Complex	Colour	m.p., °C	(Found), Calc. (%)			
			Metal	N	С	Н
Cu(4MeOHPEN)	Gray	264-66(d)	(14.90) 15.26	(6.41) 6.77	(63.90) 63.83	(6.40) 6.28
Ni(4MeOHPEN)	Orange	249-51(d)	(13.88) 14.37	(6.59) 6.85	(65.00) 64.58	(6.50) 6.36
Co(4MeOHPEN)	Brown	41-43(d)	(14.24) 14.41	(6.65) 6.85	(64.70) 64.56	(5.90) 6.36
VO(4MeOHPEN)	Green	28687(d)	(12.01) 12.21	(6.61) 6.72	(63.81) 63.33	(5.89) 6.24
UO ₂ (4MeOHPEN)	Bright	234-36(d)	(38.16) 38.39	(4.91) 4.52	(41.28) 42.58	(3.91) 4.19

TABLE 1-PHYSICAL PROPERTIES AND ANALYTICAL DATA OF THE COMPLEXES

The authors thank Prof. S. R. Patel, Head, Department of Chemistry for taking keen interest in the work.

References

- Reterences
 PATEL, M. M., PATEL, M. R., PATEL, M. N. & PATEL, RATILAL, P., Indian J. chem., 20A (1981), 623.
 VOGEL, A. I., A. text book of practical organic chemistry (Longmans, London), 1978, 750.
 LEVER, A. B. P., Inorganic electronic spectroscopy (Elsevier, New York), 1968, 356.
 PATEL, K. C., SRIMALI, S. R. & GOLDBORG, D. E., J. inorg. nucl. Chem., 37 (1975), 1659.
 HOLM, R. H., CHAKRAVORTY, A. & THERIOT, L. J., Inorg. Chem., 5 (1966), 625

- Chem., 5 (1966), 625.
- 6. MAKI, G., J. chem. Phys., 29 (1958), 1129. 7. COTTON, F. A. & WILKINSON, G., Advanced inorganic chemistry (Wiley Eastern, New Delhi), 1960, 870. 8. COTTON, F. A. & WILKINSON, C.

- Cortron, F. A. & WILKINSON, G., Advanced inorganic chemistry (Wiley Eastern, New Delhi), 1960, 870.
 Stocharty (Wiley Eastern, New Delhi), 1960, 872.
 Nicolini, M., Pecile, C. & Turco, A., Coord. Chem. Rev., 1 (1966), 133.
 LEVER, A. B. P., LEWIS, J. & NYHOLM, R. S., J. chem. Soc., (1963), 2552.
 Seiner, J. Chem. Den C. (1967), 175.
- 11. SFLBIN, J., Chem. Rev., 65 (1965), 153; Coord. Chem. Rev., 1 (1966), 293.
- VANGUICHENBORNE, L. G. & MCGLYNN, S. P., Theor. Chim. Acat., 9 (1968), 390.
 LE, C. C., SYAMAL, A. & THERIOT, L., Inorg. Chem., 10 (1971), 1669.

- (1971), 1669.
 14. NAKANISHI, K., Infrared absorption spectroscopy (Nankodo, Tokyo) 1964, 167.
 15. KOVACIC, J. E., Spectrochim. Acta, 23A (1967), 183.
 16. MARVEL, C. S., ASPEY, S. A. & DUDLEY, E. A., J. Am. chem. Soc., 78 (1956), 905.
 17. BULLOCK, J. I. & PARRETT, F. W., Can. J. Chem., 48 (1970), 3095.

Halocations of Selenium & Tellurium in **Chlorosulphuric Acid**

R. C. PAUL[†], D. KONWER & J. K. PURI^{*} Department of Chemistry, Panjab University, Chandigarh 160 014

Received 16 February 1981; revised and accepted 15 June 1981

Selenium and tellurium form SeCl₃⁺, SeBr₃⁺, TeCl₃⁺ and TeBr⁺₃ cations in chlorosulphuric acid in the presence of Cl₂ and Br₂. However selenium monochloride forms $Se_2Cl_3^+$ and Se₂Cl₂Br⁺ in HSO₃Cl in the presence of chlorine and bromine respectively.

SELENIUM¹⁻³ and tellurium⁴⁻⁶ form coloured solutions in strong acids. The green and yellow solutions of selenium are attributed to Se_8^{2+} and Se₄²⁺ cations and the red and yellow solutions of tellurium to Te_4^{2+} and Te_2^{2+} cations respectively. In the present note we report the formation of some halocations of selenium and tellurium in chlorosulphuric acid.

Chlorosulphuric acid (BDH) was purified as reported earlier7. Selenium and tellurium metals were of AR grade. Selenium monochloride was prepared by the standard method⁸.

Chlorine and bromine behave as non-electrolytes⁹ in chlorosulphuric acid. Selenium metal does not form any green solution in chlorosulphuric acid containing chlorine. UV and visible spectra of the solution rule out the presence of Se_8^{2+} or Se_4^{2+} ions. The solutions become stable after sometime. However, from the conductance data (Fig. 1), the possible mode of reaction may be represented by Eq. (1),

$$M + 2Cl_2 + HSO_3Cl \longrightarrow MCl_3^+ + SO_3Cl^- + HCl \dots(1)$$
$$(M = Se \text{ or } Te)$$

Beyond Se/Cl₂ molar ratio of 1:2, further addition of selenium metal results in a green solution (due to Se_8^{2+} cation) which slowly changes to yellow solution (due to Se_4^{2+} cation).

Selenium metal, in the presence of Br₂ in chlorosulphuric acid, does not form Se_8^{2+} or Se_4^{2+} cations. The reaction is always accompanied by the evolution of SO₂ gas, as confirmed by UV spectrum of the solution (λ_{max} at 280 nm). On the basis of the conductance data (Fig. 1) and the UV spectrum of the solution, the reaction in the presence of Br₂ may be represented by Eq. (2),

$$2M + 3Br_2 + 4 HSO_3 Cl \longrightarrow$$

$$2MBr_3^+ + 2SO_3Cl^- + H_2SO_4 + 2HCl + SO_2 \dots (2)$$

$$(M = Se \text{ or } Te)$$

Beyond Se/Br₂ molar ratio of 2:3, further addition of selenium metal results in a greenso lution (due to Se_s^{2+}) which slowly changes to yellow (due to Se_4^{2+}).

Selenium monochloride disproportionates in chlorosulphuric¹⁰ acid as $2Se_2Cl_2 \longrightarrow SeCl_4 + 3Se$.

⁺Present address : Vice-chancellor, Panjab University, Chandigarh.

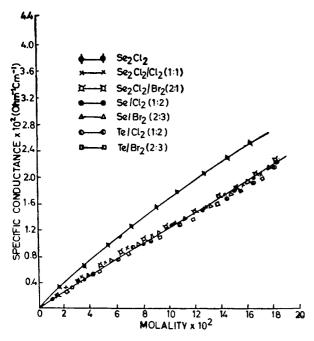


Fig. 1 — Specific conductivities of some selenium and tellurium compounds in chlorosulphuric acid at 25° C.

Elemental selenium gets oxidised further to form Se_8^{2+} cation which slowly changes to Se_4^{2+} cation and $SeCl_4$ forms $SeCl_5^{\pm}$ ion in this solvent¹¹.

Selenium monochloride in chlorosulphuric acid in the presence of chlorime, forms a light-green solution which immediately changes to yellow. A break in the conductance-composition curve at Se₂ Cl_2/Cl_2 molar ratio of 1:1 is also obtained. From the conductance data the mode of reaction may be represented by Eq. (3),

$$Se_{2}Cl_{2} + Cl_{2} + HSO_{3}Cl \longrightarrow$$
$$Se_{2}Cl_{3}^{+} + SO_{3}Cl^{-} + HCl \qquad \dots (3)$$

Formation of the yellow solution may be due to the disproportionation reaction, $\text{Se}_2\text{Cl}_3^+ \longrightarrow$ $\text{SeCl}_3^+ + \text{Se}$. Elemental selenium then further reacts with the solvent to form a green solution (due to Se_3^{2+}) followed by the appearance of yellow colour (due to Se_4^{2+}). Since only very small quantity of free selenium metal seems to be formed as a result of disproportionation reaction, it contributes very little to the γ value.

Selenium monochloride in the presence of bromine in chlorosulphuric acid does not form any green solution. UV and visible spectra of the above solution exhibit maximum absorption at 280 nm (ϵ_{max} 1050) suggesting the formation of SO₂ gas during the reaction. The conductance data are best represented by the reaction (4),

$$2Se_{2}Cl_{2} + Br_{2} + 4 HSO_{3} Cl \longrightarrow$$

$$2Se_{2}Cl_{2}Br^{+} + 2SO_{3}Cl^{-} + H_{2}SO_{4} + HCl + SO_{2} \dots (4)$$

When all the bromine has been consumed, further addition of selenium monochloride results in the formation of the green solution (due to Se_8^{2+}) which slowly changes to yellow (due to Se_4^{2+}). In the presence of excess of bromine, selenium monochloride does not form any green solution, suggesting that the cation $Se_2Cl_2Br^+$ is quite stable or possibly the green colour is masked by the reddish-brown colour of bromine in this solvent. Such type of species have also been reported in other strong acids¹².

Tellurium metal in chlorosulphuric acid in the presence of Cl_2 or Br_2 does not form any red colour. UV and visible spectra of the solutions rule out the presence of Te_4^{2+} or Te_2^{2+} cations. The solution in the presence of chlorine is found to be quite stable as there is no change in the conductance of the solution with time. From conductance data, the mode of reaction may be represented as in Eq. (1). Beyond Te/Cl₂ molar ratio of 1:2, further addition of tellurium metal causes the formation of a red solution (due to Te_4^{2+}) which slowly changes to an yellow solution (due to Te_2^{2+}).

The solution of tellurium metal in chlorosulphuric acid in the presence of bromine is not very stable as revealed by the variation in conductivity with time. However, the conductance data, when extrapolated to zero time and compared with that of a strong base in chlorosulphuric acid, show that the possible mode of reaction may be represented by Eq. (2). The UV spectrum of the solution exhibits absorption band at 280 nm due to the presence of SO_2 gas. Formation of TeBr⁺₃ cation seems to be quite reasonable as such species has already been shown to form on dissolving TeBr₄ in chlorosulphuric acid¹¹.

References

- 1. DIVERS, E. & SHIMOSE, M., J. chem. Soc., 45 (1884), 194, 201.
- DOLLAN, J. J. & PARTINGTON, J. R., J. chem. Soc., 125 (1924), 1402.
- 3. PAUL, R. C., KONWER, D., DHILLON, D. S. & PURI, J. K., Inorg. nucl. chem. Lett., 13 (1977), 389.
- 4. BARR, J., GILLESPIE, R. J., KAPOOR, R. & MALHOTRA, K. C., Can. J. Chem. 46 (1968), 149.
- PAUL, R. C., PURI, J. K. & MALHOTRA, K. C., Chem. Commun., (1970), 776.
- PAUL, R. C., KONWER, D., DHILLON, D. S. & PURI, J. K., Indian J. Chem., 16A (1978), 254.
- ROBINSON, E. A. & CIRUNA, J. A., Can. J. Chem., 46 (1968), 1719.
- 8. BRAUER, G., Handbook of preparative inorganic chemistry, Vol. I (Academic press, New York, London), 1963, 442.
- 9. KONWER, D., Solution chemistry in chlorosulphuric acid, Ph. D. Thesis, Panjab University, Chandigarh, 1977.
- 10. PAUL, R. C., DHILLON, D. S., KONWER, D. & PURI, J. K., Indian J. Chem., 19A (1980), 473.
- 11. ROBINSON, E. A. & CIRUNA, J. A., Can. J. Chem., 46 (1968), 3197.
- 12. BALI, A. K., Solution chemistry in disulphuric acid, Ph.D. Thesis, H. P. University, Simla, 1975.