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Chitosan derived from crustaceans is biodegradable as well as biocompatible and can be made into nanoparticles when 
chelated with chelators, such as sodium tripolyphosphate and barium chloride. In this study, crab shells-derived chitosan 
was chelated using sodium trimetaphosphate to form nanoparticles. Curcumin was encapsulated into nanoparticles and 
characterized using Fourier transform infra-red spectroscopy, scanning electron microscopy, atomic force microscopy, and 
X-ray diffraction analysis. The particles were found to be 18 nm in size, while the curcumin-loaded particles were 25 nm in 
size. The particles were observed to encapsulate 90% of the drug used. The nanoparticles produced were analyzed for  
in vitro controlled drug release against Pseudomonas aeruginosa, Bacillus subtilis, and Candida albicans. 
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Introduction 
In the field of nanobiotechnology, there are enormous 

expectations from biomaterials-based nanoparticles as 
they are biodegradable, biocompatible, non/low 
immunogenic, and nontoxic. Thus, they are well 
exploited in drug and gene delivery1,3 tissue engineering4 
food industries5 etc. Chitosan, an abundant natural 
polysaccharide found mainly in the exoskeletons of 
marine organisms and certain fungi and algae6,9 is 
biocompatible and biodegradable10. Chitosan and its 
derivatives have been reported as potential carriers for 
drug delivery systems11,12. 

Chitosan nanoparticles are produced by ionic gelation 
method13 using sodium tripolyphosphate (TPP)14 and 
barium chloride15. These cross-linking agents combine 
two components with opposite charges to form 
nanoparticles16. Size formation can be controlled by 
ionic gelation method as well as by encapsulation of 
protein, ions, and drugs17,18. Using an alternate and new 
cross-linking agent may lead to formation of smaller-
sized nanoparticles which may be better than the 
commonly used cross-linkers such as sodium TPP and 
barium chloride. Curcumin is a hydrophobic drug with 
multiple bioactivities, thus it was chosen as a drug of 
choice to load into the nanocarriers in most studies12,15. 

In this study, chitosan was derived from crab shell and 
an attempt was made to use sodium trimetaphosphate 
(STMP) as chelator to produce curcumin-loaded 
chitosan nanoparticle for drug delivery. 
 

Materials and Methods 
 

Materials 
Curcumin was purchased from Sisco Research 

Laboratories Pvt. Ltd; Acetic acid from Qualigens 
Fine Chemicals, India; STMP, Nutrient agar, and 
carboxy methyl cellulose (CMC) from LOBA 
Chemie, HiMedia and Micro Fine Chemicals, India, 
respectively. Millipore water was used in this study.  
 

Preparation and characterization of crab shell-
derived chitosan  

Chitosan from crab shells was prepared following 
Samrot et al.12 and Yen et al.19, mixed with KBr 
pellets, and subjected to Fourier transform infra-red 
spectroscopy (FTIR) analysis (Shimadzu, Japan).  
 
Synthesis of STMP-chelated chitosan nanoparticles 

Chitosan 0.8% was prepared in 50 ml 0.1N acetic 
acid. The solution was filtered to remove the 
unsuspended particles. 0.2% STMP in 25 ml of 
distilled water was added dropwise to the chitosan 
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Swarming motility of bacteria 
The swarming motility results showed that the 

curcumin-loaded and unloaded chitosan 
nanoparticles inhibit the motility of Gram positive  

B. subtilis (Figs 4b and c) and Gram negative 
bacterium P. aeruginosa (Figs 4e and f) to a certain 
extent. Thus, these nanoparticles can be used for 
biofilm inhibition. 

{Table 1 — Zone of inhibition of chitosan nanoparticles incorporated with curcumin against B. subtilis using various solvents 

Solvents Zone of inhibition (cm) 
Positive control Solvent Unloaded 5 µg/ml 10 µg/ml 15 µg/ml 

Water 1.5 Nil Nil Nil Nil Nil 
PBS 1.5 Nil Nil Nil Nil Nil 
Ethanol 1.6 Nil Nil Nil Nil 0.3 
Acetic acid 1.5 Nil Nil 0.5 0.6 1.0 
Chitosanase enzyme 1.5 Nil Nil 0.3 0.7 1.5 
 

Table 2 — Zone of inhibition of chitosan nanoparticles incorporated with curcumin against P. aeruginosa using various solvents 

Solvents Zone of inhibition (cm) 
Positive control Solvent Unloaded 5 µg/ml 10 µg/ml 15 µg/ml 

Water 1.3 Nil Nil Nil Nil Nil 
PBS 1.3 Nil Nil Nil Nil Nil 
Ethanol 1.3 Nil Nil Nil Nil 1.3 
Acetic acid 1.3 Nil 0.5 0.7 0.8 0.9 
Chitosanase enzyme 1.3 Nil Nil Nil Nil 1.2 
 

Table 3 — Zone of inhibition of chitosan nanoparticles incorporated with curcumin against C. albicans using various solvents 

Solvents Zone of inhibition (cm) 
Positive control Solvent Unloaded 5 µg/ml 10 µg/ml 15 µg/ml 

Water 1.3 Nil Nil Nil Nil Nil 
PBS 1.3 Nil Nil Nil Nil Nil 
Ethanol 1.3 Nil Nil Nil Nil 1.0 
Acetic acid 1.3 Nil Nil Nil Nil 1.4 
Chitosanase enzyme 1.3 Nil Nil Nil 1.2 1.6 
 

 

 
 

Fig. 6 — Swarming motility by different bacteria against chitosan nanoparticles chelated with STMP: (a) B. subtilis control, (b) Unloaded 
chitosan nanoparticles with B. subtilis, (c) Loaded chitosan nanoparticles with B. subtilis, (d) P. aeruginosa control, (e) Unloaded chitosan 
nanoparticles with P. aeruginosa, and (f) Loaded chitosan nanoparticles with P. aeruginosa 
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Conclusion 
In this study, chitosan was extracted from crab 

shell. The extracted chitosan was chelated with STMP 
and characterized as 18-25 nm sized spherical 
nanoparticles. The particles were found to encapsulate 
curcumin better, that is, with 90% encapsulation. 
Nanoparticles were found to inhibit the swarming 
motility to a certain extent. The curcumin-loaded 
nanoparticles were found to release curcumin in an 
acidic environment. 
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