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In this paper, three single-layered functional link artificial neural networks (FLANNs) based adaptive models are 
developed for generating improved responses for three high-frequency stimulations (HFS). It is in general observed that all 
the proposed FLANN models generate axonal responses which are in good agreement with the corresponding responses 
obtained from experiments. Further, it is demonstrated from simulation results that the responses obtained by the proposed 
model match better than that obtained by the theoretical model reported in the literature. Out of three FLANN models 
developed, the trigonometric FLANN model of suppression state of axonal memory is the best as it offers lowest of MAPE 
and MSE compared to those obtained by other two ANN models proposed in the paper. 
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Introduction 
Neuronal communication refers to communication 

among neuronsand is termed as neuro-spike 
communication. The review of related literature in the 
area of neuro-spike communication4reveals that the 
research work pertaining to the effect of axonal 
memory on spike communication through axon is 
few. The results of theoretical study during 
suppression state reported1 do not fully match with the 
experimental responses2,3 obtained due to stimulation 
at different frequencies. Hence, there is a scope of 
development of other alternative ANN5,7 models 
which will generate responses in the axon that will 
have better agreement with the experimental 
observations. The modelling of the responses using 
conventional back propagation based ANN5,7 is 
complex and takes more training time compared to 
the FLANN. However, performance wise they are 
similar. Hence, in this paper the FLANN model is 
chosen for generating the responses. To fulfil this 
research gap, an attempt has been made in this paper 
to develop three types of FLANN6 models such as 
Trigonometric FLANN (TFLANN)6, Polynomial 
FLANN (PFLANN)6 and Chebyshev FLANN 
(CFLANN)6 and to use those for generating 
experimentally closer responses. The organisation of 

the paper proceeds as follows: in Section 2, the 
materials and methods relating to background of 
suppression state of axonal memory are dealt. In 
Section 3, the methodology of modelling of different 
types of FLANNs for the generation of responses 
during the suppression state of axonal memory is 
presented. The simulation results are obtained from 
the three proposed models at different frequencies, 
and the results are compared and discussed in Section 
4. Finally, the conclusion and scope for further work 

are provided in Section 5. 
 
Materials and Methods 

In this section, a concise presentation on 
physiological studies and communication channel 
model for axonal transmission are presented. 
 

Axonal Transmission 
 
 

Signal and Channel Modelling of Neuron 
The hippocampal pyramidal neurons are stimulated 

by paired pulse with different inter pulse intervals 
(IPIs) changing between 1 to 500 milliseconds. The 
axon is modelled as a low pass filter and trains of 
high-frequency stimuli (HFS) with frequencies 50, 
100 and 200 Hz are applied as input to obtain the 
axonal response. These frequencies are chosen as the 
axonal response to these stimulations is reported in 
the literature2.The model of axonal channel comprises 
of spike to rectangular pulse converter, low pass filter 
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and spike generator. In the converter the impulses are 
changed to rectangular pulses. When a spike comes, 
the level of pulse changes and it remains in that state 
until the new spike arrives. Then these pulses are 
passed through a second order Butterworth filter1. 
Finally, the spike generator converts the filtered 
pulses to impulses. 
 

Model of Axonal Function 
Based on research study and experiments 

conducted on CA region of the brain, the axonal 
memory consists of four states3. 
 

a. Resting State: In this state the axonal response 
is of base line spike. But if the neuron receives 
many stimuli with small IPIs, the axonal 
response decreases. Hence it passes to 
suppression state. 

b. Suppression State: In this state the amplitude of 
the response is less than the amplitude of base 
line spike. If more stimulation continues the 
neuron remains in this state. But depending 
upon the time of rest, it moves to one of fast or 
slow recovery or resting states. 

c. Fast Recovery State: The neuron attains this 
state if it gets little rest after undergoing heavy 
depolarization in suppression state. In this state 
the response recovers fast but depends on 
frequency. If the rest time is very small, the 
recovery of neurone is poor and its refractory 
period changes. 

d. Slow Recovery State: In this state the recovery 
of response of the axon does not depend on the 
magnitude of previous stimulations. 

 

Response of Axon 
 

Suppression State 
The model of the function in this state depends on 

the refractory period(R). 
 

Case 1 (R=0)  
 

In this state the neuron is recovered fully during 
prior stimulations and its R is not changed. There is 
no suppression of frequencies below 25 Hz. However, 
application of higher frequency simulation for one 
minute causes the depolarization of axonal response 
to various levels. However the amplitude degradation 
stops. 
 

Case 2 (R=1)  
 

In this case, the neuron after a heavy stimulation 
recovered during a small time gap. By providing a 

small time gap during HFS there is an increase in the 
value of R of the neuron. 
 
Data Generation 

The response of the axonal memory during 
suppression state for R=0 is very important. To find 
the performance of this state, trains of stimuli with 
frequencies 50 Hz, 100 Hz and 200 Hz are applied to 
the suppression state model presented in the previous 
section. The objective is to obtain the variations of 
axonal response during application of train of spikes. 
The input stimuli with these frequencies are chosen 
because axonal responses of these frequencies are 
reported in the literature2. The experimental and 
theoretical1 responses for the three cases of input 
frequencies presented in Fig. 6 of 1 are examined. 
From the experimental and theoretical results, 201 
normalised amplitude values are obtained between  
0-60 seconds with a time interval of 0.3 seconds for 
each of the three frequencies. Out of these 201 data 
points, 161 values (80%) are used for training. The 
three FLANN models and remaining 40 data points 
are applied for validation of the models. 
 
Modelling of Different Types of FLANN 

A generalised FLANN model for generating 
amplitude response during suppression state of axonal 
memory is shown in Figure 1. The nonlinear 
functional expansion used in this study are 
trigonometric, polynomial and Chebyshev types. The 
expanded values for an input x(k) in all the three 
cases are shown in Table 1. By trial-and-error, the 
number of expansions is fixed to 21, 15 and 9for 
TFLANN, PFLANN and CFLANN models 
respectively. These numbers of functional expansion 

 
 

Fig. 1 — A generalised FLANN model for response simulation of 
axonal memory 
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provides best possible results in each case. The 
functionally expanded values are normalised to 
provide better performance. The output of the 
TFLANN, PFLANN and CFLANN are computed 
according to (1), (2) and (3) respectively 
 

𝑦 𝑘 𝑤 𝑥 𝑘 ∑ 𝑤 cos 𝑛𝑥 𝑘
∑ 𝑤 sin 𝑛𝑥 𝑘  ... (1) 
 

𝑦 𝑘 ∑ 𝑤 𝑘 𝑥 𝑘  … (2) 
 
𝑦 𝑘 ∑ 𝑤 𝑘 𝑇 𝑘  … (3) 
 

Where 
 

𝑇 𝑥 𝑘
2𝑥𝑇 𝑥 𝑘 𝑇 𝑥 𝑘 ,𝑇 𝑥 𝑘 1 , and  
𝑇 𝑥 𝑘 𝑥 𝑘  … (4) 
 

During training phase when a particular input x(k) 
is applied, the model produces the output y(k). It is 
then compared with the target experimental output 
t(k). Comparison of these two values produces the 
error e(k) which is computed as 
 

𝑒 𝑘 𝑡 𝑘 𝑦 𝑘  
 

Subsequently, each nth weight for kth input sample 
is updated according to  
 

𝑊 𝑘 1 𝑊 𝑘 α. e k . v k  … (5) 

where α= learning rate lying between 0 and 1, and 
1 ≤ n ≤ N, N= number of expanded terms 
 

Results and Discussions 
All the 161 input values are used as inputs during 

training period and in each case, the weights are 
updated according to (5). The training process is 
continued for all the three frequencies and for all the 
three models until the squared error is minimised to the 
lowest possible value. After completion of the training, 
the weights of all the nine models are frozen. Then, the 
performance of each of the models is evaluated. The 
theoretical1, experimental2,3 and simulated responses in 
each of the nine cases are obtained and plotted. Since 
more discrepancy is observed between the theoretical 
and experimental results in case of 50 Hz stimulation, 
the plots for 50 Hz frequency are obtained. However, 
for TFLANN it is presented in Figure 2. To compare 
the performance of these plots with the corresponding 
experimental response, the MAPE and MSE values are 
computed according to  
 

𝑀𝐴𝑃𝐸
∑ | |

 … (6) 
 

𝑀𝑆𝐸
∑

 … (7) 
 

where K = number of input samples. 
These results are listed in Table 2. It is observed 

that for 50 Hz case, the TFLANN model yields the 

Table 1 — Specifications of the FLANN models used in simulation study 

Models No. Of Expanded  
Terms (N) 

Learning  
Rate (µ) 

Expanded Terms 

TFLANN 21 0.01 x1(k), sin(πx1(k)), cos(πx1(k)), sin(2πx1(k)), cos(2πx1(k)), ... sin(10πx1(k)), cos(10πx1(k)). 
PFLANN 15 0.01 x1(k), x1

2(k), x1
3(k), ..., x1

15(k). 
CFLANN 9 0.01 T0(x(k)), T1(x(k)), ..., T8(x(k)) 

where T0(x(k))=1, T1(x(k))=x(k), and  
Tn+1(x(k))= 2xTn(x(k)) - Tn-1(x(k)) 

 

Table 2 — Comparative performance study in terms of MAPE and MSE of different models at three different frequencies 

Models Frequencies Number of 
Expanded Terms 

(N) 

Proposed MSE Proposed MAPE MSE MAPE 

TFLANN 50Hz 21 0.0007 0.0492 0.0249 0.2988 
100Hz 21 0.0003 0.0563 0.0055 0.1619 
200Hz 21 0.0001 0.0501 0.0051 0.1794 

PFLANN 50Hz 15 0.0011 0.0577 0.0249 0.2988 
100Hz 15 0.0006 0.0470 0.0055 0.1619 
200Hz 15 0.0013 0.0512 0.0051 0.1794 

CFLANN 50Hz 9 0.0021 0.0677 0.0249 0.2988 
100Hz 9 0.0020 0.0751 0.0055 0.1619 
200Hz 9 0.0044 0.1131 0.0051 0.1794 
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least MSE and MAPE compared to those obtained by 
the other two models. Thus it is demonstrated that the 
TFLANN is a superior model and its amplitude 
response is in close agreement with experimental 
response compared to the theoretical response 
reported1. In addition, the plots of TFLANN, 
experimental as well as theoretical responses in 
Figure 3 and 4 respectively for 100 and 200 Hz are 
presented. In these two cases also improved 
performance in matching of amplitude response 
obtained by TFLANN is observed. In general, the 
various plots and the results presented in Table 2 
demonstrate that based on performance, the ranking 
of the models is observed to be TFLANN, PFLANN 
and CFLANN. 

Conclusion 
The characteristics of neuro-spike communication 

are different from the conventional communication 
system. In neuro-spike communication, the axonal 
memory plays an important role but not yet fully 
explored. This paper has developed three different 
FLANN adaptive models which generate theoretical 
normalised amplitude responses during suppression 
state of axonal memory for HFS of three different 
frequencies. The comparison of MAPE and MSE 
obtained from the comparison of theoretical proposed, 
and experimental responses show that the outputs of 
all three FLANN models match with the experimental 
responses better than the reported theoretical ones1. 
Further, it is observed that the performance of 
TFLANN is the best as it yields minimum MSE and 
MAPE values than that offered by PFLANN and 
CFLANN models. Further research work can be 
carried out to develop similar ANN models to 
generate responses corresponding synaptic 
propagation state of neuro-spike communication and 
can be compared with the corresponding theoretical 
responses. 
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