — Table 4 contains all the data for this system. In the radiolysis of neutral aqueous solution of pure $Cr_2O_7^{2-}$ ions e_{aq} and H have a reducing action while OH is involved in a

back reaction^{19'20}. In the presence of alcohol, OH

is scavanged. The reaction pathways may be as shown in Scheme 4.

$Cr(VI) + e_{aq} \longrightarrow Cr(V)$	(32)
$Cr(VI) + H \longrightarrow Cr(V) + H^+$	(33)
$CH_3CH_2OH + OH \longrightarrow CH_3CHOH + H_2O$	(34)
$Cr(V) + H_2O_2 \longrightarrow Cr(III) + 2H^+ + O_2$	(35)
$Cr(V) + CH_3CHOH \rightarrow Cr(IV) + Products$	(36)
$Cr(VI) + CH_3CHOH \rightarrow Cr(III) + Products$	(37)

Scheme 4

Since Cr(VI) reduction involves three-electron transfer, Eqs (32-37) lead to the following G[--Cr(VI)]^{19,20}:

$$G[-Cr(VI)] \approx \frac{1}{8} [G_{e_{aq}} + G_{H} + 2G_{H_2O_2} + \frac{1}{2}G_{OH}] \approx 2.1$$

which is in excellent agreement with the experimental value.

It is known that solutions of many oxidising agents are reduced under gamma radiation with a yield of about 2.3 atom-equivalents per 100 eV. In terms of molecules the yield may amount to one half or one third of this number, depending upon the number of equivalents involved in the reduction process.

References

- 1. ARNIKAR, H. J., PATIL, S. F., BODHE, A. A. & POKHARKAR, R. D., Radiochem. radioanal. Lett., 23 (1975), 307. 2. ARNIKAR, H. J., PATIL, S. F., BODHE, A. A. & POKHARKAR,
- R. D., Radiochim. Acta, 23 (1976), 109.
 3. ARNIKAR, H. J., PATIL, S. F., RAO, B. S. M. & BEDEKAR, M. J., Radiochem. radioanal. Lett., 28 (1977), 337.
- 4. BAXENDALA, J. H., Pulse radiolysis edited by M. Eberto (Academic Press, N. Y.), 1965, 15. 5. HART, E. J. & ANBAR, M., Hydrated electron, (1970), 110.
- 6. AMICHAI, O. & TREININ, A., J. phys. Chem., 74 (1970), 3670.
- 7. ANBAR, M. & NETA, P., J. inorg. nucl. Chem., 28 (1966). 1845.
- 8. ARNIKAR, H. J., PATNAIK, S. K. & SARKHAWAS, D. B., Radiochim. Acta, 24 (1977), 125. 9. PATNAIK, S. K., Radiation chemistry of some redox aqueous
- system, D. Sc. Thesis, Utkal University, 1978.
- 10. FUJIMOTO, M. & SEDDON, W. A., Can. J. Chem., 48 (1970), 2809.
- 11. BHATTACHARYA, S. N. & BARDHAN, D. K., Z. phys. Chem., 72 (1970), 38
- 12. HASSAN, P. N. & HEITZ, C. H., J. chim. Phys., 71 (1974), 127.
- 13. BARAT, F., GILLES, L., HICKEL, B. & LESIGNE, B., J.
- DARAI, I., GILLES, L., HICKEL, B. & LESIGNE, B., J. phys. Chem., 76 (1972), 302.
 DRAGANIC, Z. D., DRAGANIC, I. G. & KOSANIC, M. M., J. phys. Chem., 70 (1966), 1418.
 APNIKAP, H. L. DETLUT, S. K. & CLEMER, A. J.
- ARNIKAR, H. J., PATNAIK, S. K. & SARKHAWAS, D. B., Radiochem. radioanal. Lett., 31 (1977), 75.
- 16. ALLEN, A. O., The radiation chemistry of water and aqueous solutions (Van Nostrand, Princeton), 1961, 124.
- 17. WIBERG, KENNETH B., Oxidation in organic chemistry, Part A (Academic Press, New York), 1965, 52-56.

- HART EDWIN, J., Ann. Rev. Nucl. Sci., 15 (1965), 128.
 LEFORT, M., J. chim. Phys., 54 (1957), 782.
 ARNIKAR, H. J. PATNAIK, S. K., SARKHAWAS D. B., Radiochem. radioanal Lett., 35 (1978) 147.