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In a geographic information system, we use principally many models, such as points, polylines and regions to represent 

spatial objects. But, usually, lines represent linear objects that have a width, whereas from a mathematical point of view, 
lines have no width. To solve this paradox, in previous papers, the notion of rectilinear lines was replaced by rectangular 
ribbons. The rectangular ribbon was used to represent longish objects such as streets, roads and rivers. However, the 
problems come from their mathematical modeling because in reality, rivers and roads can have irregular widths and 
measurement errors must be taken into account. So, not all longish objects have rectangular shapes, but they can have loose 
ones. To solve this problem, the concept of a loose ribbon need be developed. In this paper, we address the eventual 
mutation of the topological relations between loose ribbons into other topological relations, according to certain criteria, 
when downscaling.  
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Introduction  

In mostly geographic configurations represented in 
a geographic information system, such as the running 
of a road along a sea, the running of rivers such as the 
Rhone in Lyon…etc, the rectangular ribbons proposed 
in Lejdel et al. (2015)1 cannot represent well the 
reality because rivers or roads, possibly with an 
irregular width, must be taken into account. To 
represent more exactly the reality, another 
representation of these objects must be given to get a 
more robust model. In this new configuration, we 
have to consider that these objects have shapes that 
can be considered as loose rectangles for two main 
reasons: (1) Width of so-called linear objects can 
slightly vary and (2) Small measurement errors must 
be taken into account. 

In Figure 1, we show the difference of 
representation of longish objects such as rivers, by 
two different models: Rectangular ribbons and loose 
ribbons. In this figure, the representation that uses the 
loose ribbons shows all the details of the object such 
as the bends of the river (Fig. 1a), whereas the second 
representation that uses the rectangular ribbons 
illustrates only the general shape of the object (Fig. 
1b). So, we choose the loose ribbon representation 
because it represents more exactly the reality. 
Thus, the concept of loose ribbons was developed in 
this work. Depending on the scale, or more exactly on 

visual acuity and granularity of interest, a loose 
ribbon will be mutated into a rectangular ribbon, 
when a line will disappear. In other words, loose 
ribbons can be seen as an extension of rectangular 
ribbons. Moreover, to not get stuck to cartography, 
the concept of granularity of interest was introduced. 

In different cases, we need to change the scale for 
certain detailed representations when the demanded 
representation does not exist in the geographic 
database. When applying this process, various 
changes have been held in the representation contents 
of database; such as geometry, topology, etc. For 
example, in Figure 2, the road is running along part of 

 

Fig. 1 — Two representations of the same object (river of Rhone). 
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the Rhone; at some scales, they both appear disjoint 
because there are some trees between the road and the 
Rhone (Fig. 2a), whereas at some smaller scales, they 
meet (Fig. 2b).  

Also, when somebody says « this road runs along 
the sea », what are exactly the spatial or geographic 
relations concerned? Sometimes, either the road 
touches the sea or a small beach is located between 
the road and the sea. From a mathematical point of 
view, mostly there is a disjoint relation between the 
road and the sea, whereas for people the relation is 
different. So, the topological relations mutate 
according to scale1. These issues was be treated in this 
work. Taking these considerations into account, any 
reasoning system will generate difficulties because 
the spatial relations hold differently: any conceptual 
framework dealing with spatial relationships must be 
robust against the scales. Thus, a mathematical model 
composed of some mathematical assertions can be 
proposed to formalize the topological relations that 
can be held between the loose objects and their 
mutations into other topological relations, when 
downscaling. Thus, a mathematical theory based on 
metric relations, as area, distance and certain 
thresholds…etc, was developed to preserve a 
topological consistency between loose objects, when 
downscaling. In this work, we used principally two 
objects: Loose ribbons and regions.  
 
Generalization and Topological Relations 

The process of generalization, not only involves the 
generalization of geographic objects, but it can also 
generalize topological relationships which can be held 
between these objects. Thus, there is a need to describe 
relationships between all objects in space, the points, 
lines and areas for all possible kinds of deformation. It 
was started initially by the Douglas and Peucker 
algorithm published in 1973 and used to generalize 

polylines2. Recently, complete processes use different 
modern methods as multi-agent-systems (MAS)3,8. 
These use MAS to automate the generalization process. 
 
State of the art for generalization of rectangular 
ribbons 

From historical point of view, different topological 
models have been proposed. First, Laurini proposed a 
model for organizing pieces of a linear model as 
rectangular ribbons and introduced this concept to 
represent longish objects in GIS9. Then, in our 
previous paper, we used this new concept to define 
different topological relations between them. Also, we 
treated different eventual mutation of the topological 
relations into others relations, when downscaling1. For 
regions, Egenhofer and Herring (1990) proposed the 
first topological model for two-dimensional objects10-

11 and then a second model family named RCC was 
proposed by Randell et al. (1992)12. Also, Winter 
(2000) presents a statistical model for quantitative 
assessment of uncertain topological relations between 
two imprecise regions13. This model was based on a 
morphological distance function to determine the type 
of topological relations. Those relations must be 
reconsidered for ribbons. 

Rectangular ribbons: In a recent paper9, ribbon 
relations were proposed to describe streets, roads and 
rivers. Four relations can be defined with ribbons as 
exemplified in Figure 3, side-by-side, end-to-end, 

 
 

Fig. 2 — According to scale, the Road meets the Rhone. 

 
 

Fig. 3 — Basic ribbon relations 
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fusion (or merging), and splitting9. For describing a 
section of a highway, we based the approach 
essentially on the Allen relation14. 

A real world feature (exp. a road or a river) can be 
modeled by a single composite ribbon, that is a set of 
ribbons linked by side-by-side and/or end-by-end 
relations. As the scale diminishes, ribbons will be 
reduced to lines, for instance to their axes (axis(R)) or 
can disappear. 

In the sequel of this paper, sometimes some of 
those relations will be used. To avoid ambiguities 
with other relations, the name “Allen” will be used as 
a prefix when necessary, to designate Allen relations. 

In some cases, the user does not know whether two 
segments are aligned or not. If they can be considered 
as aligned, Allen relations can hold. For that, let us 
consider two segments A and B supported 
respectively by equations y=max+pa and y = mbx+pb. 
Also, two thresholds must be defined (ε1, ε2). The 
segments A and B can be considered as aligned if the 
following condition holds: 

 

).,(

, 21

BAedAllenAlign

ppmmsegmentBA baba



 
 

 

Rectangular ribbons generalization model: Lejdel 
et al. (2015), defined a mathematical model for the 
generalization of topological relationships between 
two rectangular ribbons or between ribbons and 
regions1. Thus, two rectangular ribbons can be 
disjoint or intersect. The disjunction is defined by a 
distance separating the two ribbons. The intersection 
between the two ribbons can be Point (0D), Line (1D) 
or area (2D) according to certain criteria. In this work, 
we formally obtained the mathematical description  
for each topological relationship between objects 
when we use thresholds and metric measurements, 
such as area, distance, etc. These topological 
relationships can be: Disjoint, meet, merge and 
crossing. When downscaling, these topological 
relations can be mutated into other topological 
relations according to certain criteria. In Figure 4,  
we present an example of a Meet relation described  
in the topological model1. This relation can be 
described by the following assertion: 
 

When downscaling, the topological relations 
between the ribbons can be mutated into other 
relations according to certain criteria. Some samples 
of this mutation are presented here: 

Mutation of Disjoint to Merge :The disjoint relation 
mutates into Meet relation, when downscaling (Fig. 5).  
This process can be modeled as follows: 
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When a ribbon becomes very narrow, we apply this 
assertion:  

 

φ.R

)ε)(Width(Rσ))2Dmap(R,(R) Scale  σ( ,Ribbon R

σ

lpσσ


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Fig. 4 — Example of meet relation between rectangular ribbons1 

 

 
 

Fig. 5 — Disjoint to meet. In scale 0: the two ribbons are disjoint; 
In scale 1: Because of the downscaling, the relation between the 
ribbons became Meet; In scale 2: The most smaller between the 
two ribbons can be disappear, and in scale 3: All ribbons can 
disappear. 
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Mutation of Meet to Merge 
The transformation of Meet relation to Merge 

relation is expressed by the following assertion (Fig. 6): 
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When a Ribbon becomes very narrow, we apply 
this assertion:  

 

.))((

)),(2() Scale  ( ,Ribbon 












RRWidth

RDmapRR

lp
 

State of the art for generalization of regions  
Region topological relations: To define a model of 

topological relationships between simple regions, 
Egenhofer and Herring (1990) proposed a spatial data 
model based on topological algebra10. The topological 

algebra model is based on geometric primitives called 
cells that are defined for different spatial dimensions 
0-D, 1-D, and 2-D. A variety of topological properties 
between two cells can be expressed in terms of the  
9-intersection model15. The 9-intersection model 
between two cells A and B is based on the 
combination of six topological primitives that are 
interiors, boundaries, and exteriors of A ),,(  AAA  
and B ),,(  BBB . 

These six topological primitives can be combined to 
form nine possible combinations representing the 
topological relationships between these two cells. 
These 9-intersections are represented as a 33 matrix16:  
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The values represented in the matrix will be 
replaced by a symbol indicating whether the 
intersection is null ( ) or not null (  ) (Fig. 7). For 
example, the 9-intersection based on null/non-null 
intersections for a configuration in which region  
A covers region B is: 
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When the value of the intersection is not important, 
it is represented by (-). If A is disjoint from B, the 
intersection between these two regions must be null, 
for example, if A’s boundary is disjoint from B’s 
interior, then the 9-intersection between A and B must 
match the following model: 
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Fig. 6 — Mutation of a ribbon relation Meet to Merge. In scale 0: 
the two ribbons are Meet; In scale 1: Because of the downscaling, 
the relation between the ribbons became Merge; In scale 2: The 
most smaller between two ribbons can disappear; and in scale 3 : 
All ribbons can be disappear. 

 
 

Fig. 7 — The eight topological relations between two regions A and B15. 
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Based on these nine possible intersections, one can 
construct 512 theoretical relations. However, they do 
not all exist. Therefore, the result implies eight 
possible topological relations between two regions in

2 . These eight relations are explicitly represented in 
Figure 7 (note that sometimes, the MEET relation is 
called TOUCHES in some papers): 
 

Mutation of topological Region relations: 
Egenhofer’s relations are mainly treated15. After 
generalization, the object geometries are adapted to 
the perceptual limits imposed by the new (smaller) 
scale8. Laurini treats only the mutation of Disjoint 
relation to Meet relation9. The relation Disjoint 
mutates to relation Meet (Fig. 8), according to the 
following assertion:  
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It is noted that 2Dmap is a function transforming a 
geographic object to some scale possibly with 
generalization, but a smaller object can disappear  
or be eliminated if its area is too small to be well 
visible. So in this case, the initial relation does not 
hold anymore. 

But a smaller object can disappear or be eliminated 
if its area is too small to be well visible. So in this 
case, the initial relation does not hold anymore. 
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Loose Ribbons and Topological Relationships 
In the work of Lejdel et al.1, the streets, roads and 

rivers can be modeled as rectangular ribbons and can 

be mutated to lines, when downscaling. However, in 
most other geographic configurations, the rectangular 
ribbons cannot represent well the longish objects, for 
example rivers do not always have a rectangular 
shape. Thus, we need to model these objects as loose 
ribbons with specific properties so that they can be 
reduced to a rectangular ribbon, lines or disappear 
when needed. To take these characteristics into 
account, the concept of loose ribbon is detailed here 
with some mathematical backgrounds. 
 
Loose ribbons 

Starting from any loose ribbon LR, we want to 
qualify it as a rectangular ribbon. For this purpose, let 
us define the equivalent rectangular ribbon.  

The first step is to consider all vertices of LR  
(Fig. 9a), and by the least squares method, to compute 
the regression line y=mx+q (Fig. 9b). Let us define  
the angle so that tg()=m. Then we make a rotation of 
- so that the regression line is parallel to the x-axis 
(Fig. 9c). Then, we sort all vertices according to the 
ascending values of x and y coordinates. We can 
determine the minimum and maximum according to 
those orders. Along x, the mid values of the two first 
and the two last will determine respectively both 
ends; and along y, the mid values of the two first and 
the two last will determine both sides (Fig. 9d); those 
values will determine the equivalent rectangular 
ribbon of LR noted ERR(LR).  

 

Fig. 8 — The mutation of Disjoint to Meet 

 
 

Fig. 9 — Loose ribbons (a) Example of a loose ribbon, (b) By 
using least squares method, determination of the regression line, 
(c) Rotation, (d) Determining the elements of the equivalent 
rectangle, (e) Equivalent rectangle, and (f) Comparing the loose 
ribbon and its equivalent rectangle. 
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Now, let us compare the areas of LR and ERR(LR). 
Generally speaking, there is a small discrepancy 
between those values. A solution is to slightly modify l 
and w to reach the exact value. Let us note 
A1=Area(LR) and A2=Area(ERR(LR)). Generally 
speaking, they are not equal. To force them equal, let us 
compute the area of 2'A  in which l and w are modified:  
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
 . We reiterate this modification until 

AAA  12' , both areas will be more or less equal. 

If the longishness ratio rl of the equivalent 
rectangular ribbon is greater than the threshold value 
rL, then the loose ribbon LR is considered as an 
extended rectangular ribbon R=ERR(LR). To 
conclude this step, we need to back rotate the 
extended rectangular ribbon. So, we can define a 
loose ribbon from its equivalent rectangular ribbon. 
 
Relations for loose ribbons: Parallel of axis 

Let’s define loose ribbon relations when the axes of 
these ribbons are parallel (Fig. 10). 
 
Loose End-to-End relations: Let there be two loose 
ribbons Ra, and Rb. They will be linked by a loose 
End-to-End relation LETE(Ra, Rb) provided that: 
 The extremities of the skeletons are 

approximately equal (threshold ε1), 

 The widths are approximately equal (wa=wb), we 
must define thresholds ε2,and  

 The skeletons (slopes ma and mb) are 
approximately aligned.  

We can model this relation by the assertion: 
 

),(

))(),(() (

),ist((  nsLooseRibbo,

2

1

ba

baba

baba

RRLETE

RSkelRSkelenAlignedAllww

RRdRR











 

Loose Side-by-Side relations: Let there be two loose 
ribbons Ra, and Rb. They will be linked by a loose 
Side-by-Side relation LSBS(Ra, Rb) provided that: 
 The ends of Ra are respectively approximately 

aligned with the ends of Rb , and 
 A side Sa of Ra is quasi identical to a side Sb of Rb 

(threshold ε3). 
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Other relations of loose ribbons 
We can also add other topological relations 

between loose ribbons when their axes are parallel. 
Generally, there are three relations (Figure 11). 
 
Loose Contain relation : 

Let there be two loose ribbons Ra, and Rb. They 
will be linked by a loose Contain relation 
LContain(Ra, Rb) provided that: 
- The skeletons of ba RandR    are approximately 

aligned, 
- The loose ribbon Rb is quasi contained in the 

loose ribbon Ra, and 
- The area of relative complement of intersection 

between loose ribbons ba RandR   is very small. 
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Fig. 10 — Examples of loose End-to-End and loose Side-by-Side 
relations. 

 

Fig. 11 — Loose ribbon relations when the axis of loose ribbon 
are parallel. 
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Loose Cover relation : 
Let there be two loose ribbons Ra, and Rb. They 

will be linked by a loose Cover relation LCover 
(Ra, Rb) provided that: 
- The skeletons of ba RandR    are approximately 

aligned, 
- The loose ribbon Rb is quasi contained in the 

loose ribbon Ra, and 
- The area of relative complement of intersection 

between loose ribbons ba RandR   is great than  . 
 

).,()))((()(

))(),(((  nsLooseRibbo,
2

baRbaba

baba

RRLCoverRRAreaRR

RskelRskelenAlignedAllRR

a





 

 

Loose Equal relation : 
Let there be two loose ribbons Ra, and Rb. They 

will be linked by a loose Equal relation LEqual 
(Ra, Rb) provided that. 

 

- The skeletons of ba RandR    are approximately 

aligned. 
- The loose ribbon Rb is quasi Equal to the loose 

ribbon Ra 
- The area of intersection between loose ribbons 

ba RandR   is quasi equal to the area of aR . 
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Loose ribbon relations: Intersection of axes 
Generally, we can model the relations between the 

loose ribbons as in Figure 12, where the axes of these 
loose ribbons can be intersecting. These relations may 
be seen as an extension of the relations between 
rectangular ribbons. 

Loose Disjoint relation: Let there be two loose 
ribbons Ra, and Rb. They will be linked by a loose 
Disjoint relation LDisjoint(Ra, Rb) provided that: 
 The distance between ba RandR    is great then ε,

),Dist( ba RR  and 

 The skeleton of ba RandR    are not aligned. 

This relation is defined by the assertion: 
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Loose Meet relation: Let there be two loose ribbons 
Ra, and Rb. They will be linked by a loose Disjoint 
relation LDisjoint(Ra, Rb) provided that: 
 The skeleton of ba RandR    are not aligned and 

 The intersection between the end of Ra and Rb is a 
point P(x,y) or Line  

( y=xa+b), )1(Inters  ba R)(REnd  . 
 

The following assertion can model the loose  
Meet relation: 

 

  ).,()))(),()1(Inters (

))(),((  nsLooseRibbo,

 baba

baba

RRLMeetbxayLyxPR)(REnd

RskelRskelenAlignedAllRR




 

Loose Merge relation: Let there be two loose 
ribbons Ra, and Rb. They will be linked by a loose 
Disjoint relation LMerge(Ra, Rb) provided that: 
 The intersection between Ra and Rb is great  

than and 
 The skeleton of ba RandR    are not aligned. 

This relation can be modelled by assertion: 
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Loose Cross relation: Let there be two loose ribbons 
Ra, and Rb. They will be linked by a loose Disjoint 
relation LCross(Ra, Rb) provided that: 
 The intersection between Ra and Rb is great than  , 
 The skeleton of ba RandR    are not aligned and 

 The area of relative complement of intersection 
between loose ribbons ba RandR   is great than  . 

This relation can be defined by the assertion: 
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Fig. 12 — (a) Corresponding to a disjoint, (b and c) 
Corresponding to a meet relation, (d and e) Corresponding to a 
merge relation, and (f to h) Corresponding to a cross relation. 
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Scaling Mutation of Topological Relations  
As previously stated, according to scales, 

geographic objects can mutate according to two rules 
(see examples in Fig. 13). As scale diminishes, 
- Area will mutate to a point and then will 

disappear, and 
- A loose ribbon will mutate to a rectangular 

ribbon, and a line will disappear. 
 

General process 
The generalization process is very complex17. In 

this context, to simplify the generalization of 
geographic objects, we adapted the complete process 
described in Laurini (2014)9 as follows: 
 Step 0: Original geographic features only 

modeled as areas and/or loose ribbons, 
 Step 1: As scale diminishes, small areas and 

ribbons will be generalized and possibly can 
coalesce, 

 Step 2: As scale continues to diminish, areas 
mutate to points and ribbons into lines, and 

 Step 3: As scale continues to diminish, points and 
lines can disappear. 

This process is called “generalization-reduction-
disappearance” (GRD) process. 
 
Visual acuity applied to geographic objects 

It is well known that cartographic representation is 
linked to visual acuity9. To define visual acuity, 
thresholds must be defined. In classical cartography, 
the limit ranges from 1 mm to 0.1 mm. If one takes  
a road and a certain scale and if the transformation  
of this road gives a width more that 1 mm, this road  
is an area, between 1 mm and 0.1mm, then a line  
and if less that 0.1 mm the road disappears. The  
same reasoning is valid for cities or small countries 
such as Andorra, Liechtenstein, Monaco, etc. In  
these cases, for example the “holes” in Italy or in 
France disappear cartographically. With the 

thresholds previously defined, such as mmlp  1.0  

and mmi  1 , we can formally get:  

a/ Disappearance of a geographic object (O)  
at scale σ: 
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Such as 2Dmap is a function transforming a 
geographic object to some scale possibly with 
generalization, in the 2-dimension domain. 

b/Mutation of an area into a point (for instance the 
centroid of the concerned object, for instance taken as 
the centre of the minimum bounding rectangle): 

 

).())(

(),(2 Scale   ,GeObject 
2

2

OCentroidOOArea

ODmapOO

lp

iσ





 


 

 

c/Mutation of a ribbon R into a line (for instance its 
skeleton): 
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Therefore, one can say that any spatial relation 
mutates according to scale. As previously stated, one 
says that a road runs along the Rhone; but in reality, 
in some places, the road does not run really along the 
Rhone due to trees, beaches or buildings, etc. At one 
scale, the road MEETs the Rhone (Fig. 2a), but at 
another scale at some places, this is a DISJOINT 
relation (Fig. 2b). For instance, let's consider  
two geographic objects O1 and O2 and Oσ

1 and Oσ
2 

their cartographic representations, the following 
assertion holds: 
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Fig. 13 — Mutation of geographic objects 
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Similar assertions could be written for Contains, 
Overlap relations between geographic objects, using 
Meet relation. In addition, two objects in the real world 
with a Meet relation can coalesce into a single one. 

As a consequence, in reasoning what is true at one 
scale, can be wrong at another scale. So, any 
automatic system must be robust enough to deal with 
this issue. 
 
Granularity of interest 

The previous remarks are not only valid for 
cartography, but also there are other concepts which 
correspond to cartography. Beyond thresholds of 
visual acuity, which is a fundamental concept in 
cartography, let us define granularity of interest: this 
is the minimum level of interest for a geographic user. 
For instance, a nationwide politician will be interested 
at state level, whereas an urban planer will be 
concerned only at the level of the city for which he 
works. If we take into account the concept of 
granularity of interest, the model of the topological 
relations will be more complex. So, in the sequel of 
this paper, to simplify the presentation, we will 
continue to use the thresholds for visual acuity instead 
of granularity of interest.  
 
Generalization of Topological Relations  

The generalization of spatial data implied the 
generalization of the loose topological relations 
according to certain accurate rules. We considered 
here the GRD process to formulate a list of these 
rules, first between regions. Then, we treated the 
relations between loose ribbons. 
 
Topological relations of region 

Mutation of loose topological relations of region: 
Often, due to measurement errors and independent 
processing or generalization, geographic objects do 
not coincide exactly. Eghenhofer and Dube (2009) 
investigated the possible connections between 
topological relations and metrics18. When one wants 
to evaluate the topological relations between them, it 
is necessary to take this aspect into account. Within 
the context of granularity of interest, when 
downscaling, this characteristic will disappear. Let us 
define loose topological relations when dealing in 
such cases (Fig. 14). By considering the conventional 
topological relations, let us immediately say that the 
Disjoint relation is not concerned, except when the 
regions are very close. 

Loose meet 
The criterion to define a loose meet is based on the 

area of intersection of two regions, A and B. For 
instance, given a threshold εLM: 
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When downscaling from σ1 to σ2, this mutation 
Lmeet-to-meet can be defined: 
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Loose cover 
Here one has to evaluate the area of the sliver 

polygons. This area is composed of two parts, BA

and BA  . In other terms, this is a symmetric 
difference defined as follows: 

)()A( BABBA   . Therefore by 
defining another threshold, the corresponding 
criterion can be: 
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So, the mutation Lcover to cover when downscaling: 
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Fig. 14 — Loose topological relations. 
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Loose equal 
The Loose-Equal relation can be defined from the 

Loose-Cover relation, but the area in the intersection 
must not be far from the union. So two criteria must 
be used with another threshold: 
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Similarly, this relation can mutate to an Equal 
relation when downscaling: 
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Mutation of Eghenhofer relation: The loose 
relations described in the previous section were 
mutated into good-standing region relations, when 
downscaling. We present here the mutations of 
topological relations which were not treated in the 
work of Laurini7, thus, completing the model defined 
in the work of Laurini (2014)9. 
 

Mutation of Overlap to Meet 
The relation overlap can mutate to Meet relation 

according to the following condition (Fig. 15):  
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In addition, similarly, the smaller object can disappear.  
 
Mutation of Overlap to Cover 

Also, the relation Overlap may be mutated into 
relation Cover; to formulate this mutation, one can 
use the assertion (Fig. 16): 
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Mutation of Contains to Cover 
The mutation of relation Contains to Cover is 
expressed by the assertion (Fig. 17): 
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Mutation of Contains to Meet 
The mutation of relation Contains to Cover is 

expressed by the assertion (Fig. 18): 
 

). , (

))O , O(())O , O(()),(2(

)),(2() Scale  ( ,GeObject O , O 

21

1
212122

1121











OOCover

DistContainsODmapO

ODmapO







 

Mutation of loose ribbon relations 
We consider that loose ribbons as a specific region, 

the same mutations of topological relations between 
regions described above can be made for loose 
ribbons. Thus, the topological relations of loose 

 
 

Fig. 15 — The mutation of Overlap to Meet 

 
 

Fig. 16 — The mutation of Overlap to Cover 
 

 
 

Fig. 17 — The mutation of Contains to Cover 
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ribbons can be mutating into good-standing ribbon 
relations. Suppose that one has a road file, a river file 
and a railway file for the same narrow valley. Since 
the files are of different origin, during the overlay, 
sliver polygons can be found and must be removed; 
these relations cannot be considered as topological 
relations of loose ribbons. Figures 11 and 12 give 
different configurations for the Loose Equal, Loose 
Side-to-Side and Loose End-to-End ribbon 
relations…etc, which are considered as topological 
relations of loose ribbons. The same methodology 
could be applied here as ribbons are specific regions. 
Thus, the same algorithms can be used to mutate 
those loose relations into their equivalent good-
standing ribbon relations. When downscaling, each of 
those loose relations is mutated into other topological 
relations according to the rules mentioned above; also 
the loose ribbon will be mutating to rectangular 
ribbons or to polylines or will disappear.  
 
Implementation and Some Results 

The application of the generalization process 
requires changing the geometry of objects and the 
mutation of their topological relation with other 
objects. To study the mutation of loose topological 
relations between objects, we developed the 
mathematical assertions cited above. Thus, we 
developed all the necessary functions used to mutate 
the loose topological relations. 

In the implementation, we used the loose ribbons to 
represent the linear objects which have loose 
rectangles because the rectangular ribbon cannot 
represent the reality very well. The majority of the 
rivers or the roads have irregular width which were 
taken into account. To validate the concepts proposed 
in this paper as loose ribbons and loose topological 
relations, we developed a prototype which can apply 
the generalization of the topological relations. We 

present here an example to show the mutations of 
loose topological relationships when downscaling. 
The topological consistencies of the map are required 
when downscaling. However, traditional methods for 
maintaining the consistency of topological 
relationships are ineffective, as they do not associate 
the shape simplification with the mutation of loose 
topological relationships. Thus, they cannot analyze 
the mutations of loose topological relationships; this 
makes them ineffective and weak to preserve 
topological consistencies in the map. 

To implement the GRD process, we defined two 
thresholds, i  for invisibility of objects and pl  for the 

reduction of objects (regions or loose ribbons) to 
points, rectangular ribbons or lines. In our 
implementation, we took mmmmi  1 and  1.0 lp   . 

When downscaling, the rivers and the buildings are 
generalized and the loose topological relationships are 
mutated into other relationships. First, the developed 
prototype can automatically detect the loose 
topological relationships between objects. Then, it can 
mutate the loose relations into other relations according 
to the mathematical assertions cited above. Finally, the 
prototype can display the result on the screen.  

In this paper, we proposed some assertions, which 
mutate the topological relationships into other ones to 
maintain the consistency of topological relationships, 
thus keeping the high quality of the map when 
downscaling because this is the main objective of the 
generalization process. Here, we present an example, 
which is corresponding to different loose topological 
relationships between spatial objects (loose ribbons or 
regions) as Loose Disjoint, Loose Meet, Loose Cross, 
Loose Merge and Loose Covers. They have been 
successfully tested and indicate the correctness of our 
concepts and the ability of our mathematical 
assertions to mutate the loose topological 
relationships from any given map. In Figure 19, we 
present a real example. In this example, we applied 
our model on real spatial data. Before generalization, 
we have two buildings (building01, building02) and a 
pathway. We also have a road, river and bridge. When 
downscaling, we obtain only one building and  
the Loose Disjoint between the buildings and the 
pathway mutated into Meet relation. Also, the Cross 
relation between the river and the road mutated into 
the Merge relation, and the bridge which is 
represented by a region, is transformed into a point 
after generalization.  

 
 

Fig. 18 — The mutation of Contains to Cover 
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In our implementation, we use the loose ribbons to 
represent the linear objects to verify the correctness of 
the concepts of the proposed framework. In this study, 
we present some examples to show the 
transformations of topological relationships when 
downscaling. The topological consistencies of the 
map are required when downscaling. However, 
traditional methods for maintaining consistencies of 
topological relationships are ineffective as they do not 
associate the shape simplification with the 
transformation of topological relationships. Thus, they 
cannot analyze the transformations of topological 
relationships; this makes them ineffective and weak to 
preserve topological consistencies in the map.  

The framework presented in this paper consists to 
transform the loose topological relationships into 
other ones to maintain the consistencies of topological 
relationships, thus, keep the high quality of the map 
when downscaling. Our collection of cases we tested 
in the three previous examples is corresponding to 
different topological relationships between spatial 
objects (ribbons or regions) as Disjoint, Meet, Cross, 
Merge and Covers. They have been successfully 
tested and the test result indicate the correctness of 
our concepts and the ability of our mathematical 
assertions to transform the loose topological 
relationships from any given map. 

This study focused only on the transformation of 
loose topological relationships when downscaling. 
The mathematical assertions of this framework can be 
integrated on any simplification algorithm provided 
by GIS, but this is beyond the scope of this study. 
This work will be addressed in the future. 
 
Conclusion and Future Works 

In a past work, we proposed a topological model to 
generalize rectangular ribbons which represent linear 

objects (Lejdel et al., 2015). In this work, we defined 
loose ribbons which can be seen as an extension of 
rectangular ribbons with specific characteristics. We 
develop a topological model of loose ribbons. This 
model principally is viewed as the extension of the 
model, which was presented in Lejdel et al. (2015). 
We considered two objects: Loose ribbons and 
regions. The application of the generalization’s 
operators may cause topological conflicts. To avoid 
these conflicts, topological conditions were used to 
generate the relationships in terms of meeting, 
overlapping, disjunction, and containment between 
map objects into other relationships. In this paper, we 
used these topological conditions to formulate some 
mathematical frameworks which comprised a set of 
assertions for treating the variety of loose topological 
relation according to the scale. When downscaling, a 
spatial object represented by area can be transformed 
into a point, or disappear; also, a loose ribbon can be 
transformed into a ribbon, line, or disappeared. If 
these geographic objects have loose topological 
relationships between them, each one will be also 
generalized using the assertions given in a 
mathematical framework for each situation. 
 

This work can open various future perspectives, 
such as: 
 
 Integration of this topological model in the 

automatic generalization process or on-the-fly 
web map generation. 

 Use of these basic topological relations to model 
the other relations between complex objects. 
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