Ligational Behaviour of a Tridentate NNS Donor Ligand towards Salts of Co(III), Ni(II) & Cu(II)

SAKTIPROSAD GHOSH*, PRANAB K RAY, SATYA R SAHA & ADITYA P KOLEY

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032

Received 29 August 1983; revised 13 February 1984; accepted 23 April 1984

Synthesis of a new tridentate NNS donor ligand, 4-phenylthiosemicarbazone of biacetylmonoxime (H_2A) and preparation and characterisation of its complexes with Co(III), Ni(II) and Cu(II) are described. At different pH values the tridentate ligand behaves as H_2A (pH 2-3), HA^- (pH 3.5-4) and A^2^- (pH 6-8). Elemental analyses, spectroscopic (UV-visible, IR), and magnetic and conductivity measurements have been used to arrive at the geometry of the ligand environment around the metal ion and to elucidate the bonding sites of the ligands with the central metal ions.

The coordination chemistry of the thiosemicarbazones has assumed new dimensions because of the antibacterial and antitumour activities exhibited by some thiosemicarbazones and their metal complexes¹⁻⁶. This prompted us to undertake the study of the ligational behaviour of a new thiosemicarbazone oxime i.e. 4-phenylthiocarbazone of biacetylmonoxime (H₂A) towards Cu(II), Ni(II) and Co(III) ions. Depending on the *p*H the ligand can act as (i) H₂A, (ii) HA⁻ and (iii) A²⁻. In all these cases it is found to behave as a tridentate ligand, bonding through the imine-nitrogen, the oxime-nitrogen and the thioketone/deprotonated thiol sulphur atom.

Materials and Methods

All the chemicals used were of either AR (BDH) grade or chemically pure. 4-Phenylthiosemicarbazide was prepared by a modification of the procedure used by Sen and Gupta⁷. It was condensed with biacetylmonoxime as follows: A solution of 4-phenylthiosemicarbazide (16.7 g, 0.1 mol) and biacetylmonoxime (10.1 g, 0.1 mol) in dry ethyl alcohol (150 ml) was refluxed for 6 hr and then overnight at room temperature. The pale yellow crystals which separated out, were filtered, washed with ethanol and dried over fused CaCl₂. The elemental analyses (C,H,N,S) of the pale yellow crystalline compound (m.p. 165°) agreed well with the calculated values.

Preparation of metal complexes

Copper(II) complexes of the type $Cu(H_2A)X_2.3H_2O$ (where $X = Cl^-$, Br^- , NO_3^- , ClO_4^- , $\frac{1}{2}SO_4^2^-$) were prepared by reacting equimolar quantities of the appropriate copper salt and the ligand in aqueous alcoholic medium (*p*H 2-3). In the case of the sulphato complex, a solution of the metal salt in minimum volume of water was used. The complexes of the type $Cu(A).4H_2O$ were prepared as follows: To an alcoholic suspension of $Cu(H_2A)X_2.3H_2O$, ammonium hydroxide was added till the *p*H of the solution became 7.5-8.0. This solution was heated on a water-bath when a brownish complex separated out.

Nickel(II) complexes of the type Ni(HA)X.2H₂O (where $X = Cl^{-}$, ClO_4^{-} . Br⁻) were prepared by reacting the metal salts and the ligand in 1:1 molar ratio ($pH \sim 4$) in aqueous ethanolic medium.

 $Ni(H_2A)SO_4$. $3H_2O$ and $Ni(A)H_2O$ were prepared by the procedures similar to those adopted in the cases of the corresponding Cu(II) complexes.

The complex Ni(H₂A)₂(NO₃)₂.2H₂O was prepared by reacting Ni(NO₃)₂.6H₂O and the ligand in 1:2 molar ratio in aq. ethanol, the *p*H of the solution being adjusted to \sim 3 with dil. HNO₃.

The complex Ni(HA)₂.4H₂O was prepared as follows: A suspension of Ni(H₂A)₂(NO₃)₂.2H₂O in hot ethyl alcohol was treated with NH₄OH until the *p*H of the solution reached 6.5-7.0. A granular brown precipitate separated out.

The Co(III) complexes except Co(HA)SO₄.3H₂O were obtained by dissolving the appropriate cobalt(II) salt and the ligand in 1:2 molar ratio in 1:2 aq. ethyl alcohol ($pH \sim 4$) and heating the solution on a waterbath for 2.5-3 hr when spontaneous aereal oxidation took place leading to the isolation of the Co(III) complexes. In the case of complex containing the sulphate ion the metal to ligand ratio was 1:1 and an aqueous solution of CoSO₄.5H₂O was used.

All the complexes were filtered, washed with ethanol and dried over fused $CaCl_2$. In the case of sulphato complexes the residues were first washed with water.

Magnetic susceptibilities of the complexes were measured at room temperature in a Gouy balance using $Hg[Co(SCN)_4]$ as the calibrant. Diamagnetic corrections were made using Pascal's constants⁸. Electrical conductance was measured in conductivity water using a Philips PR-9500 conductivity bridge and a dip-type cell. The infrared spectra of the ligand and complexes in the range 4000-250 cm⁻¹ were recorded on a Beckman IR 20A spectrophotometer as KBr or CsBr disc (100 mg KBr/CsBr + 1-3 mg sample). In a few cases the spectra were recorded as mulls in hexachlorobutadiene. Electronic spectra of the complexes were recorded in the range 370-1000 nm (27,027-10,000 cm⁻¹) in nujol on a Pye-Unicam model SP8-150 UV/VIS and a MoM-201 (hungarian) spectrophotometer, as described by Lee *et al.*⁹

Results and Discussion

The analytical data together with the colour of the complexes are given in Table 1. Most of the complexes are insoluble in common non-coordinating organic solvents, but are highly soluble in coordinating solvents. The molar conductance value of $Co(HA)_2Br.H_2O$, in conductivity water (62.19 ohm⁻¹ cm² mol⁻¹) suggests that it is a 1:1 electrolyte.

The cobalt(III) complexes are diamagnetic and therefore octahedral. The magnetic moments of Ni(H₂A)₂(NO₃)₂.3H₂O, Ni(H₂A)SO₄.3H₂O and and Ni(HA)₂.4H₂O lie in the range 2.92-3.2 B.M., generally found for octahedral Ni(II) complexes. The other nickel complexes are diamagnetic and hence square planar. The magnetic moment values of the copper complexes lie in the range 1.73-1.90 B.M. indicating that these complexes may be either distorted octahedral or square planar but not tetrahedral. The magnetic moments of the complexes are summarized in Table 1.

The IR spectra of most of the complexes exhibit a broad band in the region 3300-3000 cm⁻¹ arising from the overlap of the stretching vibrations of the coordinated or lattice water molecules with the vNH and the vOH of the ligand. The vC = N (imine)¹⁰ band located around 1590 cm⁻¹ in the spectra of the ligand shifts by 10-20 cm⁻¹ to lower wavenumbers in all the metal complexes indicating the involvement of the C = N(imine) in coordination. In all the complexes the participation of the C = N(oxime) moiety in complexation has been ascertained by a positive shift of 10-30 cm $^{-1}$ of the ligand band around 1440 cm $^{-1}$ due to $vC = N(oxime)^{11}$. The band around 1010 cm⁻¹ (due to vN-O)¹² shifts by 30-50 cm⁻¹ to higher frequency suggesting that bonding occurs through the oxime nitrogen atom.

In the case of the complexes of H_2A and HA^- , the band at 750 cm⁻¹ (assigned¹³ to the vC = S) shifts by 5-20 cm⁻¹ to lower wavenumber indicating the involvement of the thicketone sulphur in coordination. But in the IR spectra of the metal complexes of the A^{2-} from of the ligand, disappearance of the 750 cm⁻¹ band clearly indicates that the thioketone moiety is converted into the corresponding thiol form and the absence of any band around 2500 cm⁻¹ points to the subsequent deprotonation of the thiol.

There exists the possibility of the ligand acting as a bidentate donor (a) by coordinating through two nitrogen atoms (the imine and the oxime nitrogen atoms) and (b) through the imine nitrogen atom and the thicketone sulphur atom. The coordination mode (a) is expected to leave the v(C=S) unchanged, while the coordination mode (b) is likely to leave the v(C = N)and v(N-O) of the oxime moiety unchanged. However, the IR spectra of none of the metal complexes reveal the presence of unchanged v(C = S) or unchanged v(C = N) and v(N - O). Thus the IR spectra of all the complexes exhibit characteristic features which indicate the simultaneous participation of the two nitrogen atoms and the sulphur atom in coordination. Hence, it may be concluded that in the present case the ligand behaves exclusively as a tridentate NNS donor.

The IR spectra of Co(HA)SO₄. $3H_2O$ and all the Co(III), Ni(II) and Cu(II) complexes containing nitrate and perchlorate moieties clearly show that these anions are present in the uncoordinated form. But the spectra of Ni(II) and Cu(II) complexes containing sulphate exhibit two bands at 1130 and 1060 cm⁻¹ and two other bands around 960 and 620 cm⁻¹ indicating the presence of monocoordinated sulphate in these species¹⁴. The bands around 480 and 340 cm⁻¹ may be assigned to $v(M - N)^{15}$ and $v(M - S)^{16}$ respectively.

In the IR spectrum of the reddish-brown nickel complex, Ni(A).2H₂O, the band observed at 415 cm⁻¹ may be assigned to i(Ni - O) arising out of the coordination of a water molecule^{16a} to the fourth position of the coordination square plane around Ni(II). The presence of one coordinated water molecule in Ni(A).2H₂O is also revealed by the TG – DTA of the compound which exhibit the loss of one rather loosely bound water molecule (lattice water) at 100-110°C but the coordinated water molecule is lost at a much higher temperature (195-98°C).

A band around 410 cm^{-1} is also observed in the IR spectrum of each of the Cu(H₂A)X₂.3H₂O complexes which may be attributed to v(Cu-O). The molar conductance value of Cu(H₂A)Cl₂.3H₂O in nitrobenzene is 56 ohm ⁻¹ cm² mol⁻¹ indicating that both the chlorides are ionic in nature. Hence, the Cu(H₂A)X₂.3H₂O type complexes may be either fourcoordinated or six-coordinated with three coordination positions being occupied by the ligand and the rest by water molecules.

The electronic spectral characteristics (see Table 1) of all the metal complexes lead to the following

Table 1	-Analytica	I Data, C	olour, M	agnetic M	loment Va	alues, and	Electro	nic Spectral L	Data of Con	nplexes	
Complex	Colour		0	Found (Calc.) %			μ _{eff} B.M. at 302 K	Electronic	Assignment	Ref.
		C	Н	Σ	Z	S	Anion		band (nujol) cm ⁻¹		
Co(HA)2CI.H2O	Reddish	43.26	4.61	9.59	18.42	10.38	5.92	Diamagnetic	25,000	$^{1}A_{1g} \rightarrow ^{1}T_{2g}$	19
	brown	(43.25)	(4.59)	(6.65)	(18.35)	(10.48)	(5.81)		19,610	$^{1}A_{1g} \rightarrow ^{1}T_{1g}$	19
Co(HA) ₂ Br.2H ₂ O	Deep	39.29	4.50	8.60	16.76	9.40	11.98	-Do-	25,320	$^{1}A_{1g} \rightarrow ^{1}T_{2g}$	19
	brown	(39.24)	(4.46)	(8.76)	(16.65)	(15.6)	(11.87)		19,610	$^{1}A_{1g} \rightarrow ^{1}T_{1g}$	19
Co(HA) ₂ ClO ₄ .H ₂ O	Reddish	39.02	4.27	8.82	16.51	9.54	14.89	-Do-	25,640	${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$	19
	brown	(39.15)	(4.15)	(8.74)	(16.61)	(6.49)	(14.75)		19,420	${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$	19
Co(HA) ₂ NO ₃ .2H ₂ O	Deep	40.45	4.64	9.12	19.09	9.87		-Do-	25,640	${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$	19
	brown	(40.31)	(4.58)	(0.00)	(19.24)	(6.77)			19,050	${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$	19
Co(HA)SO4.3H2O	Brown	28.79	4.19	12.72	12.12	13.82	20.84	-Do-	25,000	$^{1}A_{1g} \rightarrow ^{1}T_{2g}$	19
and a second sec		(28.83)	(4.15)	(12.87)	(12.23)	(13.97)	(20.96)		18,870	${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$	19
Ni(HA)Cl.2H ₂ O	Light	34.84	4.52	15.42	14.60	8.36	9.24	-Do-	25,320	¹ A ₁₈ → ¹ A ₂₈ +CT	19
	brown	(34.81)	(4.48)	(15.48)	(14.77)	(8.44)	(9.35)	Ĩ			
Ni(HA)Br.2H ₂ O	Reddish	31.19	4.10	13.78	13.10	7.65	18.79	-00-	25,000	¹ A _{1g} → ¹ A _{2g} +CT	61
National and	brown	(31.16)	(4.01) 2.60	(13.86)	(13.22) 13.5ò	(7.55)	(18.86)	ć	000 10		01
NI(HA)CIO4.2H20	Deep	18.67	5.89 (1) 0.45	13.19	60.21	71.1	75.22	-011-	24,390	'A ₁₈ →'A ₂₈ +∪I	17
O LIC (VEN	Drown	(61.62)	(3.84) 4 21	(07.61)	(12.04)	(77.1)	(77.44)	Ż	100		01
N(A).2H2O	neep	4C.8C	4.01	60./1	10.19	67.6	ŀ,	-01-	24,100	'A ₁₈ →'A ₂₈ +UI	41
	brown	(26.86)	(4.67)	((1.13))	(16.34)	(9.34)					
NI(H ₂ A)SO ₄ .3H ₂ O	Deep	28.81	4.30	12.69	12.12	13.82	21.10	3.2	24,390	$^{\circ}A_{2g} \rightarrow ^{\circ}T_{1g}(P)(v_3)$:
	grey	(28.78)	(4.36)	(12.80)	(12.21)	(13.95)	(20.93)		15,870	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)(v_{2})$	20
O HE A OIN AV HEAT		10.00		co t					10,000	$A_{2g} \rightarrow I_{2g}(v_1)$	00
N(H ₂ A) ₂ (NU ₃) ₂ .3H ₂ U	Light	68.66	4.58	06./	19.16	20.8	l	5.04	040,02	$A_{2g} \rightarrow 1_{1g}(P)(v_3)$	07
	brown	(35.83)	(4.62)	(7.97)	(00.61)	(8.69)			16,390 13 240	${}^{3}A_{28} \rightarrow {}^{1}E_{8}$ ${}^{3}A_{2} \rightarrow {}^{3}T_{2} (FY_{V_{2}})$	61
									10 100	${}^{3}A \rightarrow {}^{3}T_{2}(v,)$	20
Ni(HA), .4H,O	Lieht	41.87	5.34	9.27	17.70	10.00	Į	2.92	25.320	$(r_1)_{22} 32$	20
•	hrown	(42,00)	(15 41)	(6 34)	(17.81)	(10.18)			16 130	^{3}A , $\rightarrow^{1}F$	20
						(13.160	${}^{3}A_{2,2} \rightarrow {}^{3}T, \mathcal{L}(F)(\nu_{1})$	19
									10,310	${}^{3}A_{2,e} \rightarrow {}^{3}T_{2,e}(v_{1})$	20
$Cu(H_2A)Cl_2.3H_2O$	Olive	30.01	4.62	14.57	12.69	7.10	16.00	1.73	16,670		
	green	(30.11)	(4.56)	(14.49)	(12.77)	(7.30)	(16.17)				
$Cu(H_2A)Br_2.3H_2O$	Light	25.00	3.82	12.12	10.50	6.17	30.50	1.78	16,390	I	
	brown	(25.03)	(3.79)	(12.05)	(10.62)	(6.07)	(30.30)				
$Cu(H_2A)(NO_3)_2.3H_2O$	Brown	26.76	4.17	13.06	17.22	6.40	}	1.80	16,120	1	01
		(26.85)	(4.07)	(12.93)	(17.09)	(6.51)					17
$Cu(H_2A)SO_4.3H_2O$	Light	28.40	4.39	13.60	11.96	13.95	20.82	1.75	16,625	Ē	
	brown	(28.48)	(4.31)	(13.71)	(12.08)	(13.81)	(20.71)				
$Cu(H_2A)(ClO_4)_2.3H_2O$	Light	23.21	3.63	11.02	69.6	5.52	35.00	1.90	17,240	Ì	
	brown	(23.30)	(3.53)	(11.22)	(68.6)	(2.65)	(35.11)				
$Cu(A).4H_2O$	Brown	34.37	5.16	16.42	14.49	8.23]	1.82	15,870	J	
		(34.42)	(5.21)	(16.57)	(14.60)	(8.34)					

GHOSH et al.: COMPLEXES OF Co(III), Ni(II) & Cu(II)

conclusions: (i) the Co(III) ions are present in a pseudooctahedral environment^{17,18}; (ii) the reddish diamagnetic nickel complexes are square planar¹⁹ and paramagnetic nickel complexes are octahedral^{19,20}; and (iii) an unambiguous assignment of the broad band¹⁹ observed in the spectra of the Cu(II) complexes around 15,625-17,241 cm⁻¹ is not possible.

On the basis of the foregoing discussion probable structures of the different types of the complexes reported here may be suggested. The cobalt(III) complexes of the type $Co(HA)_2X.3H_2O$ have a pseudo-octahedral structure (I). The complex Ni(HA)₂.4H₂O also possess a similar structure. The structure of Ni(H₂A)₂(NO₃)₂ may be derived from that of Co(HA)₂X.3H₂O by replacing Co(III) by Ni(II) and remembering that in this case the ligand in its keto form retains its unenolised thiocarbonyl group and the protonated oxime moiety. The diamagnetic and square planar complex, Ni(HA)X.3H₂O may have the structure (II). The structure of the complex Ni(A).2H₂O may be derived from structure (II) by changing the position of double bond from C=S to C=N-Ph and putting H₂O in place of X. However, it is not possible to predict, unambiguously, whether the Cu(II) complexes possess distorted octahedral or square planar geometry.

References

- 1 Orlova N N, Aksenova V A, Sclidovkin D A, Bogdanova N S & Perskhin G N, Russ Pharm Toxic (1968) 384.
- 2 Johnson C W, Joyner J W & Perry R P, Antibiotics and Chemotherapy, 2 (1952) 636.
- 3 Williams D R, Chem Rev, 72 (1972) 203.
- 4 Friendlander B L & French F A, Cancer Res, 18 (1958) 1286, 1290.
- 5 French F A & Blanz E J, Cancer Res, 25 (1965) 1454.
- 6 Idem, J Med Chem, 9 (1966) 585.
- 7 Sen A B & Gupta S K, J Indian chem Soc, 39 (1962) 628.
- 8 Selwood P W, Magnetochemistry (Interscience, New York) 1956, 92.
- 9 Lee R M, Griswold E & Kleinberg J, Inorg Chem, 3 (1964) 1278.
- 10 Percy G C & Thornton D A, Inorg nucl Chem Lett, 7 (1971) 599.
- 11 Nonoyama M, Tomita S & Yamaski K, Inorg Chim Acta, 12 (1975) 33.
- 12 Palm A & Werben M, Can J Chem, 32 (1954) 858.
- 13 Bellamy L J, The infrared spectra of complex molecules (Chapman & Hall, London) 1975, 400.
- 14 Nakamoto K, Infrared spectra of inorganic & coordination compounds (Interscience Publishers) 1970, 173.
- 15 Condrate R A & Nakamoto K J, Chem Phys, 42 (1965) 2590.
- 16 Nakamoto K, Infrared & Raman spectra of inorganic & coordination compounds (Wiley-Interscience, New York) 1978, 337 & 339.
- 16 (a) Nakagawa & Shimanouchi, Spectrochim Acta, 20 (1964) 429.
- 17 Johnson D A & Sharpe A G, J chem Soc, (1966A) 798.
- 18 Chen S C & Poon C K, J chem Soc, (1966A) 146.
- 19 Lever A B P, Inorganic electronic spectroscopy (Elsevier, London) 1968, 333; 334; 343; 357; 221-22.
- 20 Jorgensen C K, Acta chem Scand, 9 (1955) 1362.