Thin Layer Chromatographic Behaviour of Dithiocarbamates of Arsenic(III), Antimony (III) & Bismuth(III)

G SOUNDARARAJAN & M SUBBAIYAN*

Department of Analytical Chemistry, University of Madras, Madras 600025

Received 20 August 1982; revised and accepted 16 December 1982

Thin layer chromatographic behaviour of N, N-disubstituted dithiocarbamates of As(III), Sb(III) and Bi(III) on silica gel layers has been studied and the results are discussed on the basis of R_m versus log X_s plots (X_s = volume fraction of active component in the mobile phase). For a series of particular type of solvents, their molecular areas are found to affect significantly the adsorption and desorption characteristics. The 'thioureide' bond order and the distorted octahedral symmetry of these chelate molecules are found to influence their retention properties.

Separation of neutral chelates by adsorption thin layer chromatography (ATLC) is a recently developed analytical technique¹. Theoretical basis of this technique was developed by Galik² following the 'competition model' of Snyder³. According to this model, two similar chelate molecules adsorbing with the same number of bonds can be resolved only when they are solvated to varying degrees by the mobile phase components. We report in this paper the resolution of trisdithiocarbamates of As(III), Sb(III) and Bi(III), having distorted octahedral symmetry⁴, by binary mobile phases of polar solvents diluted with inactive CCl₄ or cyclohexane. Since the selectivity of ATLC varies exponentially with the molecular area of solute and solvent molecules⁵, Galik's equation has been modified accordingly to explain the differential migration of similar chelate molecules.

Theoretical Model of ATLC

At constant adsorbent activity (α), R_m is correlated² with the formation constants of complexes formed by the adsorption of solute and solvent molecules by Eq. (1),

$$R_m = -m/n \log X_s + C \qquad \qquad \dots \tag{1}$$

where C = constant; *m* and *n* are the number of bonds with which the chelate and solvent molecules get adsorbed; and X_s is the volume fraction of active component in the mobile phase. The slope of R_m versus log X_s plot, i.e. m/n is a measure of the degree of adsorption of the chelate molecule. For two similar chelate molecules(1) and (2), adsorbing with the same number of bonds, ΔR_m resulting from the change of mobile phase from (A) to (B) is given by Eq. (2),

$$\Delta R_m = \text{Constant} = R_m(1) - R_m(2)$$

= $m/n(\log K_{AZ} - \log K_{BZ})$... (2)

where K_{AZ} and K_{BZ} are the formation constants of the complexes formed by the adsorption of solvent

molecules (A) and (B) on active sites(Z) of the adsorbent. Soczewinski⁶ related ΔR_m with the difference in the number of bonds (Δm) by which the solvent molecules get adsorbed to form complexes

$$(R_{m(1)} - R_{m(2)})_{A} = (R_{m(1)} - R_{m(2)})_{B} + \log \left[X_{s(B)} / X_{s(A)} \right]^{\Delta m} \dots (3)$$

Snyder^{3,7} correlated ΔR_m with adsorbent activity (α), and molecular area (A_e) by Eq. (4)

$$(R_{m(1)} - R_{m(2)})_A = (R_{m(1)} - R_{m(2)})_B + \Delta C.\Delta\varepsilon \qquad \dots (4)$$

where $C = \alpha . \Delta A_e$; $\Delta \varepsilon = (\varepsilon_B - \varepsilon_A)$; $A_e = A_{e(B)} - A_{e(A)}$; and ε = solvent strength. At constant α , Eqs (3) and (4) are equated to get

$$\log (X_{s(A)}/X_{s(B)})^{\Delta m} = \Delta \mu.\Delta \varepsilon \qquad \dots (5)$$

where $\Delta \mu = \Delta C.\Delta m$. So the change in solvent strength or type results in change in the slope ($\Delta \mu$) rather than Δm . Expressing Eq. (4) in more explicit R_f values, we get,

$$\left[\frac{R_{f(2)}}{R_{f(1)}}\frac{1-R_{f(1)}}{1-R_{f(2)}}\right]_{A} = \left[\frac{R_{f(2)}}{R_{f(1)}}\frac{1-R_{f(1)}}{1-R_{f(2)}}\right]_{B} e^{\Delta\mu\cdot\Delta\varepsilon} \qquad \dots (6)$$

Hence the mobility or selectivity is an exponential function of solvent strength and its molecular area. So two similarly adsorbing chelate molecules without truly equal molecular areas (A_s) can be resolved by judicious choice of solvent strength or type. Accordingly Eq. (1) due to Galik can be modified as

$$R_m = -\mu/N \log X_s + C \qquad \dots (7)$$

where $\mu = m.\alpha.A_s$ and $N = n.\alpha.A_{\rho}$

Materials and Methods

Sodium salts of the dithiocarbamic acids were prepared from dimethylamine, diethylamine, di-*n*propylamine, di-*n*-butylamine, N-methylaniline, dibenzylamine, piperidine and morpholine following the standard procedures⁸. Neutral dithiocarbamates of As(III), Sb(III) and Bi(III) were prepared by metathetical reactions between the aqueous solutions of metal ions and ligand in 1:3 molar proportions⁴ below pH 7. These were recrystallysed from chloroform.

TLC studies were made by allowing the mobile phase to move up by 10 cm from spotted region in closed chambers preequilibrated with eluent vapours at 29°C. Layers (thickness 0.25 ± 0.02 mm) were activated at 125°C for 1 hr and kept for 24 hr in the open so that the thin layers acquire the relative humidity prevailing in the laboratory. Fresh chelate solutions in benzene were spotted 1.5 cm from the lower end of the chromatostrips with microsyringes. Binary mobile phases were prepared just before use. Colourless zones of As and Sb chelates were visualised by spraying with 5% CuSO₄ solution. Pilot chromatograms were run to facilitate their quantitative elution and determination.

Results and Discussion

Simple mobile phases—These trischelates have highly distorted octahedral symmetry due to lone pair of electrons on the central metalloid atom⁴. The bulky organic ligands make these chelates to adsorb by the same number of bonds via lone pair of electrons on Natom of ligand moiety. However, the data in Table 1 show parallel movement of As and Sb chelated while the movement of Bi chelates is slow. The greater degree of π -back donation (Bi \rightarrow S; IR vN^{.....}C around 1475 cm^{-1})^{9,10} and the less electronegative character of Bi(III) facilitates greater availability of lone pair of electrons on N-atom for adsorption. Though the equally moving As and Sb chelates have insignificant π -back donation^{4,10} (IR ν N^{.....}C around 1485 cm⁻¹) small differences manifested in their molecular area by electronegativity and ionic radii variations¹¹ aid their resolution (of some chelate types) by higher hydrocarbons. This shows the effect of molecular area of the solvents, as well as solutes in achieving the required selectivity. Mobilities of different types of chelates are in the order: Morp. dtc ≤ Dime. dtc < Pip. dtc < Die. dtc < Me.ph.dtc < Dipr. dtc < Dibut. dtc < Dibenz. dtc. The mobility increases with increase in N-alkyl chain length of the ligand (Fig. 1) and with the basicity of the amines from which they are derived, with the exception of Me.ph.dtc and Dibenz.dtc. Though piperidine is more basic than diethylamine, Pip.dtc is found to be slow moving than Die.dtc (Table 2). The controlled electron flow from N to C atom in the rigid heterocyclic ring¹⁰ decreases the 'thioureide' bond order and makes the chelate to adsorb strongly. Morph.dtc chelates with strongly adsorbing ring Oatom show negligible migration.

Binary mobile phases: (A) With benzene/halogenated hydrocarbons as the active component—When the simple solvents listed in Table 1 are diluted with inactive cyclohexane (or CCl_4) better resolutions are achieved (Table 2), proving the increase in selectivity

Eluent	hR_f of metal chelates of								
	Metal	Dime.	Die.	Dipr.	Dibut.	Me.ph.	Dibenz.	Pip.	Morph
Benzene	As	33.0	54.7	79.3	90.6	71.7	96.3	50.0	7.0
	Sb	37.6	61.8	85.4	93.3	66.3	90.2	58.4	4.9
	Bi	22.8	42.1	68.6	86.3	51.9	88.2	38.0	0
Toluene	As	18.4	38.5	64.1	85.3	57.4	82.7	28.3	3.0
	Sb	19.2	39.1	73.4	89.6	42.1	81.3	26.2	0
	Bi	6.5	21.3	59.0	85.2	38.8	83.5	24.8	0
Xylene	As	7.3	16.4	38.2	67.3	39.1	65.5	11.6	0
	Sb	6.3	18.0	50.0	61.9	26.4	76.2	15.7	0
	Bi	0	9.3	32.5	69.1	14.2	63.2	5.4	0
Chloroform	As	35.5	59.3	77.0	86.3	57.3	88.1	55.3	8.9
	Sb	40.9	68.2	81.0	88.1	69.1	97.1	60.1	7.3
	Bi	31.9	53.3	67.0	79.3	63.3	92.6	58.6	4.3
Dichloromethane	As	65.1	82.9	88.3	98.0	88.1	100.0	80.8	14.4
	Sb	71.6	91.9	100.0	100.0	95.6	100.0	82.7	12.7
	Bi	67.9	88.8	100.0	100.0	99.2	100.0	80.3	9.3

Humidity = 80 to 82%

Dime = Dimethyl dithiocarbamate; Die = Diethyl dithiocarbamate;

Dipr = Di-n-propyl dithiocarbamate; Dibut = Di-n-butyl dithiocarbamate;

Ne. ph. = N-methyl, N-phenyl dithiocarbamate; Dibenz = Dibenzyl dithiocarbamate;

Pip. = 1-Piperidine carbodithioate; Morph = Morpholine-4-carbodithioate.

with decrease in solvent strength⁵. Though the slopes of R_m versus log X_s plots should decrease with solvent strength², weaker benzene (planar, with larger molecular area)³ containing mobile phases show lower slopes than stronger CHCl₃ or CH₂Cl₂ (non-planar, with low molecular area) containing mobile phases (Table 3). Thus molecular area can be used to determine the solute adsorption in addition to solvent strength, solute type and other secondary solvent effects like aromatic localisation, etc. The slopes are in the order: Pip.dtc > Dime.dtc. > Me.ph.dtc >

Fig. 1—Dependence of R_m values on the number of carbon atoms in N-alkyl substituents

Dibenz.dtc > Die.dtc > Dipr.dtc > Dibut.dtc. Though the slopes with these trischelates are greater than those with bischelates of the bivalent elements (Table 3), their correlation with chelate stoichiometry as done earlier² is less pertinent because the adsorption of these chelates is influenced not only by the N-alkyl substituents but also by their molecular symmetry and electronegativity of the central ions.

(ii) With ketones/dioxan/tetrahydrofuran in carbon tetrachloride as active components—Binary mobile phases containing 4 to 15% (v/v) of a ketone in CCl₄ resolve these chelates on thin layers. Greater than 4% concentration of acetone, dioxan, etc. and 8% concentration of methyl ethyl ketone, tetrahydrofuran, etc. offer good resolutions (Fig. 2), Chelates derived from dialkyl amines and cyclic amines are well resolved by mobile phases containing acyclic and cyclic ketones respectively (Fig. 3). Slopes of R_m versus log X_s plots for some chelates presented in Table 4 show the mobilities in the order As > Sb > Bi. The slopes are found to

Table 2— hR_f Data of Some Binary Mobile Phases with Benzene/Halogenated Hydrocarbons as Active Components

Chelate	Eluent	h,	hR_f values				
		As	Sb	Bi			
Dime.	CHCl ₃ -Cy.H(1:1)	13.4	30.0	0			
Die.	$C_{6}H_{6}$ -CCl ₄ (8:2)	44.1	60.4	31.3			
	$NO_2C_6H_5$ -CCl ₄ (12:88)	43.7	79.9	59.8			
Dipr.	C_6H_6 -Cy.H(7:3)	59.9	73.1	44.9			
	$C_{6}H_{6}-CCl_{4}(1:1)$	32.6	58.2	44.2			
	CHCl ₃ -CCl ₄ (6:4)	53.1	78.8	68.3			
	ClC_6H_5 - $CCl_4(7:3)$	58.1	72.8	31.5			
Dibut.	CHCl ₃ -Cy.H(1:1)	50.5	79.2	62.7			
Pip.	$CHCl_3-CCl_4(1:1)$	17.9	30.4	5.3			
CyH = Cycloł	nexanone						

Table 3—Slopes of R_m versus $\log X_s$ Plots for Binary Mobile Phases Containing Benzene/Halogenated Aliphatic Hydrocarbons as Active Components with Cyclohexane as Diluent

Active	Slopes of metal chelates of									
(20 to 80 $\%$, v/v)	Metal	Dime.	Die.	Dipr.	Dibut.	Me.ph.	Dibenz.	Pip.		
Benzene	As	2.38	1.85	1.48	1.40	2.25	1.67	3.50		
	Sb	1.91	1.64	1.38	1.21	2.35	1.86	2.53		
	Bi	2.64	2.01	1.43	1.67	2.63	2.08	3.22		
	(Zn)	(1.43)	• (1.43)	(1.37)	(1.33)	(1.48)	(1.62)	(1.42)		
CHCl3	As	2.86	2.61	2.61	2.61	2.86	3.08	3.33		
	Sb	2.79	2.78	2.27	2.17	3.64	2.61	3.67		
	Bi	4.00	3.68	2.61	2.52	3.33	3.86	4.0		
	(Zn)	(1.82)	(2.35)	(2.50)	(2.86)	(2.50)	(3.00)	(2.76)		
CH ₂ Cl ₂	As	2.67	2.48	2.51	2.02	1.74	2.53	3.08		
	Sb	2.48	2.52	2.11	2.09	2.61	2.35	3.33		
	Bi	3.73	3.38	2.55	2.27	3.14	2.78	3.45		
CICH ₂ CH ₂ Cl	As	2.33	2.17	2.14	1.77	1.32	2.23	2.69		
	Sb	2.17	2.21	1.85	1.83	2.28	2.06	2.91		
	Bi	3.26	2.86	2.23	1.99	2.75	2.43	3.02		

INDIAN J. CHEM., VOL. 22A, APRIL 1983

Fig. 2— R_m versus log X_s plots for 1-piperidine carbodithioates of As(III), Sb(III) and Bi(III), [Mobile phases; ketones as the active components (2 to 15% v/v) with $\mathbb{C}Cl_4$ as the diluent

decrease, in general, with increase in molecular area and pK_a of the ketones, dioxan and THF as shown below with tris(diethyldithiocarbamato)antimony(III);

	Acetone	MEK	Cyclo- hexanone	Dioxan	THF
pK_a	-7.2	-7.2	- 6.8	-3.2	-2.0
Slope	1.38	1.29	1.25	1.18	1.11

Larger slopes observed with acetophenone (Table 4) show its weak adsorption due to -I effect of the phenyl group adjacent to the adsorbing site. Lengthy N-alkyl chain and N-phenyl group give lower slopes due to their fast migration because of weak adsorption and greater lipophilicity. Like ketones, esters also resolve these chelates but with more compact spots facilitating their quantitative elution and determination.

(III) With alcohols as active components—Slopes of R_m versus log X_s plots presented in Table 4 show the migratory behaviour of these chelates in the order: As < Sb > Bi. Since sorption mechanism is accepted for highly polar alkanols⁷ as mobile phases, the comparatively more polar chelate molecules may be presumed to be sorbed strongly on the primarily adsorbed layer of polar alkanol molecules resulting in their restricted migration. The slopes are found to decrease with molecular area of the alkanols. Isoalcohols show greater slopes than *n*-alcohols. The anomalous behaviour of methanol (lower slopes) can be explained by its free and strong adsorption at any position on adsorbent surface. The slopes are in the order: Morph.dtc > Pip.dtc > Dime.dtc > Die.dtc > Dipr.dtc > Dibut.dtc > Dibenz.dtc > Me.ph.dtc. The intersecting R_m versus log X_s linear plots of As and Sb chelates (Fig. 4) around 5% (v/v) of alkanol (in CCl_4)

Fig. 4—Plots of R_m versus $\log X_s$ plots for 1-piperidine carbodithioates of As(III), Sb(III) and Bi(III). [Mobile phase: alcohols as the active component with CCl₄ as the diluent]

SOUNDARARAJAN & SUBBAIYAN: TLC OF As(III), Sb(III) & Bi(III) DITHIOCARBAMATES

Eluent*		Die.			Dipr.			Dibut.			Me.ph.	
component 2 to 15% , v/v)	As	Sb	Bi	As	Sb	Bi	As	Sb	Bi	As	Sb	Bi
Acetone	1.18	1.38	1.87	0.95	1.27	1.54	0.91	1.09	1.18	1.00	1.11	1.33
MEK	1.25	1.29	1.65	1.13	1.16	1.00	1.10	1.03	1.10	0.92	1.05	1.02
THF .	0.91	1.11	1.10	1.18	1.60	2.00	1.54	2.11	2.05	1.08	1.67	1.11
Cyclohexanone	1.27	1.25	1.45	1.00	1.18	1.48	0.83	1.13	1.25	0.87	1.11	1.43
Dioxan	0.91	1.18	1.05	1.00	0.83	0.93	0.83	0.83	0.83	0.81	1.08	0.96
Acetophenone	2.27	2.86	2.83	2.50	2.86	2.42	1.68	1.98	2.22	1.35	2.22	2.22
		Dime.			Die.			Dibenz			Morph.	
Methanol	1.98	1.18	2.67	2.00	1.48	1.96	1.38	1.29	1.67	2.78	2.67	2.85
Ethanol	1.82	1.38	2.88	2.22	1.60	2.28	1.48	1.48	1.80	2.80	2.25	2.48
n-Propanol	1.48	1.00	1.95	1.91	1.43	1.78	1.33	1.11	0.95	2.18	2.11	2.28
n-Butanol	0.95	0.87	0.91	1.11	1.01	1.00	1.01	0.71	0.95	1.95	2.00	2.11
Isopropanol	2.00	1.67	2.50	1.74	1.43	2.50	1.43	1.33	1.54	2.72	2.54	
Isobutanol	1.60	1.11	2.11	1.43	1.29	1.81	1.33	1.14	1.04	2.67	1.80	1.93
Isoamyl alc.	0.91	0.87	0.83	1.33	1.11	1.67	1.18	0.88	0.91	1.81	1.48	1.56
Diacetone alc.	0.77	0.71	0.80	1.29	0.83	1.38	1.13	1.11	0.91	1.60	1.45	1.55

Table 4—Slopes of R_m versus log X_s Plots of Some N, N-Disubstituted Dithiocarbamates of As(III), Sb(III) and Bi(III)

Humidity = 76%; MEK = methyl ethyl ketone; THF = Tetrahydrofuran.

* Carbon tetrachloride as diluent.

show their better resolutions with mobile phases containing more than 8% (v/v) of alkanol.

References

- 1 Brinkman U A Th & De Vries, J Chromatogr, 85 (1973) 187.
- 2 Galik A, Analytica chim Acta, 57 (1971) 399; 67 (1973) 357.
- 3 Snyder L R, Principles of adsorption chromatography (Marcel Dekker, New York) 1968, 187-235.
- 4 Manoussakis G E & Tsipis C A, J inorg nucl Chem, 35 (1973) 357.
- 5 Perry A, J Chromatogr, 165 (1973) 117.
- 6 Soczewinski E, Golkiewicz W & Markowski W, Chromatographia, 8 (1975) 13.
- 7 Snyder L R, J Chromatogr, 184 (1980) 363.
- 8 Coucouvanis D, Progr inorg Chem, 11 (1970) 233.
- 9 Manoussakis G E & Karyannidis P, Inorg nucl Chem Lett, 6 (1970) 71.
- 10 Manoussakis G E & Tsipis C A.J inorg nucl Chem, 36 (1978) 225.
- 11 Malatesta L, Gazz chim ital, 69 (1954) 629.