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The enhancement of the hydrodynamic characteristics of autonomous underwater gliders (AUGs) is an important factor 
because of their weak inner propulsion system and altitude control. Moreover, resistance forces acting on the glider limit its 
operational range and increase energy utilisation. In this paper, towing tanks experiments were conducted to investigate the 
hydrodynamic characteristic of a newly developed underwater glider with fixed wings and a tail rudder. Specifically, this 
work presents the hydrodynamic performance of a newly developed AUG in a horizontal plane towed tank environment. 
This hydrodynamic study investigates the glider performance at a wide range of speed (0.3-0.7 m/sec) and drift angles (0-
180). The resistance forces were measured by internal strain gauges, mounted on the towing carriage. The experimental 
results were used to analyse the resistance with variation in Froude’s number and drift angles, using Reynold’s Average 
Navier Stoke equation in Ansys FLUENT. Both experimental and simulation are well corroborated and show that resistance 
force is a strong function of the drift angle. The results are useful for the potential development of AUGs and their control 
surfaces. 
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Introduction  
Autonomous underwater gliders (AUGs) play a 

vital role in exploring the hidden resources of oceans, 
continuous environment monitoring, and deep-sea oil 
and gas exploration1. Recent developments in glider 
design have seen their rapid application in a variety of 
deepwater applications. These important design 
aspects are centred towards improving payload 
capacity, increasing volume and enhancing wing 
shape. 

Stevenson et al.2 studied the impact of hull shape 
and size on the hydrodynamic forces and moments of 
gliders. They found that the speed and operational 
range of a glider is a function of resistance or drag 
force. Most of the glider energy is consumed to 
overcome the drag or resistance forces. The kinetic 
energy of glider is a function of retarding force (drag) 
and operational range, given by the equation, 
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where, ‘D’ is the drag force, ‘R’ is the range of the 
glider and ‘m’ is the total glider mass. The lift force 
‘L’ is equal to the total weight of the glider as shown 
in the equations, 
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AUGs typically comprise a cylindrical hull  
and fixed wings. Their payload capacity and 
functionalities are comparable i.e. Slocum 3, Spray 4 
and Seaglider 5.  

A glider behaves like an aircraft as it is 
independent of free surface effect unlike surface 
vessel. Free surface water effect can be ignored 
because the glider is submerged in water and 
therefore does not experience any surface effect. 
However, the submerged vehicles have viscous 
pressure and frictional resistance. The frictional and 
viscous (form) resistance is related to the lift-to-drag 
(L/D) ratio variation, as shown in Figure 1. 

The effect of L/D ratio is paradoxical, where the 
minimum total resistance shows the optimum L/D 
ratio. The other important fluid characteristics include 
Reynolds number, given as 
 

μ

ρvL
eR   … (4) 

 

where ρ is the density of water, ‘L’ is the length of 
glider, ‘v’ is the velocity of fluid and ‘μ’ is the 
viscosity of fluid. Another important fluid property is 
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where ‘S’ is the wetted surface in still water, V 
indicates the model speed and ρ the density of the 
medium i.e. towing tank water. Using the results of 
the dynamometer in the towing tank, the total drag RT 
can be obtained, as given by equation (7). 
 

2SV0.5

TR
TC


  … (7) 

 

where CT is the non-dimensional total resistance 
(drag) coefficient. 

The skin frictional coefficient of the viscous drag 
force for the design of surface vehicles is a function 
of Reynolds number recommended in ITTC11. The 
friction drag coefficient is  
 

2)2(log

0.075
FC




eR
 … (8) 

 

where CF is the non-dimensional friction drag 
coefficient and Re is the Reynolds number as defined 
in equation (4).  
 
Simulation Design and Analysis Methods 
 

Experimental Study 
The newly developed AUG was tested at the 

towing tank in Marine Technology Centre (MTC) of 
Universiti Teknologi Malaysia. The total water 
channel length was 2.54120   m3, filled with fresh 
water. The towing carriage has variable speed with a 
dynamometer to measure the forces acting on the 
model as shown in Figure 5.  
 
Glider model  

The glider model was fixed to carriage with struts 
as shown in Figure 6. The dimensions of the glider are 
given in Table 1. The struts were passed through the 

top of the glider to maintain the distance from free 
surface 3d (d=diameter). An aerofoil shield was used 
to counter the inherent resistance of the solid struts. 
The movement of plate and struts relative to the 
carriage was determined with the help of 
orthogonally-mounted linear variable differential 
transformers (LVDTs) and electromechanical 
transducers. These LVDTs were calibrated before 
each experiment at high accuracy based on the 
theoretical estimation of drag force.  
 

Test conditions and set-up 
Figure 7 shows the body-fixed coordinates of the 

glider model. The surge and sway forces are defined 
horizontally in the x-axis and y-axis of the glider, 
respectively; and heave is defined in the vertically 
downward direction along the gravity force of glider 
in the z-axis. 

 

 
 

Fig. 5 — Towing tank Carriage UTM 

 

Table 1 — UTP gliders dimension12 

Dimension Taper wings glider 
Total wing span (b) 0.97 
Root chord length rC  0.17m 
Glider diameter d 0.28m 
Taper ratio 

tr CC /  1.89 
Sweep angle (a) 05.8  
 

 
 

Fig. 6 — Experimental (left) and schematic (right) of model set-
up with carriage 
 

 
 

Fig. 7 — Body-fixed coordinate systems of the underwater glider 
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In the towing tank, coordinates were fixed with 
the glider model. The x-axis direction was aligned 
with the towing direction of the carriage. The 
towing carriage has a six-component force 
measuring mechanism to calculate the forces and 
moments acting on the glider model. Two force 
transducers were fixed along the x-axis direction, 
one was fixed along the y-axis, and three 
transducers were loaded in the vertical direction 
along the z-axis.  

The tests consisted of the following configuration: 
(1) Resistance test by towing the glider through the 

water body at variable (0.3, 0.5, 0.7 and 1 m/s) 
speeds, while being aligned to the direction of 
tow at zero drift angles.  

(2) Horizontal static drift test with drift angles 6, 12, 
and 18 degrees. All runs were completed with 
speeds of 0.3, 0.5 and 0.7 m/s.   

 

CFD method 
Computational fluid dynamic (CFD) simulation was 

employed to investigate the hydrodynamic performance 
of the underwater glider. In this work, FLUENT version 
16.1 was used for CFD simulation. This simulation 
solved the incompressible fluid flow field and pressure 
force around the glider hull based on the Reynolds 
Averaged Navier Stokes (RANS) equations13. 

The k-ξ model was selected as the turbulence 
model due to its robustness and wide application 
range14. The equations of the model are a modified 
form of RANS equations and are particularly 
applicable to slow-moving objects in a fluid stream 
such as a AUG moving in sea water15. The model 
equation is given in equations 9-11. 
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The intensity of turbulence viscosity can be 
calculated as: 
 
 

2/1kCt    … (11) 
 

 

Where the constant values in k-ξ turbulence model 
are: 

,09.01 C    ,44.12 C     ,0.1k     30.1  
 

Results and Discussion  
 

Computational domain and boundary conditions  
In this study, the fluid domain consists of the glider 

body, flow velocity inlet, pressure outlet, ceiling and 
bottom wall, and two side walls. A domain 
independence test analysis was conducted with 
different inlet, outlet and side wall positions with fine 
mesh using RNG k-ξ model at zero drift angle and Fr 
number of 0.33. The results of domain independency 
are summarized in Table  which shows that the best 
domain size is 1.5Linlet x3.5Loutletx9Dside-wall. Figure 8 
shows that the location of glider body was 1.5 times 
Lglider from flow inlet and 3.5 times Lglider from outlet 
boundary. Ceiling, bottom and side walls were 
defined as free slip wall boundary 9 times Dglider away 
from the no slip glider boundary to avoid the 
obstruction in the flow. 
 

Grid independence analysis 
The reliability of measurements is directly 

affected by the grid size and number of elements. 
Ideally for grid independency, three to four 
different grid sizes should be examined. In this 
study, different sizes of the grid were generated for 

 

Table 2 — Fluid domain selection for CFD simulation 

Domain Size  Drag Coefficient (CFD) Experimental Values Error (%) 
1.5Linlet x3.5Loutletx6Dside-wall 0.513387 0.563013 8.81 
2 Linlet x4.5Loutletx9 D side-wall 0.506191 0.563013 10.09 
1.5 Linlet x3.5Loutletx9 D side-wall 0.525011 0.563013 6.75 
2 Linlet x4.5Loutletx6 D side-wall 0.506191 0.563013 10.09 
1.5 Linlet x4Loutletx6 D side-wall 0.513305 0.563013 8.83 
1.5 Linlet x4Loutletx9 D side-wall 0.51074 0.563013 9.28 
 

 
 

Fig. 8 — Fluid domain for CFD simulation 
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grid independency study because of limitation of 
computational time limitation and costs to simulate 
the 3D fluid domain with the glider. The grid 
independency results of drag and lift coefficients 
are shown in Figure 9 and 10. The mesh size for all 
simulations was 4×106 to 4.5×106. The suitable 
value of Y+ for turbulence flow was fixed between 
10 and 30 for standard wall function16.  
 

Influence of struts on resistance 
The aero-foils were evaluated separately (without 

glider) to determine the influence of hydrodynamic 
forces on the total measurements, as shown in Figure 11. 

Table shows the variation in resistance force 
calculation with aero-foil struts. The results show that 
the resistance force increases with the velocity, 
because the resistance force is directly proportional to 
the velocity in laminar region and velocity square in 
the turbulence region17. It was observed, that the 
resistance was higher at higher Fr number because of 
vortices or turbulence across the struts, which was 
subtracted from the total resistance of the glider with 
struts. 
 

 

Resistance characteristics 
The measured total resistance force (RT) and its 

relationship with Froude numbers (Fr) at different 
drift angles are shown in Figure 12. The results show 
that the resistance value increases 77%, 77%, 85% 

 
 

Fig. 9 — Drag coefficient grid independency numerical simulation 
 

 
 

Fig. 10 — Lift coefficient grid independency numerical simulation 
 

 
 

Fig. 11 — Experimental (left) and schematic (right) diagram of
struts test 

 

Table 3 — Percentage increment of resistance force with struts 

Fr Resistance force 
with struts 

Resistance force 
of struts 

%age increment of 
resistance due to struts 

0.33 0.622765 0.059752 9.59 
0.55 1.76437 0.449154 25.45 
0.77 3.653227 1.182052 32.34 
1.10 8.244253 2.938618 35.64 
 

 
 

Fig. 12 — Experimental resistance force at various drift angle 
versus Froude number  
 

 
 

Fig. 13 — Experimental lift force verses Froude number at zero 
degree drift angle   
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and 83% for drift angle (β = 0°, 6°, 12° and 18°) in 
the range of Fr=0.33 to 0.77, respectively. Moreover, 
the overall resistance value increased by 61%, 68% 
and 72% with the increment of drift angle 6°, 12° and 
18°, respectively. This is attributed to increase in 
speed and pressure around the glider hull, causing the 
boundary layer to move closer to the hull body, hence 
resulting in increased friction and viscosity. 
Moreover, the increase in blockage area by the drift 
angles also contributed significantly to the increase in 
resistance force.  

Figure 13 illustrates the lift force deviation with 
respect to the Froude number (Fr) at zero drift 
angles. Lift force increased from 120% to 198% at 
zero degrees for Froude number (Fr=0.33 to 0.77). 
The key source to generate high lift force is flow 
separation, because high pressure forces act on the 
front side (opposite to fluid direction) of glider and 
negative pressure was generated back side of the 
glider. Hence, this negative pressure leads to huge 
amount of lift force. 
 

Comparison of experimental and numerical results 
Resistance (RT) force: The experimental and 

numerical values for resistance force on the glider 
model are shown in Figure 14 and Table . 

Generally, the numerical simulation results are in 
good agreement with experimental results, with a 
maximum error of 6.9%. The difference between 
the experimental and numerical calculations can be 
attributed to test conditions. In the experiments, the 

glider model was towed with the help of a carriage 
while in simulation the flow was created around the 
glider model. The discrepancies may have occurred 
due to the variation of carriage speed or flow 
vortices around the glider. Similarly, some 
discrepancies may be due to the selection of flow 
model or number of inflation layers and selection of 
fluid domain in the numerical simulation. Figure 15 
presents the total resistance force (RT) and its 
relationship with Froude numbers (Fr) at different 
drift angles. 

Lift force (FL): The normal component of the 
resultant force when the glider is moving through the 
fluid is called lift force. Normally, lift force is a 
function of fluid density, velocity of fluid and shape 
of glider. Figure 16 shows that the numerically 
predicted trend of lift force is similar to that of the 
experimental results. It can be seen that the lift force 
increases with the increment of the Froude number 
(Fr) at zero drift angles.  

 

Table 4 — Comparison of resistance force at zero drift angles 

Fr CFD Results Experiment Results Error (%) 
0.33 0.577494 0.563013 2.50 
0.55 1.393193 1.315216 5.59 
0.77 2.617866 2.471175 5.60 
1.10 4.962295 5.305635 6.91 
 

 
 

Fig. 14 — Variation in resistance of glider versus Froude number 

 

 

Fig. 15 — Variation in resistance of glider versus Froude number 
with certain drift angle 

 

 
 

Fig. 16 — Variation of lift force vs Froude number at zero degree
of drift angle   
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Conclusion 
The lift force (normal force) and resistance (RT) of 

a newly developed underwater glider are investigated 
experimentally (towing tank test) and numerically 
under different operational conditions such as speed 
and drift angle. The results of this study show that the 
increment of lift forces is higher compared to the 
resistance force with increasing drift angle and speed.  

These results are helpful in designing gliders with 
better manoeuvrability and control surface for an 
underwater glider with similar shape, wings and 
operational conditions. A comparison study of 
numerical simulation and experimental results shows 
a good agreement. Hence, the numerical simulation of 
hydrodynamic characteristics on glider with wings 
resembles with glider model.  
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