Kinetics & Mechanism of Chloride Ion Catalysed Oxidation of Arginine by Chloramine-T

B THIMME GOWDA* & B S SHERIGARA

Department of Chemistry, Mangalore University, Mangalagangothri 574 199

and

D S MAHADEVAPPA & K S RANGAPPA

Department of Chemistry, University of Mysore, Manasagangothri, Mysore 570006

Received 28 *December* 1984; *revised and accepted* 13 *June 1985*

Kinetics of chloride ion catalysed oxidation of arginine by chloramine- T has been investigated in perchloric acid medium at 303 K. Due to the participation of different reactive species of the oxidant in the rate-determining steps the kinetics of chloride ion catalysed oxidations are different from those of uncatalysed oxidations.

As a part of our kinetic and mechanistic investigations on the reactions of N-halo-N-metallo reagents with a variety of organic reductants, in general, and those involving amino acids, in particular^{$1-6$}, we report herein the results of chloride ion catalysed oxidation of L -arginine (Arg) by chloramine-T (CAT) in perchloric acid medium at 303 K. We have observed that the reaction orders in the presence of and absence of chloride ion are different due to the participation of $Cl⁺$ of the oxidant in different forms under different reaction conditions. Hence determination of orders of reaction with respect to [CAT], [substrate] and $[H^+]$ in the absence of Cl^- to explain the kinetic data in the presence of Cl^- is not justified.

Materials and Methods

Chloramine-T(Fluka AG) was purified by standard method and its aqueous solution was standardised by the iodometric method and stored in dark-coloured bottles. Chromatographically pure L-arginine (Sisco Research Laboratories, India) was assayed by the acetous perchloric acid method". An aqueous solution of this substrate (0.2 mol dm^{-3}) was prepared. Triply distilled water was used throughout the investigations. All other reagents used were of AR grade.

The reactions were carried out in glass stoppered pyrex boiling tubes. A measured amount of CAT solution, thermally equilibrated at the required temperature, was added to a mixture of appropriate amounts of arginine, acid and perchlorate, preequilibrated at the same temperature. The progress of the reaction was monitored for two half-lives by iodometric estimation of unreacted CAT at regular intervals of time. The pseudo-first order rate constants were reproducible within $\pm 3\%$.

Stoichiometric runs with varying ratios of CAT to arginine in the presence of 0.01-0.3 mol dm^{-3} HClO₄ and 0.1 mol dm^{-3} NaCl were equilibrated at 303 K for 24 hr. The products were identified to be ammonia, $CO₂$, *p*-toluenesulphonamide and the respective aldehyde. The observed stoichiometry can be represented by Eq. (I).

 $R'CH(NH₂)COOH + RNC1Na + H₂O \rightarrow$ $RNH_2 + R'CHO + CO_2 + NH_3 + Na^+ + Cl^-$...(1) $R = p\text{-CH}_3C_6H_4SO_2$ and R' $=(H_2N)C(NH)NH(CH_2)_3.$

Ammonia and $CO₂$ were quantitatively estimated by standard methods.

Results

At constant $[HClO₄]$ and $[chloride]$ with several fold excess of arginine, plots of log ($[CAT]_0/[CAT]$) versus time were linear at least upto 75% of the reaction (Table I). At constant [CAT] and [Arg] an increase in $[H^+]$ upto 0.05 mol dm⁻³ had no effect on the rate (Table I). The rate increased with increase in $[H^+]$ in the range 0.05-0.15 mol dm⁻³ and remained constant thereafter (Table 1). Plot of log k_{obs} versus log $[H^+]$ in the concentration range 0.05-0.15 mol dm⁻³ was linear with unit slope showing a first order dependence on $[H^+]$.

The rate was independent of [Arg] both at low and high acid concentration ranges (Table 1). At low [acid] the rate was independent of $[Cl^-]$ but the rate increased at high [acid] (Table 1). The plot of log k_{obs} versus $log [CI^-]$ was linear with a slope of 0.82 showing a fractional order dependence of rate on \lceil Cl⁻¹.

Table 1—Effect of Varying $[H^+]$, [Oxidant], [Substrate] and $[Cl^-]$ on Chloride Ion Catalysed Oxidation of Arginine by CAT at 303 K

(a) 10^{3} [CAT]₀ = 2.0mol dm ⁻³, 10^{2} [Arg]₀ = 2.0 mol dm ⁻³, [Cl⁻] = 0.1 mol dm ⁻³, μ = 0.5 mol dm ⁻³, μ = 0.1 mol dm ⁻³, μ = 0.5 mo dm⁻³; and (c) 10^{3} [CAT]₀ = 2.0 mol dm⁻³, 10^{2} [Arg]₀ = 2.0 mol dm⁻³, μ = 0.5 mol dm⁻³.

Table 2-Effect of Varying Ionic Strength, p-Toluenesulphonamide Concentration, Dielectric Constant and Temperature on Chloride Ion Catalysed Oxidation of Arginine by CAT^a

(a) 10^3 [CAT]₀ = 2.0 mol dm⁻³, 10^2 [Arg]₀ = 2.0 mol dm⁻³, [Cl⁻] = 0.1 mol dm⁻³; (b) temp. = 303 K; (c) μ = 0.5 mol dm⁻³ and (d) temp. = 303 K; μ = 0.5 mol dm⁻³.

Table 3—Kinetic and Thermodynamic Parameters for Oxidation of L-Arginine by CAT in HClO₄ Medium

The rate was unaffected by the change in ionic strength or the addition of the reaction product, *p*toluenesulphonamide (Table 2). Decrease in dielectric constant of the medium increased the rate at low [acid] while it decreased at high [acid] (Table 2). The reactions were studied at different temperatures and the activation parameters were computed in both $[H^+]$ ranges (Table 3).

Discussion

Arginine exists in different forms as the medium is changed from acidic to alkaline, in accordance with the equilibria (2).

Chloramine-T $(RNC1Na$ where $R = p$ - $CH_3C_6H_4SO_2$) behaves as a strong electrolyte⁸ in aqueous solutions and depending upon the *pH* of the medium it furnishes different types of reactive species¹. The probable oxidising species in acidified CAT solutions are RNHCl, $RNCI_2$, HOCl and possibly H_2OCl^+ in the absence of Cl⁻ and Cl₂ in the presence of Cl^{-} .

The following mechanisms (Schemes 1-3) are proposed to account for the observed kinetics (Table 3) of chloride ion catalysed oxidation of arginine in perchloric acid medium. At low [acid] the rate law is independent of $[Arg]$, $[H^+]$ and $[Cl^-]$. This indicates the participation of only the oxidant in the ratedetermining step: Under these conditions, the reaction follows the mechanism shown in Scheme I.

$$
k_1
$$

\nRNHC1+H₂O \rightleftharpoons X (slow)
\n k_{-1}
\n k_2
\n $X+S \rightarrow S' + H_2O + RNH_2$ (fast)
\n k_3
\n $S' + H_2O \rightarrow Products$ (fast)
\nScheme 1

The rate law in accordance with Scheme I is given by Eq. (3)

$$
-\frac{d[CAT]}{dt} = k_1 [CAT][H_2 O] = k'_1 [CAT] \qquad ...(3)
$$

At high $[HClO₄]$ the observed kinetics of first order each in [CAT] and $[H^+]$ and fractional order in $[Cl^-]$ can be explained by considering the reaction to follow the pathways, shown in Schemes 2 and 3, to varying degrees.

$$
RMHCl + H^+ + Cl^- \rightarrow RNH_2 + Cl_2 \text{ (slow)}
$$
\n
$$
k_5
$$
\n
$$
Cl_2 + S \rightarrow S' + H^+ + Cl^- \text{ (fast)}
$$
\n
$$
k_6
$$
\n
$$
S' + H_2O \rightarrow Products \text{ (fast)}
$$

Scheme 2

RNHCl + H⁺ + H₂O
$$
\rightleftharpoons
$$
RNH₂ + H₂OCl⁺
\n k_{-7}

(k⁷ reaction being slow) *k~*

 $H_2OCl^+ + S \rightarrow S' + H_3O^+$ (fast) *k9*

 $S' + H_2O \rightarrow$ Products (fast)

Scheme 3

The combined rate law in accordance with Schemes 2 and 3 is given by Eq. (4).

$$
= \frac{d[CAT]}{dt} = k_4 [CAT][H^+][Cl^-]
$$

+ $k_7 [CAT][H^+][H_2 O]$

$$
k_{obs} = -\frac{d \ln[CAT]}{dt} = [H^+]\{k_4 [Cl^-] + k_7 [H_2 O]\}
$$
...(4)

The plot of k_{obs} versus $\lbrack Cl^-\rbrack$ is linear with an intercept on the ordinate supporting the combined rate law and the assumption that the reaction proceeds by two pathways represented by Schemes 2 and 3. From the slope and intercept, the rate constants k_4 and k_7 were calculated at constant $[H^+] \{[H_2O] = \frac{1000}{18} = 55.56$

mol dm⁻³ The computed k_4 and k_7 values were used

to predict the rate constants at different $[H^+]$ (Table 4). There is good agreement between the predicted and observed values supporting the proposed mechanisms (Schemes 2 and 3).

The detailed mechanism of chloride ion catalysed oxidation of arginine by CAT is shown in Scheme 4. The N-chloro intermediate (S) formed⁹⁻¹¹ by electrophilic attack by Cl_2 or RNHCl or H_2OCl^+ on the nitrogen atom of the amino acid undergoes decarboxylation and elimination processes in fast steps to give the reaction products.

Table 4-Comparison of Calculated and Observed Values of Rate Constants on Varying [H⁺]

In most cases the effect of dielectric constant on the rate of reaction¹²⁻¹⁴ is in conformity with the Amis' theory¹², i.e. for the limiting case of zero angle of approach between two dipoles or an ion-dipole system, a plot of log k_{obs} versus $1/D$ is linear with a negative slope for a reaction between a negative ion and a dipole or between two dipoles.

References

Time 15

- I Gowda ^B ^T & Mahadevappa ^D S. *^J chern Soc. Perkin Trans 2.* (1983) 323 and references cited therein.
- 2 Mahadevappa D S. Rangappa K S. Gowda N M M & Gowda B T. *J phys Chern.* **85** (1981) 3651; *Int J chem Kinet,* **14 (** 982) 1183.
- ³ Mahadevappa ^D S. Ahmed ^M S. Gowda ^N ^M ^M & Gowda ^B1 *Int J chern Kinet,* **15** (1983) 775.
- 4 Ahmed M S. Gowda B T & Mahadevappa D S. *Indian J chem,* **19A** (1980) 650.
- 5 Mahadevappa DS&Gowda B*T.lndianJ Chern.* 17A(l979) 484.
- 6 Mahadevappa D S, Rangappa K S, Gowda N M M & Gowda BT, *Indian J Chern,* **22A** (1983) 631.
- 7 Vogel A I. *Quantitative organic analysis* (Longman and Green. London). 1958. p. 708.
- 8 Bishop E & Jennings V J. *Talanta,* 1(1958) 197.
- 9 Kantouch A & Abdel-Fattah S H. *Chern Zuesti,* **25** (1971) 222.
- 10 Haberfield P & Paul D. *J Am chern Soc.* **87** (1965) 5502.
- **11** Gasman P G & Campbell G A, *J Am chern Soc,* **93** (1971) 2567.
- 12 Amis E S, *Solvent effects on reaction rates and mechanisms,* (Academic Press. New York) 1966.
- 13 Frost A A &Pearson R G, *Kinetics and mechanisms,* (Wiley, New York) 1961.
- **14** Entelis S G & Tiger R P, *Reaction kinetics in the liquid phase,* (Wiley, New York) 1976.

 $)$ A I .