# Mechanism of Oxidation of Azide by Periodate in Acid Medium

## T S VIVEKANANDAM & M S RAMACHANDRAN\*

# School of Chemistry, Madurai Kamaraj University, Madurai 625 021

Received 30 August 1982; accepted 16 October 1982

The oxidation of azide by periodate in acid media shows second order dependence in azide ion and first order dependence in periodate under the condition  $[H^+] >> [N_3^-]$ . Increase in  $[H^+]$  increase the pseudo-first order rate constant upto  $[H^+] = [N_3^-]$  and beyond that the rate constant remains unchanged showing that  $HN_3$  is the reacting species. Two mol of  $HN_3$  require one mol of  $IO_4^-$  for oxidation. The reaction is independent of ionic strength. It is proposed that the hydrazoic acid forms a covalent complex with protonated periodate in the rate-determining step, which then further reacts with  $HN_3$  in a fast step to give the product  $(N_2)$ . The thermodynamic parameters have been calculated and the effects of added Fe<sup>2+</sup>, Cr<sup>3+</sup> and Mn<sup>2+</sup> also studied.

In continuation of our earlier work<sup>1-4</sup> on the oxidation of azide, we report herein the results of oxidation kinetics of  $N_3^-$  by metaperiodate in acid media.

## **Materials and Methods**

All the reagents used were of analytical grade. Deionised, doubly distilled over alkaline permanganate, water was used in preparing all solutions. Periodate solution was prepared by weight from NaIO<sub>4</sub> (BDH, AnalaR) and kept in flasks wrapped with aluminium foil to avoid photochemical decomposition<sup>5</sup>. Sodium azide solution was prepared afresh by dissolving a weighed amount of NaN<sub>3</sub> (E. Merck) and standardised by cerimetry. The pseudo-first order conditions ([azide]  $\geq$  [periodate]) were maintained in all kinetic runs which were carried out in flasks coated black from outside. The ionic strength was maintained by the addition of Na<sub>2</sub>SO<sub>4</sub>. The reaction was followed iodometrically.

#### **Results and Discussion**

It was found that for a smooth study of the reaction, a condition of  $[N_3^-]$  and  $[H^+]$  in excess was most suitable. The stoichiometry of the reaction was determined by mixing the reactants  $N_3^-$  and  $IO_4^-$  in various proportion and estimating the remaining  $N_3^$ by cerimetry and  $IO_4^-$  and  $IO_3^-$  by iodometry. The results showed that, in acid medium, the stoichiometry could be expressed by Eq. (1).

 $IO_4^- + 2HN_3 \rightarrow IO_3^- + 3N_2^- + H_2O$  ...(1) The reaction between  $IO_3^-$  and  $HN_3$  is too slow to produce any complication as  $IO_4^-$  is quantitatively converted into  $IO_3^-$  and there is little decrease in  $[IO_3^-]$  even after 24 hr. The gaseous product is found to be pure nitrogen by gas chromatographic analysis.

Dependence of rate on  $[IO_4^-]$ ,  $[N_3^-]$  and  $[H^+]$ —(i) At various initial  $[IO_4^-]$  and fixed  $[N_3^-]$ , the rate was

| Table                                                           | 1—Ps                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Order Rate<br>Conditions                                                                                                                                            | e Constants<br>at 35° C                                                                                                                                             | $k_{obs}$ under                                                                                                                                            |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [N <sub>3</sub><br>mol d                                        |                                                                                                                                | [IO4 <sup>-</sup> ]<br>mol dm <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [H+]<br>mol dm <sup>-3</sup>                                                                                                                                        | μ                                                                                                                                                                   | $\frac{k_{\rm obs} \times 10^3}{\rm min^{-1}}$                                                                                                             |
| 0.0<br>0.0                                                      | 25<br>30<br>375<br>45<br>50<br>625<br>75<br>50<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | $\begin{array}{c} 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0005\\ 0.0010\\ 0.0015\\ 0.0020\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\ 0.0015\\$ | $\begin{array}{c} 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.02\\ 0.03\\ \end{array}$ | $\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.75\\ 1.00\\ 1.25\\ 0.50\\ 0.50\\ 0.50\\ \end{array}$ | $\begin{array}{c} 1.34\\ 2.30\\ 3.15\\ 4.72\\ 7.83\\ 9.67\\ 14.56\\ 20.04\\ 9.44\\ 10.13\\ 9.67\\ 9.21\\ 10.02\\ 10.03\\ 9.86\\ 1.45\\ 3.11\\ \end{array}$ |
| $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$ | )5<br>)5<br>)5                                                                                                                 | 0.0015<br>0.0015<br>0.0015<br>0.0015<br>0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04<br>0.05<br>0.07<br>0.09<br>0.12                                                                                                                                | 0.50<br>0.50<br>0.50<br>0.50<br>0.50                                                                                                                                | 5.76<br>9.50<br>9.65<br>9.90<br>9.70                                                                                                                       |

directly proportional to the  $[IO_4^-]$  (Table 1). (ii) The rate increased with the increase in  $[N_3^-]$  at fixed  $[IO_4^-]$  and excess  $[H^+]$  (Table 1). A plot of  $k_{obs}/[N_3^-]$ versus  $[N_3^-]$  at constant  $[H^+]$  was linear and passed through the origin (Fig. 1). This shows that the observed rate can be written as

$$-\frac{d [IO_4^{-}]}{d} = k [IO_4^{-}] [N_3^{-}]^2 \qquad \dots (2)$$

(iii) An increase in [H<sup>+</sup>] increased the rate till [H<sup>+</sup>] =  $[N_3^-]$  and beyond this condition the observed rate constant remained unchanged (Table 1). A plot of  $k_{obs}/[H^+]$  versus [H<sup>+</sup>] at constant  $[N_3^-]$  upto [H<sup>+</sup>] =  $[N_3^-]$  was linear and passed through the origin. The

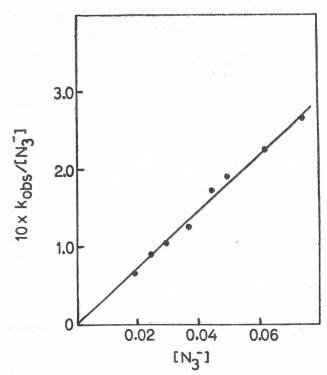



Fig. 1—A plot of  $k_{obs}/[N_3^-]$  versus  $[N_3^-]$   $[IO_4^-] = 0.0015$  mol dm<sup>-3</sup>;  $[H^+] = 0.10$  mol dm<sup>-3</sup>;  $\mu = 0.50$ ; temp. = 35° C.

| Table 2-Effect | of Varying HN <sub>3</sub> on the Observed Rate {[IO <sub>4</sub> -] |
|----------------|----------------------------------------------------------------------|
| = 0.0015  mol  | $dm^{-3}$ ; $[H^+]_{free} = 0.10 mol dm^{-3}$ ; $\mu = 0.775$ ;      |
|                | temp. $35^{\circ}$ C}                                                |

| [HN <sub>8</sub> ]<br>mol dm <sup>-3</sup> | $k_{ m obs} 	imes 10^{3} \  m min^{-1}$ |
|--------------------------------------------|-----------------------------------------|
| 0.02                                       | 1.34                                    |
| 0.03                                       | 3.20                                    |
| 0.04                                       | 6.08                                    |
| 0.05                                       | 9.50                                    |
| 0.0625                                     | 15.00                                   |
| 0.075                                      | 20.00                                   |
| 0.0875                                     | 28.10                                   |
|                                            |                                         |

Table 3—Effect of Cr<sup>3+</sup>, Mn<sup>2+</sup> and Fe<sup>2+</sup> on Pseudo-First Order Rate Constant

$$\label{eq:constraint} \begin{split} [N_a^-] &= 0.05 \mbox{ mol } dm^{-3}; \ [IO_4^-] &= 0.0015 \mbox{ mol } dm^{-3}; \ [H^+] &= 0.10 \\ \mbox{ mol } dm^{-3}; \ \mu &= 0.50; \mbox{ temp. } 35^\circ \mbox{ C} \end{split}$$

| $[Cr_2(SO_4)_3]$<br>mol dm <sup>-3</sup> | [MnSO <sub>4</sub> ]<br>mol dm <sup>-3</sup> | [FeSO <sub>4</sub> ]<br>mol dm <sup>-3</sup> | $k_{\rm obs} \times 10^{\rm 3}$ $\min^{-1}$ |
|------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|
| 0.0025                                   |                                              |                                              | 9.60                                        |
| 0.0050                                   |                                              |                                              | 10.02                                       |
| 0.0075                                   |                                              |                                              | 10.10                                       |
| 0.0100                                   | manerenergi                                  | an annual d                                  | 9.80                                        |
|                                          | 0.0005                                       |                                              | 9.67                                        |
|                                          | 0.0010                                       |                                              | 10.00                                       |
|                                          | 0.0100                                       |                                              | 9.90                                        |
|                                          | 0.0200                                       |                                              | 9.98                                        |
|                                          |                                              | 0.00025                                      | 9.79                                        |
| 4                                        |                                              | 0.0005                                       | 9.68                                        |
|                                          |                                              | 0.0010                                       | 9.80                                        |
|                                          | · · · · · · · · · · · · · · · · · · ·        | 0.0100                                       | very fast                                   |
|                                          |                                              | •                                            |                                             |

slope of the linear plot was exactly equal to the slope of the linear plot in Fig. 1. This proves that  $HN_3$  is the reactive species. The reaction was also studied by keeping the  $[H^+]_{free}$  ( $[H^+]_{free} = [H^+]_{total}$  –

 $[N_3^-]_{total}$ ) constant (Table 2) and varying  $[HN_3]$ . The linear plot of  $k_{obs}/[HN_3]$  versus  $[HN_3]$  also passed through origin with identical slope as that of the linear plot in Fig. 1. This clearly proves that the reaction is zero order with respect to free H<sup>+</sup>.

Under the pseudo-first order conditions, the rate was independent of the ionic strength (Table 1).

Addition of  $Mn^{2+}$  and  $Cr^{3+}$  had no effect on the rate of the reaction. In the presence of added  $Fe^{2+}$ , the rate was constant only when  $[Fe^{2+}] < [IO_4^{-}]$ . Under the condition  $[Fe^{2+}] > [IO_4^{-}]$  the reaction was very fast. Table 3 summarizes the results of  $Mn^{2+}$ ,  $Cr^{3+}$  and  $Fe^{2+}$  addition on the rate of the reaction.

Mechanism—Generally the azide ion, in acidic solution; exists predominantly as  $HN_3$  ( $HN_3$  is a weak acid  $K_a = 2.1 \times 10^{-5}$  mol dm<sup>-3</sup> at 20° C with high thermal stability<sup>6</sup>). Therefore the reacting species is the protonated species i.e. hydrazoic acid and as a first approximation [ $HN_3$ ] = [ $N_3^{-1}$ ]total at excess [ $H^+$ ] over [ $N_3^{-1}$ ].

The behaviour of the periodate ion in aqueous solution is best described<sup>7,8</sup> by Eqs (3-5)

$$H^{+} + H_{4}IO_{6}^{-} \underset{K_{H}}{\overset{K_{1}}{\rightleftharpoons}} H_{5}IO_{6}^{-} (K^{1} = 1.98 \times 10^{3} \text{ M}^{-1}) \dots (3)$$

$$2 \operatorname{H}_{2}\mathrm{O} + \operatorname{IO}_{4} \rightleftharpoons \operatorname{H}_{4}\operatorname{IO}_{6}^{-}(K_{\mathrm{H}} = 0.025) \qquad \dots (4)$$

$$H^{+} + H_{3}IO_{6}^{2-} \rightleftharpoons H_{4}IO_{6}^{-}(K_{2} = 5.0 \times 10^{6} \text{ M}^{-1}) \quad ...(5)$$

where the values of the equilibrium constant are those at zero ionic strength and  $25^{\circ}$  C. From these equilibria it is possible to conclude that at the [H+] employed, the periodate species exist as HIO<sub>4</sub> and H<sub>5</sub>IO<sub>6</sub>. It is perhaps worth mentioning that the rapid equilibrium between periodate and hydrogen ions.

$$H^+ + L^- \rightleftharpoons HL$$
 ...(6)

 $(L^- = IO_4^- + H_4IO_6^- = [IO_4^-]_{total} - total [periodate])$ should be considered. The thermodynamic value of  $K_3$  is reported<sup>9</sup> as 200 dm<sup>3</sup> mol<sup>-1</sup> at 25° C.  $K_3$  was determined as  $150 \pm 10$  dm<sup>3</sup> mol<sup>-1</sup> at ionic strength 1.0 at 25° C.

Taking into consideration all the experimental facts the mechanism in scheme 1 is proposed.

$$HN_{3} + HL \rightleftharpoons HN_{3}HL \text{ (complex)} \qquad \dots (7)$$

$$\frac{\text{HN}_{3}\text{HL} + \text{HN}_{3} \rightarrow 2 \text{ N}_{3} + \text{IO}_{3}}{\text{fast}} \qquad \dots (8)$$

$$2 N_3 \rightarrow 3 N_2 \qquad \dots (9)$$

# Scheme 1

The rate law derived from Scheme 1 assuming that  $K_4$  is small, an assumption warranted by the adherence of the rate law to first order dependence on  $[IO_4^-]_{total}$  is

Rate = 
$$\{1 + 1/K_3[H^+]\}^{-1} K_4 k_1 ]HN_3]^2 [IO_4^-]_{total} ...(10)$$

Eq. (10) will reduce to the observed rate equation for the limiting conditions  $K_5$  [H<sup>+</sup>]  $\gg 1$ .

Rate = 
$$K_4 k_1 [HN_3]^2 [IO_4]_{total}$$
 ...(11)  
 $k_{obs} = K_4 k_1 [HN_3]^2$  ...(12)

The proposed mechanism implies that two-electron transfer operates in the reduction of periodate by  $HN_3$  and this transfer of electrons from two molecules of  $HN_3$  to I(VII) precludes the formation of a high energy free radical I(VI). This mechanism also indicates that two-electron transfer is associated with the acid forms,  $HIO_4$  and/or  $H_5IO_6$  in accord with the observation of El-Eziri<sup>10</sup>. Two-electron transfer is commonly proposed for periodate oxidation of organic substrates<sup>11</sup> and iodide<sup>12</sup>. Finally the azide radicals produced disproportionate to give N<sub>2</sub>. This reaction is shown to be very fast<sup>18</sup> ( $k = 1.3 \times 10^{10}$  dm<sup>3</sup> mol<sup>-1</sup> s<sup>-1</sup>) and similar observations were proposed by various authors in the oxidation of N<sub>3</sub><sup>-</sup> (ref. 14, 15).

The mechanism involving  $L^-$  ( $[IO_4^-]_{total}$ ) with HN<sub>3</sub>, could be eliminated as this would involve an inverse dependence of  $k_{obs}$  on [H<sup>+</sup>] which is not observed in our experimental conditions.

The oxidant species which is involved in the oxidation of  $HN_3$  has not been specified. It is tempting to view  $HIO_4$  as the reactive species because of its smaller size compared to  $H_5IO_6$ ; it is involved in complex formation with protonated periodate and  $HN_3$  forming a covalent bond (Eq. 13).

$$HN_{3}^{+} \overset{O}{\underset{O}{\square}} \overset{OH}{\underset{O}{\square}} \overset{O}{\underset{O}{\square}} \overset{O}{\underset{O}{\square}} \overset{O}{\underset{O}{\square}} \overset{OH}{\underset{O}{\square}} (13)$$

Similar observations have also been observed in the periodate oxidation of glycol<sup>16</sup>. In the oxidation of  $I^-$  by iodate<sup>17</sup> and bromate<sup>18</sup>, in the presence of H<sup>+</sup> also a complex intermediate involving a covalent link was proposed. Therefore it would be logical that this is the complex intermediate which is proposed in Eq. (7).

The effect of  $Fe^{2+}$  can be explained by the fact that the reaction between  $Fe^{2+}$  and  $IO_4^-$  is very fast

$$\operatorname{Fe}^{2+} + \operatorname{IO}_{4}^{-} \xrightarrow{k_{2}} \operatorname{Fe}^{3+} + \operatorname{IO}_{3}^{-} \qquad \dots (14)$$

Such an observation has been recorded in the presence of H<sup>+</sup> by El-Eziri and Sulfab<sup>10</sup> in the oxidation of hexaaquoiron(II) and the observed rate was  $k_{\text{pseudo}}$ = 1.06 s<sup>-1</sup> at [Fe<sup>2+</sup>] = 5.0 × 10<sup>-4</sup> mol dm<sup>-3</sup>; [IO<sub>4</sub>] = 0.25 × 10<sup>-2</sup> mol dm<sup>-3</sup>; [H<sup>+</sup>] = 0.10 mol dm<sup>-3</sup> and  $\mu = 1.00$ . Under the present experimental conditions  $k_2$  will be  $\sim 10^4$  times greater than  $k_{obs}$  and therefore of these two parallel reaction (14) and (15)

$$HN_3 + IO_4^{-} \longrightarrow product$$
 ...(15)  
rate determining

step (14) will not be a rate determining step in the reaction of  $IO_4^-$  with HN<sub>8</sub> and Fe<sup>2+</sup>.

The reaction has been studied at four different temperatures from which the activation parameters for the overall reaction rate were calculated. The values found for  $\triangle H^{\neq} = 25.83$  k J mol<sup>-1</sup> and  $\triangle S^{\neq} = -361.95$  JK<sup>-1</sup> mol<sup>-1</sup>.

#### Acknowledgement

L.

It is a great pleasure to acknowledge Prof N R Subbaratnam, Head of the Department of Physical Chemistry for his constant and continuous encouragement and keen interest.

## References

- 1 Vivekanandam T S, Chandra Singh U & Ramachandran M S, Int J chem Kinet, 13 (1981) 199.
- 2 Vivekanandam T S & Ramachandran M S, Communicated.
- 3 Ponnuraj V, Ramachandran M S, Vivekananda T S & Chandra Singh U, Bull chem Soc, Japan, 51 (1978) 460.
- 4 Vivekanandam T S & Ramachandran M S, Communicated.
- 5 Symon M C R, J chem Soc, (1955) 2794.
- 6 Bunn C, Dainton F S & Duckworth S, Trans Faraday Soc, 57 (1961) 1131.
- 7 Stability constants special publication—No. 17, The chemical society, London (1964).
- 8 Stability constants supplement No. 1 special publication—No. 25, The chemical society, London (1971).
- 9 Stability constants special publication—No. 17, The chemical society, London (1964).
- 10 El-Eziri F R & Sulfab Y, Inorg chim Acta, 25 (1977) 15.
- 11 Sklarz B, Q Rev Chem Soc, 21 (1967) 3.
- 12 Indelli A, Ferranti F & Secco F, J phys Chem, 70 (1966) 631.
- 13 Hayon E & Simic M, J Am chem Soc, 92 (1970) 7486.
- 14 Murmann R K, Sullivan J C & Thompson R C, Inorg Chem, 7 (1968) 1876.
- 15 Thompson R C, Inorg chem, 20 (1981) 3745.
- 16 Edwards J O & Chafee E, Progress in inorganic chemistry, Vol 13, edited by J O Edwards (Wiley, New York) 1970.
- 17 Barton A F M & Wright G A J chem Soc (A) (1968) 2096.
- 18 Barton A F M & Wright, G A J chem Soc (A) (1968) 1747.