Electronic Spectra of o-, m- & p-Aminophenols & Their Anions & Cations

D. V. S. JAIN^{*}, F. S. NANDEL & (Mrs) PREM LATA Department of Chemistry, Panjab University, Chandigarh 160 014

Received 27 January 1982; accepted 2 March 1982

The electronic spectra of o-, m- and p-aminophenols have been studied both experimentally (absorption as well as emission) and theoretically. The absorption bands have been characterised and compared with theoretical results. The pH dependence of the spectra has been studied and the results are explained in terms of the species HOC₆H₄NH⁺₂ and $-OC_6H_4NH_2$. All the aminophenols give rise to fluorescence and phosphorescence in neutral and acidic media. However, no fluorescence is observed in alkaline medium. The charge density calculations in the ground and excited states are used to explain solvent shifts.

URRENTLY, considerable interest¹⁻⁶ is being evinced in the photochemistry and photobiology of substituted benzenes. However, for understanding their photochemical behaviour it is imperative that electronic states of these molecules are well characterized. There have been only a few studies on the spectra of these molecules and the bands have not been properly characterised. The present work is a part of our systematic study^{7,8} on the spectra of disubstituted benzenes. Most of the work on disubstituted benzenes has so far been concentrated⁹⁻¹² on molecules of the type D-Ph-A, where one of the substituents is an electron donor (D) and the other an electron acceptor (A). The electronic spectra of a number of other disubstituted benzenes have also been studied¹³ but our main aim here is to understand the electronic spectra of molecules of the type D-Ph-D and A-Ph-A. In aminophenols both the substituents are donor groups. The donor character of -OH is enhanced when it is converted into -O-but that of -NH2 group is decreased when it is converted into -NH3 group.

Materials and Methods

Purification of aminophenols — Solutions of aminophenols (BDH, Analar) in water were treated with activated charcoal, filtered and kept aside to obtain aminophenols as crystalline solids. These were further purified by repeated crystallization in the dark from ethanol or ethanol-water mixtures until the absorbance spectra were reproducible and melting points, i.e. 443, 395, 457 K for o-, m-, p-isomers respectively agreed with the literature values.

Spectral measurements — Absorption spectra were taken on a Carl-Zeiss UV-VIS spectrophotometer. The fluorescence and phosphorescence measurements were made on a Perkin-Elmer MPF-44B spectrofluorimeter.

Semiempirical molecular orbital calculations — The Del Bene and Jaffe^{14'15} CNDO/S-CI program¹⁶ was used for the molecular orbital calculations in order to characterise the electronic states. Standard bond lengths and bond angles were used in these calculations. Excited states were generated from the ground state occupied and virtual orbitals through a configuration interaction procedure between the sixty lowest energy singly excited states. The molecular axes and number of atoms are designated in Fig. 1 for aminophenols and the same set of axes have been used for the corresponding anions and cations.

The electron densities on various atoms in the excited state j are given by :

$${}^{j} \rho_{A}^{*} = \rho_{A}^{\circ} + \sum_{m=u}^{CI} \sum_{m=u}^{A} C_{fm} (C_{f}^{2} - C_{i}^{2})$$

in which ρ_{A}° is the ground state electron density on atom A and C_{Im} being the coefficient of the *m*th configuration contributing to the *j*th state. C_{f} and C_{i} are the orbital coefficients of the final and initial

Fig. 1 — Designation of axes for CNDO/S calculation. [y-Axis is out of plane]

MO involved in the *m*th configuration. The characterization of different states has been done on the basis of configurational analysis. All calculations have been done on DEC-2050 machine.

Results and Discussion

The MOs involved in the low energy transitions together with the orbital description for all the aminophenols and corresponding anions and cations are given in Table 1. The nature of the MOs are described by giving the symbols π , n..etc. The different monoexcited configurations which contribute to some of the low frequency transitions are given in Table 2. The theoretical (after configuration interaction) and experimental results in different solvents for the singlet manifold along with the oscillator strengths and calculated degree of polarization are also given in Table 2. The agreement between the experimental and theoretical values of transition energies and other quantities seem to confirm that our assignments are correct.

The electron density calculations indicate that all the singlet excited states are of intramolecular charge transfer type; the charge is transferred from the substituents to the ring. Thus the electron density on oxygen of the hydroxyl group and nitrogen of the amino group decreases, i.e. it becomes positive relative to the ground state. In other words the -OH and $-NH_2$ groups become more acidic in the excited states, a fact consistent with the experimental results^{17,18} The decrease in electron density on oxygen of hydroxyl group and nitrogen of the amino group for various excited state is given in Table 3.

The absorption spectra of aminophenols, and of their anions and cations, recorded in different solvents are given in Table 2. It has been found on the basis of charge density calculations that the excited states are less polar than the ground state. Thus the excited state is relatively destabilised with respect to the ground state and hence there is a blue shift of the absorption bands with increasing polarity of the solvent. The spectra of aminophenol in the alkaline medium is due to aminophenate ions, which show three bands. A comparison of the experimental and the theoretical results for aminophenates,

TABLE 1 — ENERGY AND APPROXIMATE FORM OF MO USED TO CONSTRUCT THE EXCITED STATE CONFIGURATIONS OF AMINOPHENOLS AMINOPHENATES AND THE CORRESPONDING CATIONS

Molecular orbital	Energy of MO/eV	Type†	Energy of MO/eV	Type †	Energy of MO/eV	Typ et	
	o-Aminophenol		т-Ам	NOPHENOL	p-Aminophenol		
24	1.918	π_{r}^{*}	1.922	π,*	1.852	π .	
23	0.255	π*C ₂ C ₃ C ₅ C ₆	0.267	π*C1C2C4C5	0.298	π.	
22	0.442	π.*	0.379	π,*	0.562	π*C1C2C4C4	
21	8.677	πdel		πdel		πdel	
20	9.533	πdel	9.406	πdel	9.949	TC1C3C4C	
19	11.994	σ	-11.954	$\pi + \sigma del$	11.906	πdel	
18	12.312	πC4C5C6N	12.014	$\pi + \sigma_{del}$	12.020	a	
17		σ		a	13.067	æ	
	o-Amin	OPHENATE	т-Ам	NOPHENATE	p-Amine	OPHENATE	
25	7.441	σ*	7.444	σ*	7.274	σ*	
24	6.078	π*	6.151	π *	5.976	π*	
23	3.952	π * 0	3.999	π,ο	3.833	π *	
22	3.447	π*C1C2C4C	3.439	π*C2C3C3C5C6	3.186	π*C1C3C4C6	
21	3.528	πdel	3.726	TrO	3.680	T (0)	
20	-4.903	<i>n</i> 0	-4.913	ⁿ O	4.87 5	<i>"</i> 0	
19	5.541	πdel	5.514	πdel	6.239	TC1C2C4C4	
18	7.485	#del	7.245	πdel	6.481	πdel	
17	8.183	đ		a	8.307	σ	
	o-Amino	PHENOL CATION	m-Amino	OPHENOL CATION	p-Aminop	HENOL CATION	
24		π *		π *		π.*	
23	3.903	π	3.872	π ⁺ C ₂ C ₃ C ₄ C ₄	-3.962	π*C2C3C5C	
22	-4.331	π#	-4.367	π.*	-4.252	π*	
21		# (0)	-12.630	πο	-12.732	πíο	
20	13.548	π.	-13.499	TC1C+C+C+	13.393	TC2C3CCC	
19	-15.704	σ	-15.592	σ		đ	
18	16.794	T.del		σ	—16.71ú	π del	

[†]Subscript r means that the orbital is localized on the benzone ring only;

del means that the orbital is delocalized over the entire molecule and

 X_1, Y_1, Z_k ... etc. mean that the oribital is mainly delocalized over the atoms X_1, Y_1, Z_k .

Experimental			Theoretica	Туре	Polarization	% Composition		
λmax (nm)		f	λ max	f		€‡/deg.	con	iguration
			o-Aminophenol			a 1970 artist		TAT IN REVEN
291 286 283	(Ethanol) (Water) (Cyclobexanet	0.0636 0.0404	289.9(S ₁)	0.0217	ππ*	267.5	69 28	$21 \rightarrow 22$ $20 \rightarrow 23$
234 231 260	(Ethanol) (Water) (Cycloberane)+	0.1951 0.1113	238.2(S ₁)	0.0785	ππ*	342.4	83 14	$\begin{array}{c} 21 \rightarrow 23 \\ 20 \rightarrow 22 \end{array}$
212	(Ethanol)	Intense band	200.2(S ₃)	0.5148	ππ*	269.8	29 67	$21 \rightarrow 22$ $20 \rightarrow 23$
203	(Water)	Intense band	198.4(<i>S</i> 4)	0.3306	nn*	186.6	14 83	$\begin{array}{c} 21 \rightarrow 23 \\ 20 \rightarrow 22 \end{array}$
			<i>m</i> -Aminophenol					
287 286	(Ethanol) (Water	0.0279 0.0098	286.4(S1)	0.0095	ππ*	331.3	61 5	$21 \rightarrow 22$ $20 \rightarrow 23$
234 233	(Ethanol) (Water)	0.1866	231.6(S ₂)	0.0593	$\pi\pi^*$	263.8	31	$21 \rightarrow 23$ $21 \rightarrow 22$
208	(Ethanol)	Intense band	202.5(S ₃)	0.5469	ππ*	329.0	72	$21 \rightarrow 23$ $20 \rightarrow 23$ $20 \rightarrow 27$
202	(Water)	Intense band	200.4(S ₄)	0.3356	ππ*	55.1	21	$20 \rightarrow 22$ $20 \rightarrow 23$ $20 \rightarrow 22$
			192.6(S ₅)	0.0024	ππ*	45.0	6	$19 \rightarrow 23$ $19 \rightarrow 22$
			D-AMINOPHENOL					
302 301	(Ethanol) (Water) (Cyclohexane)† (Ethanol)	0.0276 0.0249	289.3(S ₁)	0.0264	ππ*	29.0	76 23	21→22 20→23
312 234		0.1693	234.6(S ₁)	0.1641	ππ*	299.8	90	21-+23
233 210	(Ethanol)	0.0540	192.5(S ₃)	0.3363	$\pi\pi^*$	26.6	25	$18 \rightarrow 22$ $21 \rightarrow 22$ $20 \rightarrow 22$
200	(Water)	Intense band	191.6(S4)	0.0080	σ π [‡]	26.7	9	$20 \rightarrow 23$ $21 \rightarrow 23$
			189.4(S ₅)	0.4512	π π*	116.2	94	20→22
			<i>o</i>-Aminophenate					
300	(Ethanol)	0.0808	354.9(S1)	0.0009	$n\pi^*$		92	20→23
298	(Water)	0.0542	346.9(Sz)	0.0666	$\pi\pi^*$	314.4	72	21→22
			284.6(<i>S</i> ₃)	0.0168	ηπ*	52.3	17 87 9	$21 \rightarrow 25$ $20 \rightarrow 22$ $21 \rightarrow 23$
244 245	(Ethanol) (Water)	0.1665	278.5(S4)	0.1746	nn *	50.0	83	$21 \rightarrow 23$ $20 \rightarrow 22$
219	(Ethanol)	0.2683	212.9(S _s)	0.0965	$\pi\pi^*$	20.9	25 45	$20 \rightarrow 22$ $21 \rightarrow 22$ $21 \rightarrow 25$
							2.0	17→?2
214	(water)	0.1331	208.7(S ₆)	0.1537	mixed	278.8	34 44	20→?.4 21→2.4
			202.6(S ₇)	0.3006	ππ*	253.3	20 7	17→22 21→23
							25 64	20→24 19→22
			<i>m</i> -Aminophenate					
294	(Ethanol)	0.0411	$355.9(S_1)$	0	$n\pi^*$		92	$20 \rightarrow 23$
293	(Water)	0.0118	339.6(S ₂)	0.0485	ππ*	278.0	69 15	$21 \rightarrow 22$ $21 \rightarrow 25$
			277.7(5.)	0.0003	****		95	$17 \rightarrow 22$ 20 - 22
240	(Ethanol)	0.1949	266.7(S4)	0.2083	nn *	2.7	92	21→23
242	(water)	0.0968	214.6(S _s)	0.1159	mixe 1	221.9	29 33	$\begin{array}{c} 21 \rightarrow ?2 \\ 21 \rightarrow ?5 \end{array}$
222	(Ethanol)	0 9376	210 4(5)	0 2216		222.0	30	17→??
210	(Water)	Intense band	210.4(S ₆)	0.2210	mixed	332.8	53	20→23 20→?4
			196 1/5)	0.0668	minad	221 #	29	19→23
			190.1(37)	0.0005	mixea	331'2	25	$21 \rightarrow 23$ 20 - 21
							11	19->23
							20	19→22
								(Contd.)

TABLE 2 -- ELECTRONIC SPECTRA OF AMINOPHENOLS, AMINOPHENATES AND AMINOPHENOL CATIONS

1	TABLE 2 — (Contd.)							
	Experimental		Theoretical		Туре	Polarization 01/deg.	% Composition	
	λmax (nm)	ſ	λmax	f		-+,B.	•••	
		1	-Aminophenate					
314 310	(Ethanol) (Water)	0.0427 0.0933	354.4(S ₁) 326.1(S ₂) 289.7(S ₂)	0.0551 0 0	ππ ⁺ nπ ⁺ nπ ⁺	30.0 —	94 98 74	$21 \rightarrow 22$ $20 \rightarrow 23$ $20 \rightarrow 22$
245 258	(Ethanol) (Water)	0.2302 0.3024	275.7(SJ)	0.2634	$\pi\pi^*$	300.0	13 96	$19 \rightarrow 22$ $21 \rightarrow 23$
217	(Ethanol)	0.1072	216.1(S _s)	0.0014	nn *	29.6	85	$21 \rightarrow 24$
208	(Water)	0.2216	208.0(S _•)	0.0662	mixed	120.0	26 35 30	$19 \rightarrow 23$ $20 \rightarrow 22$ $19 \rightarrow 22$ $17 \rightarrow 22$
			190.4(<i>S</i> 7)	0.0232	$\pi\pi^*$	120.0	67	21 + 24
		o-1	MINOPHENOL CA	TION				
276		0.0318	276.6(S1)	0.0282	π π ⁺	70.3	71	2 1→22
217		0.0789	221.8(S ₂)	0.0407	nn *	113.6	69 26	$19 \rightarrow 22$ $21 \rightarrow 23$ $20 \rightarrow 22$ $19 \rightarrow 22$
209		0.1400	195.1(S ₃)	0.0002	σπ*	—	27	21→22
			192.0(S.)	0.5218	π π *	136.9	64 27 67	$\begin{array}{c} 19 \rightarrow 22 \\ 21 \rightarrow 23 \\ 20 \rightarrow 22 \end{array}$
			188.3(S _s)	0.4664	nn *	42.5	90 8	$20 \rightarrow 23$ 19 $\rightarrow 23$
		m	-AMINOPHENOL C	ATION			·	17-743
273		0.0680	281.1(S ₁)	0.0261	π π*	312.6	64 14 20	$21 \rightarrow 22$ * 21 \rightarrow 23 19 \rightarrow 22
219		0.0786	228.4(S ₂)	0.0655	π π *	262.5	7 62	$21 \rightarrow 2?$ $21 \rightarrow 23$
212		0.0882	195.2(S _a)	0.0269	π π *	26.5	25 25	$20 \rightarrow 23$ $21 \rightarrow 22$ $21 \rightarrow 23$ $22 \rightarrow 23$
			194.6(S.)	0.5044	σπ•	28.1	23	$20 \rightarrow 23$ $21 \rightarrow 22$
	1		187.9(S _s)	0.4431	ππ*	293.9	72 85 4	$19 \rightarrow 22$ $20 \rightarrow 23$ $20 \rightarrow 23$
		P	-AMINOPHENOL C	ATION			•	
273		0.0214	273.6(S ₁)	0.0017	mixed	267.0	58 42	21 →23 19→22
220		0.0752	233.7(Sz)	0.1274	$\pi\pi^*$	0.0	86	$21 \rightarrow 22$ 19 - 23
210		0.0871	202.7(S ₃)	0.0002	mixed		41 58	$\begin{array}{c} 12 \rightarrow 23 \\ 21 \rightarrow 23 \\ 19 \rightarrow 22 \end{array}$
			195.4(S ₄) 190.9(S _b)	0.4449 0.0003	ππ* σπ*	270.0	96 12	$20 \rightarrow 22$ $21 \rightarrow 22$ $19 \rightarrow 23$
			185.9(<i>S</i> ,)	0.5226	777 *	180.0	98	$20 \rightarrow 23$

[†]Due to poor solubility of aminophenols in cyclohexane the oscillator strengths have not been calculated and the λ_{max} values are obtained from excitation spectra.

Angle between transition vector, V and the Z-axis.

TABLE 3	- GROUND AN	D EXCITED	STATE ELECTI N OLS	RON DENSITIES
Atom	Ground state	1st π→π*	2nd $\pi \rightarrow \pi^*$	3rd $\pi \rightarrow \pi^*$
	C	-AMINOPHEN	OL	
0	6.229	6.163	6.169	6.189
Ň	5.238	5.109	5.097	6.169
		1-AMINOPHE	NOL	
0	6.226	6.183	6.189	6.185
Ň	5.236	5.120	5.118	5.193
	1	-AMINOPHE	NOL	
0	6.258	6.207	6.203	6.252
Ň	5.234	5.113	5.106	5.203

reveals that the first experimental band corresponds to theoretical transitions S_0 to S_1 , S_2 and S_3 and the second experimental band corresponds to the theoretical transition $S_0 \rightarrow S_4$ in all the aminophenates. The electron density calculations predict these bands to be of charge transfer type. The charge being transferred from $-O^-$ (with some contribution from $-NH_2$ group) to the ring. The next theoretical transitions $S_0 \rightarrow S_5 - S_7$ seem to form the third experimental band. The agreement in these cases is not so good as for the neutral molecules. This may be attributed to the

	12	ice(nm)		Phosphorescence(nm)						
	Cyclohexane		Water		Ethanol		Ethanol		EPA	
Molecule	λεπ	λεικ	λεχ	λem	λex	λεπ	λοχ	λεπ	λεπ	
o-Aminophenol o-Aminophenate	283	330	286 298 275	338-344 nil 296-302	291 300 279	336 nil 296	291 300 279	440 420 430	424	
<i>m</i> -Aminophenol <i>m</i> -Aminophenol <i>m</i> -Aminophenol cation	290	320	286 293 273	331-334 nil 296-300	287 294 274	333 nil 298	287 294 274	425 425 420	410	
p-Aminophenol p-Aminophenate p-Aminophenol cation	270	330	301 310 275	367-374 nil 300, 370	302 314 284	364.5 nil 306, 364.5	302 314 284	470 470 420	420-430	

TABLE 4 — EMISSION SPECTRA OF AMINOPHENOLS IN DIFFERENT SOLVENTS

inefficient handling of the *n*-electrons in CNDO/S method as well as the assumption that the geometry of the anion is the same as that of the neutral molecules (Table 2). A comparison of theoretical and the experimental results for the aminophenol cations reveals that the first excited state S_1 in all the isomers has substantial contribution from the $\sigma \rightarrow \pi^*$ type of transition originating from -NH⁺ group. The second absorption band is assigned to the next transition $S_0 \rightarrow S_2$ whereas the transitions $S_0 \rightarrow S_3$ S_5 constitute the third absorption band.

The emission spectra (both fluorescence and phosphorescence) for the aminophenols in different solvent at different pH values are given in Table 4. Their fluorescence corresponds to the transition from $S_1 \rightarrow$ S_0 which seems to be of slightly longer wavelength showing that the transition does not involve higher vibrational energy levels during absorption or emis-Phosphorescence is also of the type $\pi^* \rightarrow {}^3\pi$. sion.

At high pH values none of the molecules exhibits fluorescence but phosphorescence is observed. Our theoretical calculations predict that the lowest excited state has the $n\pi^*$ character for the ortho and meta-aminophenates whereas, for the para-aminophenate ion the first excited state is $\pi\pi^*$, but the energy difference between this state and the lowest excited $n\pi^*$ state is only 1602 cm⁻¹. One of the factors leading to the high efficiency of intersystem crossing to the triplet state in molecules with a $n\pi^*$ triplet state as the lowest is the persistence of one centered atomic spin orbit coupling caused by the favourable local symmetry conditions at the ncentres¹⁹. El-Sayed²⁰ pointed out that the $n\pi^*$ singlet and the $n\pi^*$ triplet belong to different spin orbital representations and cannot mix and therefore, the intersystem crossing rate should be high for $1n\pi^* \rightarrow$ ${}^{3}\pi\pi^{*}$ transition compared to the ${}^{1}n\pi^{*} \rightarrow {}^{3}n\pi^{*}$ transition.

At low pH values o- and m-aminophenols display a fluorescence at \sim 300nm whereas *p*-aminophenol exhibit two fluorescence bands at 300 and 370 nm. This can be attributed to existence of $NH_3+C_6H_4OH^*$ and NH₂C₆H₄OH* specie according to the reaction

$$\begin{array}{cccc} NH_3^+C_6H_4OH & & \longrightarrow & NH_3^+'C_6H_4OH^* & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

L ...

Acknowledgement

This research was supported by the UGC, New Delhi, Prem Lata thanks the Department of Atomic Energy, Government of India, for the award of a fellowship.

References

- 1. PINHEY, J. T. & RIGBY, R. D. G., Tetrahedron Lett., (1969), 1267, 1271.
- 2. MATSUURA, T. & OMURA, K., Bull. chem. Soc., Japan, 39 (1966), 944.
- 3. BARLTROP, J. A., BONCE, N. J. & THOMSON, A., J. chem. Soc., (C), (1967), 1142. 4. ROBINSON, G. E. & VERNON, J. M., J. chem. Soc. (C),
- (1971), 3363.
- 5. ARNOLD, D. R. & WONG, P. C., J. Am. chem. Soc., 99 (1977), 3361.
- FUIKI, K., NISHIO, T. & OMOTE, Y., Bull. chem. Soc. Japan, 52 (1979), 614.
 JAIN, D. V. S., NANDEL, F. S. & SINGLA, P. L., (communi-
- cated).
- 8. JAIN, D. V. S., NANDEL, F. S. & SINGLA, P. L. (unpublished work).
- 9. CARSEY, T. P., FINDLEY, G. L. & MCGLYNN, S. P., J. Am. chem. Soc., 101 (1979), 4502, 4511.
- Am. chem. Soc., 101 (1979), 4302, 4311.
 10. REMKO, M. & POLCIN, J., Chem. Zvesti, 31 (1977), 171.
 11. KHALIL, O. SELISKAR, & MCGLYNN, S. P., J. mol. Spectrosc., 70 (1978), 74.
 12. SELISKAR, C. J., J. mol. Spectrosc., 53 (1974), 140.
 13. COWGILL, R. W., Photochem. & Photobiol., 13 (1971), 192
- 183.
- 14. DEL BENE J. & JAFFE, H. H., J. chem. Phys., 48 (1968), 1807.
- ELIS, R. L., KUEHNLENZ, G. & JAFFE, H. H., Theoret. Chim. Acta, 26 (1972), 131.
 QCPE 174 Quantum Chemistry Program Exchange. (Indiana University, Bloomington, Indiana).
- 17. BARTOK, W., LUCCHESI, P. J. & SNDER, N. S., J. Am. chem. Soc., 84 (1962), 1842.
- JACKSON, G. & PORTER, G., Proc. roy. Soc., A 260 (1961), 13.
 MCGLYNN, S. P., AZUMI, T. & KINOSHITA, M., Molecular spectroscopy of the triplet state, (Prentice-Hall, Englewood Chiffs, N. J.), 1969.
 F. Surino, M. A. Labor, Phys. 26 (1962) 572.
- 20. EL-SAYED, M. A., J. chem. Phys., 36 (1962), 573.